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Abstract

Deep neural networks are highly effective but suffer from a lack of interpretability due
to their black-box nature. Neural additive models (NAMs) solve this by separating into
additive sub-networks, revealing the interactions between features and predictions. In this
paper, we approach the NAM from a Bayesian perspective in order to quantify the uncer-
tainty in the recovered interactions. Linearized Laplace approximation enables inference of
these interactions directly in function space and yields a tractable estimate of the marginal
likelihood, which can be used to perform implicit feature selection through an empirical
Bayes procedure. Empirically, we show that Laplace-approximated NAMs (la-nam) are
both more robust to noise and easier to interpret than their non-Bayesian counterpart for
tabular regression and classification tasks.

1. Introduction

Over the past decade, deep neural networks (DNNs) have found successful applications in
numerous fields, ranging from computer vision and speech recognition to natural language
processing and recommendation systems. This success is often attributed to the growing
availability of data in all areas of science and industry. However, their opaque nature has
impeded their use in domains where comprehending the reasoning behind their decision-
making process is crucial (Pumplun et al., 2021; Veale et al., 2018).

Model-agnostic methods, such as partial dependence (Friedman, 2001), SHAP (Lund-
berg and Lee, 2017), and LIME (Ribeiro et al., 2016) provide a standardized approach to
explaining predictions in machine learning, but the explanations they generate for DNNs
are not faithful representations of their full complexity (Rudin, 2019). Instead, one can
promote interpretability in DNNs by acting directly on their architecture and training pro-
cedure. In generalized additive models (Hastie and Tibshirani, 1999), the response variable
y is associated to the predictor variables x1, x2, ..., xp using a structure of the form

g(E[y |x1, ..., xp]) = β0 + f1(x1) + f2(x2) + · · ·+ fp(xp). (1)

The neural additive models (NAMs) proposed by Agarwal et al. (2021) build on this premise.
In these models, each dimension of the input is handled by a separate sub-network, exposing
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Figure 1: Regression on a synthetic dataset with known additive structure. The proposed
la-nam fits the data well, provides useful uncertainty estimates, and correctly
ignores the uninformative feature (f4, bottom).

the relationship between the features and the model predictions. However, these models
are not inherently safeguarded against overconfidence, and it is also desirable that they be
able to express the uncertainty in the relationships they uncover. In this work, we show
that linearized Laplace inference (Immer et al., 2021b) of Bayesian subnetworks leads to
better uncertainty estimates and enables marginal-likelihood-based feature selection, thus
improving performance and interpretability. A detailed treatment of the related work is
deferred to Appendix C.

2. Linearized Laplace Inference in Neural Additive Models

We propose the Laplace-approximated neural additive model (la-nam), a generalized addi-
tive model with Bayesian neural networks that relies on the linearized Laplace approxima-
tion for inference (MacKay, 1991; Khan et al., 2019; Foong et al., 2019). We approximate
the log marginal likelihood and posterior over the individual additive feature networks. Op-
timizing the log marginal likelihood results in a selection of the feature networks by virtue
of adapting their respective regularization strength. The posterior predictive decomposes
across features and can therefore be easily visualized as is common for additive models. We
choose to use the Kronecker-factored Gauss-Newton approximation (Martens and Grosse,
2015) for estimating the log marginal likelihood and make use of the associated linearized
predictive (Immer et al., 2021a,b).

2.1. Bayesian Neural Additive Model

Consider a tabular datasetD = {(xn, yn)}Nn=1 consisting ofN pairs of inputs x = [x1, . . . , xD]
⊤

and labels y. In the Bayesian NAM, the networks of the NAM (Agarwal et al., 2021) are re-
placed with Bayesian neural networks f1, f2 . . . fD parameterized by θ = [θ1, θ2, . . . , θD]

⊤,
with θd ∈ RPd and fd : R× RPd → R. In most cases, all fd have the same architecture but
may also slightly vary, when attending to categorical features for example. Using an inverse
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link function g : R → R, such as the logit function in classification, we have

g(E[y |x1, . . . , xD]) = f(x; θ) = f1(x1; θ1) + f2(x2; θ2) + · · ·+ fD(xD; θD). (2)

We refer to an individual network fd as a feature network. We have a likelihood function
of either p(y |x, θ) = N (y; f(x; θ), σ2) for regression with identity link and observation
noise hyperparameter σ or p(y |x, θ) = Bernoulli(s(f(x; θ))) for binary classification with
sigmoid link s. Other likelihoods and compatible link functions are also possible.

We use a zero-mean Gaussian prior with different precisions for each of the D feature
network parameters to adaptively regularize the networks and select features in a fashion
not dissimilar to automatic relevance determination (ARD; MacKay, 1994; Neal, 1995). In
this case we have individual priors per feature network i.e., p(θ | δ) =

∏D
d=1N (θd; 0, δ

−1
d I).

Large values of δd push the corresponding function fd toward zero and low values encourage
a highly non-linear fit. In practice, one can use a prior with precisions assigned to each
layer of each feature network as this setup has been shown to be beneficial in linearized
Laplace (Immer et al., 2021a; Antorán et al., 2022). The joint distribution of the Bayesian
NAM is given by p(D, θ | δ) = p(θ | δ)

∏
n p(yn |xn, θ).

2.2. Laplace-Approximated Neural Additive Model

We use the linearized Laplace approximation (Laplace, 1774; MacKay, 1991; Khan et al.,
2019) to the posterior and log marginal likelihood because it provides differentiable log
marginal likelihood estimates (Immer et al., 2021a) that can be optimized to select obser-
vation noise and feature network prior precisions. Moreover, the corresponding linearized
posterior predictive (Foong et al., 2019; Immer et al., 2021b) is known to provide calibrated
estimates of uncertainty (Daxberger et al., 2021). The first step is to linearize the Bayesian
NAM, f(x; θ), around a parameter estimate θ∗,

f lin(x; θ) = f(x; θ∗) + J(x; θ∗)(θ − θ∗) =
∑

d fd(xd; θ
∗
d) + Jd(xd; θ

∗
d)(θd − θ∗

d), (3)

where J(x; θ) denotes the Jacobian of the Bayesian NAM. Taking the second derivative

of the negative log likelihood λn = − ∂2

∂f2 log p(yn | fn) yielding n-dimensional vector λ, and

taking the J ∈ RN×P stacked Jacobians, we have as log marginal likelihood approximation

log p(D | δ) ≈ log p(D |θ∗) + log p(θ∗ | δ)− 1
2 log |J

T diag[λ]J+ diag[δ]|+ P
2 log 2π

≤ log p(D |θ∗) +
∑

d log p(θ
∗
d | δd)− 1

2 log |J
T
d diag[λ]Jd + δdI︸ ︷︷ ︸

def
= Pd

|+ Pd
2 log 2π, (4)

where diag[ · ] turns a vector into the corresponding diagonal matrix. The Laplace approxi-
mation separates over the D networks yielding additive structure and a lower bound in the
approximate log marginal likelihood (Immer et al., 2023). The corresponding approximate

posterior is given by q(θ)
def
= N (θ; θ∗, Σ) with block-diagonal covariance matrix

Σ
def
=

Σ1 · · · 0
...

. . .
...

0 · · · ΣD

 =

P
−1
1 · · · 0
...

. . .
...

0 · · · P−1
D

 . (5)
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2.2.1. Automatic Feature Net Selection

Automatic comparison and selection of feature networks is attained by virtue of adaptive
regularization and optimization of the regularization strength using the approximate log
marginal likelihood. This procedure is closely related to automatic relevance determina-
tion (MacKay, 1994; Neal, 1995) in which parameters of the first layer are grouped accord-
ing to the input feature and regularized. In this case, this applies to the entire individual
feature networks and provides a method for implicitly comparing and selecting features. In
Fig. 1, we show that uninformative features of a prediction task can be entirely ignored by
our method. Ignoring noisy or uninformative features can improve interpretability of the
resulting model as it moves focus to a subset of relevant features.

We maximize the log marginal likelihood w.r.t. the prior precision, maxδ log p(D | δ), by
taking gradient-based updates during training (Immer et al., 2021a)1:

∂
∂δd

log p(D | δ) = Pd
δd

− ∥θ∗
d∥22 − Tr(Σd). (6)

An intuition of the corresponding closed-form update derived by MacKay (1991) is given
in Tipping (2001). The optimal value of δd is a measure of the concentration of Σd relative
to the prior and depends on how well the data determines the parameters θd.

2.2.2. Predictive Decomposition per Feature

The linearized Laplace approximation also yields functional uncertainty estimates which
can further aid interpretability (Bhatt et al., 2021). In particular, we can visualize the
epistemic uncertainty of the individual feature networks. Fig. 2 shows that the uncertainty
tends to be higher when less observations are present, an important aspect which is missed
when only predicting the mean contribution to f . For a newly observed sample x∗, we have
that the predictive variance of f∗ is given by

V[f lin, ∗ |x∗] = J(x∗; θ∗)T ΣJ(x∗; θ∗) =
∑D

d=1Jd(x
∗
d)ΣdJd(x

∗
d)

def
=

∑D
d=1V[f

lin, ∗
d |x∗d], (7)

a consequence of the block-diagonal structure of the posterior covarianceΣ. See Appendix B
for a discussion on the importance of the independence of feature networks.

3. Experiments

We empirically evaluate the proposed la-nam on a collection of synthetic and real-world
benchmarks. We compare against the nam of Agarwal et al. (2021) and other popular meth-
ods of the generalized additive model class, namely, a smoothing spline model with smooth-
ing parameters selected via cross-validation (gam; Hastie and Tibshirani, 1999; Servén
et al., 2018) and an implementation of a gradient-boosting model using the hyperparame-
ters recommended by the authors (ebm; Lou et al., 2012; Nori et al., 2019). The epistemic
uncertainty of the model is determined by bootstrapping for the ebm and by taking the
standard deviation of recovered functions across ensemble members for the nam. Further
experimental details are provided in Appendix A.4.

1. We have also experimented with MacKay’s updates (MacKay, 1991) and obtained similar results.
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Dataset Linear gam ebm nam (ReLU) nam (ExU) la-nam (Ours)

autompg 2.59 (±0.06) 2.43 (±0.09) 2.64 (±0.10) 2.47 (±0.09) 2.69 (±0.16) 2.46 (±0.08)
concrete 3.78 (±0.04) 3.13 (±0.05) 3.20 (±0.12) 3.21 (±0.06) 3.46 (±0.12) 3.25 (±0.03)
energy 2.46 (±0.02) 1.46 (±0.02) 1.46 (±0.02) 1.48 (±0.02) 1.48 (±0.02) 1.44 (±0.02)
kin8nm -0.18 (±0.01) -0.20 (±0.01) -0.20 (±0.01) -0.20 (±0.01) -0.18 (±0.01) -0.20 (±0.00)
naval -3.72 (±0.01) -8.09 (±0.02) -3.15 (±0.00) -4.67 (±0.02) -3.87 (±0.01) -7.24 (±0.01)
wine 1.00 (±0.03) 0.98 (±0.03) 0.99 (±0.03) 0.98 (±0.03) 1.02 (±0.04) 0.98 (±0.03)
yacht 3.64 (±0.07) 1.87 (±0.10) 1.93 (±0.13) 1.95 (±0.12) 2.24 (±0.08) 1.81 (±0.10)

australian 0.35 (±0.02) 0.35 (±0.04) 0.33 (±0.03) 0.35 (±0.02) 0.38 (±0.04) 0.34 (±0.03)
breast 0.10 (±0.01) 0.09 (±0.02) 0.12 (±0.02) 0.12 (±0.01) 0.16 (±0.03) 0.10 (±0.02)
heart 0.39 (±0.04) 0.43 (±0.08) 0.40 (±0.02) 0.41 (±0.03) 0.41 (±0.04) 0.33 (±0.02)
ionosphere 0.33 (±0.03) 0.27 (±0.02) 0.23 (±0.02) 0.23 (±0.02) 0.31 (±0.04) 0.25 (±0.04)
parkinsons 0.33 (±0.02) 0.36 (±0.02) 0.28 (±0.05) 0.28 (±0.02) 0.29 (±0.04) 0.26 (±0.03)

Table 1: Negative test log likelihood (lower is better) on UCI regression (top) and classifi-
cation (bottom) benchmarks. Our proposed la-nam is competitive with the best
baselines and often outperforms the non-Bayesian nam.

3.1. Illustrative Example

First, we illustrate the recovery of purely additive structure from noisy data by constructing
a synthetic regression dataset for which the true additive terms are known. Generalized
additive models should be able to recover the additive functions of such a dataset precisely
since it is designed in such a way that there are no interactions between the input features.

In Fig. 1, we show the recovered functions f1 and f4 along with the quadratic ground
truth for f1 and constant for f4. The ReLU variant of the nam tends to fit the data better,
but has bad epistemic uncertainty due to poor diversity among its ensemble members. The
ExU variant has better diversity but yields a very poor mean fit. In contrast, the proposed
la-nam fits the data accurately all-the-while maintaining a good estimate of epistemic
uncertainty. It is also less susceptible to misattributing noise to the functions compared to
the other baselines. This is particularly striking for the uninformative f4, since only the
la-nam correctly predicts that it should have no effect in this example. The full details
and visualization of this experiment are deferred to Appendix A.1.

3.2. UCI Regression and Binary Classification

We benchmark the la-nam and baselines on a selection of UCI regression and binary
classification tasks. Each UCI dataset is split into 5 cross-validation folds. We use the
library defaults for the EBM (Nori et al., 2019) and retain 15% of the training data as
validation for the nam. Extra validation data is not needed for the la-nam and gam since
the former is tuned using the estimated log marginal likelihood and the latter through
generalized cross-validation scoring (GCV; Golub et al., 1979).

In Table 1, we report the average negative log likelihood and standard error across
folds. The nam and ebm baselines do not provide an estimate of the observation noise in
regression, so we have assigned them a maximum likelihood fit using their training data.
We also provide results for linear and logistic regression to determine the performance
attainable without resorting to nonlinear relationships. The poor log likelihood of the ExU
nam compared to ReLU suggests that it is badly calibrated due to overly aggressive fitting.
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Figure 2: Risk of mortality and associated epistemic uncertainty (± 2 std. deviations) on
the MIMIC-III mortality prediction task. The la-nam generates smoother and
thus more interpretable feature curves, provides useful uncertainties, and ignores
the uninformative feature.

In regression, the la-nam performs comparably well when compared to the ReLU nam,
and consistently outperforms the ExU nam. In classification it outperforms all baselines,
including places where the ReLU nam performs worse than logistic regression.

3.3. MIMIC-III Mortality Prediction

Finally, we explore our method’s behavior in a real world clinical setting. Using the pre-
processing from Lengerich et al. (2022) of the MIMIC-III database (Johnson et al., 2016),
we predict the mortality risk and associated uncertainty 24 hours after admission into the
intensive care unit. Here, we compare the la-nam to the nam with ExU activation since
our objective is to obtain useful uncertainty estimates from the recovered additive structure.
On this task, the la-nam outperforms the ExU nam obtaining a negative log likelihood of
0.264 compared to 0.274, and an area under the ROC curve of 79.6% to 78.9% on a 70-30%
train-test split. In Fig. 2, we show a subset of the additive structure recovered from this
dataset (Complete model is shown in Appendix A.2). In the background of each subplot,
we display the histogram of the distribution of feature values. We find that the epistemic
uncertainty of the la-nam is consistent with the presence of samples or lack thereof.

Additionally, this experiment empirically demonstrates that the la-nam can decide on
the usefulness of features by selecting feature nets: Because of their linear dependency, both
high bicarbonate levels and low anion gap are indicators of metabolic acidosis (Kraut and
Madias, 2010), but in this case, the la-nam has determined that the risk associated with
bicarbonate can be determined solely through the measurement of the anion gap. This is
why bicarbonate is fully ignored by the la-nam in Fig. 2. See Appendix A.3 for an ablation
experiment confirming this.
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4. Conclusion

In this work, we have shown that using linearized Laplace inference in neural additive models
leads to a natural decomposition of the epistemic uncertainty of the additive subnetworks,
and enables implicit selection of features when optimizing the log marginal likelihood. We
have provided evidence that the proposed Laplace-approximated neural additive models
(la-nam) are more robust to noise and easier to interpret than their non-Bayesian coun-
terpart, and are thus viable alternatives for use in safety-critical settings and as tools for
data-driven scientific discovery. Ultimately, we hope that this work inspires future research
at the intersection of interpretable machine learning and Bayesian inference.
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Andrew YK Foong, Yingzhen Li, José Miguel Hernández-Lobato, and Richard E Turner.
’in-between’uncertainty in bayesian neural networks. arXiv preprint arXiv:1906.11537,
2019.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical
Review, 90(3):563–591, 2022.
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van der Wilk. Invariance learning in deep neural networks with differentiable Laplace
approximations. In NeurIPS, 2022.

Alexander Immer, Tycho F. A. Van Der Ouderaa, Mark Van Der Wilk, Gunnar Ratsch,
and Bernhard Schölkopf. Stochastic marginal likelihood gradients using neural tangent
kernels. In Proceedings of the 40th International Conference on Machine Learning, 2023.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In 34th
Conference on Uncertainty in Artificial Intelligence 2018, UAI 2018, pages 876–885,
2018.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What
are Bayesian neural network posteriors really like? In ICML, 2021.

Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mo-
hammad Ghassem i, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G.
Mark. MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1):160035,
May 2016. ISSN 2052-4463. doi: 10.1038/sdata.2016.35.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed
Bennamoun. Hands-on bayesian neural networks - a tutorial for deep learning users.
IEEE Computational Intelligence Magazine, 17(2):29–48, 2022.

Mohammad Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash Sri-
vastava. Fast and scalable Bayesian deep learning by weight-perturbation in Adam. In
ICML, 2018.

9



Bouchiat Immer Yèche Fortuin

Mohammad Emtiyaz E Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Ap-
proximate Inference Turns Deep Networks into Gaussian Processes. In Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems 28, 2015.

Jeffrey A. Kraut and Nicolaos E. Madias. Metabolic acidosis: Pathophysiology, diagnosis
and management. Nature Reviews Nephrology, 6(5):274–285, May 2010. ISSN 1759-507X.
doi: 10.1038/nrneph.2010.33.

Jeffrey A. Kraut and Nicolaos E. Madias. Treatment of acute metabolic acidosis: A patho-
physiologic approach. Nature Reviews. Nephrology, 8(10):589–601, October 2012. ISSN
1759-507X. doi: 10.1038/nrneph.2012.186.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In NIPS, 2017.
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Figure 3: Recovery of the additive structure of the synthetic dataset of A.1. The feature-
wise residuals are the generated data points with the mean contribution of the
other feature networks subtracted.

Appendix A. Experimental Details

A.1. Dataset of the Illustrative Example

In Section 3.1 we present an illustrative example to motivate the capacity of the la-nam and
baselines to recover purely additive structure from noisy data. We provide further details
on the generation of the synthetic dataset used here. Consider the function f̂ : R4 → R,
where f̂(x1, x2, x3, x4) = f̂1(x1) + f̂2(x2) + f̂3(x3) + f̂4(x4), and

f̂1(x1) = 8(x1 − 1
2)

2, f̂2(x2) =
1
10 exp[−8x2 + 4] (8)

f̂3(x3) = 5 exp[−2(2x3 − 1)2], f̂4(x4) = 0. (9)

We generate N = 1000 noisy observations {xn, yn}Nn=1 by sampling inputs xn uniformly
from U([0, 1]4) and generating targets yn = f̂(xn) + ϵn, where ϵn ∼ N (0, 1) is random
Gaussian noise. Fig. 3 shows the recovered functions along with the associated predictive
uncertainty for the la-nam and baseline models.
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A.2. Predicted Mortality Risk in MIMIC-III

Figure 4: Complete visualization of predicted mortality risk in the la-nam of Section 3.3.
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A.3. Ablation of the Anion Gap in MIMIC-III

The anion gap is a measure of the serum concentration of sodium subtracted with the serum
concentrations of chloride and bicarbonate,

Anion gap = [Na+]− ([Cl−] + [HCO−
3 ]) mEq/L. (10)

Both low bicarbonate levels and thus high anion gap are indicators of acute metabolic acido-
sis. This is a known risk factor for intensive care mortality with very poor prognosis (Kraut
and Madias, 2010, 2012). Fig. 5 shows that the predicted mortality risk increases steadily
as the anion gap grows but becomes uncertain above 20 mEq/L due to low sample size.

Figure 5: Sodium, bicarbonate and anion gap mortality risk predicted by the la-nam.

When presented both anion gap and bicarbonate in the mortality risk dataset of Section 3.3
the la-nam uses high anion gap as a proxy for the risk of low bicarbonate. We confirm
this visually by performing an ablation experiment in which the la-nam is re-trained with
the feature network attending to the anion gap removed. Fig. 6 shows that in the ablated
model the anion gap risk is moved into the low levels for bicarbonate. The bicarbonate risk
increases below 20 mEq/L and becomes uncertain around 15 mEq/L.

Figure 6: Sodium and bicarbonate mortality risk withs anion gap feature network ablated.

A.4. Experimental Setup

We provide additional details on the choice of implementation and hyperparameters used
in the experiments of this paper:

GAM. We use an open source implementation (pygam; Servén et al., 2018). The smooth-
ing parameters are grid-searched. We sample one thousand candidates uniformly from
the recommended range of [10−3, 103] and select using generalized cross-validation scoring
(GCV; Golub et al., 1979).
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EBM. For the gradient-boosted-based generalized additive model, we use the explainable
boosting machine (ebm) which is an open source and modern implementation that is avail-
able as a part of the InterpretML library (Nori et al., 2019). The library defaults are used
for the hyperparameters.

NAM. We test both the standard ReLU variant with hidden layer sizes of 64, 64 and
32, and the exponential ExU variant with ReLU-1 activation and a single hidden layer
containing 1024 units. We perform grid-search for selecting learning rate and regulariza-
tion hyperparameters. All other hyperparameters are taken from recommended training
procedure in the supplementary material of Agarwal et al. (2021).

LA-NAM. The la-nam is constructed using feature nets containing a single hidden layer
of 64 neurons with GELU activation (Hendrycks and Gimpel, 2016). The feature network
parameters and hyperparameters (prior precision, observation noise) are optimized using
Adam (Kingma and Ba, 2014), alternating between optimizing both at regular intervals as
in Immer et al. (2021a). We select the learning rate in the discrete set of {0.1, 0.01, 0.001}
which maximizes the ultimate log marginal likelihood. We use a batch size of 512 and peform
early stopping on the log marginal likelihood restoring the best scoring parameters at the
end of training. We find that the algorithm is fairly robust to the choice of hyperparameter
optimization schedule: We use 0.1 for the hyperparameter learning rate and perform batches
of 30 gradient steps on the log marginal likelihood every 100 epochs of regular training.

A.5. Additional Results on UCI Datasets

We report additional metrics for the 5 cross-validation folds of the UCI regression and
classification benchmarks of Section 3.2 in Table 2 and Table 3.

Dataset Linear gam ebm nam (ReLU) nam (ExU) la-nam (Ours)

autompg 3.18 (±0.18) 2.70 (±0.20) 2.98 (±0.11) 2.76 (±0.16) 2.94 (±0.19) 2.77 (±0.18)
concrete 10.50 (±0.40) 5.57 (±0.24) 5.15 (±0.25) 5.90 (±0.27) 6.89 (±0.45) 6.27 (±0.13)
energy 2.84 (±0.05) 1.04 (±0.02) 1.04 (±0.02) 1.06 (±0.02) 1.06 (±0.02) 1.04 (±0.02)
kin8nm 0.20 (±0.00) 0.20 (±0.00) 0.20 (±0.00) 0.20 (±0.00) 0.20 (±0.00) 0.20 (±0.00)
naval 6e-3 (±4e-5) 7e-5 (±2e-6) 1e-2 (±5e-5) 2e-3 (±5e-5) 5e-3 (±5e-5) 2e-4 (±2e-6)
wine 0.65 (±0.02) 0.65 (±0.01) 0.64 (±0.02) 0.64 (±0.02) 0.64 (±0.02) 0.64 (±0.02)
yacht 9.09 (±0.54) 1.51 (±0.16) 1.56 (±0.16) 1.61 (±0.19) 2.20 (±0.15) 1.45 (±0.17)

Table 2: Root mean squared error (RMSE, ± std. error) on UCI regression datasets.

Dataset Linear gam ebm nam (ReLU) nam (ExU) la-nam (Ours)

australian 92.5 (±1.0) 91.9 (±1.5) 93.2 (±1.3) 92.5 (±0.9) 92.0 (±1.0) 92.6 (±1.1)
breast 99.6 (±0.2) 99.4 (±0.4) 99.2 (±0.2) 99.5 (±0.3) 99.0 (±0.4) 99.4 (±0.2)
heart 90.0 (±2.4) 89.1 (±2.8) 90.3 (±1.4) 91.0 (±1.9) 90.3 (±2.0) 93.5 (±1.4)
ionosphere 90.4 (±2.1) 95.4 (±0.9) 96.3 (±0.8) 96.3 (±0.9) 95.1 (±1.3) 94.5 (±1.3)
parkinsons 90.0 (±2.2) 88.5 (±2.6) 94.6 (±2.0) 94.3 (±1.8) 94.6 (±1.4) 94.5 (±1.7)

Table 3: Area under the ROC curve (AUROC, ± std. error) on UCI classification datasets.
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Appendix B. Network Independence

In the la-nam, we apply the Laplace approximation independently across feature networks
and obtain a block-diagonal posterior covariance matrix on which the decomposition of
predictive variance in Eq. (7) depends. Here, we further discuss the importance of feature
network independence in the posterior distribution.

As a toy experiment, suppose we wanted to obtain an estimate of two variable terms,
b1 and b2, such that their sum is equal to some constant C. We also desire that neither
term b1 or b2 dominate the other, such that they are approximately equally balanced. One
possible setup for finding maximum a posteriori (MAP) estimates for b1 and b2 could be to
design a cost function L(b1, b2) such that the MAP solution is its minimizer,

p(b1, b2) = N ([b1, b2]
⊤; 0, λ−1I), p(C | b1, b2) = N (C; b1 + b2, 1), (11)

log p(b1, b2 |C) ∝ log p(C | b1, b2) + log p(b1, b2) (12)

∝ −(b1 + b2 − C)2 − λ(b21 + b22)
def
= −L(b1, b2). (13)

For demonstrative purposes we choose to take C = 20 and λ = 0.01. In the left of Fig. 7, we
show the values of the cost function L(b1, b2), along with the corresponding MAP solution
displayed as a white cross.

Figure 7: Laplace approximation of the toy example of Appendix B. (C = 20, λ = 0.01)

Now suppose we are interested in finding an approximate posterior distribution for b1 and
b2 using a Laplace approximation centered at our MAP estimate. If we consider b1 and b2
jointly, i.e., assume that they are dependent of one another, then we obtain the Gaussian
approximate posterior shown on the right of Fig. 7. In this approximation, b1 and b2 are
strongly anti-correlated, which can be explained by the fact that translating b1 by some
amount ∆ can be accounted for by translating b2 by −∆, since b1+b2 = (b1+∆)+(b2−∆).
The variance of b1 and b2 is overtaken by all possible translations ∆.

In the context of Bayesian NAMs, this is an undesirable property. We desire that the
credible intervals for a feature network fd depend only on possible changes of its shape
and not translations accounted for in other feature networks. In the example above, this
can be avoided by assuming that b1 and b2 are independent by performing a first Laplace
approximation for b1 keeping b2 frozen, and then another for b2 keeping b1 frozen. In the
la-nam the feature networks are guaranteed to be independent given that we have used
block-diagonal approximation Kronecker-factored GGN matrix.
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Appendix C. Related Work

Generalized additive models. Several constructions have been proposed for the gen-
eralized additive models of Hastie and Tibshirani (1999). Originally it was proposed to
construct these models using smoothing splines (Wahba, 1983) and to fit in an iterative
fashion using “backfitting” (Breiman and Friedman, 1985). One alternative is to construct
the smoothing functions using gradient-boosted decision trees (Friedman, 2001). The boost-
ing algorithm can be modified to cycle through functions in its inner loop, which was shown
to be preferable to a sequential backfitting of boosted trees (Lou et al., 2012). Boosted
trees also enable selection and fitting of feature interactions by separating training into
multiple stages (Lou et al., 2013). These second-order interactions are believed to enable
gradient-boosted additive models to achieve competitive accuracy when comparing to fully-
interacting models for tabular supervised learning (Caruana et al., 2015; Nori et al., 2019).

Neural additive models. Neural networks are also compelling candidates for the con-
struction of generalized additive models since it is established through “universal approx-
imation theorems” that they can be made to approximate continuous functions up to ar-
bitrary precision given sufficient complexity (Cybenko, 1989; Maiorov and Pinkus, 1999;
Lu et al., 2017). The neural additive model (NAM) proposed by Agarwal et al. (2021) is
constructed using ensembles of ReLU and ExU feed-forward networks and fitted through
standard backpropagation. The ExU variant, in which weights are learned in logarithmic
space, is used for fitting jagged functions. The GAMI-Net proposed around the same time
by Yang et al. (2021) is closely related, but single networks are used instead of an ensemble
and the model also supports learning of feature interaction terms. A number of extensions
have since been suggested: Feature selection through sparse regularization of the feature
nets (Xu et al., 2022), generation of confidence intervals using regression spline basis expan-
sion (Luber et al., 2023), and estimation of the skewness, heteroscedasticity, and kurtosis
of the underlying data distributions (Thielmann et al., 2023).

Bayesian neural networks. Bayesian neural networks promise to marry the expressivity
of neural networks with the principled statistical properties of Bayesian inference (MacKay,
1992; Neal, 1993). However, approximate inference in these complex models has remained
challenging (Jospin et al., 2022). Approximate inference techniques lie on a spectrum of
quality and computational cost, from cheap local approximations like Laplace inference
(Laplace, 1774; MacKay, 1992; Khan et al., 2019; Daxberger et al., 2021), stochastic weight
averaging (Izmailov et al., 2018; Maddox et al., 2019), and dropout (Gal and Ghahramani,
2016; Kingma et al., 2015), via variational approximations with different levels of complexity
(e.g., Graves, 2011; Blundell et al., 2015; Louizos and Welling, 2016; Khan et al., 2018;
Osawa et al., 2019), across ensemble-based methods (Lakshminarayanan et al., 2017; Wang
et al., 2019; Wilson and Izmailov, 2020; Ciosek et al., 2020; He et al., 2020; D’Angelo et al.,
2021; D’Angelo and Fortuin, 2021), up to the very expensive but asymptotically correct
Markov Chain Monte Carlo (MCMC) approaches (e.g., Neal, 1993; Neal et al., 2011; Welling
and Teh, 2011; Garriga-Alonso and Fortuin, 2021; Izmailov et al., 2021). Apart from the
challenges relating to approximate inference, recent work has also studied the question of
prior choice for BNNs (e.g., Fortuin et al., 2021, 2022; Nabarro et al., 2022; Sharma et al.,
2023; Fortuin, 2022, and references therein) and how to perform model selection in this
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framework (e.g., Immer et al., 2021a, 2022; Rothfuss et al., 2021, 2022; van der Ouderaa
and van der Wilk, 2022; Schwöbel et al., 2022). In our work, we mainly draw on the
linearized Laplace inference (Immer et al., 2021b) and the associated marginal likelihood
estimation (Immer et al., 2021a) and apply these methods to the NAM, which to the best
of our knowledge has not been tried before.
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