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Abstract

Symbolic regression is the process of finding an analytical expression that fits
experimental data with the least amount of operators, variables and constants
symbols. Given the huge combinatorial space of possible expressions, evolutionary
algorithms struggle to find expressions that meet these criteria in a reasonable
amount of time. To efficiently reduce the search space, neural symbolic regression
algorithms have recently been proposed for their ability to identify patterns in the
data and output analytical expressions in a single forward-pass. However, these
new approaches to symbolic regression do not allow for the direct encoding of user-
defined prior knowledge, a common scenario in natural sciences and engineering. In
this work, we propose the first neural symbolic regression method that allows users
to explicitly bias predictions towards expressions that satisfy a set of assumptions on
the expected structure of the ground-truth expression. Our experiments show that
our conditioned deep learning model outperforms its unconditioned counterpart in
terms of accuracy while achieving control over the predicted expression structure.

1 Introduction

1.1 Symbolic regression and problem-specific prior knowledge

Symbolic Regression (SR) is a technique that searches over the space of analytical expressions E to
fit experimental data while trading off between minimizing expression complexity and maximizing
accuracy. As opposed to over-parametrized approaches, e.g. decision trees and neural networks,
SR can produce human-readable expressions that are particularly useful in Natural Sciences, e.g.
materials sciences (Wang et al., 2019; Kabliman et al., 2021; Ma et al., 2022), physics (Schmidt and
Lipson, 2009; Vaddireddy et al., 2020; Sun et al., 2022; Cranmer et al., 2020; Hernandez et al., 2019;
Udrescu and Tegmark, 2020), to interpret physical phenomena. Rather than perfectly fitting the data,
which are often noisy because of inevitable measurement errors, SR aims at acquiring meaningful
insights on the inner mechanisms governing physical systems via compact, or equivalently low-
complexity, expressions. La Cava et al. (2021) recent benchmarking effort has shown that symbolic
regressors can additionally outperform their over-parametrized counterparts on a set of black-box and
synthetic datasets.

In Natural Sciences, researchers generally have some insights on the datasets they study, using
analogies to problems where a solution is known. For instance, when studying a system with different
elements interacting with each other, a good assumption is that the laws of the system involve terms
similar to Gravitational/Coulomb forces, e.g. ∝ 1

r2 with r =
√
x2 + y2. Access to a part of the

underlying ground-truth equation is also a common assumption done in the system identification
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literature where the physical laws are known up to a few parameters (Brunton et al., 2016; Kaheman
et al., 2020).

In our work, we will name hypotheses the assumptions formulated by the SR practitioner, potentially
incomplete or partially incorrect, about the underlying ground-truth expression that can be leveraged
in any form to restrict the search space. If an hypothesis is true, we will name it privileged information.

1.2 Related work

Searching for a satisfactory analytical expression is a difficult optimization problem, mostly tackled
using genetic programming (GP) algorithms. They work by i) defining a class of programs, repre-
sented in SR as tree structures where nodes are unary, e.g. cos, exp or binary operators add, div and
leaves are variables and constants and ii) evolving a population of analytical expressions by means of
selection, mutation and crossovers. Being greedy search approaches, GP algorithms are prone to fall
in local minima, and extensive exploration leads to relatively large run-times. In practice with time
limits, e.g. 24 hours in (La Cava et al., 2021), the most accurate GP methods provide expressions with
overly large complexity, thus preventing deriving physical insights; on the Feynman datasets (Udrescu
and Tegmark, 2020), whose functions have averaged complexity 20 as defined in (La Cava et al.,
2021), the current state-of-the-art (Burlacu et al., 2020) predicts functions with averaged complexity
100. Up to our knowledge, injection of prior information in GPs can only be done by filtering during
selection, e.g. using properties like function positivity or convexity (Kronberger et al., 2022; Haider
et al., 2022). This strategy is greedy in essence, therefore leading to premature convergence to local
minima expressions. Other forms of high-level prior information available to the user, e.g. complexity
of the expected expression, can hardly be incorporated in GP. GP recently adopted neural networks
for their ability to detect qualitative patterns in the data to reduce search space (Petersen et al., 2019;
Mundhenk et al., 2021).

Our contribution draws inspiration from the works of Udrescu and Tegmark (2020) and Udrescu et al.
(2020) where the search is restricted to expressions characterized by some specific properties, like
compositionality, additivity and generalized symmetry. Making use of these properties effectively
simplifies the task of SR by exploiting the modularity of the resulting expression trees. Despite being
similar in spirit to our work, their method requires fitting a new neural network on each new input
dataset and then probing the trained network in search of the aforementioned properties, a process
resulting in an inevitably slow approach.

Inspired by recent advances in language models, a line of work named neural symbolic regression
(NSR), tackles SR as a natural language processing task (Biggio et al., 2020, 2021; Valipour et al.,
2021; d’Ascoli et al., 2022; Kamienny et al., 2022; Vastl et al., 2022; Li et al., 2022). First, large
synthetic datasets are generated by i) sampling expressions from a prior distribution pθ(E) where θ is
a parametrization induced by Lample and Charton (2019) generator, ii) evaluating these expressions
on a set of points x ∈ Rd where d is the feature dimension, e.g. sampled from a uniform distribution.
Secondly, a generative model gϕ(E|D), practically a Transformer Vaswani et al. (2017) parametrized
by weights ϕ, that is conditioned on input points D = (x,y), is trained on the task of next-token
prediction with target the Polish notation of the expression. NSR predicts expressions that share
properties of their implicitly biased synthetic generator pθ(E). Control over the shape of the predicted
functions, e.g complexity or sub-expression terms, boils down to a sound design of the generator
however the pipeline introduced in (Lample and Charton, 2019) allows only limited degrees of
freedom: operators, variables or constants’ probability and tree depth.

Similarly to querying a text-to-image generative model (Ramesh et al., 2022; Saharia et al., 2022)
with a prompt, the SR practitioner might want to restrict the class of predicted expressions to be
in subclass h(E) ⊂ E using privileged information, e.g. h(E) can be the class of expressions
with complexity between 10 and 20, or that have a specific sub-expression like e−

√
x2
1+x2

2 in them.
However, a trained NSR model gϕ(E|D), can only be adapted to h(E) by i) relying on rejection
sampling, i.e. sampling from gϕ(E|D) and discarding all expressions that do not satisfy its criterion,
a time-inefficient technique that assumes that the model was trained on a very large class of analytical
expressions, e.g. diverse set of operators/complexity, and ii) designing a new generator with desired
properties, a tedious task, and fine-tuning the model on the produced datasets.
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1.3 Contributions

In this work, we propose a solution to the above limitations of NSR algorithms, named Neural
Symbolic Regression with Hypotheses (NSRwH). NSRwH efficiently restricts the class of predicted
expressions of NSR models during inference, if provided privileged information DPI as described in
1.1, with a simple modification to both the model architecture and the training data generation: with
the training set of expressions from pθ(E), we produce descriptions DPI, e.g. appearing operators or
complexity, and feed this meta-data into the Transformer model as an extra input, i.e. gϕ(S|D,DPI).
During training, we use a masking strategy to avoid our model considering sub-classes of functions
when no privileged information is provided.
We consider expressions with real constants with feature space R5, already a challenging setting as
the induced search space is already extremely large (Lample and Charton, 2019).
To the best of our knowledge, the present is the first work that explores the injection of such prior
knowledge into SR. We insist on the fact that naive adaptation of GP algorithms via filtering in the
selection step is prone to premature convergence to local minina as mutations and crossovers break
satisfaction of the properties we consider.

We show that our model manifests the following desirable characteristics:

1. Similarly to expression derivation and integration (Lample and Charton, 2019), we show
that Transformers are able to capture non-trivial high-level symbolic expression properties
such as complexity, an arguably harder task.

2. When conditioned on specific user-determined privileged information on the sought for ex-
pression, the model outputs expressions that closely adhere to the provided prior knowledge.
This feature highlights that the proposed model is effectively controllable and its output
reflects the expectations of the user in terms of the specified high-level properties. This is in
stark contrast with prior work both in the NSR and GP literature, where steering symbolic
regressors towards specific properties required either training from scratch or resorting to
inefficient post-hoc greedy search routines.

3. Our conditioned model outperforms its unconditioned counterpart both in the presence or
not of output noise, showing that prior knowledge about the sought for expression helps in
alleviating the effect of noise, making SR feasible also in this unfavourable and previously
unaddressed setting.

Overall, the proposed framework is general and provides a simple and general recipe to easily
condition neural symbolic regressors on any sort of prior information the user deems relevant to
restrict the search space over mathematical expressions.

2 Method

2.1 Notation and Background

A symbolic regressor is an algorithm that takes as input a dataset D of n features-value pairs
(xi, yi) ∼ Rd × R, with d is the feature dimension, and returns a symbolic expression e ∼ E such
that ∀(xi, yi) ∈ D, e(xi) = ỹi ≈ yi. SR literature usually considers the R2 score, defined as below,
as the metric to quantify satisfactory fitting levels:

R2(y, ỹ) = 1−
∑n

i (yi − ỹi)
2

Var(y)
(1)

Neural symbolic regression is a class of SR algorithms that learns a distribution model gϕ(E | D),
parametrized by a neural network with weights ϕ, over symbolic expressions conditioned on an
input dataset D. In this work, we introduce NSRwH, a new subclass of neural symbolic regressors,
that allows for conditioning their predictions with user-specified prior knowledge about the output
expression. More concretely, given a set of privileged information DPI, NSRwH approaches are
trained to model the conditional distribution gϕ(E | D,DPI).
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2.2 Data generation

In our framework, a synthetic training sample is defined as a tuple (e,D,DPI) where each element is
produced as explained below.

Generating expressions. As in other NSR works (Biggio et al., 2021; Kamienny et al., 2022),
we sample analytical expressions e using the strategy introduced by Lample and Charton (2019):
random unary-binary trees with depth between 1 and 5 are generated, then internal nodes are assigned
either unary or binary operators described in Table 3 in the Appendix B.1 according to their arity, and
leaves are assigned variables {xd}d≤5.

Generating D. For each expression from e, we sample a support of n points xi ∈ Rd where each
coordinate is sampled independently from others within uniform distribution U whose bounds are
sampled in [−10, 10] as in (Biggio et al., 2021). Next, the expression value yi is obtained via the
evaluation of the expression e on the previously sampled support. Expressions with more than 10% of
NaNs are discarded from the training set. We train our model with output noise drawn from centered
Gaussian distribution with deviation

σ = γ

√√√√ 1

n

n∑
i

y2i (2)

with γ ∈ {0, 1e−3, 1e−2, 1e−1, 1} as prescribed in (La Cava et al., 2021)

Generating DPI. Privileged information DPI is composed of properties. From an expression e, we
consider the following properties1:

1. complexity bins: We use the definition of complexity provided by Kommenda et al. (2015)
that assigns a score that reflects semantic information of the expression and better aligns with
the human intuition of what a complex expression looks like, contrarily to more standard
metrics measuring complexity based on the length of the expression tree. Since the SR
practioner generally has only a vague idea of the desired function, we bin the complexity
into intervals, i.e. [0, 5], . . . , [1000000,∞], resulting in a total of 6 complexity levels. Note
that the bins delimiters where chosen to have approximately the same counts on our training
set of expressions.

2. symmetries: We use the definition of generalized symmetry proposed in (Udrescu et al.,
2020): f has generalized symmetry if the d components of the vector x ∈ Rd can be split
into groups of k and d − k components (which we denote by the vectors x′ ∈ Rk and
x′′ ∈ Rd−k ) such that f(x) = f (x′,x′′) = g [h (x′) ,x′′] for some unknown function g.
Udrescu et al. (2020) provides an efficient recipe based on ∇f to assess if f is characterized
by a generalized symmetry in every subset of its independent variables. We feed the network
with a tensor of 2d = 32 components, equal to the number of all possible subset of variables,
each indicating whether that subset possesses a generalized symmetry or not.

3. Appearing branches: We consider the set of all the branches that appear in the pre-
fix tree of the generating expression. For instance, for x1 + sinx2 this set would be
[+, x1,+x1, sin, sinx2, x2,+sin,+sinx2]. We then sample between 0 and 4 items from
this set, with a weighted probability inversely proportional to their length.

4. Absent branches: We sample from 0 up to 4 branches which do not appear in the generating
expression, drawn from the space of all branches that appear in expressions in our dataset.
As for the previous property, we sample them with a probability inversely proportional to
their length.

In our experiments, we explore whether our NSRwH model is able to capture the meaning of
such properties and generate expressions that adhere to them. We give more details on the exact
computation of each property in the Appendix A.

1This set of properties can be straightforwardly extended according to the user’s prior knowledge.

4



4.2

5.9

3.5

-9.2 -3.7 -3.5

3.9 7.8 1.4

0.2 1.2 9.3

 Hypotheses 

1 44 52 52 ... 45 46 53 47 48 31 49 50 23 51 2

symmetry complexity + subtrees - subtrees

Figure 1: Structure of our framework and example of privileged information. The illustration
shows an example of how NSRwH can be used for symbolic regression. First, a set of K hypotheses,
{DPI,k}k≤K is formulated. Then, each of them is given independently to the model, along with
numerical data D, and the output of the model is evaluated and compared to the ground-truth. The
box below shows how privileged information is encoded in the form of a tensor of integers.

2.3 Model

In this section, we report the details of the architecture of our model as well as its training procedure
and adaptation at test time.

Architecture. We use Nesymres (Biggio et al., 2021) as our base neural symbolic regressor for its
simplicity and explain how we incorporate the description DPI as an input to the model gϕ(e|D,DPI).
Note that the very same conditioning strategy can easily be applied to other more advanced NSR
architectures, such as the one introduced in (Valipour et al., 2021; Kamienny et al., 2022). Float
numbers are tokenized using a multi-hot bit representation according to the half-precision IEEE-754
standard and expressions are tokenized using their polish notation.

The input dataset D of size n is encoded in zD ∈ Rn×demb by i) tokenizing floats and ii) passing
these tokens through a set encoder (Lee et al., 2019), a variation of (Vaswani et al., 2017) with better
inference time and less memory requirement. Positional embeddings are not included to obtain set
permutation-invariant representations. We use an additional standard self-attention encoder (Vaswani
et al., 2017), which we call privileged encoder, to embed privileged information DPI into a sequence
zDPI ∈ Rm×demb , where m ̸= n. All properties are first independently tokenized using property
tokens, e.g. complexity bin [0, 5], or polish notation for subtree expressions. Then, we concatenate
them using property separators, e.g. < symmetries > or < complexity >, into a large sequence.
The decoder uses self-attention as well as cross-attention on the tensor z ∈ R(m+n)×demb obtained
by the concatenation of zD and zDPI

and predicts the expression ẽ in an auto-regressive fashion
following gϕ(ẽt+1|ẽ1:t,D,DPI).

Training. As done in all NSR approaches, we use the cross-entropy loss on next-token prediction
using teacher-forcing (Sutskever et al., 2014), i.e. conditioning gϕ(ẽt+1|e1:t,D,DPI) on the ground-
truth e first tokens. As for Nesymres, we “skeletonize” target expressions by replacing constants by a
constant token ⋄.
To avoid our model being dependent on privileged information at test time, we include training
examples with partial privileged information DPI. Practically, we mask property tokens by using
dropout (Srivastava et al., 2014): with probability p, a property changes its value to the < PAD >
token (also used for padding sequences of different lengths for batching). More details on the training
hyperparameters can be found in Appendix B.

Testing. At test time, as for Nesymres, we use beam search to produce a set of predicted expressions,
then we apply Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) to recover the values of the
constants by minimizing the squared loss between the original outputs and the output from the
predicted expressions. The test-time procedure is summarized on Fig. 1
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3 Experiments

In this section, we evaluate NSRwH and compare to (Biggio et al., 2021), which we name NSR for
the sake of clarity. First, we analyze whether transformers can capture the properties introduced
in Sec. 2. In addition, we describe a number of simple examples to illustrate how NSRwH can be
practically used to discover expressions given a set of prior assumptions by enhancing user interaction
and facilitating hypothesis testing. Finally, we assess the extent to which extra conditioning helps to
improve the test performance.

Following the procedure described in 2.2, we generated a set of 20M training expressions without
duplicates using the Sympy (Meurer et al., 2017) simplification function. We trained our model on
the training set using the procedure described in 2.3 on 8 P100 GPU for 2 days.

3.1 Can transformers efficiently restrict the inference space using descriptions?

We investigate the ability of transformers to “understand” the properties of analytical expressions
introduced in 2. We give as an input to the NSRwH model a single hypothesis (i.e. K = 1 on
Fig. 1) which is the privileged one. Our test set consists of 100 randomly-generated mathematical
expressions.

3.1.1 Quantitative results

To validate that transformers can restrict the class of predicted expressions according to a particular
input property, we introduce a metric is_satisfied(gϕ,D, property_type) that measures the per-
centage of properties satisfied in the predicted expression for a given property type (averaged over
10 samples from gϕ). For instance, for the property type of appearing subtrees x1, sin, x2

1 + x2
2,

x1/x2 hypotheses, in predicted expression f(x1, x2) = x1 − sin (x2
1 + x2

2), only 75% properties are
respected since x1/x2 does not appear in the ground truth expression.

From the test set {(e,D,DPI)}j≤100, we derive a dataset of descriptions and measure is_satisfied
averaged over all 100 examples for each property type. To make the task more challenging, we
corrupt the numerical data with zero-mean gaussian noise with standard deviation as in 2, with
γ = 10−2. This test is meant to assess the reliance of our conditioned model on the input description
regardless of the noise in the input numerical data. We compare our model with NSR, i.e. a model
receiving as input only numerical information, D.

Model gϕ
property_type

Complexity bin Symmetries Appearing subtrees

NSR Biggio et al. (2021) (with D) 29.7 64.2 50.5
NSRwH (with DPI and D) 82.1 95.1 95.4

Table 1: is_satisfied(gϕ,D, property_type) with D being a test set of 100 held-out expressions.
Privileged information is captured by the model in the output expressions.

Overall, as shown in Table. 1, the proposed NSRwH efficiently reduces the inference space when
conditioning on a set of hypotheses and outputs predictions that are well-aligned with expectations.
We conclude that not only does the model “understands” the meaning of the input conditioning, but
it does so also in the presence of a significant amount of noise in the input numerical data, hence
manifesting a high-level of controllability.

3.1.2 Qualitative results

In this section, we qualitatively investigate the behaviour of our conditioned model NSRwH via
several examples where it is provided with different information about the ground-truth expression.

Role of Generalized Symmetry. Consider the following expression of five independent variables:

y = cos(x1 + x2x3 + x4x5) (3)

When all the privileged information is masked, the model is not able to infer the ground truth
expression up to a beam-size of 50, despite capturing its sinusoidal nature in all the output predictions.
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When five variables are considered the search space is inevitably very large and any sort of prior
knowledge can be precious to restrict it to a smaller subset. It is in this high-dimensional regime
that information about generalized symmetry is important. We note that 3 possesses non-trivial
generalized symmetries in the variable tuples (x2, x3) and (x4, x5), (x1, x2, x3) and (x1, x4, x5).
Given only this high-level information as input, the model is able to recover the true expression
among the first 20 output expressions.

Role of complexity. Let’s consider the following expression of three independent variables:

y = sin(cos(x1 + x2)) + x3 (4)

Given numerical inputs only, NSRwH does not recover the true expression up to a beam-size of 50,
despite capturing its sinusoidal nature and the linear dependence on x3. What makes the task hard
is the complex compositional nature of the first term involving both sin and cos operators. In order
to bias the model towards more complex formulas, we condition it on a relatively high complexity
bin, namely the fourth one. By giving the model this additional information, the model’s predictions
strictly adhere with the conditioning, giving the correct formula at beam 26.

Role of appearing subtrees. Let’s consider the following expression of three independent variables:

y = x1x2x3 + 10−3 tan(x3) (5)

The second term in the expression above is very difficult to detect precisely, due to the small
multiplying factor making its contribution weak. The fully-masked model does not recover the true
expression, yet catching the first term consistently. By providing the model with the additional
information of the presence of the unary operator tan, NSRwH finds the true expression at beam 20.

3.2 Does extra-conditioning help improve test accuracy?

Model gϕ Mask probability p
Noise level γ

γ = 0 γ = 1e−3 γ = 1e−2 γ = 1

NSRwH

1.0 (NSR) 0.403510 0.39850 0.36341 0.13033
0.75 0.43610 0.41103 0.40602 0.15790
0.5 0.44110 0.42356 0.38095 0.17293

0.25 0.45865 0.44361 0.43860 0.19298
0.0 0.448622 0.44862 0.43609 0.21303

Table 2: Accuracy (R2 > 0.99) of NSR and NSRwH models on a set of 100 test expressions under
different noise level γ and masking probabilities p. Results averaged over 5 different seeds.

We investigate if extra-conditioning in the form of privileged information results in improved accuracy
and robustness to noise. To this purpose, we utilize a set of 100 randomly-generated expressions, we
calculate the R2 score, as defined in 1, on a set of support points sampled outside the distribution of
the input ones, i.e. in the extrapolation regime. An equation is correctly classified if R2 > 0.99.
As shown in Table 3.2 the model’s performance improves when leveraging privileged information. In
particular, we make the following observations: 1) The smaller the masking probability, the larger
the accuracy2 2) Conditioning is especially beneficial in the cases where noise is applied, leading to
substantial improvements with respect to the fully-masked model.

4 Discussion

Conclusive remarks. This work presents a novel approach for symbolic regression that enables
the explicit incorporation of inductive biases reflecting prior knowledge on the problem at-hand. In
stark contrast to previous works, this can be effectively done at test time, drastically reducing the
computational overhead. Thanks to this property, our model better lends itself to online and interactive
applications of symbolic regression, thus enabling fast hypothesis testing, an highly desirable feature
for scientific discovery applications. We demonstrate the value of this approach with a number of
examples and preliminary experiments where numerical data is sparse or affected by noise.

2This is occasionally violated since, depending on the random seed, the specific appearing sub-trees change,
and some of them can be more useful than other for the model.
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Future work and outlook. We plan to extend the present research by further evaluating NSRwH
on more datasets and benchmarks. We emphasize that the current version of our model can be
improved from multiple angles. First and foremost, due to limited computational resources, NSRwH
is not comparable with modern language models in terms of size. Scaling NSRwH to such regimes
represents an exciting avenue for future research and for fully unveiling the real capabilities of NSR.
Second, additional properties can possibly be included in the privileged information conditioning
according to the user’s prior knowledge of the data under consideration. Third, our framework can
be easily incorporated into more advanced NSR architectures, like Kamienny et al. (2022), likely
resulting in further performance improvements. In conclusion, we believe that the method presented
in this work will enable a wider application of symbolic regression, resulting in more effective and
user-centric methods.

Impact statement

Symbolic Regression is a growing field and its combination with neural networks has witnessed
significant interest in the last few years. We believe that this new direction represents a significant
step towards the adoption of symbolic regression methods as useful tools to support the scientific
discovery process. We do not foresee any ethical concerns with this work.
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A Details on properties

A.1 Generalized symmetry

We use the definition of generalized symmetry proposed in Udrescu et al. (2020): f has generalized
symmetry if the d components of the vector x ∈ Rd can be split into groups of k and d−k components
(which we denote by the vectors x′ ∈ Rk and x′′ ∈ Rd−k ) such that f(x) = f (x′,x′′) =
g [h (x′) ,x′′] for some unknown function g. As explained in Udrescu et al. (2020), in order to
check the presence of generalized symmetry in the set of variables x′, it is sufficient to check

whether the normalized gradient of f with respect to x′ is independent on x′′, i.e.
∇x′f(x′,x′′)
|∇x′f(x′,x′′)| is

x′′-independent. Thanks to this property, given a symbolic expression, we can rapidly extract its
generalized symmetries on every subset of variables. Since in this work we limit ourselves to 5
independent variables, for each expression we have a 32 dimensional tensor encoding whether a
symmetry is present for every subset of variables. Ultimately, we exclude from this vector some
trivial and non-informative components, i.e. subset of only one-variable, the full-variable subset and
the empty set, resulting in a 25-dimensional tensor.

A.2 Appearing / absent branches

In order to sample branches from a prefix tree, we adopt the following procedure: first, we enumerate
all possible branches of the tree using a Depth-First-Search (DFS) algorithm. We pre-compute the set
of all possible branches for absent trees offline from a subset of the training data. In particular, for
the experiments, we use a subset of 10,000 trees. Then we compute the disjoint set between this set
and the current prefix tree and sample from there. For both appearing and absent subtrees, branch
elements are sampled with a probability inverse to their length during both training and experimental
evaluation. Once sampled, the elements are sorted alphanumerically so that their order is consistent
during training and evaluation.

A.3 Complexity

We follow the definition of complexity introduced in Kommenda et al. (2015), with only some slight
modifications. Starting at the root node, the complexity of an expression tree can be calculated by
applying the equation below recursively:

Complexity (n) =



1 if n ≡ constant
2 if n ≡ variable∑

Complexity (c) if n ∈ (+,−)∏
Complexity (c) + 1 if n ∈ (∗, /)

Complexity (c)2 if n ≡ square
Complexity (c)2 if n ≡ squareroot
2Complexity (c) if n ∈ (sin, cos, tan, exp, log)

After obtaining the complexity score associated with an expression, we assign it a bin level according
with the following rule:

Complexity_level (n) =



0 if Complexity (n) ∈ [0, 5]

1 if Complexity (n) ∈ (5, 100]

2 if Complexity (n) ∈ (100, 1000]

3 if Complexity (n) ∈ (1000, 10000]

4 if Complexity (n) ∈ (10000, 1000000]

5 if Complexity (n) > 1000000
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B Training details

B.1 Dataset generation

We sample analytical expressions e using the strategy introduced by Lample and Charton (2019):
random unary-binary trees with depth between 1 and 5 are generated, then internal nodes are assigned
either unary or binary operators described in Table 3 according to their arity, and leaves are assigned
variables {xd}d≤5

Arity Operators

Unary sqrt, pow2, pow3, pow4
inv, log, exp,

sin, cos, tan, atan
Binary add, sub, mul

Table 3: Operators used in our generators.

B.2 Training hyper-parameters

Set encoder. We embed input datasets with set encoder Lee et al. (2019) using 5 Induced Set
Attention Blocks (ISAB) with 512 hidden dimensions, 8 heads, 10 Pooling by Multihead Attention
(PMA) features and 50 inducing points.

Privileged encoder. We use the classic transformer encoder Vaswani et al. (2017) using 5 layers
with 512 hidden dimensions, 8 heads and embedding dimensions 32.

Decoder. We use the classic transformer decoder using 5 layers with 512 hidden dimensions, 8
heads and embedding dimensions 32.

NN Optimizer. We use Adam with batch size 32, learning rate 10−4 and weight decay 10−3.

Numerical constant optimizer. In all quantitative experiments, we use the BFGS optimizer with
batch size of 32 and 2 restarts.
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