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ABSTRACT

Recently, there has been a growing surge of interest in enabling machine learning
systems to generalize well to Out-of-Distribution (OOD) data. Most efforts are
devoted to advancing optimization objectives that regularize models to capture the
underlying invariance; however, there often are compromises in the optimization
process of these OOD objectives: i) Many OOD objectives have to be relaxed as
penalty terms of Empirical Risk Minimization (ERM) for the ease of optimization,
while the relaxed forms can weaken the robustness of the original objective; ii)
The penalty terms also require careful tuning of the penalty weights due to the
intrinsic conflicts between ERM and OOD objectives. Consequently, these com-
promises could easily lead to suboptimal performance of either the ERM or OOD
objective. To address these issues, we introduce a multi-objective optimization
(MOO) perspective to understand the OOD optimization process, and propose
a new optimization scheme called PAreto Invariant Risk Minimization (PAIR).
PAIR improves the robustness of OOD objectives by cooperatively optimizing
with other OOD objectives, thereby bridging the gaps caused by the relaxations.
Then PAIR approaches a Pareto optimal solution that trades off the ERM and OOD
objectives properly. Extensive experiments on challenging benchmarks, WILDS,
show that PAIR alleviates the compromises and yields top OOD performances.

1 INTRODUCTION

The interplay between optimization and generalization is crucial to the success of deep learn-
ing (Zhang et al., 2017; Arora et al., 2019; Allen-Zhu et al., 2019; Jacot et al., 2021; Allen-Zhu & Li,
2021). Guided by empirical risk minimization (ERM) (Vapnik, 1991), simple optimization algorithms
can find uneventful descent paths in the non-convex loss landscape of deep neural networks (Sagun
et al., 2018). However, when distribution shifts are present, the optimization is usually biased by
spurious signals such that the learned models can fail dramatically in Out-of-Distribution (OOD)
data (Beery et al., 2018; DeGrave et al., 2021; Geirhos et al., 2020). Therefore, overcoming the OOD
generalization challenge has drawn much attention recently. Most efforts are devoted to proposing
better optimization objectives (Rojas-Carulla et al., 2018; Koyama & Yamaguchi, 2020; Parascandolo
et al., 2021; Krueger et al., 2021; Creager et al., 2021; Liu et al., 2021; Pezeshki et al., 2021; Ahuja
et al., 2021a; Wald et al., 2021; Shi et al., 2022; Rame et al., 2021; Chen et al., 2022) that regularize
the gradient signals produced by ERM, while it has been long neglected that the interplay between
optimization and generalization under distribution shifts has already changed its nature.

In fact, the optimization process of the OOD objectives turns out to be substantially more challenging
than ERM. There are often compromises when applying the OOD objectives in practice. Due to
the optimization difficulty, many OOD objectives have to be relaxed as penalty terms of ERM in
practice (Arjovsky et al., 2019; Koyama & Yamaguchi, 2020; Krueger et al., 2021; Pezeshki et al.,
2021; Ahuja et al., 2021a; Rame et al., 2021), but the relaxed formulations can behave very differently
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(a) Theoretical failure case. (b) Gradient conflicts. (c) Unreliable opt. scheme. (d) Exhaustive tuning.

Figure 1: Optimization issues in OOD algorithms. (a) OOD objectives such as IRM usually require
several relaxations for the ease of optimization, which however introduces huge gaps. The ellipsoids
denote solutions that satisfy the invariance constraints of practical IRM variant IRMv1. When
optimized with ERM, IRMv1 prefers f; instead of firy (The predictor produced by IRM). (b)
The gradient conflicts between ERM and OOD objectives generally exist for different objectives at
different penalty weights (z-axis). (c) The typically used linear weighting scheme to combine ERM
and OOD objectives requires careful tuning of the weights to approach the solution. However, the
scheme cannot reach any solutions in the non-convex part of the Pareto front. In contrast, PATR finds
an adaptive descent direction under gradient conflicts that leads to the desired solution. (d) Due to the
optimization dilemma, the best OOD performance (e.g., IRMv1 w.r.t. a modified COLOREDMNIST
from Sec. G) usually requires exhaustive tuning of hyperparameters (y-axis: penalty weights; xz-axis:
pretraining epochs), while PAIR robustly yields top performances by resolving the compromises.

from the original objective (Kamath et al., 2021) (Fig. 1(a)). Moreover, due to the generally existing
gradient conflicts between ERM and OOD objectives (Fig. 1(b)), trade-offs among ERM and OOD
performance during the optimization are often needed. Sagawa* et al. (2020); Zhai et al. (2022)
suggest that ERM performance usually needs to be sacrificed for better OOD generalization. On
the other hand, it usually requires careful tuning of the OOD penalty hyperparameters (Zhang et al.,
2022a) (Fig. 1(d)), which however either weakens the power of OOD objectives or makes them too
strong that prevents models from capturing all desirable patterns. Consequently, using the traditional
optimization wisdom to train and select models can easily lead to suboptimal performance of either
ERM or OOD objectives. Most OOD objectives remain struggling with distribution shifts or even
underperform ERM (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021). This phenomenon calls for a
better understanding of the optimization in OOD generalization, and raises a challenging question:

How can one obtain a desired OOD solution under the conflicts of ERM and OOD objectives?

To answer this question, we take a multi-objective optimization (MOO) perspective of the OOD
optimization. Specifically, using the representative OOD objective IRM (Arjovsky et al., 2019) as an
example, we find that the failures in OOD optimization can be attributed to two issues. The first one is
the compromised robustness of OOD objectives due to the relaxation in the practical variants. In fact,
it can even eliminate the desired invariant solution from the Pareto front w.r.t. the ERM and the OOD
penalty (Fig. 1(a)). Therefore, merely optimizing the ERM and the relaxed OOD penalty can hardly
approach the desired solution. On the other hand, when the Pareto front contains the desired solution,
as shown in Fig. 1(c), using the traditional linear weighting scheme that linearly reweights the ERM
and OOD objectives, cannot reach the solution if it lies in the non-convex part of the front (Boyd &
Vandenberghe, 2014). Even when the OOD solution is reachable (i.e., lies in the convex part), it still
requires careful tuning of the OOD penalty weights to approach the solution, as shown in Fig. 1(d).

To address these issues, we propose a new optimization scheme for OOD generalization, called
PAreto Invariant Risk Minimization (PAIR), which includes a new optimizer (PAIR-0) and a new
model selection criteria (PAIR-s). Owing to the MOO formulation, PATR-o allows for cooperative
optimization with other OOD objectives to improve the robustness of practical OOD objectives.
Despite the huge gaps between IRMv1 and IRM, we show that incorporating VREx (Krueger et al.,
2021) into IRMv1 provably recovers the causal invariance (Arjovsky et al., 2019) for some group
of problem instances (Sec. 3.2). When given robust OOD objectives, PATR~-o finds a descent path
with adaptive penalty weights, which leads to a Pareto optimal solution that trades off ERM and
0OOD performance properly (Sec. D). In addition, the MOO analysis also motivates PAIR-s, which
facilitates the OOD model selection by considering the trade-offs between ERM and OOD objectives.

We conducted extensive experiments on challenging OOD benchmarks. Empirical results show that
PATIR-o successfully alleviates the objective conflicts and empowers IRMv1 to achieve high perfor-
mance in 6 datasets from WILDS (Koh et al., 2021). PATIR~s effectively improves the performance
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of selected OOD models up to 10% across 3 datasets from DOMAINBED (Gulrajani & Lopez-Paz,
2021), demonstrating the significance of considering the ERM and OOD trade-offs in optimization.

2 BACKGROUND AND RELATED WORK

We first briefly introduce the background of our work (more details are given in Appendix B.1).

Problem setup. The problem of OOD generalization typically considers a supervised learning setting
based on the data D = {D}.c¢,, collected from multiple causally related environments &y, where a
subset of samples D¢ = {X¢,Y;¢} from a single environment e € &, are drawn independently from
an identical distribution P¢ (Peters et al., 2016). Given the data from training environments {D€}.c¢,,
the goal of OOD generalization is to find a predictor f : X — ) that generalizes well to all (unseen)
environments, i.e., to minimize max.cg,, Le(f), where L, is the empirical risk under environment e.
The predictor f = w o ¢ is usually composed of a featurizer ¢ : X — Z that learns to extract useful
features, and a classifier w : Z — ) that makes predictions from the extracted features.

Multi-Objective Optimization (MOO). MOO considers solving m objectives w.r.t. {L;},
losses, i.e., ming L(0) = (L1(8), ..., L (0))T (Kaisa, 1999). A solution # dominates another 6, i.e.,
L(#) < L(0),if £;(0) < L;() for all i and L(#) # L(6). A solution 6* is called Pareto optimal if
no other # dominates 6*. The set of Pareto optimal solutions is called Pareto set (P) and its image
is called Pareto front. In practice, it is usual that one cannot find a global optimal solution for all
objectives, hence Pareto optimal solutions are of particular value. Although MOO has been widely
applied to improving multi-task learning (Sener & Koltun, 2018), it remains underexplored on how to
model and mitigate objective conflicts in OOD generalization from the MOO perspective.

3  OPTIMIZATION CHALLENGES IN IRM AND ITS EFFECTIVE F1X

This work focuses on one of the most representative OOD objectives in learning the causal invariance
—IRM, to show how we can understand and mitigate the optimization dilemma through the MOO lens.

3.1 DRAWBACKS OF IRM IN PRACTICE

We first introduce the drawbacks of IRMv1, and leave theoretical details in Appendix C.1. Specifically,
the IRM framework approaches OOD generalization by finding an invariant representation ¢, such
that there exists a classifier acting on ¢ that is simultaneously optimal in &,. Given the training
environments &, and functional spaces W for w and @ for ¢, predictors f = w o ¢ satisfying the
invariance constraint are called invariant predictors, denoted as Z(&). When solving for invariant
predictors, characterizing Z (&) is particularly difficult in practice, hence Arjovsky et al. (2019)
introduces several relaxations and derive the practical IRMv1 objective:

min e, £e(@) + AVuumaLelw - ¢)f (M)

Theoretical failure of practical IRM variants. Although the practical variants seem promising,
the relaxations introduce huge gaps between IRM and the practical variants, so that both IRMs and
IRMv1 can fail to capture the invariance (Kamath et al., 2021). The failure case is illustrated by the
two-bit environment with «., 8. € [0, 1]. Each environment D, = {X*¢,Y ¢} is generated following

Y :=Rad(0.5), X° := (X7, X5), X7 :=Y*°Rad(ae), X5 :=Y*“Rad(f,), )

where Rad(o) is a random variable taking value —1 with probability o and +1 with probability 1 — o.
Each environment is denoted as £, = {(a, 8) : 0 < B < 1} where X7¥ is the invariant feature as «
is fixed for different environment e, and X§ is the spurious feature as 3. varies across different e.

Let Zs(&;) denote the set of invariant predictors elicited by the relaxed constraint in IRMgs. It
follows that Z(&,) C Zs(&,). Consequently, there exist some undesired predictors but considered
“invariant” by IRMs and IRMv1. For example, in &, = {(0.1,0.11),(0.1,0.4)}, the solutions
satisfying the constraint in IRMs are those intersected points in Fig. 1(a) (The ellipsoids are the
constraints). Although f1, firm € Zs(&y), both IRMs and IRMv1 prefer f; instead of firm (the
predictor produced by IRM), as f; has the smallest ERM loss. In fact, Kamath et al. (2021) show that
the failure can happen in a wide range of environments even given infinite amount of environments
and samples, demonstrating the huge gap between the practical and the original IRM variants.

Empirical drawback of practical IRM variants. In addition, the optimization of IRMv1 introduces
more challenges due to the conflicts between the IRMv1 penalty and ERM objective. As shown in
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Fig. 1(d), it often requires significant efforts to tune the hyperparameters such as pretraining epochs
and penalty weights A in Eq. 1. Otherwise, the IRMv1 penalty could be either too weak to enforce the
invariance as required by IRM, or too strong that prevents ERM from learning all desirable patterns.

3.2 PARETO OPTIMIZATION FOR IRM

As shown that both IRM s and IRMv1 fail to properly trade off between ERM and IRM objectives,
we switch to a new perspective, i.e., the lens of MOO, to understand the failures of IRM in practice.

Understanding the IRM failures through the MOO perspec-
tive. To begin with, it is natural to reformulate the practical
IRM problem (Eq. 1) as a MOO problem min,, (Lgrwm, Lirm) T,
where Lgrm = ﬁ Y oee & L. denotes the ERM loss, and Lirm =
> [Vaujw=1Le(w-©)|? denotes the practical IRMv1 loss. To under-
stand the behaviors of the MOO solutions, We visualize the Pareto
front w.r.t. {Le }eecg, using the previous failure case in Fig. 1(a).

0.20 025

Ly

Figure 2: Pareto front of ERM
Let P(L1(0), ..., L, (0)) denote the set of Pareto optimal solutions losses w.r.t. environments.
w.rt. (£1(0), ..., L, (0)). As shown in Fig. 2, at first, we can find

that firm ¢ P(L1, L2). In other words, solving any environment-reweighted ERM losses cannot
obtain firm. Moreover, together with Fig. 1(a), the failure remains even combined with the IRMg
or IRMvl, ie., firm ¢ P(L1, L2, Lirm), hence firm & P(Lerm, Lirm), as firm is dominated by f;.
Therefore, no matter how we carefully control the optimization process, we cannot obtain figy by
merely minimizing the losses. This is because of the weakened OOD robustness of IRM s and IRMv1
caused by the relaxations. Thus, choosing robust objectives for optimization is of great importance.
The ideal objectives should constitute a Pareto front that contains the desired OOD solution.

Improving OOD robustness of practical IRM variants. In
pursuit of proper optimization objectives, we resort to the OOD
extrapolation explanation of IRM (Bottou et al., 2019). A solution
that is simultaneously optimal to all training environments (i.e.,
satisfying the original IRM constraints) is also a stationary point
of ERM loss w.r.t. some OOD distribution:

8‘Ct/afIRM = 07 ‘Ct € {Zeeg )\6‘65'2665 )\e = 1}’ (3) o w(l,—l):w(ﬂ,l:) -

where £, is the ERM loss under the OOD distribution. Different  Figure 3: Variance distribution.
from Distributionally Robust Optimization approaches (Namkoong & Duchi, 2016), Eq. 3 allows for
some negative A\, and hence its solutions are expected to extrapolate better (Bottou et al., 2019).

o(1,1) = —p(-1,-1)

The previous failure case implies that both IRMs and IRMvl fail in the extrapolation due to the
relaxations, nevertheless, we can introduce additional objectives to directly improve the OOD
extrapolation power of the practical IRM variants. To this end, we introduce the REx objective to
IRMv1, which is derived by directly minimizing the worst case ERM loss under all OOD distributions
up to a certain distance from the training distributions (Krueger et al., 2021). More formally, REx
minimizes the worst case £; under an additional constraint of {\.}.cg, > —/3 in Eq. 3. For the ease
of optimization, they also propose an alternative objective as Lyrgx := var({L. }ece, ). In Fig. 3, we
plot the distribution of Lygrgx in the the failure case of Fig. 1(a). It can be found that, firy lies in
the low variance region. Similarly, in Fig. 2, the zero variance solutions (shown as the purple line at
middle) points out the underlying firy beyond the Pareto front. Therefore, incorporating Lyggx the
MOO problem can relocate firy into the Pareto front, which implies the desirable objectives as:

(IRMX) m(gn(ﬁERM , Lirmt, Lyvre) “)
By resolving a large class of failure cases of IRMs and IRMv1 (Kamath et al., 2021), solutions to

Eq. 4 are more powerful than those to IRMs and IRMv1 in OOD extrapolation. In fact, we have

Proposition 1. (Informal) Under Setting A (Kamath et al. (2021)), for all o € (0,1), let £ =
{(a, Be) : Be € (0,1)} be any instance of the two-bit environment (Eq. 2), Tx denote the invariant
predictors produced by Eq. 4, it holds that Zx (£) = Z(€).!

'Readers might be interested in the necessities of keeping IRMv1 in the objectives. Proposition 1 considers
only the ideal case, we additionally provide more empirical reasons in Appendix C.2; Our results can also be
extended to multi-class following typical machine learning theory practice.
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Figure 4: Recovery of causal invariance in linear regression. The causal invariance (Definition. C.1)
requires the model predictions to be independent of the spurious features within the overlapped
invariant features. In this example, intuitively it requires the colored belts to be perpendicular to
x-axis within [—2, 2]. PAIR succeeds out of IRMv1 and VREX in recovering the causal invariance.

—4 -2 0 2 4

The formal description and proof of Proposition 1 are given in Appendix F.1. Proposition 1 implies
that Eq. 4 are the ideal objectives for optimization. However, Eq. 4 can even add up the difficulty of
OOD penalty tunning. It introduces one more penalty to the overall objective that makes the Pareto
front more complicated for the linear weighting scheme to find the desired solution.

Pareto optimization for IRMX. Ideally, the set of Pareto optimal solutions is small such that each
f € P(Lerm, L1rM, Lvrex) satisfies the invariance constraints of IRMv1 and VREX, i.e., Liry = 0
and Lyrex = 0, and with a minimal Lggy, thereby eliciting the desired OOD solutions. However, the
ideal constraints might be too strong to be achieved when there are noises among invariant features
and labels (Duchin et al., 2020; Ahuja et al., 2021b), which will future enlarge the set of Pareto
optimal solutions. Therefore, it is natural to relax the constraints as Lirm < €jrm and Lyrex < €VREx-
When erm — 0, eyrex — 0, it recovers the ideal invariance. To obtain a desired solution under these
circumstances, the optimization process is expected to meet the following two necessities:

(1). The additional objective in IRMX can make the Pareto front more complicated such that the
desired solutions are more likely to appear in the non-convex part, which are however not reachable
by the linear weighting scheme (Boyd & Vandenberghe, 2014). Therefore, the optimizer needs to be
able to reach any Pareto optimal solutions in the front, e.g., MGDA algorithms (Désidéri, 2012).

(ii). When both ejrm, evrex > 0, there can be multiple Pareto optimal solutions while there are few
desired OOD solutions. Hence a preference of ERM and OOD objectives is usually needed. As the
optimality of each OOD objective usually appears as a necessary condition for satisfactory OOD
performance, the preferences for OOD objectives are expected to be higher.

Given the two requirements, we leverage a preference-aware MOO solver to solve IRMX for the
desired Pareto optimal solution (Mahapatra & Rajan, 2020). We summarize the overall solution as
PAreto Invariant Risk Minimization (PAIR). When assigning a high preference to Ligym and Lyrgx in
IRMX (Eq. 4), PAIR approaches a Pareto optimal solution that minimizes the OOD losses while not
sacrificing the ERM performance too much, and has good OOD performance, shown as in Table. 2.

Recovery of Causal Invariance in linear regression. To better understand how PAIR bridges the
gaps between the practical and original IRM, we examine to what extent PAIR can recover the causal
invariance specified by Arjovsky et al. (2019) in a more difficult case. Specifically, we construct a
regression problem. As shown in Fig. 4, Y = sin(X7) + 1 is solely determined by X1, i.e., the values
of the x-axis, while X5 is the values of y-axis and does not influence the values of Y. Different
colors indicate different values of Y. Hence, the invariant representation ¢ should only take X}
and discard X». We sampled two training environments as denoted by the ellipsoids colored in red,
among which the overlapped region of the invariant features X is [—2, 2]. Hence the predictions of
the invariant predictor are expected to be independent of X5. In other words, the plotted belts need
to be perpendicular to the z-axis within the overlapped invariant features [—2, 2]. More details can
be found in Appendix C.3. We plot predictions with the best MSE losses in Fig. 4(b) and Fig. 4(c),
respectively. Although both IRMv1 and VREXx fail to achieve the causal invariance as expected,
perhaps surprisingly, PAIR almost recovers the causal invariance, as shown in Fig. 4(d).

Due to the space constraints, we leave the detailed descriptions of PAIR-0 and PAIR-s in Appendix D,
and empirical studies in COLOREDMNIST, WILDS and DOMAINBED in Appendix G.

>We leave more sophisticated Pareto front exploration methods (Zhang & Golovin, 2020; Ma et al., 2020) to
future investigation.



Published at ICLR 2023 Workshop on Domain Generalization

ETHICS STATEMENT

Considering the wide applications and high sensitivity of deep neural networks to distribution shifts
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data, especially for some human-centered Al scenarios such as autopilot and social welfare. By
understanding and mitigating the optimization dilemma in OOD generalization, our work could serve
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To ensure the reproducibility of our theoretical results, we provide detailed proofs for our proposi-
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A NOTATIONS

We first list the notations for key concepts in our paper.

Table 1: Notations

X =R" the input space
Y=R the label space
Z=R? the latent space
) the featurizer ¢ : X — Z learns a latent representation for each input example
w the classifierw : Z2 — Y
ferF the predictor f = w o ¢ : X — ) is composed of a featurizer and classifier
when w is linear, f can be simply represented via dot product w - ¢
Ean the set of indices for all environments
Eur the subset of indices of training environments
e the index set of a specific environment
D¢, D, the dataset from environment e, containing samples { X7, Y;°} considered as i.i.d. from P¢
D the overall dataset containing data from all environments, D = {D¢}cce,,
(&) the set of invariant predictors w.r.t. some OOD objectives (e.g., IRM) and environments £
Le the empirical risk calculated based on D, e.g., square loss or logistic loss
L the vector of losses {£; };~, considered in m objectives from a MOO problem,
shared a set of parameters 6
P(L) the set of Pareto optimal solutions w.r.t. the objectives L
Pood the vector of objective preference

G € R™*?  the matrix of gradients w.r.t. m objectives L and parameters § € R¢
each objective £; corresponds to a gradient vector g € R¢

smtl the m-simplex corresponding to m OOD objectives, {3 € ]R:_”“| Z;’:{l Bi =1}

B MORE DISCUSSIONS ON BACKGROUND AND FUTURE DIRECTIONS

B.1 BACKGROUND AND RELATED WORK

In this section, we provide more details of the backgrounds and closely related works to ours, in
complementary to Sec. 2.

The problem of OOD generalization. The problem of OOD generalization typically considers a
supervised learning setting based on the data D = {D°}.c¢,, collected from multiple causally related
environments &, where a subset of samples D¢ = {X¢,Y,°} from a single environment e € &
are drawn independently from an identical distribution P¢ (Peters et al., 2016). Given the data from
training environments {D°}.c¢, , the goal of OOD generalization is to find a predictor f : X — Y
that generalizes well to all (unseen) environments, i.e., to minimize max.eg,, L£c(f), where L, is
the empirical risk (Vapnik, 1991) under environment e, X and ) are the input and labeling spaces,
respectively. The predictor f = w o ¢ is usually composed of a featurizer ¢ : X — Z that learns
to extract useful features, and a classifier w : Z — ) that makes predictions from the extracted
features. In practice, ¢ is commonly implemented as a deep feature extractor, while w is generically
implemented as a simple dense linear classifier (Gulrajani & Lopez-Paz, 2021; Koh et al., 2021;
Rame et al., 2021; Rosenfeld et al., 2022).

Existing solutions to OOD generalization. There exists a rich literature aiming to overcome the
OOD generalization challenge, which usually appear as additional regularizations of ERM (Vapnik,
1991). The first line is the Domain Generalization works (Ganin et al., 2016; Sun & Saenko, 2016; Li
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et al., 2018; Dou et al., 2019) that tries to regularize the learned features to be domain-invariant.
However, Zhao et al. (2019) show that the domain invariant features solely are not sufficient for
guaranteed good OOD generalization. We refer readers to Gulrajani & Lopez-Paz (2021) for more
details of the literature about Domain Generalization. Moreover, Namkoong & Duchi (2016); Hu
et al. (2018); Sagawa* et al. (2020) aim to regularize the models to be robust to mild distributional
perturbations of the training distributions such that the models are expected to perform well in
unseen test environments. Following the line of distributional robustness, Liu et al. (2021); Zhang
et al. (2022b); Yao et al. (2022) further propose advanced strategies to improve the robustness by
assuming that models trained with ERM have strong reliance to spurious features.

Recently there is increasing interest in adopt theory of causality (Pearl, 2009; Peters et al., 2017;
Scholkopf et al., 2021) and introduce the causal invariance to the learned representations (Peters
et al., 2016; Rojas-Carulla et al., 2018; Arjovsky et al., 2019). The causal invariance is inspired by the
assumption of Independent Causal Mechanism (ICM) in causality (Peters et al., 2017). ICM assumes
that conditional distribution of each variable given its causes (i.e., its mechanism) does not inform
or influence the other conditional distributions (Pearl, 2009; Peters et al., 2017). Peters et al. (2016)
introduce the concept of environments which are generated by different interventions on certain
variables involved in the underlying data generation process of (X, Y"). Despite of the changes to the
intervened variables, the conditional distribution of intervened variables (they usually are the direct
parents of Y in the underlying causal graph) and Y is invariant. Therefore, the invariant relationship
can be leveraged to predict Y and generalize to different environments. We refer interested readers
to Peters et al. (2016); Scholkopf et al. (2021); Ahuja et al. (2021a) for more details. Inspired by
the causal invariance principle, Arjovsky et al. (2019) propose the framework of Invariant Risk
Minimization (IRM) that allows the adoption of the causal invariance in neural networks. It further
inspires plentiful invariant learning works (Parascandolo et al., 2021; Mahajan et al., 2021; Creager
et al., 2021; Wald et al., 2021; Ahuja et al., 2021a; Chen et al., 2022; Lin et al., 2022b). At the
heart of these works is the intuition that: When a predictor w acting on ¢ minimizes the risks in
all of the environments simultaneously, ¢ is expected to discard the spurious signals while keeping
the causally invariant signals. Additionally, there can be more definitions and implementations of
the invariance (Koyama & Yamaguchi, 2020; Krueger et al., 2021; Shi et al., 2022; Rame et al.,
2021) which further encourage agreements at various levels across different environments. We refer
interested readers to Rame et al. (2021) for a detailed comparison and discussion. As shown that most
of the existing approaches encounter the optimization dilemma when learning the causal invariance,
this work mainly focus on resolving the optimization issue in learning the causal invariance defined
by the framework of Invariant Risk Minimization (Arjovsky et al., 2019), which is different from the
literature of IRM variants or other OOD objectives that focus on proposing better objectives to learn
the causal invariance.

Optimization Dilemma in OOD Algorithms. Along with the developments of OOD methods, the
optimization dilemma in OOD generalization is gradually perceived in the literature, and raises new
puzzles to the community. In fact, several recent works also notice the optimization dilemma in OOD
algorithms, specifically, the trade-off between discovering the statistical correlations (i.e., ERM) and
preventing the usage of spurious correlations (e.g., IRM). Empirically, Gulrajani & Lopez-Paz (2021)
observe that, with careful hyperparameter tuning and evaluation setting, many OOD algorithms cannot
outperform ERM in domain generalization, demonstrating the difficulties of properly mitigating the
trade-offs between OOD and ERM objectives in practice. Moreover, Sagawa* et al. (2020); Zhai
et al. (2022) find that, regularization on ERM, or sacrificing ERM performance, is usually needed
for achieving satisfactory OOD performance, which aligns with our findings through Pareto front
as shown in Fig. 5(a) and Fig. 6(a). Besides, Lin et al. (2022a) find that IRM can easily overfit and
learns unexpected features when applying IRM on large neural networks. Zhou et al. (2022) propose
to alleviate this problem by imposing sparsity constraints. Orthogonal to Lin et al. (2022a); Zhou
et al. (2022) that focuses on the optimization consequences, we focus on the optimization process
of OOD objectives. In addition, Zhang et al. (2022a) find that, the performance of OOD algorithms
largely relies on choosing proper pretraining epochs which aligns with our findings in Fig. 1(d), hence
propose to construct a ready-to-use features for stable OOD generalization performance. Orthogonal
to Zhang et al. (2022a), we focus on developing better optimization scheme for OOD algorithms,
including choosing the proper objectives and the achievability of the invariant predictors. Besides, Lv
et al. (2021) propose ParetoDA to leverage MOO to resolve the gradient conflicts amon the objectives
in Domain Adaption. ParetoDA uses the guidance of validation loss based on the data that has the
identical distribution to test distribution, to trade-off the conflicts in domain adaption objectives.
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However, there can be multiple test domains, and the data that has identical distribution with the test
domain is usually unavailable in OOD generalization. Therefore, ParetoDA is unsuitable for general
OOD generalization methods. Despite the increasing literature that perceives the OOD optimization
dilemma, it remains an open problem on why there exists such a dilemma, and how to effectively
mitigate the conflicts of ERM and OOD objectives and obtain a OOD generalizable solution.

Further implications by the OOD optimization dilemma. In addition to preventing finding a
proper OOD solution, the OOD optimization dilemma also raises significant challenges for model
selection of OOD algorithms. Gulrajani & Lopez-Paz (2021) highlight this challenge with rigorous
evaluation of OOD algorithms. Similar to PATR-0, PAIR-s resolves the dilemma by leveraging
the OOD loss values and explicitly considering the trade-offs of ERM and OOD performance. We
present more details in Sec. I.1.

Multi-Objective Optimization (MOO) and its applications in Multi-Task Learning. MOO
considers solving m objectives, w.r.t. {£;}7 losses, i.e., ming L(0) =(L1(0), ..., L, (0))T (Kaisa,
1999). A solution 6 dominates another 6, i.e., L(0) = L(9), if £;(8) < L£;(¢) for all i and
L(6) # L(0). A solution 8* is called Pareto optimal if there exists no other solution that dominates
0*. The set of Pareto optimal solutions is called Pareto set, denoted as P, and its image is called
Pareto front. As it is usual that we cannot find a global optimal solution for all objectives in
practice, hence Pareto optimal solutions are of particular value. The multiple-gradient descent
algorithm (MGDA) is one of the commonly used approaches to efficiently find the Pareto optimal
solutions (Désidéri, 2012) but limited to low-dimensional data. Sener & Koltun (2018) then resolve
the issue and apply MGDA to high-dimensional multi-task learning scenarios, where the objective
conflicts may degenerate the performance when using linear scalarization. As pure MGDA cannot
find a Pareto optimal solution specified by certain objective preferences, Lin et al. (2019); Zhang
& Golovin (2020); Ma et al. (2020) propose efficient methods to explore the Pareto set. Mahapatra
& Rajan (2020) propose EPO to find the exact Pareto optimal solution with the specified objective
preferences. Although MOO has gained success in mitigating the task conflicts in multi-task learning,
it remains underexplored on whether and how we can leverage the MOO to model and resolve the
ERM and OOD conflicts. Without a proper set of objectives and preference guidance, the existing
MOO solvers are unable to obtain a desired solution for OOD generalization.

B.2 LIMITATIONS AND FUTURE DIRECTIONS

Although PATIR is shown to effectively mitigate the objective conflicts and boost the OOD perfor-
mance via better optimization and model selection, the performance gain sometimes can decrease
given the limitations of PATR. We believe future works can be built upon resolving the limitations of
PAIR, as detailed below.

From the optimizer perspective, the improvements of PAIR-o can decrease on some datasets. We
hypothesize it is because of the inevitable stochastic gradient bias in all MGDA MOO solvers (Liu &
Vicente, 2021), and potentially large variance in estimating the IRMv1 penalties (e.g., RXRX1 where
both IRMv1 and VREX are shown to perform poor ), as we discussed in Appendix E.4.2.

While for PATIR-s, as we discussed in Sec. D that PATR~s can mitigate the drawbacks of selecting
models using a unreliable validation set (has a large gap from the test domain), the improvements
will be a bit smaller when the gaps narrow down (e.g., PACS using test domain validation accuracy).
Besides, the estimation of satisfaction to Pareto optimality in PATIR~s can also be affected by the
variances in estimating loss values in stochastic setting (e.g., TERRAINCOGNITA), as we discussed in
Appendix E.2.

C MORE DETAILS ON IRM FAILURES AND FiX

In this section, we provide more details about the failure case of IRM and its effective fix from the
perspective of MOO, in complementary to Sec. 3.
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C.1 MORE DETAIL ABOUT FAILURE CASE OF IRM

We follow Kamath et al. (2021) to discuss the failure case of IRM. Specifically, given the problem
setup as in Appendix. B.1, we are interested in the linear classification/regression following the
setting. The loss values are measured as population loss in each environment.

Setting A (identical to (Kamath et al. (2021))): J> = R,Y C R, /s either the square loss
lyq(G,y) = 5(§ — y)?. or the logistic loss liog (7, y) = log (1 + exp (—Jy)) when Y = {—1,1}
(binary classification).

IRM approaches the problem by finding an invariant representation ¢ : X — Z, such that there exists
a predictor w : Z — ) acting on ¢ that is simultaneously optimal among &,;. Hence, IRM leads to a
challenging bi-level optimization problem (Arjovsky et al., 2019) as

min Z Le(wop),
W,
e€&: (5)
s.t. w € argmin L.(w o ), Ve € &,.
w:Z—=Y

Given the training environments &, and functional spaces W for w and @ for ¢, predictors w o ¢
satisfying the constraint are called invariant predictors, denoted as Z(&,). When solving Eq. 5,
characterizing Z(&;) is particularly difficult in practice, given the access only to finite samples
from a small subset of environments. It is natural to introduce a restriction that W is the space of
linear functions on Z = R? (Jacot et al., 2021). Furthermore, Arjovsky et al. (2019) argue that
linear predictors actually do not provide additional representation power than scalar predictors, i.e.,
d=1,W = S = R, The scalar restriction on W elicits a practical variant IRMs as

min Z Le(p),s.t. Viyjw=1Le(w - @) =0, Ve € &. 6)

Let Zs (&) denote the set of invariant predictors elicited by the relaxed constraint in IRMs. It follows
that Z(&,) C Zs(&,) (Kamath et al., 2021). Yet, Eq. 6 remains a constrained programming. Hence,
Arjovsky et al. (2019) introduce a soft-constrained variant IRMv1 as

msgn Z »Ce(%@) + )\|Vw|w:1£e(w : SD)P (7)
e€&y

Theoretical Failure of Practical IRM Variants. Although the practical variants seem promising,
Kamath et al. (2021) show there exists huge gaps between the variants and the original IRM such that
both IRMs and IRMv1 can fail to capture the desired invariance, even being given the population loss
and infinite amount of training environments. The failure case, called two-bit environment (Kamath
et al., 2021), follows the setup of ColoredMNIST in IRM (Arjovsky et al., 2019), and defines
environments with two parameters o, 3. € [0, 1]. Each D, is defined as

Y :=Rad(0.5), X7 :=Y Rad(a,), X2:=YRad(B.), (8)

where Rad(o) is a random variable taking value —1 with probability o and +1 with probability
1 — 0. We denote an environment e with (., §.) for simplicity. The setup in IRM can be denoted as
Ea={(a, Be):0< e <1} where X, is the invariant feature as « is fixed for different e.

Ly
-p(-1,-
#(L1) = ~p(-1,-1)

1) =

Ly ‘ 9(1,—1) = —p(-1,1) [ w](l 1) = —g( 1:]1;
(a) Pareto Front under MSE loss. (b) Failure case under MSE loss. (c) Variance distribution under MSE
loss.

Figure 5: Counterparts of Fig. 1(a), Fig. 3 and Fig. 2 implemented in MSE loss.
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In the example given by Arjovsky et al. (2019), i.e., & = {(0.25,0.1),(0.25,0.2)}, IRMs and
IRMv1 are shown to be able to learn the invariant predictor firy as the original IRM despite
of the relaxation. However, due to Z(&;) C Zs(&;), Kamath et al. (2021) show that the set of
“invariant predictors” produced by IRMs and IRMv1 is broader than our intuitive sense. For example,
when given &; := {(0.1,0.11), (0.1,0.4) }, the solutions satisfying the constraint in IRMs are those
intersected points in Fig. 1(a) (The ellipsoids are the constraints). Although fo, f1, f2, firm € Zs(Ex),
both IRMs and IRMv1 prefer f; instead of firm (the predictor elicited by the original IRM), as f;
has the smallest ERM loss. In fact, Kamath et al. (2021) prove that, the failure can happen in a
wide range of environments with o < 0.1464 and o > 0.8356, even being given infinite number
of additional environments, under MSE loss. It follows that Z(&,) C Zs(&). In other words, the
relaxation in IRMs and IRMv1 will introduce additional “invariant predictors” which however do not
satisfy the original IRM constraint. Both IRMs and IRMv1 will prefer those “invariant predictors”
when they have lower ERM loss than firy, demonstrating the significant theoretical gap between the
practical variants and the original IRM.

e

—o(
9(1.1) = —p(=1,-1)

P =

R R v
Ly ‘ #01,-1) = ~p(-1.1) #(1,-1) = ~9(-1,1)

(a) Pareto Front under Logistic (b) Failure case under Logistic loss.(c) Variance distribution under Logis-
loss. tic loss.

Figure 6: Counterparts of Fig. 1(a), Fig. 3 and Fig. 2 implemented in Logistic loss.

More visualization results of the failure cases. In the main paper, we visualize the Pareto front,
ERM loss distribution, and the variance distribution of the failure case given MSE losses, given
the environment setup of &, := {(0.1,0.11),(0.1,0.4)}. We plot Fig. 1(a) and Fig. 3 based on
the Mathematica code provided by Kamath et al. (2021), where we focus on the odd predictors
due to the symmetry in two-bit environments, i.e., predictors satisfying p(1,—1) = —p(—1,1)
and ¢(1,1) = —¢(—1,—1). Since Fig. 1(a), Fig. 3 and Fig. 2 are implemented in MSE loss,
for completing the discussion under Setting A (Kamath et al., 2021), we also give their logistic
counterparts as in Fig. 6.

0 50700550550 0 5005°56°05°50
1 X T TT T
lel- 0.6 1 HEHEEN
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Los- ... o § Les- .===. 0.7 § . p-gplo(fis=0 p-epochs=50 p-epochs=100
e HEEEN % 1~ HEEN 3 . 1 '
les W HENEEN |,,3 e/ HEEN 0.63 =
le6- ..... g le6- -.-. g %“ p-epochs=150 p-epochs=200 p-epochs=250
7 HEEEN »o,3§ 1e7- BN »0_5% = T L
les N HEEEN ¢ les [HENEN ® e
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(a) IRMv1 in the original CMNIST. (b) IRMv1 in CMNIST-m. (¢) Detailed performance of IRMvl.

Figure 7: Performances of IRMv1 in CMNIST and CMNIST-m under different hyperparameters.

Practical Drawback of Practical IRM Variants. In addition to the theoretical gap, the optimization
of IRMvl is also difficult due to the conflicts between the IRM penalty and ERM penalty in Eq. 7.
It often requires significant efforts for choosing proper hyperparameters such as pretraining epochs
and IRM penalty weights, i.e., A\. Otherwise, IRMv1 may not enforce the constraint in IRMs, hence
will lead to unsatisfactory performance, as shown in Fig. 1(d). We argue that the gradient conflicts
generally exist in OOD optimization for various objectives, in Fig. 1(b), we visualize the cosine
similarity between the gradients produced by ERM and OOD objectives, which is averaged from 50
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epochs after the pretraining. It can be found that, all of the OOD objectives (Arjovsky et al., 2019;
Krueger et al., 2021; Ahuja et al., 2021a; Koyama & Yamaguchi, 2020; Rame et al., 2021; Wald et al.,
2021; Pezeshki et al., 2021) tend to yield gradients that have a lower cosine similarity with those of
ERM. The generally existed conflicts can further lead to suboptimal performances of these OOD
objective in practice even with exhaustive parameter tunning.

In complementary to Fig. 1(d), we provide full results in Fig. 7, where we show the results of IRMv1
under different penalty weights (y-axis) and pretraining epochs (z-axis) on COLOREDMNIST (Ar-
jovsky et al., 2019) (CMNIST) as well as the failure case (Kamath et al., 2021) (CMNIST-m), or
& = {(0.1,0.2), (0.1,0.25)} described in two-bit environment. It can be found that the perfor-
mances of IRMvl are highly dependent on proper tuning of pretraining epochs and the penalty
weights. The dependence grows stronger when IRMvl1 is shown to be unrobust on CMNIST-m. We
also provide a more detailed results of IRMv1 on CMNIST-m in Fig. 7(c), where the dependence can
be clearly observed. In contrast, PAIR performs robustly well under different pretraining epochs,
using a default preference (1, 1¢10, 1e12) to ERM, IRMv1 and VREXx objectives, respectively. In
Sec. G, we provide more evidences to demonstrate the power of PAIR-o.

C.2 DISCUSSIONS OF OBJECTIVES IN PAIR

In Sec. 3.2, we derive a group of ideal objectives for improving 70
the robustness of IRMv1, shown as the following IRMX

(IRMX) Hgﬂ(ﬁERM, Lirm, Lvrex) -

©))
We prove in Proposition 2 that IRMX is able to solve a large
number of failure cases of IRM s and IRMv1, and recovers the set |
of invariant predictors produced by the original IRM. However, 3625 0650 0675 0100 0125 0150 0175 0:200
motivated readers might be interested in the reasons for keeping beta
IRMv1 in IRMX, since VREx solely could resolve the two-bit Figure 8: Drawbacks of V-REx
environment failure case. In practice.

Theoretically, Proposition 2 requires also the invariant predictors produced by IRMg, i.e., Zs (&), to
recover the invariant predictors yielded by IRM. Nevertheless, it considers only the ideal case. In the
next, we elaborate on a detailed discussion from the empirical side.

Drawbacks of Robust Minimization in Practice. After showing REx (Krueger et al., 2021) can
help avoiding the failure cases of IRMg, a natural question is that, does Liry remain necessary? We
find the answer is “Yes”. In Fig. 8, we use a modified example of &, = {(0.25,0.1), (0.25, 8)} with
ColoredMNIST (Arjovsky et al., 2019), where we change the variance between two environments
through different 3. It can be found that, as the variance between two environments getting closer,
the performance of REx (Krueger et al., 2021) (denoted as vrex) drops more sharply than IRMvl
(denoted as irmv1). The main reason is that, as the variation of spurious signals in two environments
tends to be smaller, the gradient signal of var({L.}.ce,) tends to vanish, while the signals from Ljgm
maintains. This issue can be more serious in stochastic gradient descent where the estimates of the
variance of {L.}.ceg, in minibatches tend to be noisy, leading to weaker signals.

C.3 MORE DETAILS ON THE EXTRAPOLATION EXAMPLE
In this section, we provide more details and results about the extrapolation example that examines the
recovery of causal invariance, in complementary to Sec. ??.

We first restate the definition of causal invariance specified by Peters et al. (2016); Arjovsky et al.
(2019); Kamath et al. (2021) as in Definition C.1.

Definition C.1. (Causal Invariance) Given a predictor f := w o , the representation produced by
the featurizer ¢ is invariant over Eyy if and only if for all e1, ea € &y, it holds that

Ep,, [Y]p(X) = 2] = Ep,, [Y]p(X) = 2],
forall z € Z3' N Z¢2, where Z¢, .= {p(X)|(X,Y) € supp(De)}.

Then, we construct a regression example from X : R? — ) : R. The input X is a two dimensional
inputs, i.e., X = (X7, X5). X is designed to be the invariant feature, i.e., Y = sin(X;) + 1, while
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valid_loss: 0.3268272280693054 valid_loss: 0.6799372434616089
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(a) Uniform. (b) ERM. (c) Gaussian. (d) ERM.

Figure 9: Recovery of causal invariance via PAIR. (a), (c) We adopt two sampling methods where we
sample the training data (mainly) from the regions marked in red, and evaluate the predictions across
all region from (—4, —4) to (4, 4). The predictor following the invariance defined in IRM (Arjovsky
et al., 2019) requires the predictions to be independent of spurious features within the overlapped
invariant features. In this example, intuitively it requires the colored lines to be perpendicular to
x-axis within [—2, 2]. (b) and (d) show the performances of ERM under two sampling methods, it
can be found that ERM fail to recover the causal invariance and incurs a high MSE loss.

X5 is designed to be the spurious feature that can be controlled to be spuriously correlated with label
Y. The environments are synthesized according to different sampling methods.

Shown as in Fig. 9, we leverage two sampling methods: i) Uniform sampling and ii) Gaussian
sampling, where the latter is more difficult than the former. For Uniform sampling, we uniformly
sample the rectangle regions {(—3,—3), (—2,1)} as environment 1 and {(—1,2), (3,3)} as envi-
ronment 2, shown as the red regions marked in Fig. 9(a). For Gaussian sampling, we sample from
two Gaussian distributions: the first one has the center as (—0.9, —2.2) with the covariance matrix
as {(0.9,0.11),(0.11,0.1)}; the second one has the center as (1,2) with the covariance matrix as
{(1,-0.3),(—0.3,0.1)}, shown as the red regions marked in Fig. 9(c).

Therefore, in these two examples, the invariant representation ¢ should only take X; and discard the
spurious features X5 under the overlapped invariant features, i.e., [—2, 2]. As we use different colors
to denote, the prediction produced by the invariant predictor following Definition C.1 is expected be
independent of X5. In other words, the plotted lines need to be perpendicular to the x-axis within
the overlapped invariant features [—2, 2].

We implement the predictor with a 3-layer linear perceptron that has a hidden dimension of 128.
We use the MSE loss and Adam (Kingma & Ba, 2015) to optimize the neural network. We sample
2500 training data points from each environment and evaluate with 1000 data points uniformly
sampled across all regions. For fair comparison, we train all algorithms 10000 epochs until con-
verge. Following the common practice (Gulrajani & Lopez-Paz, 2021), we use a anneal itera-
tions of the OOD penalties for all methods as 150. For IRMv1l, VREx and IRMX, we search
the penalty weights from le — 4 to le and find they generically perform well when with the
penalty weights of 1le — 2 to lel. While for PAIR, we search the relative preferences across
6 choices (1,1e4,1e16), (1, 1e4,1e12), (1, 1e6, 1e8), (1, 1e8, led), (1, 1ed, 1ed), (1, 1e8, 1e8), and
find (1, led, 1el2), (1, 1e8, led), (1, 1ed, led), (1, 1e8, 1e8) have lower validation losses.

valid_loss: 0.22924838960170746 valid_loss: 0.7433779835700989 valid_loss: 0.8783712983131409

Loon
L

-4 -3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0o 1 2 3 4

(b) Uniform. (c) Gaussian.

Figure 10: Recovery of causal invariance via IRMv]1.
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valid_loss: 0.36118975281715393 4 valid_loss: 0.4415343701839447 4 valid_loss: 1.9211763143539429 valid_loss: 1.0556678771972656

(a) Uniform. (b) Uniform. (c) Gaussian. (d) Gaussian.

Figure 11: Recovery of causal invariance via VREX.

valid_loss: 0.25382980704307556 4 valid_loss: 0.23660710453987122 4 valid_loss: 0.8886277675628662 valid_loss: 0.9501814246177673

-3 -2 -1 0

(a) Uniform. (b) Uniform. (c) Gaussian. (d) Gaussian.

Figure 12: Recovery of causal invariance via IRMX.

valid_loss: 0.21095892786979675 valid_loss: 0.6567271947860718

valid_loss: 0.13069535791873932

valid_loss: 0.5449987649917603
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(a) Uniform. (b) Uniform. (c) Gaussian. (d) Gaussian.

Figure 13: Recovery of causal invariance via PAIR.

We plot predictions with the best MSE losses of IRMv1, VREx, IRMX and PAIR in Fig. 10, Fig. 11,
Fig. 12, and Fig. 13 respectively. We also plot the validation loss at the top of the image while it
does not necessarily indicate a better recovery of causal invariance. It can be found that, when
given the uniform sampled environments, the unrobust IRMv1, VREx and IRMX can recover part
of the causal invariance, while when switching to the Gaussian sampled environments, they can fail
dramatically as expected. In contrast, for both uniform sampling and Gaussian sampling, PAIR
manage to recover the causal invariance almost perfectly. Perhaps even more surprisingly, PAIR
achieve a lower extrapolation loss up to 0.06 and 0.32, which are essentially beyond the extrapolation
requirement issued by the causal invariance. Hence we believe it is an interesting and promising
future direction to probe the extrapolation ability within and beyond causal invariance.

D DETAILS OF PARETO INVARIANT RISK MINIMIZATION

The success of PAIR in empowering unrobust IRMvl to achieve the causal invariance of IRM
demonstrates the significance of considering the trade-offs between ERM and OOD objectives in the
optimization. In the next, we will summarize our findings and elaborate PAIR in more details.
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D.1 METHODOLOGY OUTCOMES

Key takeaways from the IRM example. To summarize, the failures of OOD optimization can
be attributed to: i) Using unrobust objectives for optimization; ii) Using unreliable scheme to
approach the desired solution. Nevertheless, we can improve the robustness of the OOD objectives by
introducing additional guidance such that the desired solution is relocated in the Pareto front w.r.t. the
new objectives. After obtaining robust objectives to optimize, we then leverage a preference-aware
MOO solver to find the Pareto optimal solutions that maximally satisfy the invariance constraints by
assigning the OOD objective a higher preference while being aware of retaining ERM performance.

More formally, let foq be the desired OOD solution and J be the functional class of foods @ group of
OOD objectives Looqg = {L 4}, are robust if their composite objective Looq satisfies that

Lood(food) j Lood(f)vvf 7£ food S ]:a (10)

When given a robust OOD objective L4, our target is to solve the following MOO problem
min  (Leru; Looa)” , (11)
where L, corresponds to an €qog-relaxed invariance constraint as Lood(food) = €ood =

Lood(f),Yf # fooa € F. Denote the €y, as empirical loss of using the underlying invariant
features to predict labels, then the optimal values of the desired OOD solution w.r.t. Eq. 11 are
(€invs €00d) T = (LERM(food); Lood(food)) T, which corresponds to an ideal preference (or OOD prefer-
ence) for the objectives, that is poog = (€1, €.,)”. The optimal solutions of Eq. 11 that satisfy the

inv » ~ood
exact Pareto optimality, i.€.,pood; £i = Pood; L, VLi, Lj € L, are expected to recover fooq in Eq. 10.

PAIR-o as an optimizer for OOD generalization. To find a desired Pareto optimal solution
specified by pooq, we adopt a 2-stage optimization scheme, which consists of two phases, i.e., the
“descent” and the “balance” phase, following the common practice (Gulrajani & Lopez-Paz, 2021).

In the “descent” phase, we train the model with the ERM loss such that it approaches the Pareto front
by merely minimizing Lgry first. Then, in the “balance” phase, we adjust the solution to maximally
satisfy the exact Pareto optimality specified by pooq. We adopt the off-the-shelf preference-aware
MOO solver EPO (Mahapatra & Rajan, 2020) to find the desired Pareto optimal solutions with the
given pooq. Specifically, at each step, pooq implies a descent direction g that maximally increase the
satisfaction to the exact Pareto optimality. Then, we will find an objective weight vector to reweight
both the ERM and OOD objectives (thus their gradients), such that the reweighted descent direction
gdsc has a maximum angle with g,. Meanwhile, to avoid divergence, gqsc also needs to guarantee
that it has a positive angle with the objective that diverges from the preferred direction most. We
provide detailed descriptions and theoretical discussions of the algorithm in Appendix E.1.

PAIR-s for OOD model selection. Model selection in OOD generalization is known to be challeng-
ing, as the validation data used to evaluate the model performance is no longer necessarily identically
distributed to the test data (Gulrajani & Lopez-Paz, 2021). The IRM example also implies that the
traditional model selection methods that merely depends on the validation performance, i.e., the ERM
performance, can easily compromise OOD performance due to the conflicts with ERM objective,
especially when the validation set has a large gap between the test set (cf. CMNIST in Table 4).

When given no additional assumption, we posit that the OOD loss values can serve as a proxy for
OOD performance, which essentially corresponds to the underlying prior assumed in the OOD
methods. It naturally resembles PAIR optimization therefore motivates PAIR-s. PAIR-s jointly
considers and trades off the ERM and OOD performance in model selection, and select models that
maximally satisfy the exact Pareto optimality. We leave more details and discussions in Appendix E.2.

D.2 THEORETICAL DISCUSSIONS AND PRACTICAL CONSIDERATIONS

Essentially both PATR-o0 and PAIR-s aim to solve Eq. 11 up to the exact Pareto optimality.
However, in practice, the ideal preference is usually unknown and the exact Pareto optimality
could be too strict to achieve . Therefore, we develop an e-approximated formulation of Eq. 11,
i.e.,|Pood; Li — Pood; Lj| < €,VL;, L; € L, which might be of independent interest. Built upon the
relaxed variant, we analyze the OOD performance of PAIR in terms of sample complexity, given the
empirical risk and imprecise OOD preference, and prove the following Theorem in Appendix F.2.

Theorem D.1. (Informal) For~y € (0,1) and any €,6 > 0, if F is a finite hypothesis class, both ERM
and OOD losses are bounded above, let Ipyig be the index of all losses, Pmax = MaXic [y, Pi and
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Linax = max;e,,, Li, if the number of training samples |D| > (32L2 P2 ax /%) log[2(m + 1)|F| /],
then with probability at least 1 — v, PAIR—o0 and PAIR-s yield an e-approximated solution of fyq.

Practical Considerations. Theorem D.1 establishes the theoretical guarantee of PAIR-o and
PAIR-s given only an imprecise OOD preference. Empirically, we find that assigning a large
enough preference to the OOD objectives is generally sufficient for PATR—o to find a desired OOD
solution. For example, in most experiments PAIR-o yields a satisfactory OOD solution with a
relative preference of (1, 1e10, 1e12) for ERM, IRMv1, and VREx. For PAIR-s, we can estimate
the empirical upper bounds of (€jny, €coq) from the running history and adjust OOD preference to be
slightly larger. We provide a detailed discussion on the preference choice in practice in Appendix E.3.

Besides, the requirement of whole network gradients in PAIR—-o can be a bottleneck when deployed
to models that have a prohibitively large number of parameters (Sener & Koltun, 2018). To this end,
we can use only the gradients of classifier w to solve for the objective weights, or freeze the featurizer
after the “descent” phase to further reduce the resource requirement (Zhang et al., 2022a). We discuss
more practical options and how PAIR can be applied to other OOD methods in Appendix E.4.

E MORE DETAILS ON THE IMPLEMENTATIONS OF PAIR

In this section, we provide more details about the implementation of PAIR as a optimizer and a
model selection criteria, in complementary to Sec. D.1.

Key takeaways from the IRM example. Recall that the key takeaways from the failures of OOD
optimization can be attributed to: i) using unrobust objectives for optimization; ii) using unreliable
scheme to approach the desired solution. Nevertheless, we can improve the robustness of the OOD
objectives by introducing additional guidance such that the desired solution can be relocated in the
Pareto front w.r.t. to the new objectives. After obtaining robust objectives to optimize, we then
leverage a preference-aware MOO solver to find the Pareto optimal solutions that maximally satisfy
the invariance constraints by assigning the OOD objective a higher preference while being aware of
retaining ERM performance.

More formally, let fooq be the desired OOD solution, a group of OOD objectives Loog = {£% 417,
are robust if they satisfy that

Lood(food) j Lood(f)vvf 7é food S ]:7 (12)

where F denotes the functional class of possible predictors. When given a robust OOD objective
L4, our target is to solve the following MOO problem

min ; (Lerm, Lood)” s (13)

where Loq corresponds to a €q0q-relaxed invariance constraint as Lood (food) = €ood = Looa(f), VS #
fooa € F. Denote the €,y as empirical loss of using the underlying invariant features to predict labels,
then the optimal values of the desired OOD solution are (€iny, €00d)’ = (LErM (food)s Lood (food)) s
which corresponds to an ideal OOD preference for the objectives that is poog = (%inv’ oo d)T. Then
the solution of Eq. 11 needs to maximally satisfy the OOD preference, i.e., maximize L(f)7 Pooq.

E.1 DETAILED DESCRIPTION OF PAIR—0 FOR OOD OPTIMIZATION

To find a Pareto optimal solution that satisfies the OOD preference p,.q, We leverage the preference-
aware MOO solver (Mahapatra & Rajan, 2020). Different from Mahapatra & Rajan (2020), we
adopt an explicit 2-stage “descent” and “balance” scheme, following the common practice in OOD
generalization (Gulrajani & Lopez-Paz, 2021).

Mlustrated as in Fig. 14, in the “descent” phase, we train the model

to minimize the ERM loss such that it approaches the Pareto front  Loop
by merely minimizing Lgry first. Then, in the “balance” phase,

we adjust the solution to maximally satisfy the OOD preference

Dood-

Meanwhile, to avoid divergence from the Pareto front, at each
step, the descent direction gg4es not only needs to maximize

23

LERM

Figure 14: Mlustration of



Published at ICLR 2023 Workshop on Domain Generalization

L(f)Tpood> but also needs to avoid ascending all the loss val-
ues. More formally, let G denote the gradient signals produced
by L, at step ¢ of the “balance” phase, it solves the following LP
for the objective weights 5*,

B* = argmaxge gm-+1 (GB) gy,
st. (GB)T'G; > gl Gy, VjeJ—J,
(GB)TG; =0, Vje T,
(14)
where S = {8 € R S B, = 13, gy is the adjustment direction that leads to the
preferred Pareto optimal solution by pood, J = {j |G;fgb > (0} are the indices of objectives which
donot conflict with g, while J = {j |GJTgb < 0} are those have conflicts with gy, J* = {j|L;Dood ;=
max; (L Pood;r )} is the index of the objective which diverges from the preference most.

Specifically, Mahapatra & Rajan (2020) show that using the following g; could provably lead the
solution converge to the desired preferred Pareto optimal solution, which is defined as follows

gy =p O (log((m +1)L) — u(L)), (15)

where © is the element-wise product operator, (L) is the quantitative divergence of the current
solution from the preferred direction, calculated through the losses at the current step, as follows

m+1
p(L) = KL(L[1/m) = L;log(mLy,), (16)
i
where L is the normalized loss as
m—+1

i/i = poodiLi/ Z ijj'
J

Then, we elaborate the detailed algorithm of PATIR-o0 implemented via the EPO solver (Mahapatra
& Rajan, 2020) as in Algorithm 1.

We now state a informal version of the convergence guarantee.

Theorem E.1. (Informal) Given Lggy along with m differentiable OOD losses L,.q, at each step
in the “balance” phase (line 9 to line 21 in Algorithm 1), there exists a step size 1y such that, the
set of new loss values LU+ = (Lgrms Liy ooy Lin)T with the updated parameters 0+ by any
n € [0,m0], denoted as A' has the following properties:

(i). At contains the exact Pareto optimal solution satisfying the OOD preference vector, i.e., L* € At;

(ii). A! grows monotonically smaller and smaller.

From (i) and (ii) in Theorem E.1, it suffices to know that as the optimization continues, A" converges
to the losses of the exact Pareto optimal solution, hence for the parameters. The proof for Theorem E. 1
simply follows the Theorem 1 to Corollary 1 in Mahapatra & Rajan (2020). Note that PAIR-0
provides a general framework to find a better OOD solution that properly trades off ERM and OOD
objectives. In experiments, we find that using the simply modified variant of EPO solver (Mahapatra
& Rajan, 2020) in PATR-o can effectively find a descent path under the gradient conflicts that leads
to a better OOD solution. Nevertheless, a more sophisticated preference-aware MOO solver can be
developed and integrated into the framework of PAIR~-o, which we believe is a promising future
direction (Zhao & Zhang, 2015; Zhou et al., 2018; 2020).

E.2 DETAILED DESCRIPTION OF PAIR-s FOR OOD MODEL SELECTION

In this section, we provide a detailed description of PAIR~-s for OOD model selection for Sec. D.1.
Before start, we also provide a detailed description of the critical reasons for designing PAIR-s
in Appendix I.1. From the IRM example, it is obvious that traditional model selection methods
that merely use validation performance, i.e., ERM performance, are not suitable to select a desired
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Algorithm 1 Pseudo code for PAIR-o0.

1: Input: Training data Dy, = {X;, Y;}Y, with environment partitions Dy, = {D}.cs,; learning
rate 7; batch size b; number of sampled environments d; OOD preference p,og for ERM loss
Lerm and m OOD losses Loog = {L%4}™ ; pre-training epochs e,,; maximum training epochs
for “balance” phase e;; Trainable parameters at the “balance” phase 6;
Randomly initialize parameters in the model f = w o ¢;
fori=1toe, do
Sample batches of data {X;,Y;}?_;:
Make predictions with f: {Y;}2_; = f({X;}2_,);
Calculate the empirical loss Lgry with {%—}?:1;
Update parameters of f with the empirical loss Lgry using the learning rate 17;
end for
9: fori =1 to ¢, do
10:  for D¢ € permute({D¢}, € &) do

11: Sample a batch of the data from D¢, {X;, Yy ?:1 ~ D¢
12: Make predictions with f: {lA/f ?:1 = f({X5 ?:1);
13:  end for

14:  Calculate empirical and OOD losses Lgrym and Lo04 and obtain the overall losses L;
15:  Obtain gradients G = OL/06,

16:  Calculate the OOD divergence u(L) using Eq. 16;

17:  Obtain the adjustment direction gy, using Eq. 15;

18:  Obtain the index sets .J, J*, J required by Eq. 14;

19:  Solve Eq. 16 for the loss weights 3*;

20:  Update parameters 6°t! = §° — nGB*;

21: end for

solution for OOD generalization. Otherwise, the OOD performance would be easily compromised
due to its conflicts with ERM objective. This issue is more serious when the validation set has a
large gap between the test set (cf. Training-domain validation set selection for COLOREDMNIST
in Table 4). Intuitively, models selected merely based on ERM performance tend to have a high
preference or better performance on environments that have a similar distribution of the corresponding
validation set, which will lead to higher variance of performances at different environments or a
lower worst environment performance. Therefore, it is natural to jointly consider the ERM and OOD
performances in model selection. Specifically, the selected model is expected to maximally satisfy
the exact Pareto optimality.

Since our focus of PAIR-s is mainly to validate the existence of previous mode selection issues, we
simply incorporate the PAIR score as an additional model selection criteria. More specifically, given
a OOD preference p,,q4, we can calculate the PAIR selection score as

spaR = L Pood, (17)

where Pooq is the normalized OOD preference as Pooq/ ZZ’:{l Pood;- With the PAIR score, we
then can apply it into the DOMAINBED model selection algorithms (Gulrajani & Lopez-Paz, 2021).
Specifically, the model selection in DOMAINBED aims to select models from several rigorous
hyperparameter trials according to the validation accuracy. For the model selection in each run, one
can obtain all training domain validation accuracies but only one test domain validation accuracy for
fairness.

The algorithm is detailed as in Algorithm 2. The PAIR score is mainly used to select models among
the logged steps within one run. To avoid trivial cases, we expect the models participated into the
selection are converged. To this end, we heuristically use a threshold c to filter out the first c steps
and find it empirically effective. To select models from different runs, we will first use the validation
accuracy to filter out some unreliable cases, and then adopt the PAIR to finalize the model selection.
The only exception is the test domain validation accuracy, where the test domain validation accuracy
is more likely to be a reliable indicator than the PAIR score.

The main limitation of the PAIR estimation is about the estimation of the loss values. In stochastic
gradient descent, one could only obtain a stochastic estimate of loss values based on a minibatch
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Algorithm 2 Pseudo code for PAIR-s.
1: Input: Running history H from R runs, where each running history is consist of loss history
L= L], LY s L], 11y =y of (m + 1) losses, i.e., Lprm and Loog = {Ligq} 721, and training

and validation accuracy history A = {AL, AY 1T | from T logging steps; OOD preference
Pood; Convergence step c; Validation accuracy percentile p;
forr =1to Rdo

Calculate PAIR score using pooq for all T steps as S = {s*}7_, using Eq. 17;

Filter out the first ¢ steps to avoid trivial cases and get S= {3

Store the step with maximum PAIR score as s, = arg max; S;
end for
Obtain the selected steps from R runs as S = {s7} 2 ,;

Obtain the validation accuracies for all selected steps Ay = { A5

9: Calculate the validation selection bar as A,y = (max A,y — min Ay ) * p + min Ay,;
10: Filter out all runs that have a validation accuracy lower than A, and obtain #;
11: Find the run with highest PAIR score as r, = arg max, o4 5%;
12: Return associated history of r,;

sample of D,. When the stochastic estimates of the loss values are unbiased, the PAIR is unbiased,
too. However, there can exist certain variances in the stochastic estimates, which can severely affect
the precision of the score thus the comparison of different models. Although Theorem F.1 establishes
certain theoretical guarantees that allows for some degree of uncertainties, the variances are usually
unavoidable. A instant fix for the issue is that one could afford some additional evaluation time to
obtain a better estimate of the loss values. Besides, one could also jointly consider the uncertainty of
the estimation and derive a more accurate model selection (Wald et al., 2021), which we leave for
future work.

E.3 DISCUSSION ON THE PRACTICAL CHOICES OF OOD PREFERENCE

Essentially, the performances of both PATR-o0 and PAIR-s have certain dependence on the quality
of the OOD preference p,oq, however, it is often the case that the ideal OOD preference is usually
unknown. It is desirable to analyze the performances of PAIR-o and PAIR-s under a imprecise
OOD preference. Mahapatra & Rajan (2020) discussed a bit that when the exact Pareto optimal
solution under the preference does not exist, the EPO solver can still find a Pareto optimal solution
that is closest to the preferred direction. We discuss it in a more general way by developing a new
MOO formulation of Eq. 13 under a approximated preference up to some approximation error of e.
The theoretical discussion can be found in Sec. F.2. In this section, we focus on the practical side of
the choice of Poog.

We first discuss some heuristics that can be leveraged to obtain a proper OOD preference under two
scenarios:

(1). one has little-to-no knowledge about the OOD loss values;

(ii). one has the access to some running histories that one has some empirical knowledge about the
OOD loss values;

In practice, i) mostly fits to PATR—o while ii) mostly fits to PAIR-s.

When i) one has little-to-no knowledge about the OOD loss values, one can leverage certain theoretical
inductive biases about the OOD losses. In fact, it is usual the case that the theoretical conditions for
the optimality of OOD objectives do not hold in practice (Ganin et al., 2016; Sagawa* et al., 2020;
Krueger et al., 2021; Shi et al., 2022; Rame et al., 2021). In this case, minimizing the OOD losses
acts more like a necessary condition for a satisfactory OOD solution. Therefore, one could assign
a sufficiently larger preference to OOD objectives than ERM objective. For example, throughout
all experiments in the paper, we mostly assign (1, 1e10, 1e12) to ERM, IRMv1, and VREXx losses,
which works under many scenarios.

Besides, among different OOD objectives, one could easily know which is more likely to be optimized
than another. Therefore, to ensure all OOD losses are equally maximally optimized, we could assign
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the easily-optimizable OOD objectives higher preference. For example in IRMX, VREX tends to be
easier to optimize than IRMv1 therefore we assign a higher preference to VREx. Moreover, if one
could know the performances of different OOD objectives, it is natural to assign a higher preference
to those which solely perform better.

When ii) one has the access to some running histories that one has some empirical knowledge about
the OOD loss values, one could obtain a empirical estimate of the OOD loss values w.r.t. ERM loss
values at convergence. Since the estimate is obtained under gradient conflicts, one could expect the
ratios of OOD loss w.r.t. ERM loss should be higher when one could resolve the gradient conflicts
properly. Therefore, one could assign a slightly higher preference to OOD losses than the empirically
estimated ratios. In the model selection experiments, we directly increase the ratio by 1e2 and find it
works well as expected.

In fact, both i) and ii) are discussed under minimal assumption about the external knowledge of the
optimization process, the task and the data. We expect a better estimate of the OOD preference could
be obtained when more external inductive biases are incorporated. For instance, PATR—o generalize
to ParetoDA (Lv et al., 2021) when one could obtain a validation set that has similar distribution to the
test data. Even under the case that such data is not available, one could also adopt some techniques
such as Mixup (Zhang et al., 2018) to obtain an approximation. We believe that obtaining a better
estimate of the ideal OOD preference would be a promising future development based on our work.

E.4 DISCUSSION ON THE USE OF PAIR IN PRACTICE

E.4.1 SCALABILITY

Similar to other MOO algorithms (Sener & Koltun, 2018; Lin et al., 2019; Mahapatra & Rajan,
2020), PATIR~-o requires full gradients of the predictor to make an accurate derivation of the objective
weights 5*, which could be a bottleneck when deployed to large-scale networks, as it usually involves
a prohibitively massive number of parameters. Sener & Koltun (2018) develops an approximation
of the full gradients using the gradients w.r.t. the latent representation produced by the featurizer,
i.e., OL/0p(X). However, it requires a strong assumption on the structure of the data and the model.
Moreover, when it involves complex network architectures such as DenseNet (Huang et al., 2017) or
DistillBERT (Sanh et al., 2019) in WILDS, the approximation or even the full gradients can be even
imprecise, as the gradients of the complex neural networks can not be directly concatenated as those
of simple linear networks.

To this end, we develop another approximation that takes only the gradients of the classifier, which
usually appears as a linear classification layer in the predictor. Interestingly, we empirically find
OL /0w can even produce more useful signals for OOD generalization than the gradients w.r.t.
classifier, shown as in Table 2.

When considering a more resource restricted scenarios, such as the iWildCam and RxRx1 in WILDS,
we freeze the featurizer after the “descent” phase, which can further resolve the memory and
computation overheads. It also aligns with some recent discoveries that the featurizer trained merely
with ERM may already discovery all useful patterns (Rosenfeld et al., 2022). Zhang et al. (2022a)
also find the technique useful in Camelyon17 dataset of WILDS.

E.4.2 LOSS VALUE ESTIMATION

Similar to other MOO algorithms (Sener & Koltun, 2018; Lin et al., 2019; Mahapatra & Rajan,
2020), PAIR~o is described and analyzed in full batch setting, i.e., full gradient descent. However,
in practice, stochastic setting tends to appear more often than vanilla gradient descent due to the
scalability considerations. As also discussed in Sec. D.1, variances are unavoidable no matter the
estimated values are biased or unbiased. Fortunately, the robustness of PAIR-o to the preference
can partially mitigate the issue.

The another potential limitation in PAIR-o could be the possibly negative estimate of some OOD
losses, such as the stochastic estimates of IRMvl1, since general MOO algorithms together with
PATIR-o0 only accept non-negative loss values as the inputs. To this end, we will use IRMv1 as an
example to explain how one could handle the potentially negative values in loss value estimation.
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We will first introduce the unbiased empirical estimator of IRMv1, following Arjovsky et al. (2019);
Ahuja et al. (2021b). More specifically, considering the IRMv1 objective,

mgpin Z Le(#) + ANV jwe1 Le(w - ). (18)
ec&y

Observe that

Vw|w:1,o/le(w ) = o V(w '(;pu(;Xe)7Y6)] ’w:l.o - [aé(w ' %(56)7)/6) w_l.O]
and
IV fwer.0Le(w - @)% = <8]Ee [¢(w .a(p(xe)’ye)} ’ )2
o (XY 2 (19)
N <E [ ow w—1.o]> ’

for which the simplification is derived by taking the derivative inside the expectation, using the
Leibniz integral rule. Obviously, the stochastic estimate of Eq. 19 is biased.

To obtain an unbiased estimate of IRMv1 penalty, observe that
E[X]? = E[AB],
if A, B and X are i.i.d. random variables w.r.t. the same distribution X. Equipped with this
observation, we can further write Eq. 19 as
ol(w - p(X°),Y*)
w:l.O) ( ow w_l.O):| ’

IV ejw=1.0Le(w - o) = E° {(35(1{; - p(X°),Y°)
(T ]

ow
ow
(20

|: e 6[(71] ) @(Xe% Ye)
= E - (
ow
where (X€,Y¢) ~ P¢ and (X¢,Y*) ~ P€ are i.i.d. samples from P® of the environment e. As
Re ( 24w-o(X°),Y*) ) and Ee(ﬁﬂ(w-@(xe)ye)
ow Clw=1.0 . ow w=1.0 . .
batches without bias, Eq. 20 essentially provides a practical unbiased estimator of IRMv1.

) can separately be estimated in mini-

However, different from IRMv1, Eq. 20 does not have any guarantees for its non-negativity, though
the expectation of Eq. 20 is non-negative. To this end, we propose two heuristics to mitigate the issue.

DL(w-p(X°), V)

The first heuristic is to add all minibatch estimates IEE< S

‘ 1 O) by a sufficiently

o (twe(X7)V7) + C'is non-negative.

large constant C, such that the minimum value of E ( 5

w=1.0
Moreover, as the constant does not affect the calculation of the gradients, when IRMv1 is minimized
to 0, E° (Lf(w-nge)yﬁ)
’ w

) is also optimized to C'.
w=1.0

The other heuristic is to multiply the negative minibatch estimates E¢ (W

by
w:l.())
a proper negative constant —C', which will make all estimations non-negative. On the other hand,

however, it can dramatically affect the variances in the estimations. Essentially, this multiplication
will enlarge the expectation of the estimated IRMv1, and may cause instability of the training, due to
the unrobustness of IRMv1. Therefore, we can heuristically search the values C' from 1 to le — 4 by
observing the early training dynamics. If the training is unstable, then we heuristically tune C' to be
smaller by le — 2.

Although both of the heuristics above can not rigorously recover a non-negative estimate of IRMvl1
penalty (which is essentially impossible for the formulations like IRMv1), we empirically find them
effective, for which we hypothesize is because of the robustness of PAIR-o to the preference in
OOD generalization.

E.4.3 GENERALIZING TO OTHER OOD METHODS

As shown in Fig. 1(b), the gradient conflicts between ERM and OOD objectives generally exist (Ar-
jovsky et al., 2019; Krueger et al., 2021; Wald et al., 2021; Pezeshki et al., 2021; Rame et al., 2021).
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It implies that, on the one hand, the optimization dilemma generally exist for all OOD objectives.
Meanwhile, both PATR-o and PAIR-s are generically applicable to all OOD methods. In experi-
ments (Sec. G), we validate the generality of PATR~-s only for several OOD methods from the four
main lines as discussed in related works (Sec. B.1) though, PATR-o0 essentially has similar generality
as PATIR-s, for whose performances at real world datasets, we will leave for future verification due
to the limited computational resources. Nevertheless, we can theoretically discuss the implementation
options about how PAIR-o can be applied to different OOD methods.

First, for Domain Generalization based methods (Ganin et al., 2016; Sun & Saenko, 2016; Li et al.,
2018; Dou et al., 2019), such as DANN (Ganin et al., 2016), PAIR-o can directly take the domain
classification loss and the label classification loss as the inputs.

Second, for Distributionally Robust Optimization methods (Namkoong & Duchi, 2016; Hu et al.,
2018; Sagawa* et al., 2020), PAIR-o can take the worst group loss or some more sophisticated
regularizations and the ERM loss as the inputs.

Third, for the causal invariance based methods (Peters et al., 2016; Rojas-Carulla et al., 2018;
Arjovsky et al., 2019; Creager et al., 2021; Parascandolo et al., 2021; Wald et al., 2021; Ahuja et al.,
2021a; Chen et al., 2022) and agreement based methods (Koyama & Yamaguchi, 2020; Krueger et al.,
2021; Shi et al., 2022; Rame et al., 2021), they can be handled by PATIR~o similarly as IRMX.

F THEORETICAL DISCUSSIONS

F.1 PROOF FOR PROPOSITION 1

We first restate the proposition with formally defined Setting A by Kamath et al. (2021).

Setting A (identical to Kamath et al. (2021)): Considering the task of linear classifica-
tion/regression X — ) where the quality of predictors f : X — JAJ is measured by population
losses [ : 37 x Y = R, ;)A) =R,Y C R, /s either the square loss 4y (7,y) = %(7) —y)2, or the
logistic 1oss 410 (9, y) = log (1 + exp (—gy)) when Y = {—1, 1} (binary classification).
Proposition 2. Under Setting A (Kamath et al. (2021)), for all o € (0,1), let & = {(«, B.) :
Be € (0,1)} be any instance of the two-bit environment (Eq. 8), Ix denote the invariant predictors
produced by Eq. 4, it holds that Zsnx (€) = Z(€).?

Our proof is proceeded by discussing the set of invariant predictors elicited by an ideal V-
REx (Krueger et al., 2021) objective Zx (£) (in a more general way), and then incorporating Zx (£)
into that elicited by IRMs or IRMv1 (Arjovsky et al., 2019) Zs(€) for the two-bit failure case (Eq. 8).

We now first discuss the invariant predictors produced by the invariance constraints ideally elicited by
V-REx. Recall that V-REx (Krueger et al., 2021) aims to minimize the variances of ERM losses at
different environments:

Lyvgrex = var({Le}eee, )
Therefore, when Lygrgx is minimized, we have L., = L.,, Ve1, es € &;. Then, we can define the
invariant predictors produced by V-REx, as the following.

VRExy: Define Zx (E) == {f : X = V| Le,(f) = Lo, (f),Ver, e2 € E}. VREXq is the objective:
i Le(f).
min 37 L(f)

Ix(Ex
FeIx (& ey

Then, we characterize the set of Zx through the following lemma.
Lemma 1. Under Setting A, let f = w o @ be the predictor elicited by T(E) and (X.,Y.) ~ D..

It 0= Uy, Ep_[Y2] is identical, the distribution of ¢(X.) is identical (or f = 0)
0=l and H(Y.|p(X.)) is identical
then Z(E) C Ix(E).

3Motivated readers might be interested in the necessities of keeping IRMv1 in the objectives, for which we
provide details in Appendix C.2.

foralle € €,
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Proof. Forany f = w o ¢ € Z(E), using Observation 2 in (Kamath et al, 2021), we have that
Ep, [Y | ¢(X) =2 =Ep,[Y | p(X) = 2], 21)
forall e;,eo € Eand forall z € Z.4

(i) For square loss £,

Lo(f) = 5Ep,[(f(X) = ¥)?
= LEp,[/(X)?  2/(X)Y + V7]
= JEp, [Ep, w0 p(X)? ~ 200 0(X)Y | p(X)]] + 5, V7],

where w is the simultaneously optimal classifier for all e € £.

Then, note that for all z € Z, it holds that

Ep, [w(2)” — 2w(2)Y | p(X) = 2] = w(2)* — 2w (2)Ep, [Y | o(X) = 2].
Using equation 21 and the assumptions that Ep_[Y?] is identical and the distribution of ¢(X) is
identical (or f = 0) for all e € £, we can conclude that for all e1,e2 € &, L, (f) = Le, (f)-

(ii) For logistic loss £, note that the simultaneously optimal w has the form
P Y=1 X) = 1+ Ep. |Y X) =
ole) = tog (PR =LA =LY _ (L4E0lV o) =)
Prp [V = =1 ¢(X) = 2] 1—Ep, [Y | o(X) = 2]
forall e € £ and all z € Z. We can thus conclude that in this case, L.(f) = Ep_ [H(Y|p(X) =
z)] = H(Y|¢(X)), which completes the proof. O

Remarks. We formulate Lemma 1 in a general setting that covers Two-Bit-Env as a special case.
It can be easily verified that the assumptions in this lemma are all satisfied in Two-Bit-Env (Eq. 8).
Moreover, we can show that other environment settings (e.g., those in IB-IRM (Ahuja et al., 2021a))
also satisfy the assumptions.

Proposition 3. Under Setting A, for all « € (0, 1), let £ :== {(a, B¢) : Be € (0,1)} and f be an odd
(or linear) predictor. It holds that Tx (£) NZs(E) = Z(E).

Proof. From the proof of Proposition 5 in Kamath et al. (2021), we know that there are only two
predictors in Z(€): The zero predictor fo = 0 (for both £y and l1e) and firm(x1, z2) = (1 —2a) - 21
(for £ = £yy) or firm(21,22) = log 1—704 21 (for £ = liog).

(i) For square loss £y, Lc(f) = 3Ep, [f(X)? — 2f(X)Y + Y?]. Note that in Two-Bit-Env, Y2 = 1.
Thus, in this case, f € Zx (&) implies that Ep, [f(X)? — 2f(X)Y] is identical for all e € €.

Moreover,
[ €Zs(E) = Vyw=1Le(f) = 0foralle € £

= Ep, [f(X)?] =Ep,[f(X)Y]foralle € £.
We can conclude that for any f € Zx(€) NZs(E), it holds that
Ep,[f(X)?] and Ep_[f(X)Y] are identical for all e € &, (22)
Ep,[f(X)?] =Ep,[f(X)Y]foralle € £. (23)

Denote f(; 1) == f(X1 = 1,Xo = 1), and f1,_1), f(—1,1), f(—1,—1) are similarly defined. For
condition equation 22,

1 —
Ep, /(X)) = 5= (R + San) +5 (P + 7o)
e 1-2
U o)
Ep. [f(X)Y] = —5— (fan) = fer-n) + 5 (fer) = famn)

Be
) Jay — fe,—y t feiy — f(l,—l)) .

*We assume that the support of ©(X) (denoted as Z) is identical in each environment for simplicity.
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To enforce condition equation 22 for any «, 8. € (0, 1), it is required that

fay — fe-y + fieiy — fa-1) =0, N fan = fei-ny =— (fery — fa-1)) »
_f(2171) - f(271¢71) + f(21:71) + f(zflfl) = 0 f(21’1) + f(271’71) = f(21171) + f(271’1)~

In this case, condition equation 23 implies that f(2171) + f(2—1,—1) =1 -20) (fa,1) — fi-1,-1)-
Without restricting f to be an odd predictor (or equivalently, linear predictor), this constraint is a
circle passing through fo and firm. Requiring that f is odd, i.e., f(1,1) = —f(—1,-1) and f(17_1) =
—f(=1,1), we can conclude that there are only two predictors left in Zx () N Zs(&), which are
f(1,1) = f(—l,—l) = f(1,—1) = f(—1,1) =0 and

f(1,1) =1-2a,
f(71,71) =2a -1,
fa,-1) =1-2q,
f(*171) =2a—1.

= f(l‘l,xg) = (1 — 20{) - T,

(ii) For logistic loss lio, Le(f) = Ep, [log (1 + exp (— f(X)Y))]. Similarly, f € Zx (£) N Zs(E)
implies that

Ep, [log (1 +exp (—f(X)Y))] is identical for all e € £, (25)
‘| 1+exp(f(X)Y) ’
From condition equation 25 and that f is an odd predictor (f(1,1) = —f(—1,—1) and f1 _1) =
—f(=1,1))> we can conclude that
(1+6f(1,1))204 _ (1 +ef(1,—1))204 _
(1 + e*f(l,l))272a - (1 + e*f(1,_1))272a = f(l’l) - f(lx_l)’
which is due to that % is a one-to-one function.
In this case, condition equation 26 can be simplified as
f 1—«
el fona— fay(1—a) =0= fu1)=0o0r f11) = log o
Thus, the only predictors in Zx (£) N Zs (&) are fy and firm. O

Corollary 1. Under Setting A, for all o« € (0,1) and Ex = {(«, Be, ), (@, Be,) } for any two distinct
ﬁ€1 9 562 S (07 1)! IX (gtr) N IS (gtr) = IX (5) N Is(g)

Proof. This directly follows from the observation that in the proof of Proposition 3, enforcing
condition equation 22 and equation 25 for two distinct 3, , 8, impose the identical constraints on
f. O

F.2 PROOF FOR THEOREM D.1

We first restate the informal version of the theorem as the following, while the formal description of
Theorem F.1 will be given in Theorem F.4 with more formal definitions.

Theorem F.1. (Informal) For v € (0,1) and any €,5 > 0, if F is a finite hypothesis class, both ERM
and OOD losses are bounded above, let Ipaig be the index of all losses, Pmax = MaXic Iy, Pi and

2 2
Linax = max;c 1, Li, if the number of training samples |D| > 32L‘“§‘2p““'”‘ log 2(m4;1)\]~‘|’ then with
probability at least 1 — v, PAIR—-o0 and PAIR-s yield an e-approximated solution of f,oq4.

The proof for Theorem D.1 is also a theoretical discussion on the performances of PATIR-o and
PATIR-s under an approximated OOD preference. Essentially, the performances of both PAIR-o
and PAIR-s have a certain dependence on the quality of the OOD preference po.q, however, it
is often the case that the ideal OOD preference is usually unknown. It is desirable to analyze the
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performances of PATR—o and PAIR-s under an imprecise OOD preference. Mahapatra & Rajan
(2020) discussed a bit that when the exact Pareto optimal solution under the preference does not
exist, the EPO solver can still find a Pareto optimal solution that is closest to the preferred direction.
We discuss it in a more general way by developing a new MOO formulation of Eq. 13 under an
approximated preference up to some approximation error of e.

Without loss of generality, given a OOD preference Poog = (PERM, P1, -+ D)’ = (= 1 )T, the

€inv ’ € 0od

ERM loss Lerm and m OOD losses Loog = (L1 4, L4, - £L74)T, Eq. 13 can be reformulated as

fear = argmin  Lerm(f)
feF

s.t. pERM‘CERM<f) plﬁood(f) p2£00d(f) = - pmﬁood(f)

We remark that under the ideal OOD preference, the optimal solution of Eq. 27, is also the optimal
solution to Eq. 13 (i.e., the unconstrained version). In other words, fpalr = food- We will use fpair
to differentiate from the solution to the unconstrained version. We focus on Eq. 27 for the reason
that it is more convenient to establish the discussion on the approximated OOD preference, from the
perspective of optimization constraints.
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Exactly enforcing the above preference constraint is too restrictive both practically and theoretically,
instead we incorporate the approximation by relaxing the constraint of the loss values w.r.t. the OOD
preference. The e-approximated problem of Eq. 27 is as the following

Fiar = argmin  Lgrm(f)
feF (28)
s.t. Vi, j € Ipaw, @ # J, [piLi(f) — 0 £5(f)] <,

where Ipair := {ERM, 00dy, 00ds, ...,00d,,} is the index set of overall losses. We denote the
relaxed constraint set in Eq. 28 as Pgyp = {f | Vi,j € Ipar,@ # J, [piLi(f) — ;i £5(f)] < €}
Clearly, it holds that the solution sets satisfy fo\g = fraIr.

Then we define the empirical version of the e-approximated problem Eq. 28 with preference vector
PDood as follows.

fioaw = argmin Leru(f)
fer (29)
s.t. Vi, j € Ipar, @ # J, |piLi(f) — ;i L ( )| <e

Similarly, we denote the above constraint set as 13§AIR ={f | Vi,j € Ipar,i # J, |p121( f) -
piLi(f)l < €}

Assume a finite hypothesis class F and define

5= min lIpili(f) — pi£5(f)] — €.

FEF Vi, jEIpaR, i#]
First, we recall the definition of v-representative sample from Shalev-Shwartz & Ben-David (2014).

Definition F.2. (Shalev-Shwartz & Ben-David (2014)) A training set S is called v-representative
(w.r.t. domain X, hypothesis F, loss ¢ and distribution D) if

VfeF|L(f) = L) < v,
where L(f) == Ex y)~p[l(f(X),Y)] andﬁ(f) = \5\ Z(Xl,Y)es’g(f(Xi)a Yi).

Equipped with this definition, we can now characterize the condition under which the constraint sets
in equation 28 and equation 29 contain exact the same predictors.

Lemma 2. For any € > 0, assuming 6 > 0 and denoting pmax ‘= MaX;c1,,, Pi, if the training set
Dy, is 4p5 -representative w.r.t. domain X, hypothesis JF, distribution D and all the ERM and OOD

losses { Lerm, Looa}, then Py = Py p.

Proof. We first show that Py, C 13§AIR. By the definition of 6, for all f € F, and Vi, j € Ipar, ¢ #
7 we have

PiLi(f) = pi L ()] < €= or |piLi(f) = piL;(f)] = €+ 6. (30)
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Using this property, for any f € Ppg,z, we can conclude that Vi, j € Ipar, % # J,
piLi(f) — i L5 ()] < €= [pili(f) —pi Li(f)] < e—0.
This inequality further implies that
PiLi(f) = PiLi(F) + piLi(f) = piL(F) + piLi(f) — piL ()|<6—5
= IPiLi(£) = piL3 (D) = Lild) = il £) + BiLi(F) = piLs(DI| < €= 0
= piLa(f) = i Ls(f)] < € = 8+ Ipila(f) — pz'fi(f)erjﬁj(f)—Pjﬁj(f)l
= iLi(f) = i L5(N)] < € =8+ pil Laf) = LI+ p31L5(0) = L£5(F)],

which is based on the trlangle inequality of the absolute value function.

From the definition of ;-°>—-representative, we have |£;(f) — Li(f)] < 4p ,Vi € Ipar. Substi-
tuting this in the above 1nequa11ty, we obtain
N pid pid
piLi(f) = piLi(f) S e =5+ + 2

4pmax 4pmax

)
<e——,
- 2

which implied that f € 131§A1R.
Then, we prove that 131§AIR C Poar-

Forany f € 13P€AIR, it holds that Vi, j € Ipar,? # 7,

piLi(f) = piLy ()] < €
= PiLi(f) = piLi(f) + piLi(f) — i Li(f) + piLi(f) — piL ( )| Se
= |IPiLi(f) = L5 (N = IPiLi(f) = il f) + L5 (F) = i L5(f)l] < €
= piLi(f) = piLi(H)] < e+ piLi(f) = pila(f) + piLy(f) —Pjﬁj(f)|
= [pili(f) —pi Li(f)] < e+ pil Li(f) — Li(f)] +p;1£;(f) —Ej(f)|

30 )
= piLi(f) = piLi(f)] < e+ 20 4 Pi%

Apmax  4Pmax

< —
,e+2,

which is again based on the triangle inequality of the absolute value function and the definition of
-representative. Together with equation 30, we conclude that |p; L;(f) — p; £;(f)] < e—0 =

4pmax
f € Pgygr, which implies Ppyr € Ppag-

. . € — Aé
Based on the above discussion, we have proven that Py, = Ppar- O

Assumption F3. Forall f € F, X € X,Y € ), the ERM loss is bounded, i.e., |{(f(X),Y)] <
Lgru < 00, and all the OOD objectives L,,q can be written as the expectation of some bounded loss
functions, i.e., ¥i € [m], L] ,(f) = E(x vy~ [loos(f(X),Y)] and |£00d( (X), V)<L, <o

We remark that the assumption is natural and generally holds for many OOD objectives including
IRMv1 (Arjovsky et al., 2019) and VREx (Krueger et al., 2021).

Theorem F4. For any ¢ > 0,v € (0,1), if Assumption F.3 holds and § > 0, denoting

Pmax = MaXic [y, Pi And L. = maX;eq,,, Li, if the number of training samples |Dy,| >
2 2

32Lm§§p"‘a" log Q(mtfl)lﬂ, then with probability at least 1 — vy, we have for any for € foar and

f 1§A1R € f 1§A1R’ LErm (f 1§A1R) < Legrm (f }EAIR) < Lerm (f ;AIR) + zzfﬁ-

Proof. We proceed by first assuming that the training set D is p -representatlve w.r.t. domain
X, hypothesis F, distribution D and all the ERM and OOD losses {LerM, Lood}, and then we
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establish the sample complexity required for this condition. - From Lemma 2, we know that given this
condition and the assumptions in the theorem, Py, = PpAIR Then, since the training set Dy, is

4pia -representative w.r.t. the ERM loss Lgryi, we have for any fSyx € Fiar and fiam € Fiams
~ 4]
| Cerm(fiam) = Lerm (foar) | <
pmax
| Cerm(fiar) — Lerm(foam)| < 1
pIIlaX
Moreover, based on the optimality of problem equation 29, we can conclude that
5 = 5 ~ )
Lerm(fear) = 7 < Lerm(frar) < Lerm(fpar) < Lerm(fear) + 7
4pmax 4 max
5 )
= Lerm(fiar) < Lerm(fpar) + 5
max

Then, using the optimality of problem equation 28, it holds that

P é
Lerm(fear) < Lerm(foar) < Lerm(fpar) + Y
max
It remains to analyze the sample complexity of ensuring that the training set Dy, is 4p‘5 -

representative w.r.t. X', 7, D and all the ERM and OOD losses { Lgrm, Lood }-

For any i € Ipar, based on Assumption E.3, we can write £;(f) = Ex y)~p[li(f(X),Y)]
and L?(f) = ﬁ Z(Xj,Yj)eD gl(f(XJ)vY]) with |£1(f(X)aY)‘ S Li S Lmamva X7Y- USing
Hoeffding’s inequality, we can conclude that for any f € F,

A 5 D5?
) — L > < 2972 2 |°
Pr |:|£Z (f) Cl(f)‘ - 4pma,x:| o 2 b (32L2 axpde)

Thus, for any v € (0, 1), if we require

212 2 1
|D| > 3 aXpIrlaxl (m+ )|‘F'|7
52
it holds that
~ ) ¥
Pr[sf e RIL - )| 2 | < P |0 - £ 2 | < 2
4pmax feF 4pmax m + 1
Thus,
. ~ 0
Pr (31 € o, 37 € 7B - £ 2 |
< Y PefreRlE - L)z ] <
1€ IpAlR Pmax
Finally, we can conclude that with probability at least 1 — ~, Vi € Ipar, Vf € F,
~ 1)
Ei - Li < )
5 = L] <
which completes the proof. O

Remarks. The e-approximated formulation has a close relationship to another relaxation as the
following.
Jear = argmin  Lerm(f)

fer

s.t. Loar(f) < €,Vi € [m].
Essentially, both the e-approximated formulation and the above formulation are natural relaxation
of the original problem (Eq. 27 or Eq. 13). As the €; — €404;, the above formulation also yields
the optimal solution f,,q4. In this work, since we focus on the approximations on the preference,
e-approximated formulation essentially provides a convenient touch which could be of independent
interests for future discussions.
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G EXPERIMENTS

We conduct extensive experiments on COLOREDMNIST, WILDS and DOMAINBED to verify the
effectiveness of PAIR-o and PAIR-s in finding a better OOD solution under objective conflicts.

Proof of concept on COLOREDMNIST. In Table 2, Table 2: OOD Performance on COLOREDMNIST

we compare PATR-o implemented with IRMX to ~_ Method CMNIST CMNISTm _ Avg.
other strong baselines on COLOREDMNIST (CM-  ERM 171+£09 73.3+£09 452
NIST) and the failure case variant (Kamath et al.,  IRMvl 67.3 i 1-? 76.8 i 3.2 ;?-1
2021) (CMNIST-m). We follow the evaluation setu V-REx 68.6 + 0. 82.9+13 5.8

) ( ) p IRMX 65.8 +2.9 81.6 £2.0 73.7

as in IRM (Arjovsky et al., 2019) and report the re-
sults from 10 runs. We assign a relative preference =~ PAIR-o;  68.6+0.9 83.7+12 76.2
(1,1e10,1€12) to ERM, IRMvl and VREx objec- ~ FAIR=0¢  CS5°08 8375702 102
tives, respectively. It can be found that PAIR-0 v i i i - i

significantly improves over IRMv1 across all environ- 8”;‘?16 722+ 07§ 86.5 + Oég ggé
. . . . . . p mum .
ment settings, while IRMX using the linear weighting Chance 50 50 50

scheme performs worse than PAIR-o, confirming
the effectiveness of PATR—o. Interestingly, using only the gradients of the classifier w in PAIR-o0 can
yield competitive performance as that uses f or ¢, while the former has better scalability. Therefore,
we will use PAIR-0,, in the following experiments. More details are given in Appendix H.1.

Table 3: OOD generalization performances on WILDS benchmark.

CAMELYON17 CIVILCOMMENTS FMow IWILDCAM POVERTYMAP RxRx1 R
AVG. RANK({)
Avg. acc. (%) Worst acc. (%) Worst acc. (%) Macro F1 Worst Pearsonr  Avg. acc. (%)
ERM 70.3 (£6.4) 56.0 (£3.6) 32.3 (£1.25) 30.8 (£1.3) 0.45 (£0.06) 29.9 (+0.4) 4.50
CORAL 59.5 (£7.7) 65.6 (+1.3) 31.7 (+1.24) 32.7 (+0.2) 0.44 (+0.07) 28.4 (+0.3) 5.50
GroupDRO 68.4 (+7.3) 70.0 (£2.0) 30.8 (+0.81) 23.8 (+2.0) 0.39 (+0.06) 23.0 (+£0.3) 6.83
IRMv1 64.2 (£8.1) 66.3 (£2.1) 30.0 (£1.37) 15.1 (£4.9) 0.43 (£0.07) 8.2 (+0.8) 7.67
V-REx 71.5 (£8.3) 64.9 (£1.2) 27.2 (£0.78) 27.6 (+0.7) 0.40 (£0.06) 7.5 (£0.8) 7.00
Fish 74.3 (£7.7) 73.9 (+0.2) 34.6 (+0.51) 24.8 (+0.7) 0.43 (+0.05) 10.1 (£1.5) 4.33
LISA T4.7 (£6.1) 70.8 (+1.0) 33.5 (£0.70) 24.0 (+0.5) 0.48 (+£0.07) 31.9 (+0.8) 2.67
IRMX 67.0 (+6.6) 74.3 (£0.8) 33.7 (+£0.78) 26.6 (+0.9) 0.45 (£0.04) 28.7 (+0.2) 4.00
PAIR-o0 74.0 (£7.0) 75.2 (+0.7) 35.5 (£1.13) 27.9 (+0.7) 0.47 (+0.06) 28.8 (+0.1) 2.17

T Averaged rank is reported because of the dataset heterogeneity. A lower rank is better.

Can PAIR-o effectively find better OOD solutions under realistic distribution shifts? We
evaluate PATR-o implemented with IRMX on 6 challenging datasets from WILDS benchmark (Koh
et al., 2021), and compare PAIR-o with other state-of-the-art OOD methods from different lines
(Sec. 2), including CORAL (Sun & Saenko, 2016), GroupDRO (Sagawa* et al., 2020), IRM (Arjovsky
et al., 2019), V-REx (Krueger et al., 2021), Fish (Shi et al., 2022) and an advanced importance-aware
data augmentation method LISA (Yao et al., 2022). By default, we assign a relative preference
(1,1e10, 1e12) to ERM, IRMv1 and VREX objectives, respectively, and restrict the search space of
the preference. Our implementation and evaluation protocol follow the exact configuration as previous
works (Koh et al., 2021; Shi et al., 2022; Yao et al., 2022). Details can be found in Appendix H.3.

Table 3 shows that PATR-o substantially improves over IRMv1 as well as IRMX and yields top-
ranking OOD performance among all state-of-the-art methods across different realistic distribution
shifts, demonstrating the effectiveness and significance of resolving the optimization dilemma in
OOD generalization. Besides, the advances of PAIR over IRMX also confirm the effectiveness of
PATIR-o in finding a better trade-off between ERM and OOD objectives.

How can PAIR-o mitigate the objective conflicts? We conduct ablation studies with the modified
COLOREDMNIST (More details and results are given in Appendix H.2). First, as shown in Fig. 15(a),
PAIR-o effectively finds a better solution than exhaustive tuning of penalty weights in IRMX. That is
because PAIR can adaptively adjust the penalty weights (Fig. 15(b)), which leads to a Pareto optimal
solution that has lower OOD losses while not compromising the ERM loss too much (Fig. 15(c)).
The other reason is that, PAIR~-o0 is generally robust to different choices of preference choices
(Fig. 15(d)), which makes it adaptable to various scenarios, confirming our discussions in Sec. D.2.

Can PAIR-s effectively select better OOD solutions under realistic distribution shifts? To
verify the effectiveness of PAIR-s, we apply PAIR-s to multiple representative OOD methods
as discussed in Sec. 2, and examine whether PATR—s can improve the model selections under
rigorous hyperparameters tunning (Gulrajani & Lopez-Paz, 2021) on COLOREDMNIST (Kamath
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Figure 15: (a) Each point is the best performed IRMX among corresponding pretraining epoch
(z-axis), the IRMv1 penalty weights (y-axis) and all possible VREx penalty weights. Despite the
substantial tunning efforts, IRMX performs no better than PAIR. That is because (b) PAIR can
adaptively adjust the penalty weights during the optimization process, and leads to a (c) Pareto
optimal solution. (d) The robustness of PAIR—o to different preference choices enables it adaptable
to various scenarios.

etal., 2021), PACS (Li et al., 2017) and TERRAINCOGNITA (Beery et al., 2018). Intuitively, models
selected merely based on ERM performance tend to have a high preference or better performance on
environments that have a similar distribution of the corresponding validation set, which will lead to
higher variance of performances at different environments or a lower worst environment performance.
Hence we use training-domain validation accuracy for COLOREDMNIST and TERRAINCOGNITA,
and test-domain validation accuracy for PACS to validate the existence of this issue under different
scenarios (Teney et al., 2021). More details and results are provided in Appendix I.

Table 4: OOD generalization performances using DOMAINBED evaluation protocol.

COLOREDMNIST ¥ PACS * TERRAINCOGNITA

PAIR-s +90% +80% 10% A wr. A C P S Awr. L100 L38 L43 L46 A wr
ERM 71.0 73.4 10.0 87.2 795 955 76.9 46.7 41.8 574 39.7
DANN 71.0 73.4 10.0 86.5 79.9 97.1 75.3 46.1 41.2 56.7 35.6
DANN v 71.6 73.3 10.9 +0.9 87.0 814 96.8 775 +2.2 43.1 41.1 55.2 387 +3.1
GroupDRO 72.6 73.1 9.9 87.7 82.1 98.0 79.6 48.4 403 579  40.0
GroupDRO v 72.7 73.2 13.0 +3.1 86.7 83.2 978 814 +1.8 484 403 579  40.0 +0.0
IRMv1 72.3 72.6 9.9 82.3 80.8 958 789 484 35.6 554  40.1
IRMv1 v 67.4 64.8 242 +14.3 853 81.7 974 79.7 +0.8 404 383 488 370 +1.4
Fishr 72.2 73.1 9.9 88.4 822 97.7 816 49.2 40.6 57.9 404
Fishr v 69.1 70.9 226 +127 874 826 975 822 +0.6 51.0 40.7 582 408 +0.3

TUsing the training domain validation accuracy. * Using the test domain validation accuracy.

Table 4 shows that there is a high variance in the performances at different environments of the
models selected only based on the validation accuracy. In contrast, by jointly considering and trading
off the ERM and OOD performances in model selection, PATIR—s substantially mitigates the variance
by improving the worst environment performance of all methods under all setups up to 10%. It could
serve as strong evidence for the importance of considering ERM and OOD trade-offs.

H MORE DETAILS ON EXPERIMENTS
In this section, we provide more details about the experiments (Sec. G) in the main paper.

H.1 MORE DETAILS ON COLOREDMNIST EXPERIMENTS

In the proof-of-concept experiments with COLOREDMNIST, we follow the evaluation settings
as IRM (Arjovsky et al., 2019) and the test-domain selection as DomainBed (Gulrajani & Lopez-
Paz, 2021). Specifically, we use a 4-Layer MLP with a hidden dimension of 256. By default, we
use Adam Kingma & Ba (2015) optimizer with a learning rate of le — 3 and a weight decay of
le — 3 to train the model with 500 epochs and select the last epoch as the output model for each
hyperparameter setting. We choose the final model from different hyperparameter setups as the
one that maximizes the accuracy on the validation that share the same distribution as test domain.
We then do grid search for the corresponding hyperparameters. For pretraining epochs, we search
from {0, 50, 100, 150, 200, 250}. For OOD penalty, we search from {lel, 1e2,1e3,1le4,1e5}. We
evaluate each configuration of hyperparameters 10 times and report the mean and standard deviation
of the performances. Besides, for IRMv1, we will refresh the history in Adam optimizer when the
pretraining finishes, following the practice in Gulrajani & Lopez-Paz (2021). We also empirically
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Figure 16: (a),(b) PAIR can effectively find a better solution than exhaustive tuning of penalty weights
in IRMX. That is because PAIR can adaptively adjust the penalty weights during the optimization
process, and leads to a Pareto optimal solution, as shown in (c),(d).

find that refreshing the optimizer after pretraining can bring a better performance of IRMvl in
COLOREDMNIST. While for VREX, we find the refreshing is not needed.

For the implementation of IRMX, we change the penalty to be the sum of IRMv1 and VREX losses and
conduct the same hyperparameter search as for IRMv1 for fair comparison. As for the implementation
of PAIR, we use SGD with a momentum of 0.9 (Sutskever et al., 2013) after pretraining, to avoid the
interference of Adam to the gradient direction and convergence of EPO (Mahapatra & Rajan, 2020)
solver. Moreover, we also empirically find that SGD requires larger learning rate (we search over two
choices, i.e., 0.01 and 0.1) for approaching the direction. This is because of the design in EPO solver
that it first fits to the preference direction then does the “pure” gradient descent, while the intrinsically
conflicting directions pointed by the objectives can make the loss surface more steep. We will leave
in-depth understanding of the above phenomenon and more sophisticated optimizer design in more
complex tasks and network architectures to future works (Zhao & Zhang, 2015; Zhou et al., 2020).

H.2 MORE DETAILS ABOUT ABLATION STUDIES

Comparison between PAIR-o and the linear weighting scheme under exhaustive parameter
search. In the main paper, to investigate how PAIR—-o can find a better OOD solution under objective
conflicts, we first conduct a ablation study to compare the OOD performances of PAIR-o and
the exhaustive tuned IRMX. Specifically, we tune both IRMv1 and VREX penalty weights from
a substantially larger scope, i.e., {1, 1el, 1e2,1e3, 1e4, 1e5,1e6}. As for pretraining epochs, we
search from {0, 50, 100, 150, 200, 250}. The results of IRMX in COLOREDMNIST and the modified
COLOREDMNIST are shown as in Fig. 16(a) and Fig. 16(b), respectively. Each point represents
the best performed IRMX with the configuration of the corresponding pretraining epoch, the IRMv1
penalty weight and different VREx penalty weights from {1, lel, 1e2, 1e3, le4, 1e5, 1e6}.

We also present a full exhaus-

tive hyperparameter tunning 05808580850 050655085
study based on linear weight- o AEEEE oc-EHNEEEE
ing scheme for IRMX, shown 1 AEEEE 1-'HNEEEE Fos
in Fig. 17, where we further lel- HEEEE N .. lel INEEEN
1e2- HEEEN . o le2- R EEEN o
enlarge the.search space of le3- EEEEE 3 le3-HNEEEN 078
penalty weights from 1le6 led- EEEEE o le4-  HEEE >
to lel2 to better compare les- MEEENE |10602 122 ==== g
with IRMX optimized via  1e6- HEEEE S 177 EEEE 106g
.. . le7- HEEEN 3 e 3
PAIR-o. Similar to Fig. 16(a) Bl @ le8- T 1T ] o
¢ ( les- NEEEE || . 3 5
and Fig. 16(b), each point 1e9- HEENEN =2 a le9-  HENEN | 053
in Fig. 17 is selected from 1e10- HEEEE @ lelo- HEEE ’
’ . lell- HEENEN lell- HEEE
be.st performed modpls trained 1012 mEEEE 1 0.50 lel2-  HEEE ||oa4
with the corresponding IRMvl pair- HEEEN || pair- HEHENE ||
penalty weights, and pretrain- (a) CMNIST. (b) CMNIST-m.

ing epoch, and all possible
VREx penalty weights from Figure 17: Full exhaustive hyperparameter tunning study
{1,1el,1e2,1e3, le4, 1e5, 1e6, 1e7,1e8,1€9,1e10, 1ell, 1el2}.
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Compared to IRMv1 shown as in Fig. 7, IRMX can substantially improve the OOD performances
in both COLOREDMNIST and the modified COLOREDMNIST, confirming our theoretical results.
However, the OOD performances of IRMX turn out to be upper bounded by that optimized with
PATIR-o at each pretraining epochs. In other words, PAIR-o requires substantially less parameter
tuning efforts to achieve the top OOD performances, confirming the advances of PAIR-o0. In
more complex tasks where the exhaustive parameter tunning is prohibitively expensive, such as in
the experiments with WILDS (Koh et al., 2021), IRMX performs worse than PAIR, which further
validates the effectiveness of PAIR-o.

To better demonstrate the advantages of PAIR—-o over linear weighting scheme, we replicate the
previous study in two datasets from WILDS, i.e., CIVILCOMMENTS and FMOW. Due to the computa-
tional resource limits, we limit the search scope of IRMv1 and VREx to {1e — 2, 1, 1e2}, respectively.
It can be found that, even with a broader hyperparameter search space, IRMX optimized via linear
weighting scheme remain under-performed than PATIR-o.

Table 5: Comparison between linear weighting scheme and PATIR-o in WILDS.

CIVILCOMMENTS  IRMvI1\VREx le—2 1 le2 FMoW  IRMv1\VREX le—2 1 le2
le—2 72.5(+2.00) 73.8(+140) 73.1(+0.67) le —2 33.64(+0.59)  34.20(£1.33) 34.43(+0.72)
1 73.5(+1.47)  74.3(+083)  73.2(+0.67) 1 30.25(+0.87)  33.75(+0.78)  33.7(%0.78)
le2 72.1(+059)  70.1(+2.09)  74.3(+0.51) le2 21.33(+1.51)  21.00(+2.41)  13.14(+1.63)
PAIR-O 75.2(+0.7) 35.5(£1.13)

Loss values distribution at convergence. As for the loss distribution experiments (Fig. 16(c), 16(d)),
we plot the ERM,IRMv1 and VREX loss values at convergence of best performed algorithms. The
plotted values are in log-scale and normalized to [0, 1]. It can be found that PATR—o effectively find
a better solution in terms of IRMv1 and VREX losses, while not generating the ERM performances
too much, which confirms our motivations for the design of PAIR.

Penalty weights trajectory. To examine whether PAIR-o can effectively adjust the penalty
weights of ERM and OOD objectives, especially when the model has not arrived at the Pareto
front (i.e., the gradient conflicts are expected to be more intense), we plot the trajectories of
penalty weights generated by PAIR—-o in both CMNIST and CMNIST-m, shown as in Fig. 18.
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is 1 while for OOD objective is 0.

Then, when PATIR-o enters into the “balance” phase, PAIR-o0 begins to yield high weights to OOD
objectives, while not diminishing the weights to ERM objectives. That is the “Adaption” phase, where
PAIR-o0 begins to adjust the solution towards the Pareto front as well as the preferred direction.
When the solution is close to the Pareto front, then PATIR-o0 enters into the “Generalization” phase.
That is to incorporate the invariance into the features by assigning high weights to the OOD objectives.

Preference sensitivity analysis under strict hyperparameter configuration. Another reason for
the high performance of PAIR-o at both COLOREDMNIST and realistic datasets from WILDS
is because of its robustness to different preference choices. In complementary to the theoretical
discussion in Theorem F.1, we also conducted preference sensitivity analysis experiments under strict
hyperparameter configurations. In other words, the hyperparameter search space is restricted to single
point, i.e., a learning rate of 0.01, and a pretraining epoch of 150. The results are shown in Fig. 19
for both the original and the modified COLOREDMNIST dataset. It can be found that, PAIR-0
maintains high performance and robustness to different preference choices.
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Figure 19: Preference sensitivity under strict hyperparameter
configuration. x-axis is the preference for VREx while y-axis is
the preference for IRMvl

Additional ablation study on
COLOREDMNIST with “per-
fect” initialization. We also con-
duct experiments with “perfect” initializations for different methods, to check whether the OOD
constraints can enforce the invariance, following Zhang et al. (2022a). Besides the OOD methods
used in the paper, we also include another OOD method IGA (Koyama & Yamaguchi, 2020) to give a
more comprehensive overview of their performances with “perfect” initialization. We also introduce
another variant of ColoredMNIST, i.e., CMNIST-11: {(0.25,0.10), (0.25,0.20)} to complement
more details. All methods are initialized with a ERM model learned on gray-scale ColoredMNIST
data which is expected to learn to use digit shapes in the image to make predictions. The learning
rate is 1le — 3 and the penalty weight is 1eb. Different from Zhang et al. (2022a), we use SGD to
optimize the models, as Adam would generate larger step sizes when the gradients continue to be
within a small range under the “perfect” initialization. Results are shown as in Fig. 20.
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(a) “Perfect” init. on CMNIST-10. (b) “Perfect” init. on CMNIST-11. (c) “Perfect” init. on CMNIST-25.
Figure 20: OOD performances with “Perfect” initializations.

It can be found that, in CMNIST-10, IRM, IRMx and IGA cannot enforce the invariance while
V-REx and PAIR maintain the invariance, which is consistent to our previous findings. Moreover,
IGA fails to maintain the invariance in CMNIST-11 and CMNIST-25, demonstrating the relatively
low robustness of IGA objective. Besides, V-REx consistently maintain the invariance even in
CMNIST-11, for the reason that the gradient signals of variance in “perfect” initialization tend to
vanish. In contrast, PATR improve over both IRM and IRMx to maintain the invariance, confirming
the effectiveness of PAIR.

Additional ablation study on the performance of PAIR-o and PAIR-s with more OOD ob-
jectives and their composite with IRMv1. Besides VREx, we conduct additional ablation studies
of PAIR with IB (Ahuja et al., 2021a), Fishr (Rame et al., 2021), CLOVE (Wald et al., 2021),
IGA (Koyama & Yamaguchi, 2020) and SD (Pezeshki et al., 2021), based on COLOREDMNIST and
the modified COLOREDMNIST. We focus on the cases with no less than 2 OOD objectives, as one
could simply obtain a low OOD loss for single OOD objective, where linear weighting scheme is
likely to approach the desired OOD solution as the Pareto front is simpler. However, it is often the
case that single OOD objective is not sufficiently robust to locate the desired OOD solution to the
Pareto front.

In experiments, we follow the same evaluation protocol as previous experiments on COLOREDM-
NIST. Due to the resource limits of NVIDIA RTX 3090Ti used for the original COLOREDMNIST
experiments in previous sections, we switch the hardware and software platform to Linux servers
with NVIDIA V100 graphics cards with CUDA 10.2, hence the results in Table 6 and Table 7 are
not directly comparable with those in Table 2. Similar to previous experiments, for the stability
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of MOO solver under heterogeneous objectives, we search learning rate for VREx and Fishr from
{0.01,0.02,0.04,0.1,0.2} at stage 2 while a larger scope {0.1,0.2,0.4, 0.8, 1} for other objectives.
Note that even considering the learning rate into the hyperparameter search space, PAIR still uses a
smaller scope than that of linear weighting scheme. Besides, we follow our previous discussion in
Appendix E.3 to set up the preference of different OOD objectives. Specifically, for Fishr, we use
a larger preference of 1e12 than that for IRMv1 (1e8), since the agreements based methods tend to
have a smaller loss than IRMv1. While for the other objectives, we use a smaller preference of 1e8
than that for IRMv1 (1e12). Note that this is only a heuristic setup and the performance of PAIR can
be further improved if the preferences can be tuned.

Table 6: Generality study of PAIR for IRMv1 with other objectives in COLOREDMNIST.
IRMvl PAIR-o PAIR-s CMNIST CMNIST-M Avg. AAvg.

ERM 17.14(+0.73) 73.30(+0.85)  45.22

IRMv1 67.29(+0.99) 76.89(£3.23) 72.09  40.00

1B 55.48(+3.67)  76.01(+£0.58)  65.75
v 56.09(+2.04)  75.66(+106) 65.88 —6.21
v v 61.12(+2.33)  83.30(+£3.000) 72.21 +40.12
v v v 60.69(+2.26)  83.70(x1.79)  72.20 +40.11

VREx 68.62(+0.73)  83.52(+2.52)  76.07
66.19(+1.41) 81.75(+1.68) 73.97 +1.88
68.89(+1.13)  83.80(+160) 76.35 +4.26

v 69.16(+0.76) 83.96(+1.65) T76.56  +4.47

Fishr 69.38(+0.39) 77.29(+1.61) 73.34

66.20(+2.31) 81.07(%3.98) 73.63 +1.54
68.90(+0.56)  82.70(%£1.09) 75.80 +2.49
68.78(+0.78)  84.02(+1.37) 76.40 +3.31

CLOVE 55.55(4+9.97)  74.20(+£2.45)  64.88
66.35(%1.51) 77.70(=£1.00) 72.02  —-0.07
64.99(+2.29)  75.70(£105) 70.35 —1.75

v 65.55(42.17)  T77.29(+155) 71.42 —0.67

IGA 58.67(+7.69)  T76.27(£101)  68.97
51.22(+3.67)  74.20(+2.45) 62.71 —9.38
66.17(+2.34) 81.84(+3.09) 74.01  +4+1.91

v 66.51(+0.78)  82.12(+3.04) 74.32 +2.23

SD 62.31(+1.54) 76.73(+0.90) 69.52

SENEN
N

SNENEN
ENEN
\

SNENEN
ENEN

SNENEN
ANEN

v 62.48(+1.25) 81.24(40.69) 71.86 —0.23
v v 59.52(+6.12) 82.82(+0.64) 71.17 —0.92
v v v 65.54(+0.91) 83.57(40.81) 74.56  42.47
Oracle 72.08(+£0.24)  86.53(x0.14) 79.31  79.31

The results are given in Table. 6. It can be found that, not all OOD objectives can improve IRMv1
performance. For the OOD objectives that can enhance the OOD robustness when incorporated into
IRMvl, PAIR can further improve over the combined OOD objectives optimized via linear weighting
scheme. While for unrobust combinations, intuitively it is hard to improve the OOD performance for
the following reasons:

(i). When the new objective combination is unrobust, the desired solution may not lie in the new
Pareto optimal front;

(ii). Eventhough desired solution lie in the new Pareto optimal front, the weakened OOD robust-
ness introduce more local minimals that have a low OOD losses while worse OOD generalization
performance;

(iii). As extra objective is involved, the OOD preference used in PAIR tends to have a higher
divergence from the ideal one;

Therefore, given unrobust OOD objective combinations, the performance gain of PAIR is not
theoretically guaranteed. Nevertheless, PATR~-o can still improve some of the unrobust objective
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combinations, demonstrating its robustness. Notably, PAIR-s can further improve the performance
of PATR-o0 at most cases, demonstrating the generality of PAIR.

To study what OOD objectives are suitable to be combined with IRMv1 and whether using more
OOD objectives can bring more performance improvements, additionally, we conduct experiments
with all possible composites of IRMv1 and IB (Ahuja et al., 2021a), Fishr (Rame et al., 2021)
and VREx (Krueger et al., 2021). In experiments, similar as in previous study, PAIR-o adopts
a slightly broader learning rate search scope of {0.01,0.02,0.04,0.1,0.2} at stage 2, in order to
prevent divergence. Note that even considering the learning rate into the hyperparameter search space,
PAIR still uses a smaller search scope than that of linear weighting scheme. PAIR-s adopts the
training domain validation accuracy to perform the model selection. Both PAIR-o0 and PAIR-s
adopts a heuristic preference setup that uses a decreasing preference from 1el2 to 1e8 by a step size
of 1e2 for more objectives. For example, in the composite of IB, IRMv1 and VREx, we adopt the
preference of (1e8, 110, 1e12) for the OOD objectives. The choice of preference follows previous
discussion in Appendix E.3.

Table 7: Generality study of PAIR for composite objectives in COLOREDMNIST.

IB VREx Fishr CMNIST CMNIST-M Avg. A Avg.
ERM 17.14(+0.73) 73.30(+0.85)  45.22
IRMv1 67.29(+0.99)  76.89(+323)  72.09  +40.00
Linear v 56.09(4+2.04)  T75.66(+106)  65.88 —6.21
+PAIR-0O v 61.12(+2.33)  83.30(+3.00) 72.21 +0.12
+PAIR-0 +PAIR-s V 60.69(+2.26)  83.70(x179) 72.20 +40.11
Linear v 66.19(+1.41) 81.75(+1.68) 73.97 +1.88
+PAIR-O v 68.89(+1.13)  83.80(+1.60) 76.35 +4.26
+PAIR-0 4+PAIR-s v 69.16(+0.76)  83.96(=+1.65) 76.56 +4.47
Linear v 66.20(+2.31) 81.07(£3.98) 73.63 +1.54
+PAIR-0 v 66.45(40.90) 82.70(+1.09) 74.58 +2.49
+PAIR-0 +PAIR-s v 67.57(+0.81) 83.22(+2.10) 75.40 +3.31
Linear v v 52.61(+1.56) 63.84(+1.08) 58.23 —13.9
+PAIR-0 v v 68.35(%1.73) 81.25(+3.08) 74.80 +2.71
+PAIR-0 +PAIR-s V v 69.05(+0.76)  83.11(x1.46) 76.08 +3.99
Linear v v 51.91(+1.26) 68.88(+3.22)  60.39 —11.7
+PAIR-O v v 59.70(+£12.7)  T4.59(x111)  67.15 —4.94
+PAIR-0 +PAIR-s V v 66.98(+2.66) 75.91(+3.50) 71.45 —0.65
Linear v v 64.83(4+2.95)  79.34(+577)  72.09  40.00
+PAIR-O v v 67.96(+1.60)  81.44(+2.24) 7470  42.61
+PAIR-0 +PAIR-s v v 68.19(+1.58)  81.89(+3.01)  75.04 4+2.95
Linear v v v 50.00(4£0.32)  69.60(+2.33)  59.80 —12.3
+PAIR-O v v v 66.89(+1.80)  83.46(+3.10) 75.18  +3.08
+PAIR-0 +PAIR-s V v v 68.59(+1.29) 85.30(+0.64) 76.95 +4.85
Oracle 72.08(+0.24) 86.53(+0.14) 79.31

The results are shown in Table 7. The best and second best results are in bold and underline,
respectively. It can be found that incorporating more OOD objectives does not necessarily bring
more performance improvements into IRMv1. The linear weighting scheme can further exacerbate
the performance drops of unrobust OOD objective combinations. For example, when incorporating
IB objective into IRMv1, the OOD performance drops, since IB is proposed to mitigate a specific
type of distribution shifts instead of directly improving learning the invariance in the original IRMv1
setting. In contrast, it can be found that incorporating Fishr can bring performance increases at
most cases. The reason is that minimizing Fishr loss can approximately minimizes the VREX loss,
as shown by Rame et al. (2021). Therefore, we suspect that the reason for the performance drop
could be that more objectives will make the Pareto front more complicated, and also lead to higher
divergence of the OOD preference (since we are less likely know the ideal preference given more
objectives). Hence, the preferred composition of the objectives are preferred to those that have
theoretical guarantees and are as concise as possible.
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Interestingly, we also find that, although incorporating more objectives in PAIR—-o does not neces-
sarily bring performance increase, a combination of PATR-o0 and PAIR-s can further improve the
OOD performance, despite of the simple implementation of PATR-o. It serves as strong evidence
for the generality and significance of PAIR.

H.3 MORE DETAILS ABOUT EXPERIMENTS ON WILDS

In this section, we provide more details about the WILDS datasets as well as the evaluation setups in
the experiments.

H.3.1 DATASET DESCRIPTION.

We select 6 challenging datasets from WILDS (Koh et al., 2021) benchmark for evaluating PAIR-0
performance in realistic distribution shifts. The datasets cover from domain distribution shifts,
subpopulation shifts and the their mixed. A summary of the basic information and statistics of the
WILDS datasets can be found in Table. 8, Table. 9, respectively. In the following, we will give a brief
introduction to each of the datasets. More details can be found in the WILDS paper (Koh et al., 2021).

Table 8: A summary of datasets information from WILDS.

Dataset Data (z) Class information Domains Metric Architecture
CAMELYON17 Tissue slides Tumor (2 classes) 5 hospitals Avg. acc. DenseNet-121
CIVILCOMMENTS  Online comments ~ Toxicity (2 classes) 8 demographic groups ‘Wr. group acc. DistillBERT
FMow Satellite images Land use (62 classes) 16 years x 5 regions Wr. group acc. DenseNet-121
IWILDCAM Photos Animal species (186 classes) 324 locations Macro F1 ResNet-50
POVERTY Satellite images Asset (real valued) 23 countries ‘Wr. group Pearson (r) Resnet-18
RXRx1 Cell images Genetic treatments (1,139 classes) 51 experimental batches ~ Avg. acc ResNet-50

Table 9: A summary of datasets statistics from WILDS.

Dataset # Examples # Domains
train val test train val  test
CAMELYON17 302,436 34,904 85,054 3 1 1
CIVILCOMMENTS 269,038 45,180 133,782 - - -
FMoWw 76,863 19915 22,108 11 3 2
IWILDCAM 129,809 14,961 42,791 243 32 48
POVERTY 10,000 4,000 4,000 13-14 45 4-5
RxRx1 40,612 9,854 34,432 33 4 14

Camelyonl7. We follow the WILDS splits and data processing pipeline for the Camelyonl7
dataset (Bandi et al., 2019). It provides 450,000 lymph-node scans from 5 hospitals. The task
in Camelyon17 is to take the input of 96 x 96 medical images to predict whether there exists a tumor
tissue in the image. The domains d refers to the index of the hospital where the image was taken.
The training data are sampled from the first 3 hospitals where the OOD validation and test data
are sampled from the 4-th and 5-th hospital, respectively. We will use the average accuracy as the
evaluation metric and a DenseNet-121 (Huang et al., 2017) as the backbone for the featurizer.

CivilComments. We follow the WILDS splits and data processing pipeline for the CivilComments
dataset (Borkan et al., 2019). It provides 450,000 comments collected from online articles. The
task is to classify whether an online comment text is toxic or non-toxic. The domains d are defined
according to the demographic features, including male, female, LGBTQ, Christian, Muslim, other
religions, Black, and White. CivilComments is used to study the subpopulation shifts, here we will
use the worst group/domain accuracy as the evaluation metric. As for the backbone of the featurizer,
we will use a DistillBert (Sanh et al., 2019) following WILDS (Koh et al., 2021).

FMoW. We follow the WILDS splits and data processing pipeline for the FMoW dataset (Christie
et al., 2018). It provides satellite images from 16 years and 5 regions. The task in FMoW is to
classify the images into 62 classes of building or land use categories. The domain is split according
to the year that the satellite image was collected, as well as the regions in the image which could be
Africa, America, Asia, Europe or Oceania. Distribution shifts could happen across different years
and regions. The training data contains data collected before 2013, while the validation data contains
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images collected within 2013 to 2015, and the test data contains images collected after 2015. The
evaluation metric for FMoW is the worst region accuracy and the backbone model for the featurizer
is a DenseNet-121 (Huang et al., 2017).

iWildCam. We follow the WILDS splits and data processing pipeline for the iWildCam dataset (Beery
et al., 2020). It is consist of 203, 029 heat or motion-activated photos of animal specifies from 323
different camera traps across different countries around the world. The task of iWildCam is to classify
the corresponding animal specifies in the photos. The domains is split according to the locations
of the camera traps which could introduce the distribution shifts. We will use the Macro F1 as the
evaluation metric and a ResNet-50 (He et al., 2016) as the backbone for the featurizer.

PovertyMap. We follow the WILDS splits and data processing pipeline for the PovertyMap
dataset (Yeh et al., 2020). It consists of satellite imagery and survey data at 19, 669 villages from
23 African countries between 2009 and 2016. Different from other datasets, the task in PovertyMap
is a regression task that asks the model to predict the real-valued asset wealth index computed
from Demographic and Health Surveys (DHS) data. The domain is split according to the countries
that the image was taken and whether the image is of an urban or rural area. The relative small
size of PoverMap allows for using cross-fold evaluation, where each fold defines a different set of
OOD countries (Koh et al., 2021). We will use the Pearson correlation of the worst urban/rural
subpopulation as the evaluation metric and a ResNet-18 (He et al., 2016) as the backbone for the
featurizer.

RxRx1. We follow the WILDS splits and data processing pipeline for the RxRx1 dataset (Taylor et al.,
2019). The input is an image of cells taken by fluorescent microscopy. The cells can be genetically
perturbed by siRNA and the task of RxRx1 is to predict the class of the corresponding siRNA that
have treated the cells. There exists 1, 139 genetic treatments and the domain shifts are introduced by
the experimental batches. We will use the average accuracy of the OOD experimental batches as the
evaluation metric and a ResNet-50 (He et al., 2016) as the backbone for the featurizer.

H.3.2 TRAINING AND EVALUATION DETAILS.

We follow previous works to implement and evaluate our models (Koh et al., 2021; Shi et al., 2022;
Yao et al., 2022). The information of the referred paper and code is listed as in Table. 10.

Table 10: The information of the referred paper and code.

Paper Commit Code

WIiLDS (Koh et al., 2021) v2.0.0 https://wilds.stanford.edu/
Fish (Shi et al., 2022) 333efa24572d99dal0ad4107ab9ccd4af93a915d2a9 https://github.com/YugeTen/fish
LISA (Yao et al., 2022) bcd24c47df6£072986b63cd906c44975bd34d9ff https://github.com/huaxiuyao/LISA

The general hyperparemter setting inherit from the referred codes and papers, and are shown as in
Table 11. We use the same backbone models to implement the featurizer (He et al., 2016; Huang
etal., 2017; Sanh et al., 2019). By default, we repeat the experiments by 3 runs with the random seeds
of 0,1, 2. While for Camelyon17, we follow the official guide to repeat 10 times with the random
seeds from 0 to 9, and for PovertyMap, we repeat the experiments 5 times with the random seeds
from 0 to 4. Note that the PovertyMap use cross-fold validations hence each run will use different
training and evaluation splits, following the WILDS official guideline.

For the evaluation of baselines, we refer the previous results from the literature (Koh et al., 2021; Shi
et al., 2022; Yao et al., 2022) by default, while we rerun Fish (Shi et al., 2022) and LISA (Yao et al.,
2022) to validate the reported results. Since the original implementation of Fish does not support
the evaluation of the updated PovertyMap dataset, we mildly adjust the hyperparameter settings to
reproduce the corresponding results as shown in Table. 11. We also reduce the batch size on FMoW
due to the memory limits and we find it does not affect the reproducibility of Fish and LISA. Besides,
since the original implementation of LISA does not support PovertyMap, which differentiates as
a regression task that could be not suitable with Mixup (Zhang et al., 2018), however we find the
“group by label” strategy in LISA works particularly well and reaches to the state of the art. For
IRMX, we implement it as the simple addition of IRMv1 and VRExX penalties based on the Fish
implementation (Shi et al., 2022), and search the penalty weights using the same space as for other
objectives (Koh et al., 2021) to ensure the fairness. Besides, since previously reported results did not
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cover the performance of VREx in iWildCam and PovertyMap, we implement VREx and report the
results based on the Fish implementation (Shi et al., 2022).

Table 11: General hyperparameter settings for the experiments on WILDS.

Dataset CAMELYON17  CIVILCOMMENTS FMow IWILDCAM  POVERTYMAP RxRx1
Num. of seeds 10 3 3 3 5 3
Learning rate le-4 le-5 le-4 le-4 le-4 le-3
Weight decay 0 0.01 0 0 0 le-5
Scheduler n/a n/a n/a n/a n/a Cosine Warmup
Batch size 32 16 32 16 64 72
Architecture DenseNet121 DistilBert DenseNet121 ResNet50 ResNet18 ResNet50
Optimizer SGD Adam Adam Adam Adam Adam
Pretraing Step 10000 20000 24000 24000 5000 15000
Maximum Epoch 2 5 12 9 200 90

For PATR-0, we implement it based on the Fish code (Shi et al., 2022). The detailed algorithm can be
found in Algorithm. 1. We leverage the same number of pretraining steps as in Fish to fulfill the first
“descent” phase in PAIR-o algorithm. Then, during the “balance” phase, at each training step, we
sampled k batches of data from different domains, calculate loss and conduct the back-propagation.
By default, we use only the gradients of the classifier to solve for the objective weights during the
“balance” phase. Except for iWildCam and RxRx1 datasets, due the memory limits, as discussed in
Sec. E.4.1, we use the freeze technique to ensure the consistency of batch size and number of sampled
domains as in Table. 11. Moreover, as discussed in Sec. E.4.2, the unbiased stochastic estimate of
IRMv1 penalties can not guarantee the non-negativity of the estimated loss values, which are however
not compatible with MOO theory (Kaisa, 1999) (thus the same for PAIR-0). Therefore, we will
manually adjust the negative values to be positive, by multiplying it with a adjustment rate (short in
Neg. IRMv1 adj. rate in Table. 12). The adjustment rate is tuned from 1 to 1le — 4 with a step size
of le — 2 to avoid the training divergence and instability. Following the discussion as in Sec. E.3,
we tune the OOD relative preference by merely varying the preference for IRMv1 objective from
the default choice of (1, 110, 1e12) by a step size of 1e2. We find the performances of IRMv1 and
VREX highly correlate to the corresponding relative preference weights. We list hyperparameters of
PAIR-o in Table 12. Although we did not tune the hyperparameters heavily, we find that PAIR-0
generically works well across different challenging datasets and realistic distribution shifts on WILDS.
As discussed in Sec. E.3, there could be more sophisticated approaches to further improve the search
and estimate of OOD preference, which we will leave for future developments based on PAIR.

Table 12: Hyperparameter settings of PAIR~o for the experiments on WILDS.

Dataset CAMELYON17 CI1VILCOMMENTS FMow IWILDCAM  POVERTYMAP RXRX1
Gradients from Classifier Classifier Classifier Classifier Classifier Classifier
Freeze featurizer No No No Yes No Yes
Relative Preference (1,1e12,1e12) (1,1e8,1e12) (1,1e12,1e12) (1,1e10,1e12) (1,1e8,1e12) (1,1e10,1e12)
Neg. IRMvl1 adj. rate 1 le-4 1 le-2 le-2 1

Group by Hospitals Demographics x toxicity — Times X regions  Trap locations Countries Experimental batches
Sampled domains 3 5 5 10 5 10

H.4 SOFTWARE AND HARDWARE

We implement our methods with PyTorch (Paszke et al., 2019). For the software and hardware
configurations, we ensure the consistent environments for each datasets. Specifically, we run COL-
OREDMNIST experiments on Linux Servers with NVIDIA RTX 3090Ti graphics cards with CUDA
11.3, 40 cores Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz, 256 GB Memory, and Ubuntu 18.04
LTS installed. While for WILDS and DOMAINBED experiments, we run on Linux servers with
NVIDIA V100 graphics cards with CUDA 10.2.

I MORE DETAILS OF MODEL SELECTION RESULTS ON DOMAINBED

1.1 INTRODUCTION OF DIFFICULT MODEL SELECTION IN DOMAINBED

DOMAINBED is proposed by Gulrajani & Lopez-Paz (2021) to highlight the importance of model
selection in OOD generalization. Specifically, they empirically show that, under rigorous hyperpa-
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rameter tunning, ERM (Vapnik, 1991) achieves the state-of-the-art performances. Although recently
progress are made to outperform ERM under the rigorous DOMAINBED evaluation protocol (Rame
et al., 2021), whether there exists a proper model selection for OOD algorithms remains elusive.

The difficulty of a proper model selection for OOD algorithms is mainly because of: We lack the
access to a validation set that have a similar distribution with the test data. Therefore, Gulrajani &
Lopez-Paz (2021) provide 3 options to choose and construct a validation set from: training domain
data; leave-one-out validation data; test domain data. However, all three validation set construction
approaches have their own limitations, as they essentially posit different assumptions on the test
distribution (Gulrajani & Lopez-Paz, 2021; Teney et al., 2021; Rame et al., 2021).

PAIR-s tries to address the limitations caused by the difficulty of finding a proper validation set
for model selection in domain generalization, by leveraging the prior assumed within the OOD
algorithm. Essentially, different lines of OOD algorithms discussed in Sec. B.1 adopt different
prior and assumptions on the causes of the distribution shifts. The main purpose of the OOD
evaluation is to validate the correctness of the posed assumptions. To this end, the selected models
should properly reflect the preferences implied by the assumptions, i.e., the OOD loss values. When
considering the loss values during the model selection, it is natural to leverage the MOO perspective
and explicitly consider the trade-offs between ERM and OOD performance. The detailed description,
implementation options, and potential leverages of PAIR-s are provided in Appendix E.

1.2 TRAINING AND EVALUATION DETAILS

Since our main purpose of the DOMAINBED experiments is to validate the existence of the problem
and the effectiveness of PAIR-s, we apply PAIR-s to the representative methods of the four
discussed OOD solutions in Sec. B.1. Specifically, we choose the following four methods out of
all implemented algorithms in DOMAINBED (https://github.com/facebookresearch/
DomainBed):

* ERM: Empirical Risk Minimization (Vapnik, 1991)

* IRM: Invariant Risk Minimization (Arjovsky et al., 2019)

* GroupDRO: Group Distributionally Robust Optimization (Sagawa* et al., 2020)
¢ DANN: Domain Adversarial Neural Network (Ganin et al., 2016)

e Fishr: Invariant Gradient Variances for OOD Generalization (Rame et al., 2021)

Due to the limits of computational resources, we select 3 out of 7 datasets from DOMAINBED. We
refer Rame et al. (2021) to prescribe the detail, listed as follows:

1. Colored MNIST (Arjovsky et al., 2019) is a variant of the MNIST handwritten digit classifi-
cation dataset (Lecun et al., 1998). Domain d € {90%, 80%, 10%} contains a disjoint set of
digits colored: the correlation strengths between color and label vary across domains. The
dataset contains 70,000 examples of dimension (2, 28, 28) and 2 classes. Most importantly,
the network, the hyperparameters, the image shapes, etc. are not the same as in the IRM
setup for COLOREDMNIST experiments.

2. PACS (Li et al., 2017) includes domains d € {art, cartoons, photos, sketches}, with 9,991
examples of dimension (3,224, 224) and 7 classes.

3. Terralncognita (Beery et al., 2018) contains photographs of wild animals taken by cam-
era traps at locations d € {L100, L38, L43, L46}, with 24,788 examples of dimension
(3,224, 224) and 10 classes.

Note that CMNIST dataset in DOMAINBED use a convolutional neural network as the backbone for
the featurizer, which is not the same MLP for COLOREDMNIST experiments. By default, all real
datasets leverage a ResNet-50 (He et al., 2016) pretrained on ImageNet, with a dropout layer before
the newly added dense layer and fine-tuned with frozen batch normalization layers.

During the training, we strictly follow the evaluation protocol in DOMAINBED. Note that the
hyperparameter configurations of Fishr have some differences from the default configurations hence
we refer the configuration tables by Rame et al. (2021) directly, shown as follows.
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Table 13: Hyperparameters, their default values and distributions for random search (Gulrajani &
Lopez-Paz, 2021; Rame et al., 2021).

Condition Parameter Default value Random distribution
PACS/ learning rate 0.00005 1QUniform(—5,~3.5)
TERRAINCOGNITA  batch size 32 QUniform(3,5.5) if ot DomainNet else 2Uniform(3,5)
weight decay 0 1QUniform(—6,~2)
dropout 0 RandomChoice ([0, 0.1,0.5])
COLOREDMNIST  learning rate 0.001 1QUniform(—4.5,—3.5)
batch size 64 QUniform(3,9)
weight decay 0 0
All steps 5000 5000
regularization strength A~ 1000 1QUniform(1,4)
Fishr ema 7y 0.95 Uniform(0.9, 0.99)
warmup iterations 1500 Uniform(0, 5000)

As for the construction of the validation set, we test with training domain validation set and test
domain validation set, as leave-one-out domain selection requires more runs and more computational
resources that are out of our limits. Specifically, to construct the validation set, the data from each
domain will be first splitted into 80% (for training and evaluation) and 20% (for validation and model
selection). For training domain validation set, the validation data is consist of the 20% split from
each training domain. While for the test domain validation set, the validation data is consist of the
20% split from each test domain.

The whole evaluation will be repeated 3 times where in each repeat, there will be 20 samplings of
hyperparameters from the distribution shown in Table 13. Therefore, there will be 20 runs in each
repeat and there will be 1 model selected from the 20 runs.

For the implementation of PAIR-s, we follow the algorithm as in Algorithm 2. Since training domain
validation accuracy tends to be a more unreliable indicator than test domain validation accuracy,
i.e., has a worse reflection of the OOD generalization performance due to the high similarity with
the training data (Teney et al., 2021), during the selection within each run, we filter out the models
before the last 5 steps in COLOREDMNIST and the last 10 steps in PACS and TERRAINCOGNITA.
During the selection within one repeat (across different runs), we use a percent of 50% for step 9 in
Algorithm 2 and finalize the selection according the PAIR score. Except for GroupDRO and DANN
of which the objective value tend to have higher variance and relatively low OOD robustness, we
aggregate the models within each repeat by the validation accuracy. In contrast, for the test domain
validation accuracy, we filter out the models before the last 5 steps for DANN while 10 steps for
others according to the robustness of the objectives during the selection within each run. During
the selection within one repeat (across different runs), we directly adopt the validation accuracy to
finalize the model selected. Note that Gulrajani & Lopez-Paz (2021) argue that test domain validation
is more likely to be a invalid benchmarking methodology, since it requires access to the test domain
which is usually inaccessible in realistic applications.

For the selection of loss values L, we use the values reported solely at each logging step, which is
evaluated every 100 steps with a minibtach of the training data, listed as follows:

* ERM: N/A.

¢ IRM: ERM and IRMv1 (n11l, penalty).

* GroupDRO: Worst group ERM loss (Losses.min ()).

* DANN: Weighted ERM and domain discrimination loss (gen_loss).
* Fishr: ERM and Fishr penalty (n11, penalty).

1.3 FuLL DOMAINBED RESULTS

In this section, we provide full results of the DOMAINBED experiments. To begin with, we first present
the overall results of the three datasets, including the averages and the improvements of the worst
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domain accuracies, as in Table. 14 and Table. 15. From results we can seed that PATR~-s consistently
improves the OOD performance across all datasets and validation set options. Remarkably, in the most
challenging setting that uses train domain validation set on COLOREDMNIST, PAIR~s improves
the worst domain performances of IRMv1 and Fishr by a large margin up tp 14.3%. In the realistic
dataset PACS, PAIR-s improves the worst domain performances of IRMv1 by a large margin up
to 7.3%. In TERRAINCOGNITA, PAIR-s improves the worst domain performances of DANN by
a large margin up to 3.1%. Besides the worst domain performance, PATR-s improves the average
domain performances up to 1.0% and empower the OOD methods to reach new state-of-the-arts.

When using the test domain validation set, since the validation set itself could reflect the OOD
generalization performance, therefore the improvements could be lower. When comes to OOD
objectives that have a relatively low robustness, the worst domain performance could be lower.

We also report the detailed results at each domain with the variance in the next section.

1.3.1 OVERALL RESULTS

Table 14: Overeall OOD generalization performances using training domain validation accuracy.

COLOREDMNIST PACS TERRAINCOGNITA Overall

PAIR-s Avg.acc Awr.acc Avg.acc Awr.acc Avg.acc A wr.acc Avg. acc

ERM 514+1.0 848 £0.3 446 1.1 60.2
DANN 51.5+0.1 825+0.38 449+09 59.6
DANN v 519+ 0.1 +0.9 833 +£05 +0.7 445+ 1.5 +3.1 59.9
GroupDRO 51.8 £0.0 84.1£0.8 46.6 = 1.1 60.8
GroupDRO v 53.0+0.4 +3.1 84.4+£0.7 +1.1 46.6 = 1.1 +0.0 61.3
IRM 51.6 £0.1 835+ 1.1 449403 60.0
IRM v 522 £0.5 +14.3 85.1£09 +7.3 41.1£3.8 +1.4 59.5
Fishr 51.8£0.1 85.6 £0.5 470+ 14 61.5
Fishr v 542 +1.0 +12.7 85.6 £0.1 +1.1 477+ 1.1 +0.3 62.5

Table 15: Overeall OOD generalization performances using test domain validation accuracy.

COLOREDMNIST PACS TERRAINCOGNITA Overall

PAIR-s Avg.acc Awr.acc Avg.acc Awr.acc Avg.acc A wr.acc Avg. acc

ERM 57.8+£0.2 87.0 £ 0.1 529+09 65.9
DANN 574 +0.8 84.7+£05 50.8 £0.3 64.3
DANN v 56.2 + 1.1 -2.6 85.7+£02 +2.2 50.7 £ 0.5 +0.4 64.2
GroupDRO 61.3+0.4 86.9 £ 0.0 525+0.2 66.9
GroupDRO v 60.1 0.7 -4.3 87.3+£02 +1.8 52.0+0.7 +0.6 66.4
IRM 68.1 £ 1.6 84.4+£05 49.2 £ 0.6 67.2
IRM v 69.0 = 1.1 +2.9 86.0 £ 0.4 +0.8 50.7 £ 0.9 +0.4 68.6
Fishr 68.0+2.9 875 £0.1 53.7+0.2 69.7
Fishr v 68.2 + 3.0 +0.6 87.4£0.1 +0.6 52.1+£0.7 -0.5 69.2
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1.3.2 TRAINING DOMAIN VALIDATION SET

Table 16: OOD generalization performances with training domain validation set on COLOREDM-

NIST.

Algorithm PAIR-s +90% +80% -90% Avg A wr. acc
ERM 710+ 05 734401 10.0+0.1 515

DANN 710+ 03 7344+0.1 10.0+£0.1 515

DANN 71.6+03 7334+02 109+04 519 +0.9
GroupDRO 726+02 7314+£00 994+0.1 518
GroupDRO 727+£02 732+£05 13.0+£1.5 53.0 +3.1
IRM 723+£03 726+£04 99401 51.6

IRM 674+26 648+14 242+16 522 +14.3
Fishr 722+06 7314+£03 994+02 518

Fishr 69.1£29 709+1.7 226+14 542 +12.7

Table 17: OOD generalization performances with training domain validation set on PACS.

Algorithm PAIR-s A C P S Avg A wr. acc
ERM 82.6+16 792+1.0 9724+05 749+26 835

DANN 847+18 758+£09 973+01 723+10 825

DANN v 86.5+£09 77.0£18 97.0+£02 73.0+05 833 +0.7
GroupDRO 834+17 771+£03 976+02 782+13 84.1

GroupDRO v 834+£17 783+£03 976+02 782413 844 +1.1
IRM 829+26 8l4+£01 967+06 73.1+3.1 3835

IRM v 824+£23 805£08 972+£02 804+13 85.1 +7.3
Fishr 853+1.1 803£11 979+03 79.1+17 3856

Fishr v 854+14 802+08 962+0.7 805+08 85.6 +1.1

Table 18: OOD generalization performances with training domain validation set on TERRAINCOG-

NITA.

Algorithm PAIR-s L100 L38 L43 L46 Avg A wr. acc
ERM 46.7+35 418+10 574+10 397+02 464

DANN 46.1 £35 4124+10 5674+09 356+1.1 449

DANN v 43.1+38 41.1+09 552421 387+£19 445 +3.1
GroupDRO 484+29 403431 5794+22 400+05 46.6
GroupDRO v 484+29 403+31 579422 400£05 46.6 +0.0
IRM 484 +38 356+29 5544+09 40.1+14 449

IRM v 404+73 383+25 488+63 37.0+09 4l1.1 +1.4
Fishr 492+44 406+14 579+1.1 404+12 470

Fishr v 51033 40713 582+£0.1 408+12 47.7 +0.3
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1.3.3 TEST DOMAIN VALIDATION SET

Table 19: OOD generalization performances with test domain validation set on COLOREDMNIST.

Algorithm PAIR-s +90 % +80 % -90% Avg A wr. acc
ERM 71.7+£02 727+02 288+0.8 5738

DANN 730+ 12 733+£01 258£17 574

DANN v 721 +03 732+03 232438 56.2 2.6
GroupDRO 734+£04 7244+00 38.1£0.8 613

GroupDRO v 732402 733+03 338+£23 60.1 -4.3
IRM 723+03 725+04 594453 68.1

IRM v 71.7+04 73.1+£0.1 623431 69.0 +2.9
Fishr 73.8£05 73.6+0.1 56.7+86 68.0

Fishr v 737406 735+02 573+£84 682 +0.6

Table 20: OOD generalization performances with test domain validation set on PACS.

Algorithm PAIR-s A C P S Avg A wr. acc
ERM 86.6 +0.7 825+08 9734+05 81.8+0.7 87.0

DANN 86.5+0.8 799+04 97.1+0.1 753+1.1 847

DANN v 87.0+02 8144+07 968+05 775+13 857 +2.2
GroupDRO 87.7+04 82.1+07 98.0+02 79.6+0.7 86.9

GroupDRO v 86.7+03 832+11 97.8+0.1 81.4+05 873 +1.8
IRM 823+ 1.5 80.8+0.7 958+13 789+14 844

IRM v 853+03 81.7+09 974+03 797+18 86.0 +0.8
Fishr 88.4+04 822+07 97.7+05 81.6+04 875

Fishr v 874+08 826+05 975+£0.6 822+00 874 +0.6

Table 21: OOD generalization performances with test domain validation set on TERRAINCOGNITA.

Algorithm PAIR-s L100 L38 L43 L46 Avg A wr. acc
ERM 587+17 513+£18 599+06 41.7+1.0 529

DANN 538 +£05 474+10 59.0+05 429+03 508

DANN v 544+13 469+£12 5814+02 433+£00 50.7 +0.4
GroupDRO 573+£04 504411 59.7+07 428+0.7 3525

GroupDRO v 559+£32 506£07 5794+04 4344+04 520 +0.6
IRM 53.6£05 4794+19 541+09 413+£06 492

IRM v 593+£18 455+£06 564417 41.7+0.7 50.7 +0.4
Fishr 60.7+0.8 494+07 595405 450+05 537

Fishr v 589+1.0 464+18 586+07 445+08 52.1 -0.5
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