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Abstract
This paper studies low-order linear system identification via regularized regression. The nuclear
norm of the system’s Hankel matrix is added as a regularizer to the least-squares cost function
due to the following advantages. The regularized problem is (1) often easier to tune, (2) has lower
sample complexity, and (3) returns a Hankel matrix with a clear singular value gap, which robustly
recovers a low-order linear system from noisy output observations. Recently, the performance of the
unregularized least-squares formulations have been studied statistically in terms of finite sample
complexity and recovery errors; however, no results are known for the regularized approach. In this
work, we provide a novel statistical analysis of the regularized algorithm. Our analysis leads to new
bounds on estimating the impulse response and the Hankel matrix associated with the system while
using smaller number of observations than the least-squares estimator.

1. Introduction

System identification is an important topic in control theory. An accurate estimation of system
dynamics is the basis of the associated control or policy decision problems in tasks varying from
linear-quadratic control to deep reinforcement learning. Consider a linear time-invariant system of
order R with the state-space representation

xt+1 = Axt +But,

yt = Cxt +Dut + zt,
(1)

where xt ∈ RR is the state, ut ∈ Rp is the input, yt ∈ Rm is the output, zt ∈ Rm is the output
noise, A ∈ RR×R, B ∈ RR×p, C ∈ Rm×R, D ∈ Rm×p are the system parameters, and x0 is the
initial state (in this paper, we assume x0 = 0). The system identification problem is finding the
system parameters, given input and output observations. When C = I , we directly observe the state,
otherwise we may obtain only partial state information. A notable line of work derives statistical
bounds for system identification with limited state observations from a single output trajectory with
a random input Abbasi-Yadkori and Szepesvári (2011); Simchowitz et al. (2018); Sarkar and Rakhlin
(2019). The core approach is using the least-squares estimator and then adapting the self-normalized
martingale bounds from Abbasi-Yadkori et al. (2011). These works require observing the state.
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FINITE SAMPLE SYSTEM IDENTIFICATION

For the hidden-state system in (1), the impulse response sequence h0 = D, ht = CAt−1B ∈
Rm×p for t = 1, 2, . . . (also known as the Markov parameters) uniquely identifies the end-to-
end behavior of the system. The impulse response of the system has infinite length, and we let
h = [D,CB,CAB,CA2B, . . . , CA2n−3B]> denote its first 2n − 1 entries. We also define the
Hankel mapH : Rm×(2n−1)p → Rmn×pn as

H := H(h) =


h1 h2 ... hn
h2 h3 ... hn+1

...
hn hn+1 ... h2n−1

 . (2)

If R is the system order and n ≥ R, the Hankel matrix H is of rank R regardless of n. A practically
relevant scenario is when the order R is not known in advance or may be misspecified. Specifically,
we will assume that R is small, and explore the use of nuclear norm regularization to find a low-rank
Hankel matrix.

Least-squares can be used to recover the Markov parameters and reconstruct A,B,C,D from the
Hankel matrix via the Ho-Kalman algorithm (Ho and Kálmán (1966)). To identify a stable system
from a single trajectory, Oymak and Ozay (2018) estimates the Markov parameter matrix h and
Sarkar et al. (2019) estimates the Hankel matrix via least-squares. The latter provides optimal Hankel
spectral norm error rates, however has suboptimal sample complexity (see the table in Section 2).
While Oymak and Ozay (2018); Sarkar et al. (2019) use random input, (Tu et al., 2017, Thm 1.1,
1.2) use impulse and single frequency signal respectively as input, both recovering system Markov
parameters. These works assume (roughly) known system order, or traverse the Hankel size n to
fit the system order. When the system order is unknown and assumed low, Cai et al. (2016) studies
least-squares with Hankel nuclear norm regularization, showing that the number of observations is
proportional to the underlying system order and is insensitive to the problem dimension.

In this paper, we study the sample complexity and estimation errors for least-squares and nuclear
norm regularized estimators. Oymak and Ozay (2018) and Sarkar et al. (2019) recover the system
from single rollout/trajectory of input, whereas our work, Tu et al. (2017) and Cai et al. (2016)
require multiple rollouts. To ensure a standardized comparison, we define sample complexity to be
the number of equations (equality constraints in variables ht) used in the problem formulation. With
this, we explore the following performance metrics of learning the system from a finite set of T
measurements.

• Sample complexity: The minimum sample size T for recovering system parameters with zero
error when the noise z = 0. This quantity is lower bounded by the system order which is the
degrees of freedom.
• Impulse Response (IR) Estimation Error: The Frobenius norm error for the IR ‖ĥ− h‖F .

Knowing the impulse response enables accurate prediction of the system output.
• Hankel Estimation Error: The spectral norm error of the Hankel matrix ‖H(ĥ− h)‖. This

performance metric is particularly important for system identification as described below.

The Hankel spectral norm error is a critical quantity to control for several reasons. First, the Hankel
spectral error connects to theH∞ estimation of the system via classical arguments Sanchez-Pena and
Sznaier (1998). Secondly, bounding this error allows for robustly finding balanced realizations of the
system; for example, the error in reconstructing A,B,C,D via the Ho-Kalman procedure is bounded
by the Hankel spectral error. Finally, it is beneficial in model selection, as a small spectral error helps
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distinguish the true singular values of the system from the spurious ones. Indeed, as illustrated in
the experiments, the Hankel singular value gap of the solution of the regularized algorithm is more
visible compared to least-squares, which helps in identifying the order of the system with a parameter
λ that is easy to tune in (5) as explored in section 4.
Contributions. Below, we list our contributions, and contrast our results with the existing work.
• Nuclear norm regularization (Sec 3.1): For multi-input/single-output (MISO) systems, we
establish sample complexity bounds for the nuclear norm regularized system identification problem,
showing the required sample size grows as O(pR log2 n), which is linear in the system order R. This
result build directly on Cai et al. (2016) which analyzed the recovery a sum-of-exponentials signal
using Hankel nuclear norm (which is equivalent to SISO system identification).

Our work also establishes statistically consistent error rates on the IR and Hankel spectral errors
(i.e., the estimates to the ground-truth system parameters with growing sample size). This is in
contrast to the error bounds of Cai et al. (2016). Our rates are at least as good as least-squares rates;
however, they apply in the small sample size regime1 T . pR2 log2 n2.
• Least-squares estimator (Sec 3.2): It is fairly straightforward to show that least-squares estimator
for the impulse response h has a guaranteed error bound when T & np (c.f. Oymak and Ozay (2018)).
However the bound of Oymak and Ozay (2018) is loose when it comes to Hankel spectral error. For
multi-input/multi-output (MIMO) systems, we establish the optimal spectral error bound on the
Hankel matrix. Sarkar et al. (2019) and Tu et al. (2017) also provide similar bounds, however their
sample complexities are suboptimal as they require O(n2) measurements rather than O(n).
• Relating IR and Hankel errors: Note that one can upper/lower bound the Hankel error in terms
of IR error using the fact that rows of the Hankel matrix are subsets of the IR sequence. Specifically,
we always have the inequality

‖ĥ− h‖F /
√

2 ≤ ‖H(ĥ− h)‖ ≤
√
n‖ĥ− h‖F . (3)

Observe that there is a factor of
√
n difference between the left and right-hand side inequalities. One

contribution of this work is that, perhaps surprisingly, we show that the left-hand side inequality is
typically the tighter one and we have ‖ĥ− h‖F ∼ ‖H(ĥ− h)‖.
• Experimental performance (Sec 4): Finally, we numerically explore the regularized and unregu-
larized algorithms for system identification from single-trajectory data. Our synthetic and real-data
experiments (on a low-order example from the DaiSy De Moor et al. (1997) datasets) suggest that
the regularized algorithm has empirical benefits in sample complexity, error, and Hankel spectral gap,
and demonstrate that the regularized algorithm is less sensitive to the choice of the tuning parameter
than the least squares algorithm is to the Hankel matrix size. Another experiment compares the two
least-squares approaches in Oymak and Ozay (2018) and Sarkar et al. (2019), showing that the former
(which estimates the impulse response) performs substantially better than the latter (which estimates
the Hankel matrix). This highlights the role of proper parameterization in system identification.

Further literature review. Nuclear norm regularization has been shown to recover an unstructured
low-rank matrix in a sample-efficient way in many settings (e.g., Recht et al. (2010); Candes and
Plan (2010)). Far less is known about recovery when the matrix has linear structure such Hankel,
block-Hankel, or Toeplitz structure that arise frequently in signal processing and control Ding et al.

1. a & b and a . b stand for “there exist a constant c (that does not depend on other parameters) such that a ≥ cb or
a ≤ cb”.

2. We also get slightly weaker results in the regime pR2 log2 n & T & pR log2 n.
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(2007); Elad et al. (2004). For system identification, while the use of nuclear norm is common (e.g.,
Wahlberg and Rojas (2013); Blomberg et al. (2015); Blomberg (2016); Markovsky (2012)) and some
efficient algorithms have been proposed to solve the regularized regression problem Liu et al. (2013);
Fazel et al. (2013), few statistical recovery guarantees are available.

There are several interesting generalizations of least squares with non-asymptotic guarantees
for different goals. Hazan et al. (2018) and Simchowitz et al. (2019) introduced filtering strategies
on top of least squares. The filters in Hazan et al. (2018) is the top eigenvectors of a deterministic
matrix, used for output prediction in stable systems. Simchowitz et al. (2019) uses filters in frequency
domain to recover the system parameters of a stable system, Tsiamis and Pappas (2019) gives
a non-asymptotic analysis for learning a Kalman filter system, which can also be applied to an
auto-regressive setting.

2. Problem Setup and Algorithms

Let ‖ · ‖, ‖ · ‖∗, ‖ · ‖F denote the spectral norm, nuclear norm and Frobenius norm respectively.
Throughout, we work with the first 2n− 1 terms of the impulse response denoted by h. The system
is excited by input u in the time interval [0, t] and output y is measured at time t, i.e.,

yt =
t∑
i=1

ht+1−iui + zt. (4)

We start by describing data acquisition models. In the setting that we refer to as “multi-rollout”
(Figure 1(a)), for each input signal u(i) we take only one output measurement yt at time t = 2n− 1
and then the system is restarted with a new input (for example, in a chemical system experiment, or
more generally in cases where measuring the output is expensive). Here the sample complexity is
T , the number of inputs. Many papers in the literature (e.g., Oymak and Ozay (2018) and Sarkar
et al. (2019)) use the “single rollout” model (Figure 1(b)) where we apply an input signal from time
1 to T + 2n− 1 without restart, and collect all output from time 2n− 1; we use this model in the
numerical experiments in section 4. We consider two estimators in this paper: the nuclear norm

Figure 1: Two data aqcuisition models: (a) Multi-rollout (left), and (b) single rollout (right).

regularized estimator and the least square estimator. The nuclear norm regularized estimator is

ĥ = arg min
h′

1

2
‖Ūh′ − y‖2F + λ‖H(h′)‖∗, (5)

which reduces to the (unregularized) least-squares estimator when λ = 0.
We would like to bound the various error metrics mentioned earlier in terms of the true system

order R, the dimension of impulse response n � R, and signal to noise ratio (SNR) defined as
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snr = E[‖u‖2/n]/E[‖z‖2]. The following table provides a summary and comparison of these
bounds. In the table, the Hankel matrix is n× n, the system order is R, and the number of samples is
T , and σ = 1/

√
snr denotes the noise level. LS-IR and LS-Hankel stands for least square regression

on the impulse response and on the Hankel matrix. All bounds are order-wise and hide log factors.

Paper This work This work Oymak and Ozay (2018) Sarkar et al. (2019)
Sample complexity R n n n2

Method Nuc-norm LS-IR LS-IR LS-Hankel
IR error see (7) σ

√
n/T σ

√
n/T (1 + σ)

√
n/T

Hankel spectral error see (7) σ
√
n/T σn/

√
T (1 + σ)

√
n/T

We consider a multiple rollout setup where we measure the system dynamics with T separate
rollouts. For each rollout, we drive the system with an input sequence u(i) ∈ R(2n−1)p and measure
the system output at time 2n − 1. Note that the output at time 2n − 1 is simply h>u. Define
Ū ∈ RT×(2n−1)p where each row is a rollout of inputs, and let y ∈ RT×m denote the corresponding
observed outputs. We consider the nuclear norm regularized problem (5). Note that theH operator
does not preserve the Euclidean norm, so Cai et al. (2016) proposes using a normalized operator G,
where they first define the weights

Kj =

{ √
j, 1 ≤ j ≤ n√

2n− j, n < j ≤ 2n− 1

and let K = diag(KjIp×p) ∈ R(2n−1)p×(2n−1)p, and define the mapping G(h) = H(K−1h). In
other words, if β = Kh then G(β) = H(h). Define G∗ : Rmn×np → Rm×(2n−1)p as the adjoint of
G, where [G∗(M)]i =

∑
j+k−1=iM(j)(k)/Ki if we denote the j, k-th block of M (defined in (2)) by

M(j)(k). Using this change of variable and letting U = ŪK−1, problem (5) can be written as

β̂ = arg min
β′

1

2
‖Uβ′ − y‖2F + λ‖G(β′)‖∗. (6)

3. Main results

3.1. Hankel Nuclear Norm Regularization

To promote a low-rank Hankel matrix, we add nuclear norm regularization in our objective and solve
the regularized regression problem. Here we give a finite sample analysis for the recovery of the
Hankel matrix and the impulse response found via this approach. We consider a random input matrix
Ū and observe the corresponding noisy output vector y as in (4). We then regress y and Ū such that
y = Ūh+ z where z is the noise vector.

Theorem 1 3 Consider the problem (5) in the MISO (multi-input single-output) setting (m=1, p
inputs). Suppose the system is orderR, Ū ∈ RT×(2n−1)p, each row consists of an input rollout u(i) ∈
R(2n−1)p, and the scaled U = ŪK−1 has i.i.d Gaussian entries. Let snr = E[‖u‖2/n]/E[‖z‖2]
and σ = 1/

√
snr. Let λ = σ

√
pn
T log(n). Then, the problem (5) returns ĥ such that

‖ĥ− h‖2√
2

≤ ‖H(ĥ− h)‖ .


√

np
snr×T log(n) if T & min(R2, n)√
Rnp

snr×T log(n) if R . T . min(R2, n).
(7)

3. Due to the limitation of space, we refer readers to Sun et al. (2020) for the proofs.

5



FINITE SAMPLE SYSTEM IDENTIFICATION

Theorem 1 jointly bounds the impulse response and Hankel spectral errors of the system under
mild conditions. We highlight the improvements that our bounds provide: (1) When the system is
low order, the sample complexity T is logarithmic in n and improves upon the O(n) bound of the
least-squares algorithm. (2) The error rate with respect to the system parameters n,R, T is same as
Oymak and Ozay (2018), Sarkar et al. (2019) and Tu et al. (2017) (e.g. compare to Theorem 4).

The regularized method also has the intrinsic advantage that it does not require knowledge of the
rank or the singular values of the Hankel matrix beforehand. Numerical experiments on real data in
Section 4 demonstrate the performance and robustness of the regularized method.

The theorem above follows by combining statistical analysis with a more general deterministic
result (Theorem 2). We will state this result in terms of a restricted singular value (RSV) condition.
While RSV is a common condition in sparse estimation literature, our analysis requires introducing a
spectral norm variation of RSV. Given a matrix M spectral RSV over a set S is defined as follows:

‖M‖S = max
v∈S,v 6=0

‖G(Mv)‖/‖G(v)‖.

Theorem 2 Consider the problem (6) in the MISO setting, where U ∈ RT×(2n−1)p. Let β denote
the (weighted) impulse response of the true system which has order R, i.e., rank(G(β)) = R, and
let y = Uβ + ξ be the measured output, where ξ is the measurement noise. Finally, denote the
minimizer of (6) by β̂. Define

J (β) :=

{
v
∣∣ 〈v, ∂(

1

2
‖Uβ − y‖22 + λ‖G(β)‖∗)〉 ≤ 0

}
, Γ := ‖I −U>U‖J (β),

where J (β) is the normal cone at β, and Γ is the spectral RSV. If Γ < 1, β̂ satisfies

‖G(β̂ − β)‖ ≤ ‖G(U>ξ)‖+ λ

1− Γ
.

This theorem determines the generic conditions on the measurements U to ensure successful system
identification. As future work, it would be desirable to extend our results to a wider range of
measurement models.

3.2. Least-Squares Bounds

Next we consider the least-squares estimator given measurements y = Ūh + z. We consider the
MIMO setup where y ∈ RT×m and h ∈ R(2n−1)p×m. This is obtained by setting λ = 0 in (5) hence
the estimator is given via the pseudo-inverse

ĥ := h+ Ū †z = min
h′

1

2
‖Ūh′ − y‖2F . (8)

The following theorem characterizes the spectral norm bound in terms of discrete Fourier transform.

Theorem 3 Denote the discrete Fourier transform matrix by F . Denote z(i) ∈ RT , i = 1, ...,m as
the noise that corresponds to the i’th coordinate of the output. The solution ĥ of (8) obeys

‖ĥ− h‖F ≤ ‖z‖F /σmin(Ū)

‖H(ĥ− h)‖ ≤
∥∥∥[‖F Ū †z(1)‖∞, ..., ‖F Ū †z(m)‖∞

]∥∥∥ .
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Figure 2: System identification for CD player arm data. Training data size = 200 and validation
data size = 600. The first two figures are the training/validation errors of varying λ in
regularized algorithm (n = 10), and training/validation errors of varying Hankel size n in
unregularized algorithm. The last figure is the output trajectory of the true system and the
recovered systems (best validation chosen for each).

The next theorem bounds the error when inputs and noise are randomly generated.

Theorem 4 Denote the solution to (8) as ĥ. Let Ū ∈ RT×(2n−1)p be input matrix obtained from
multiple rollouts, with i.i.d. standard normal entries, y ∈ RT×m be the corresponding outputs and
z ∈ RT×m be the noise matrix with i.i.d. N (0, σ2z) entries. Then the spectral norm error obeys

‖H(ĥ− h)‖ . σz

√
mnp
T log(np).

This theorem improves the spectral norm bound compared to Oymak and Ozay (2018) which
naively bounds the spectral norm in terms of IR error using the right-hand side of (3). Instead, we
show that spectral error is same as the IR error up to a log factor (when there is only output noise).
Our bound also loses a log factor compared with Sarkar et al. (2019) however is applicable with
much fewer samples (O(n) vs O(n2)). We remark that O(σz

√
np/T ) is a tight lower bound for

‖H(h− ĥ)‖ as well as ‖h− ĥ‖ (Oymak and Ozay (2018); Arias-Castro et al. (2012); Djehiche et al.
(2019)).

The proofs of the theorems above are provided in Sun et al. (2020). As a proof sketch, we first
use the fact that the spectral norm of a circulant matrix is the infinity norm of its Fourier transform.
To conclude with Theorem 4, we develop probabilistic bounds on the spectrum of the Hankel error
matrix which is circulant.

4. Experiments

Out experiment uses the DaISy dataset De Moor et al. (1997), where a known input signal (not
random) is applied and the resulting noisy output trajectory is measured. Consider the following
input matrix Ū and the corresponding measurements y

Ū =


u>2n−1 u>2n−2 ... u>1
u>2n u>2n−1 ... u>2
...

u>2n+T−2 u>2n+T−3 ... u>T

 and y = [y2n, ..., y2n+T−1]
>. (9)

We consider the optimization problem (5) using single trajectory data. While the input model doesn’t
satisfy the assumptions of Theorem 2, experiments will demonstrate the advantage of regularization
in terms of sample complexity, singular value gap and ease of tuning.

In our experiments, we find that with fixed Hankel size, empirically Oymak and Ozay (2018)
performs better than Sarkar et al. (2019), hence we compare our method with the approach of Oymak
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Figure 3: The left two figures: CD player arm data, singular values of the unregularized and
regularized Hankel. The right two figures: Recovery by regularized and unregularized
algorithms when Hankel matrix is 10× 10. Training size is 50 and validation size is 400.

and Ozay (2018). When necessary, to select the system order in Oymak and Ozay (2018), we simply
keep running the estimated system after time 2n+ T − 1, compare predictions with the true outputs,
and choose the order with the smallest validation error.

With enough data for unregularized version, the algorithms perform well in both cases. The first
two figures in Figure 2 show the training and validation error. The tuning parameters are weight λ
and Hankel size n for the regularized and unregularized problems respectively. This step is to find
the best system order by choosing the tuning parameters with the smallest validation error. The third
figure in Figure 2 plots the training and validation sequence from dataset and two algorithms. We see
that with sufficient sample size, the system can be recovered well. However, the validation error of
regularized algorithm is more flat and λ is easier to tune compared to n.

The first two figures in Fig. 3 show that the Hankel spectrums of the two algorithms have a
notable difference: The system recovered by the regularized algorithm is low-order and has larger
singular value gap. The last two figures in Fig. 3 show the advantage of regularization with much
better validation performance. As expected from our theory, the difference is most visible in small
sample size (this experiment uses 50 training samples). When the number of observations T is small,
regularization still returns a solution close to the true system while least-squares cannot recover the
system properly. Further experiments on synthetic systems are provided in (Sun et al., 2020, Sec 2).

5. Future directions

This paper established new sample complexity and estimation error bounds for system identification.
We showed that nuclear norm penalization works well with small sample size regardless of the
mis-specification in the problem (i.e. fitting impulse response with a much larger length rather than
the true order). For least-squares we provide the first guarantee that is optimal in sample complexity
and the Hankel spectral norm error. These results can be refined in several directions. In the proof of
Theorem 2, we use a weighted version of the Hankel operator. We expect that directly computing
the Gaussian width of the original Hankel operator will lead to improvements. It would also be
interesting to extend the results to account for single trajectory analysis or process noise. In both
cases, an accurate analysis of the regularized problem would lead to new algorithmic insights.
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