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Abstract
Learning generalizable policies that can adapt to
unseen environments remains challenging in vi-
sual Reinforcement Learning (RL). Existing ap-
proaches try to acquire a robust representation via
diversifying the appearances of in-domain obser-
vations for better generalization. Limited by the
specific observations of the environment, these
methods ignore the possibility of exploring di-
verse real-world image datasets. In this paper, we
investigate how a visual RL agent would bene-
fit from the off-the-shelf visual representations.
Surprisingly, we find that the early layers in an
ImageNet pre-trained ResNet model could pro-
vide rather generalizable representations for vi-
sual RL. Hence, we propose Pre-trained Image
Encoder for Generalizable visual reinforcement
learning (PIE-G), a simple yet effective frame-
work that can generalize to the unseen visual sce-
narios in a zero-shot manner. Extensive experi-
ments are conducted on DMControl Generaliza-
tion Benchmark, DMControl Manipulation Tasks,
and Drawer World to verify the effectiveness of
PIE-G. Empirical evidence suggests PIE-G can
significantly outperforms previous state-of-the-art
methods in terms of generalization performance.
In particular, PIE-G boasts a 55% generalization
performance gain on average in the challenging
video background setting.

1. Introduction
Visual Reinforcement Learning (RL) has achieved signifi-
cant success in learning complex behaviors directly from
image observations (Mnih et al., 2015; Kalashnikov et al.,
2018; Kostrikov et al., 2020). Despite the progress, RL
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Figure 1. Overview of PIE-G. This figure shows the gen-
eral framework of PIE-G where visual encoders embed high-
dimensional images into low-dimensional representations for
downstream decision-making tasks. Instead of training the en-
coder from scratch, PIE-G selects an ImageNet pre-trained ResNet
model as the encoder and freezes its parameters during the entire
training process.

agents are often plagued by the overfitting problem (Song
et al., 2019), especially in high-dimensional observation
space. Previous studies show that it is difficult for the visual
agents to generalize to unseen scenarios (Cobbe et al., 2019;
Lee et al., 2019), which severely limits their deployment in
real-world applications.

In general, visual RL methods rely on their encoders to learn
a visual representation to perceive the world. Recent studies
have found that data augmentation (Shorten & Khoshgoftaar,
2019) leads to more generalizable representations so that the
agents can adapt to the unseen environments with different
visual appearances (Raileanu et al., 2021; Wang et al., 2020).
However, most of those approaches only augment the obser-
vations of the training environments (Kostrikov et al., 2020;
Laskin et al., 2020; Srinivas et al., 2020), which is unable
to provide enough diversity for generalization over large
domain gaps. Furthermore, naively applying data augmenta-
tion may damage the robustness of learned representations
and decrease training sample efficiency (Hansen et al., 2021;
Yuan et al., 2022).

To overcome these drawbacks, what we require is a univer-
sal representation that can generalize to a variety of unseen
scenarios. Recent works in representation learning demon-
strate promising results in enabling pre-trained models to



Submission and Formatting Instructions for ICML 2022

Table 1. Generalization on unseen moving backgrounds. Episode return in two types of unseen dynamic video background environments,
i.e., video easy (Bottom) and video hard (Top). PIE-G achieves competitive or better performance in 9 out of 12 tasks. In video hard
setting, we significantly outperforms other algorithms with +55% improvement on average.

Setting DMControl
Tasks DrQ DrQ-v2 SVEA TLDA PIE-G

Cartpole-Swingup 138±9 130±3 393±45 286±47 401±21 (+2.0%)
Walker-Stand 289±49 151±13 834±46 602±51 852±56 (+2.2%)
Walker-Walk 104±22 34±11 377±93 271±55 600±28 (+59.2%)

Ball in cup-Catch 92±23 97±27 403±174 257±57 786±47 (+95.0%)
Cheetah-Run 32±13 23±5 105±37 90±27 154±17 (+46.6%)
Finger-Spin 71±45 21±4 335±58 241±29 762±59 (+127%)

Cartpole-Swingup 485±105 267±41 782±27 671±57 614±60

Walker-Stand 873±83 560±48 961±8 973±6 965±6

Walker-Walk 682±89 175±117 819±71 873±34 887±22

Ball in cup-Catch 318±157 454±60 871±106 892±68 922±20

Cheetah-Run 102±30 64±22 249±20 336±57 305±60

Finger-Spin 533±119 456±19 808±33 744±18 837±107

provide strong priors for downstream tasks (He et al., 2020;
Devlin et al., 2018). The pre-trained models contain repre-
sentations obtained from a wide range of existing real-world
image datasets. These representations are proved to be ro-
bust to noises and capable of distinguishing salient features
despite the diversity and the variability (Donahue et al.,
2014). Based on the observations, we would like to ask the
following question: is it possible to train a visual RL agent
that is augmented with pre-trained visual representations so
that it can better generalize to novel tasks?

Towards answering the question, the main contribution of
this paper is a surprising discovery that the off-the-shelf
features of frozen models trained with ImageNet can be
used as universal representations for visual RL. Based on
such findings, we present Pretrained Image Encoder for
Generalizable visual reinforcement learning (PIE-G), a vi-
sual RL framework that allows agents to obtain enhanced
generalization ability via integrating the extracted represen-
tations from a pre-trained ResNet (He et al., 2016) encoder
into RL training. Straightforward as the framework appears,
PIE-G enjoys thoughtful details and nuanced design choices
to acquire representations that are suitable for control and
generalizable to novel scenarios. Specifically, we show
that the choice of early layer features and the ever-updating
Batch Normalization (BatchNorm) (Ioffe & Szegedy, 2015)
are crucial for the performance gain.

2. Method
In this section, we introduce PIE-G, a simple yet effective
framework for visual RL which benefits from the pre-trained
encoders on other domains to facilitate the generalization
ability.

2.1. Pre-trained Encoder

PIE-G explicitly leverages the pre-trained models as the
representation extractor without any modification. The pre-
trained encoder projects high-dimensional image observa-
tions into low-dimensional embeddings that are later used
by RL policies. Note that PIE-G is as simple as importing
a pre-trained ResNet model from the torchvision (Marcel
& Rodriguez, 2010) library. This avoids the design of any
auxiliary tasks to acquire useful representations.

For all the training tasks on different benchmarks, the en-
coder’s parameters are frozen to obtain universal visual
representations. Since the pre-trained model contains the
priors from a wide range of real-world images, we hypothe-
size that the inherited power from a pre-trained model may
help to capture and distinguish the main components of dif-
ferent tasks’ observations regardless of the changes of visual
appearances or deformed shapes, and will further improve
the generalization abilities of RL agents.

To validate our hypothesis, we first encode each observa-
tion independently to obtain embeddings. Then, the em-
beddings from the second layer of the pre-trained model
are fused as input features to the policy networks (Shang
et al., 2021; Pari et al., 2021). Moreover, we enable Batch-
Norm (Ioffe & Szegedy, 2015) to keep updating the running
mean and running standard deviation during the policy train-
ing. The key findings are: 1) early layers of a neural network
would provide better representations for visual RL general-
ization, which resonates with prior works in imitation learn-
ing (Parisi et al., 2022); 2) the always updating statistics
in BatchNorm helps better adapt to the shift in observation
space and thus improve the generalization ability.
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Figure 2. Visualized feature map differences of two inputs from the same state with different backgrounds. The difference of the
feature maps with PIE-G as the encoder is closer to zero than that with SVEA, indicating PIE-G enjoys better generalization ability.

2.2. Reinforcement Learning Backbone

We implement DrQ-v2 (Yarats et al., 2021) as the base visual
reinforcement learning algorithm. DrQ-v2 is the state-of-
the-art method for visual continuous control tasks, which
adopts DDPG (Lillicrap et al., 2015) coupling with clipped
Double Q-learning (Fujimoto et al., 2018) to alleviate the
overestimation bias of target Q-value.

We emphasize that PIE-G does not need any other proprio-
ceptive states and sensory information as the inputs besides
the representations extracted from original image observa-
tions. In the setting of generalization, we follow stronger
augmentation methods (e.g., mixup) of SVEA (Hansen et al.,
2021) and DrAC (Raileanu et al., 2021) to further boost the
performance. It is worth mentioning that since the gradi-
ent is stopped before it reaches the encoder, all the data
augmentation techniques discussed here do not affect the
pre-trained visual representation. Meanwhile, unlike Rutav
et al. (Shah & Kumar, 2021) and Simone et al. (Parisi et al.,
2022), we purely train the agent in a standard RL paradigm
without any expert’s demonstration.

3. Experiments
In this section, we investigate the following ques-
tions: (1) Can PIE-G improve the agent’s generalization
ability? Specifically, how well does PIE-G deal with mov-
ing or unseen video backgrounds, and deformed shapes of
robots? (2) How do the choice of layers in the encoder and
the use of BatchNorm affect the performance?

3.1. Evaluation on Generalization Ability

Generalization on unseen or moving backgrounds. We
then evaluate PIE-G on the more challenging settings: video
easy and video hard in DMC-GB. The video hard setting
consists of more complicated and fast-switching video back-
grounds that are drastically different from the training envi-

ronments. Notably, even the reference plane of the ground
is removed in this setting.

The comparison results are shown in Table 1. PIE-G
achieves better or comparable performance with the prior
state-of-the-art methods in 9 out of 12 instances. In par-
ticular, PIE-G gains significant improvement in the video
hard setting over all the previous methods with +55% im-
provement on average. For example, in the Finger Spin,
Cup Catch, and Walker Walk tasks, PIE-G outperforms the
best of the other methods by substantial margins 127.0%,
95.0%, and 59.2% respectively.

Attempting to explain the success, we visualize the differ-
ence of the normalized feature maps extracted from the
encoder whose inputs are two Walkers of the same pose but
with different backgrounds, as is shown in Figure 2. Ideally,
a well-generalizable encoder would map the observations of
the two Walkers to exactly the same embedding, and there-
fore the difference should be zero. In practice, as shown in
Figure 2, the encoder of PIE-G produces a difference much
closer to zero than that of SVEA. Numerically, we calculate
the average pixel intensity in the difference of normalized
feature maps, and the intensity is decreased by 50.9% with
PIE-G than that with SVEA.

Change Arm Change BrickOriginal

Figure 3. Visualization of the deformed shape. Aiming at evalu-
ating the agent’s robustness of the shape, we deform the robot’s
arm and the target brick.

Generalization on deformed shapes. To verify agent’s
robustness in terms of the deformed shapes, we modify the
shapes of the jaco arm and the target objects in the manipu-
lation tasks, as shown in Figure 3. Figure 4(a) demonstrates
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Task Setting DrQ-v2 SVEA PIE-G

Drawer-Close

Training 98% 70% 99%
Wood 32% 49% 59%
Metal 46% 69% 95%

Blanket 8% 72% 71%

Task Setting DrQ-v2 SVEA PIE-G

Drawer-Open

Training 100% 75% 97%
Wood 2% 47% 79%
Metal 53% 71% 97%

Blanket 5% 37% 85%

Table 2. Generalization on Drawer World. Evaluation on dis-
tracting textures. PIE-G is robust to the texture changing.

that PIE-G also improves the agents’ generalization ability
with various shapes while other methods could barely gener-
alize to these changes. We attribute this to the lack of shape
changing in previous data augmentation techniques. Con-
versely, our pre-trained encoder is learned from a multitude
of real-world images with various poses and shapes, thus
enhancing its generalization ability on deformed shapes.

Furthermore, we conduct experiments on the DrawerWorld
benchmark to test the agent’s generalization ability in ma-
nipulation tasks with different background textures. Suc-
cess Rate is adopted as the evaluation metric for its goal-
conditioned nature. Table 2 illustrates that PIE-G can
achieve better or comparable generalization performance
in all the settings with +24% boost on average while other
approaches may suffer from the CNN’s sensitivity in the
face of various textures (Geirhos et al., 2018).

Deform Arm Deform Brick
0

25

50

75

100

125

150

175

Ep
is

od
e 

R
ew

ar
d

PIE-G
DrQ-v2
SVEA
TLDA

(a)

Ball_in_Cup 
 Catch

Walker 
 Walk

Finger 
 Spin

0

200

400

600

800

Ep
is

od
e 

R
ew

ar
d

SVEA
PIE-G (w/o BN)
PIE-G (w/ BN)

(b)

Figure 4. Generalization Performance. Left: The results demon-
strate that PIE-G is well-generalizable in the face of deformed
shapes. Right: This figure shows that ever-updating BatchNorm is
beneficial for better performance.

3.2. Choice of layers

In convolutional neural networks, the later layers capture
high-level semantic features, while the early layers are re-
sponsible for extracting low-level information (Ma et al.,
2015; Zeiler & Fergus, 2014; Lin et al., 2017). Table 3
investigate how much control tasks can benefit from the fea-
tures extracted from different layers. As shown in Figure 5,
the early layers preserve rich details of edges and corners,
while the later layers only provide very abstract information.

Feature MapEncoder
Observation

Layer1 Layer2 Layer3 Layer4

Figure 5. Visualization of the feature maps of different layers
. The feature map of Layer 2 largely preserves the outline of the
Walker that is advantageous to the control tasks, and at the same
time discards redundant details.

Intuitively, for control tasks, a trade-off is required between
low-level details and high-level semantics. Table 3 shows
that the Layer 2 gains better performance than the other
layers.

Task Layer 1 Layer 2 Layer 3 Layer 4

Walker Walk 840±32 884±20 845±27 306±31

Cheetah Run 366±56 369±53 294±60 111±19

Walker Stand 953±8 964±7 957±7 625±116

Table 3. Different layers. We employ the feature map of different
layers of a ResNet model as the visual representation. Among
them, the Layer 2 exhibits the best generalization performance.

3.3. Batch Normalization

Batch Normalization (BatchNorm) (Ioffe & Szegedy, 2015)
is a popular technique in computer vision. However, it is
not widely adopted in RL algorithms. In contrast to con-
ventional wisdom, BatchNorm is found to be useful and
important in PIE-G. Specifically, we find that calculating
the mean and variance of the observations during evalua-
tion rather than using the statistics from training data would
boost the performance. Figure 4(b) demonstrates that, in the
most challenging settings, PIE-G with the use of BatchNorm
can further improve the generalization performance. This
is largely because the distribution of observations is deter-
mined by the agent, violating the assumption of independent
and identical distribution (i.i.d.). This use of BatchNorm
also reassures the recommendation from Ioffe et al. (Ioffe &
Szegedy, 2015) that recomputation of the statistical means
and variances allows the BatchNorm layer to generalize to
new data distributions.

4. Conclusion
In this work, we propose PIE-G, a simple yet effective
framework that leverages off-the-shelf features of ImageNet
pre-trained ResNet models for better generalization in vi-
sual RL. Extensive experiments on a variety of tasks in
three RL environments confirm the merits of universal vi-
sual representations, which endow the agents with better
generalization performance. In addition, we show that the
choice of layers and the use of BatchNorm are crucial for
the performance gain.
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