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Abstract

Hierarchical clustering is a powerful tool for exploratory data analysis, organizing
data into a tree of clusterings from which a partition can be chosen. This paper
generalizes these ideas by proving that, for any reasonable hierarchy, one can
optimally solve any center-based clustering objective over it (such as k-means).
Moreover, these solutions can be found exceedingly quickly and are themselves
necessarily hierarchical. Thus, given a cluster tree, we show that one can quickly
access a plethora of new, equally meaningful hierarchies. Just as in standard
hierarchical clustering, one can then choose any desired partition from these new
hierarchies. We conclude by verifying the utility of our proposed techniques across
datasets, hierarchies, and partitioning schemes.†

1 Introduction

Hierarchical clustering is a fundamental technique for exploratory data analysis [42, 77]. The key
idea is that having a tree of clusterings over a given dataset allows users to choose any partition
from this hierarchy that best suits the users’ needs. These notions go beyond standard agglomerative
clustering algorithms to also include density-based clustering techniques like DBSCAN [24] and
HDBSCAN [12]. Even non-hierarchical clustering algorithms like k-means can be solved efficiently
by leveraging hierarchical representations [17, 18, 55].

The central underlying concept of hierarchical clustering methods is that they can be modeled using
ultrametrics: distances which satisfy the strong triangle inequality d(x, z) ≤ max(d(x, y), d(y, z))
for all x, y, z. Put simply, a set of points can only satisfy this inequality if they are arranged in nested,
hierarchical structures [4]. Originally described for phylogenetic and agglomerative clustering tasks
[57, 65], the depth of this equivalence between hierarchical clustering and ultrametrics has inspired
multiple subfields of unsupervised learning theory [3, 19, 22].

Our results. We prove an elegant, previously unknown property of ultrametrics: all standard
center-based clustering tasks (i.e., k-means, k-median, k-center) can be solved optimally in any
ultrametric. The key insight is that, in this setting, these center-based clustering tasks can be reduced
to sorting. Consequently, our algorithm is remarkably efficient: given an ultrametric on n points,
finding the full set of optimal solutions (i.e., for all k ∈ [n]) requires only Sort(n) time – the time to
sort n values. Our results therefore improve on recent work in both runtime and generality [6, 18, 44].
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Figure 1: Overview of our proposed SHiP clustering framework in which we (1) fit an ultrametric,
(2) choose a center-based hierarchy on the ultrametric, and (3) extract a partition from the hierarchy.

Moreover, these center-based partitions are themselves necessarily hierarchical: the set of optimal
center-based clustering solutions in an ultrametric form a cluster-tree.

Building on these theoretical insights, we introduce the SHiP (Similarity-Hierarchy-Partitioning)
clustering framework. While traditional approaches merely extract flat partitions from predefined
hierarchies, SHiP enables discovering entirely new hierarchical relationships via center-based cluster-
ing, substantially increasing the expressiveness of hierarchical clustering. Users can then efficiently
extract any desired partition from these novel hierarchies. We depict this process in Figure 1, where
we specify which sections of our paper describe the SHiP framework’s various components.

HDBSCAN Eucl.
k-means Ward dc-dist/

k-median (k=2)

Figure 2: Clusterings on the 2-moons dataset
with varying densities.

Figure 2 provides a motivating example of the SHiP
framework’s practical value. When HDBSCAN fails
to find the desired partition, the typical workflow
would involve trying entirely different algorithms like
Euclidean k-means or Ward clustering [77], repeating
the costly data-fitting step while still potentially fail-
ing to find the correct partition. SHiP eliminates this
redundancy: having already fit the dc-dist ultrametric
[6] during HDBSCAN’s execution, we can instantly
explore alternative cluster structures through different hierarchies. In this case, the correct partition
is found in the k-median hierarchy when k = 2. This exemplifies SHiP’s core advantage: once
an ultrametric is computed, numerous clustering perspectives become available essentially for free,
enabling rapid dataset exploration. Our extensive experiments confirm this is not a cherry-picked
example; many SHiP-derived combinations consistently produce novel, high-quality clusterings that
compete with or outperform state-of-the-art algorithms with minimal additional computational cost.

2 Related Work

Our primary theoretical result is that all center-based clustering tasks in ultrametrics can be reduced
to sorting. The novelty and simplicity of this is particularly surprising as each of these topics—
ultrametrics, hierarchical clustering, and center-based clustering—has received significant attention:

Ultrametrics. Due to the strong triangle inequality, ultrametrics naturally encode hierarchical
relationships [4]. Consequently, ultrametrics arise in numerous applications like biology [52], number
theory [34], or physics [62]. In computer science, they allow for simple, parallelizable solutions [38]
and extensive research has explored low-distortion embeddings of metrics into ultrametrics [4, 19].
This is often done via hierarchically well-separated trees (HSTs), data structures which model the
original distances via tree path-distances [3, 39]. Notable examples include KD trees [8], Cover trees
[9], and HSTs which obtain optimal distortion but are slower to compute [25, 79]. These are all used
to accelerate machine learning algorithms [53, 73], computer graphics [27], and nearest-neighbor
search [63, 69]. Our framework enables the first comprehensive evaluation of HSTs across clustering
tasks, revealing that they consistently fail to preserve underlying cluster structures regardless of
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hierarchy or partitioning method. Our findings challenge the commonly assumed suitability of HSTs
for accelerating ML tasks, especially in precision-sensitive settings.

A separate line of work has studied clustering algorithms in trees. Here, it is known that, for a fixed
value of k, k-center can be solved optimally in O(n) time [54, 75, 10]. Similarly, k-median can be
solved optimally in O(n logk+2 n) time [71, 7]. There are two primary differences between this work
and our setting. First, in our setting, the centers may only be placed on leaves in the tree. Second,
we require that all distances are ultrametric, whereas distances over edge-weighted trees are not
necessarily ultrametric. Consequently, our results show that under these additional constraints, all
center-based clustering tasks in trees reduce to the same underlying problem.

Hierarchical Clustering. Hierarchical clustering methods represent data at multiple scales of
granularity in a single structure. These techniques typically produce dendrograms—tree structures
that encode nested partitions of the data—from which users can extract flat clusterings (partitions) at
different resolution levels [12, 56]. Part of hierarchical clustering’s appeal is that, given a hierarchy,
the partitions can often be extracted in O(n) time [43]. Thus, hierarchical clustering is particularly
valuable in exploratory data analysis, where the number of clusters is often unknown a priori [51, 64].

Traditional hierarchical clustering algorithms (such as single- and complete-linkage) merge clusters
according to distance calculations which are often ultrametric in nature [57]. For instance, the single-
linkage algorithm corresponds to an ultrametric over the dataset’s minimum spanning tree (MST),
where the single-link distance (also known as the minimax path distance) between two points is given
by the weight of the largest edge in the MST path between them [26]. Recent variants of hierarchical
clustering have moved away from procedural merging rules in favor of finding ultrametrics which
minimize an objective function with respect to the data [1, 15, 16, 19, 22].

Center-Based Clustering. Center-based clustering is one of the most thoroughly researched
paradigms in unsupervised learning. Formulations such as k-means, k-median and k-center are
NP-hard in arbitrary metric spaces [21, 31], leading to a rich literature on approximation algorithms
with provable speed/accuracy guarantees [2, 28, 55]. Within this, several papers have leveraged HST
ultrametrics for faster center-based clustering [17, 23, 44].

Two recent works are particularly relevant to our approach. Beer et al. [6] showed that k-center can be
solved optimally in the density-connectivity ultrametric (dc-dist) in O(n2) time. This ultrametric is a
generalization of the single-link distance and is the backbone behind the DBSCAN and HDBSCAN
clustering algorithms. The algorithm in Beer et al. is essentially equivalent to algorithm 1 in Cohen-
Addad et al. [18]. Cohen-Addad et al. went further by providing a second algorithm which optimally
solves k-median in a 2-HST ultrametric in O(n log2(∆ + n)) time, where ∆ is the tree-depth of the
HST they construct. Both papers observed that the resulting solutions are necessarily hierarchical.
Our results can be interpreted as a generalization of algorithm 2 in Cohen-Addad et al. Specifically,
we show that their algorithm 2 holds for any ultrametric and reduces to k-center (which itself reduces
to sorting).

In this sense, our approach yields several advantages over the prior techniques. First, rather than
designing algorithms for specific center-based clustering tasks on specific ultrametrics, we provide
a general theoretical framework that handles all center-based clustering objectives optimally in all
ultrametrics. Second, our runtime improves over the state-of-the-art and we prove it to be tight.
Lastly, our algorithms are relatively simple to abstract, allowing us to evaluate our SHiP framework
across many ultrametrics and datasets. Such an experimental ablation was previously absent from the
literature.

3 Ultrametrics and Tree Representations

We begin by formally introducing the data structure that we require for our proof techniques. Namely,
the upcoming results hold over a generalization of the standard ultrametric:

Definition 3.1. Let L be a set. Then d : L × L → R≥0 is a relaxed ultrametric over L if, for all
`i, `j , `k ∈ L, the following conditions are satisfied:

(1) d(`i, `j) = d(`j , `i) ≥ 0 and (2) d(`i, `k) ≤ max(d(`i, `j), d(`j , `k)).
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Note that the standard ultrametric is a restriction that additionally requires d(`i, `i) = 0. Thus, not all
relaxed ultrametrics are distances as d(`i, `i) > 0 is allowed. Still, we use the word “distance” for
readability. We represent relaxed ultrametric relationships via the following data structure:
Definition 3.2. A lowest-common-ancestor tree (LCA-tree) is a rooted tree T such that every node
η ∈ T has value d(η) ≥ 0 associated with it. We write ηi � ηj to indicate that ηj lies on the path
from ηi to the root and ηi∨ηj to refer to the LCA of ηi and ηj . We say that the LCA-distance between
two leaves `i, `j ∈ T is given by d(`i ∨ `j).

An LCA-tree is not necessarily binary: if three or more subtrees are all equidistant, they can all
be children of the same node. While similar data structures already exist for standard ultrametrics
[4, 35], the following theorem (proof in A.2) states that it can also encode all relaxed ultrametrics:1

Theorem 3.3. Let (L, d′) be a finite relaxed ultrametric space. Then there exists LCA-tree T with
LCA-distance d and a bijection f : L ↔ leaves(T ) such that, for all `i, `j ∈ L, d′(`i, `j) =
d (f(`i) ∨ f(`j)).

This is visualized by the first box of Figure 1. It shows a minimum spanning tree (MST) over some
data on the left. In this MST, the single-link ultrametric is given by the weight of the largest edge
in the path between two nodes [26]. For example, the single-link distance between nodes 1 and

4 is 5 . The right-hand side of the first box of Figure 1 then stores these distances in an LCA-tree

(i.e., the LCA of nodes 1 and 4 has value 5). We prove in Appendix A.2 that all LCA-trees are
relaxed ultrametrics as long as they satisfy the following conditions:
Corollary 3.4. Let T be an LCA-tree. For any leaf ` ∈ T , let p(`) = [`, ηa, . . . , ηb, r(T )] be the path
from ` to the root of the tree r(T ). Then the LCA-distances on T form a relaxed ultrametric if and
only if, for all ` ∈ leaves(T ) and ηi, ηj ∈ p(`), the following conditions are satisfied:

(1) d(`) ≥ 0 and (2) ηi � ηj =⇒ d(ηi) ≤ d(ηj).

Corollary 3.4 describes a key property: if a tree’s node values grow along paths from the leaves
to the root, then the corresponding LCA-distances are a relaxed ultrametric. This is the natural
representation of a hierarchy: since the subtrees grow in size as we go towards the root, the values
corresponding to those subtrees also grow. Going forward, we assume that a relaxed ultrametric is
given in its LCA-tree form, satisfying the properties in Corollary 3.4.

4 Center-based Clustering in Ultrametrics

Our main theoretical result is that center-based clustering can be solved optimally in a relaxed
ultrametric, that these solutions are hierarchical, and that they can all be found in Sort(n) time.2 We
define the (k, z)-clustering and the k-center clustering objectives over an LCA-tree T as finding the
set of centers C ⊆ leaves(T ) with |C| = k which minimize, respectively,

Costz(T,C) =
∑

`∈leaves(T )

min
c∈C

d(`, c)z

︸ ︷︷ ︸
(k,z)-clustering objective

, Cost∞(T,C) = max
`∈leaves(T )

min
c∈C

d(`, c)︸ ︷︷ ︸
k-center clustering objective

.

Note that (k, z)-clustering gives the well-known k-median and k-means tasks for z = 1 and z = 2.

We now define what it means for a clustering to be hierarchical. Given a set of points L, we define a
cluster C as any subset of L. We then define a partition Pk = {C1, . . . , Ck} as any non-overlapping
set of k clusters, i.e., for all Ci, Cj ∈ P , Ci ∩ Cj = ∅. Then:
Definition 4.1. (Lin et al. [48]) A cluster hierarchy H = {P1, . . . ,Pn} is a set of partitions where

for k = 1 : P1 ⊆ L, and
for 1 < k ≤ n : Pk = (Pk−1 \ Ci) ∪ {Cj , Cl}, such that (a) Ci = Cj ∪ Cl ∈ Pk−1

with Cj ∩ Cl = ∅, (b) Cj 6= Ci and Cl 6= Ci, and (c) i 6= j 6= l.

1Although standard ultrametrics are often encoded via shortest-path distances in a tree [61], relaxed ultra-
metrics cannot be represented in this way due to the possibility of having d(`i, `i) > 0.

2Although sorting is traditionally an O(n logn) operation, it often only requires O(n log log n) time [30].
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Figure 3a: Runtimes of competitors and our frame-
work’s components on the letterrec dataset. Compared
to computing the dc-dist ultrametric, finding the k-
means hierarchy and extracting the elbow partition
requires negligible time.
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Figure 3b: Example elbow plots for the z =
1, 2, 3, 4, and 5 settings under the dc-dist ultrametric
on the D31 synthetic dataset. Elbow locations (circles)
are determined using all k ∈ [1, n] with n = 3100.

In short, each partition Pk is obtained by splitting one cluster from Pk−1 in two, implying that all
cluster hierarchies can be represented as a rooted tree. We depict this in Figure 1 (middle), where the
hierarchy is obtained by subdividing the clusters. We can now state our primary theoretical result:

Theorem 4.2. Let (L, d) be a finite relaxed ultrametric space represented over an LCA-tree T . Let
n = |L| and z ∈ N>0. Then, for both the k-center and (k, z)-clustering objectives on T , there
exists an algorithm which finds the optimal solutions {C1, . . . ,Cn} for all k ∈ [n] in Sort(n) time.
Furthermore, the respective partitions H = {P1, . . . ,Pn} obtained by assigning all leaves in T to
their closest center satisfy Definition 4.1.

Proof Overview. In words, Theorem 4.2 states that given any LCA-tree over a relaxed ultrametric,
it takes Sort(n) time to find the full set of optimal solutions for k-means, k-median or k-center
across all values of k and that these solutions are themselves hierarchical. The k-center part of this
result is an extension of the farthest-first traversal algorithm in which one places each subsequent
center on the point that is farthest from the current set of centers [31, 32]. In essence, Appendix
A.3 shows that under the strong triangle inequality, the farthest-first traversal algorithm (a) becomes
optimal and (b) reduces to sorting the distances in the ultrametric. We then show in Appendix
A.4 that the (k, z)-clustering objectives in an ultrametric can be reduced to the k-center one in a
relaxed ultrametric. That is, given an LCA-tree T on which to do (k, z)-clustering, there exists a new
LCA-tree T ′ such that an optimal k-center solution on T ′ is the optimal (k, z)-clustering solution
on T . Interestingly, even if we are solving (k, z)-clustering in a standard ultrametric, it reduces to
k-center in a relaxed one. This is why we require the notion of relaxed ultrametrics for our proofs.

A key insight which underpins this reduction is that these center-based cluster hierarchies themselves
constitute relaxed ultrametrics. That is, let H be a hierarchy of optimal k-center or (k, z)-clustering
solutions from Theorem 4.2. For each cluster C in this hierarchy, consider the cost dcost(C) of
assigning all of its points to a single optimal center. As we traverse the tree towards the root, these
costs will necessarily grow (see Lemma A.13). Thus, by Corollary 3.4, the hierarchy H with LCA-
distances dcost must be a relaxed ultrametric. Indeed, any binary LCA-tree satisfying the properties
in Corollary 3.4 is its own optimal k-center hierarchy.

Finally, the runtime bottleneck for k-center lies in sorting the O(n) unique distances in the ultrametric
in order to apply the farthest-first traversal algorithm. This is also the bottleneck for (k, z)-clustering,
as the reduction to k-center only requires O(n) time. We verify that this runtime is tight: one cannot
find the optimal centers for all values of k in faster than Sort(n) time (Lemma A.7). This speed is
depicted in Figure 3a: although it takes several seconds to fit the density-connectivity ultrametric, it
only takes milliseconds to construct the k-median hierarchy.
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5 Choosing a Partition

Theorem 4.2 gives us a hierarchy of optimal center-based clustering solutions for all values of k at
once. However, what if we are interested in the “best” clustering from this hierarchy? To this end,
there are several techniques for extracting additional partitions from these hierarchies in O(n) time.

5.1 Feasibility of the Elbow Method

One of the most common methods for choosing a “best” clustering is the elbow method [72].
Here, one is given a set of values of k, {k1, k2, . . . , kf}, and a set of corresponding partitions
P = {P1,P2, . . . ,Pf}. Each partition incurs a cost Li =

∑
C∈Pi

L(C) with respect to the
clustering objective. This gives us a plot of costs over the different values of k. Informally, the elbow
method chooses the partition Pi whose cost Li looks to be at a sharp point in this curve.

Due to the NP-hardness of k-means clustering, standard elbow plots can only compute approximate
solutions, traditionally done sequentially for each k [67]. However, the elbow method is surprisingly
viable in the ultrametric setting: Theorem 4.2 yields optimal clusterings for all k values at once,
eliminating both computational overhead and approximation errors. Moreover, we show that the
relaxed ultrametric’s elbow plot for (k, z)-clustering is guaranteed to be convex:
Corollary 5.1. Let P and L correspond to the n partitions and losses obtained in accordance with
Theorem 4.2 for the (k, z)-clustering objective. Let ∆i = Li+1 − Li. Then either ∆i < ∆i+1 ≤ 0
or ∆i = ∆i+1 = 0 for all i ∈ [n− 1].

The idea here is that ∆i represents the elbow plot’s first derivative at k = i. Thus, Corollary 5.1 states
that the elbow plot’s slope is steepest at k = 1 and monotonically levels out to 0 as k → n. We prove
this in Appendix B.1, where we also specify how we determine the index of the elbow. We depict
relaxed ultrametric elbow plots for (k, z)-clustering with z = 1, 2, 3, 4, 5 in Figure 3b. An alternative
plot with the x-axis going to n can be found in Figure 7 in the Appendix.

5.2 Additional Partitioning Techniques

Beyond the elbow method, there are several other standard approaches for selecting partitions and
augmenting the hierarchy which can be applied to our hierarchies in O(n) time. These are standard
in the literature and we discuss them in more depth in Appendix B.

Thresholding the Tree. One can threshold the cluster hierarchy at a user-defined value ε, as is done
in single-linkage clustering or DBSCAN [6]. This involves labeling internal nodes of the tree by their
costs and returning all clusters with costs below ε, thus extracting partitions based on a similarity
threshold rather than a specific k value. This naturally extends to the (k, z) setting: simply return the
non-overlapping nodes in the (k, z)-clustering hierarchy below some cost threshold.

Cluster Value Functions. Rather than selecting based on costs, one can also assign a new value
function to clusters and then choose the set of non-overlapping clusters that maximizes the sum of
these values. For example, HDBSCAN uses the stability objective to measure how well clusters
persist across the largest range of threshold values. Similarly, techniques in hierarchical segmentation
define an energy function over the clusters [43, 56]. We show in Appendix B.4 that, given any
reasonable such function, one can find its maximizing partition in O(n) time via depth-first search.

Handling Noise Points. For applications requiring noise handling, subtrees consisting of outlier
points can be pruned from the hierarchy without compromising the underlying ultrametric properties.
For instance, with a minimum-cluster-size parameter µ, clusters smaller than µ can be removed in
O(n) time, ensuring all clusters in the final partition meet size requirements [12, 47]. In practice,
HDBSCAN’s stability objective function is applied after noise points have been removed in this way.

5.3 Integrating Multiple Partitioning Methods

A key advantage of our approach is that, because the hierarchies and partitions can be extracted so
quickly (as seen in Figure 3a), multiple hierarchies and partitions can be integrated with negligible
runtime impact. We therefore introduce the Median-of-Elbows (MoE) algorithm which we find to
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work well in practice. After fitting an ultrametric, MoE computes (k, z)-clustering hierarchies for
z = 1, 2, 3, 4, 5 and applies the elbow method to each hierarchy. It then selects the median k value
from this set, representing the clustering cardinality that remains stable across different distance
penalty settings. One can then use this k value to extract the clustering from any hierarchy. Figure 3b
visualizes this process on the D31 dataset, where MoE selects k = 14.

6 From Theory to Practice

Table 1: Example ultrametric, hierarchy, and parti-
tioning options. Our SHiP framework allows one
to pick any ultrametric, pair it with any clustering
hierarchy, and extract any partition.

Ultrametrics Hierarchies Partitioning Methods
DC tree k-center Ground Truth k (GT)

Single Linkage tree k-median User-specified k
Complete Linkage tree k-means Elbow

Cover tree . . . Median of Elbows (MoE)
KD tree Thresholding

HST-DPO Stability
. . .

Sections 3-5 introduce the components of our
SHiP (Similarity-Hierarchy-Partitioning) clus-
tering framework: fitting an ultrametric to
capture the data similarities, choosing a hi-
erarchy, and partitioning the data. Table
1 outlines various [ultrametric/hierarchy/par-
tition] combinations. For example, [DC/k-
median/thresholding] means that we are using
the thresholding partition technique on the dc-
dist’s k-median hierarchy. In the following, we
demonstrate that the SHiP framework includes
diverse, effective clustering strategies and en-
ables quickly finding the various data groupings that can be extracted from an ultrametric. This
is particularly valuable for exploratory data analysis, where quickly switching between clustering
methods and results is beneficial.

6.1 Ultrametrics

We now formally introduce the two families of ultrametrics which we use to evaluate our framework:
HSTs and the density-connectivity distance. We note, however, that one can also apply our techniques
to nearly the full suite of agglomerative clustering hierarchies [57], which we leave for future work.

Hierarchically Well-Separated Trees (HSTs). HSTs recursively subdivide metric spaces into
trees such that each internal node is equidistant to all its descendant leaves. The distances in the
metric space are then approximated using the tree’s path distance. We use three types of HST:

1. Cover trees [9] define nested (potentially non-convex) cells so that points p in cell Li−1 and
q ∈ Li (where Li ⊂ Li−1) satisfy d(p, q) < 2i.

2. KD trees [8] recursively subdivide the space into axis-aligned hypercubes.
3. HST-DPOs [79] achieve optimal distance distortion by subdividing the space using metric balls.

Figure 4a demonstrates how the same hierarchy+partition (k-median with ground truth k) behaves
across different HSTs (Cover tree, KD tree, HST-DPO), revealing how the underlying tree structure
shapes clustering outcomes. Namely, Cover trees construct non-convex regions of similarity, KD
trees produce axis-aligned clusterings, while HST-DPOs use spherical divisions. The first two
require O(n log n) construction time (assuming constant dimensionality), while HST-DPOs achieve
optimal distortion at the expense of O(n2) runtime. Although HSTs traditionally utilize the tree’s
path distances, this can be transformed to an LCA-tree representation in O(n) time by assigning
d(η) = 2 · dHST (η, `) for internal node η with any descendant leaf `. Going forward, we use Cover
trees as our default HST, with KD trees and HST-DPOs extensively compared in Appendix E.

Density-Connectivity Distance (dc-dist). The second ultrametric we use, the dc-dist, forms the
foundation of density-connected clustering algorithms such as DBSCAN and HDBSCAN. In short, it
is the single-linkage distance over the pairwise mutual-reachabilities between the points:
Definition 6.1 (Mutual reachability [24]). Let (L, d′) be a metric space, x and y be any two points in
L, and µ ∈ Z>0. Let κµ(x) be the distance from x to its µ-th closest neighbor in L. Then the mutual
reachability between x and y is mµ(x, y) = max(d′(x, y), κµ(x), κµ(y)).
Definition 6.2 (dc-dist [6]). Let (L, d′) be a metric space, x and y be any two points in L, and
µ ∈ Z>0. Let T be a minimum spanning tree over L’s pairwise mutual reachabilities. Let p(x, y) be
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Cover tree KD tree HST-DPO
k-median/GT k-median/GT k-median/GT

B
ox

es

(a) Comparison of HST ultrametrics using the k-
median hierarchy and the ground-truth value of k.

DC tree DC tree DC tree
k-center/Stability k-median/MoE k-means/Elbow

(b) Comparison of hierarchy/partition combina-
tions on the dc-dist ultrametric.

Figure 4: Visualizations of the ultrametrics and hierarchy/partition combinations on the Boxes dataset.

the path in T from x to y given by edges {ei, . . . , ej} in T . Lastly, let |e| be the weight of any edge e
in T . Then the dc-dist between x and y is defined as

ddc(x, y) = max
e∈p(x,y)

|e| if x 6= y; else mµ(x, x).

We note that Beer et al. [6] introduced a strictly ultrametric variant of the dc-dist where the distance of
a point to itself was hardcoded to be 0. However, removing this condition as we do in Definition 6.2
simply makes the dc-dist a relaxed ultrametric (proof in B.5):
Proposition 6.3. Let (L, d′) be a metric space. Then, the dc-dist over L is a relaxed ultrametric.

We refer to the dc-dist’s LCA-tree representation as the DC tree. Note that for µ = 1, the dc-dist is
simply the single-link distance. We default to µ = 5 for all experiments. Within our SHiP framework,
we can exactly reproduce DBSCAN∗3 through [DC tree/k-center/thresholding] and HDBSCAN via
[DC tree/k-center/stability].

6.2 Hierarchies and Partitioning Methods

Having fit an ultrametric, the SHiP framework allows users to explore multiple alternative groupings
of the data through its many hierarchies and partitions. Each hierarchy represents a different
perspective on how points in the ultrametric space should be organized, essentially defining a
search space of possible clusterings. Partitioning methods then extract specific clusterings from
these hierarchies, highlighting different structural characteristics. Our experiments focus on three
illustrative hierarchy/partition combinations: k-center/stability, k-median/MoE and k-means/elbow.

Figure 4b offers an illustrative example of how these hierarchies and partitions interact. For example,
the k-center hierarchy merges clusters based on distances to their centers, regardless of point count.
When combined with the stability objective, this finds clusters which are well-separated over a wide
range of thresholds. Consequently, in the Boxes dataset, k-center/stability merges the two red boxes
since they share a density-connected path (and removes some outliers as noise).

In contrast, the k-median and k-means hierarchies strike a balance between the distances to the
centers and the cluster cardinalities. For example, under the dc-dist, the k-median and k-means
hierarchies evaluate how “spread out” a cluster is: the cost is low when there are a few points which
are densely connected (have small gaps between dense regions). This explains why k-median/MoE
and k-means/elbow separate the two red boxes in the last two columns of Figure 4b that k-center
merges: they contained too many points with too large a gap between them. Figure 8 in the Appendix
shows an example on the D31 dataset with more pronounced differences between the methods.

7 Experiments

We now verify the practical utility of our SHiP clustering framework by showcasing its speed and
competitive outputs across ultrametrics and datasets. Table 4 in the Appendix gives an overview

3DBSCAN∗ is a variant of DBSCAN which treats points on the borders of clusters as noise [12].
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Table 2: Runtimes of our SHiP framework’s components (first three column groups) and competitors
(last column group) in (minutes+)seconds (s), or milliseconds (ms). Computation times of the
ultrametrics are comparable to the runtimes of the competitor algorithms. I.e., building the DC tree is
on par with other density-based methods (highlighted in blue). Computation of the cluster hierarchies
and partitioning methods then takes only milliseconds. Full version: Table 5 in the Appendix.

ultrametric hier. partitioning competitors

Cover tree DC tree k-means Stab. MoE Elbow
k-means k-means

SCAR Ward
AMD-

DPC
Dataset (k = GT) (k = 500) DBSCAN

Ta
bu

la
rD

at
a

Boxes 0.059 s 14.239 s 33 ms 3 ms 134 ms 2 ms 0.114 s 1.217 s 1.481 s 10.808 s 1+04.670 s 12+10.358 s
D31 0.004 s 0.327 s 4 ms 0 ms 15 ms 0 ms 0.289 s 0.509 s 0.620 s 0.153 s 0.878 s 12.816 s
airway 0.027 s 4.997 s 21 ms 1 ms 85 ms 1 ms 0.122 s 0.392 s 0.651 s 5.243 s 16.822 s 6+46.726 s
lactate 0.161 s 47.731 s 68 ms 6 ms 275 ms 4 ms 0.126 s 1.997 s 2.612 s 59.992 s 7+43.293 s 69+34.012 s
HAR 11.053 s 23.144 s 14 ms 1 ms 56 ms 0 ms 2.248 s 8.478 s 0.658 s 18.448 s 30.129 s 3+45.745 s
letterrec. 0.322 s 9.076 s 22 ms 2 ms 87 ms 1 ms 3.386 s 3.521 s 2.133 s 10.309 s 37.055 s 11+42.910 s
PenDigits 0.067 s 2.566 s 13 ms 1 ms 53 ms 0 ms 1.001 s 2.725 s 0.490 s 3.281 s 9.254 s 3+21.409 s

Im
ag

e
D

at
a

COIL20 3.658 s 14.817 s 1 ms 0 ms 4 ms 0 ms 1.637 s 13.524 s 0.310 s 8.941 s 2.378 s 11.710 s
COIL100 3+52.397 s 14+50.661 s 10 ms 0 ms 39 ms 0 ms 32.122 s 1+59.225 s 7.964 s 12+04.037 s 2+58.177 s 14+18.780 s
cmu_faces 0.046 s 0.238 s 1 ms 0 ms 2 ms 0 ms 0.206 s 0.661 s 0.116 s 0.064 s 0.346 s 0.515 s
OptDigits 0.335 s 1.420 s 6 ms 0 ms 24 ms 0 ms 0.502 s 1.154 s 0.290 s 0.974 s 3.073 s 44.270 s
USPS 2.924 s 8.670 s 11 ms 1 ms 45 ms 0 ms 2.709 s 8.493 s 1.433 s 6.092 s 29.259 s 1+48.607 s
MNIST 16+24.220 s 37+05.095 s 120 ms 15 ms 491 ms 8 ms 4.320 s 3+29.969 s 15.352 s 19+02.498 s 17+21.183 s -

of the datasets we use. We evaluate the clustering quality with the adjusted rand index (ARI) [36],
treating points labeled as noise as singleton clusters. NMI [70], AMI [74] and correlation coefficient
[29] results can be found in Appendix E. Both our runtime and accuracy4 tables report the mean over
10 runs. All experiments were performed on 2x Intel 6326 with 16 cores each and 512GB RAM.

7.1 Runtimes

In practice, clustering is an exploratory data mining task that requires several runs of different
methods or using different hyperparameter settings. Especially when done sequentially, this requires
substantial computational time and resources. In contrast, our SHiP clustering framework requires
just a single upfront ultrametric computation, after which we can generate a myriad of different
clustering solutions with negligible additional runtime. Table 2 and Figure 3a highlight this efficiency.
The first column group in Table 2 shows that computing our ultrametrics (Cover tree and DC tree) has
a runtime comparable to that of the corresponding standard clustering algorithms (last column group).
Specifically, we show on the right (under competitors) the time required for Euclidean k-means
with ground-truth k, and Euclidean k-means with k = 500,5 Ward agglomerative clustering [77], an
adaptive multi-density DBSCAN version (AMD-DBSCAN) [76], density peaks clustering (DPC) [66],
and an accelerated version of spectral clustering (SCAR) [33]. However, once the ultrametric has
been computed, generating different hierarchies (column group 2) and partitioning methods (column
group 3) requires only milliseconds. Thus, users can explore many different clustering solutions in
essentially the same time it takes to run a traditional clustering algorithm.

7.2 Clustering Quality

This efficiency in switching between clusterings is particularly valuable given the results shown in
Table 3. Here, we study the quality of k-center/stability, k-median/MoE, and k-means/elbow on the
DC- and Cover tree ultrametrics and compare them against the competitor algorithms. Importantly,
k-means, Ward, and SCAR are all given the ground-truth k to maximize their competitiveness. In
comparison, even in the more realistic setting where the true number of clusters is unknown, we
can achieve better clustering performance than they do using the DC tree. However, there is no
best hierarchy/partitioning combination. Although k-means/elbow performs best in many cases, it
is not universally superior to the other combinations; different pairings excel on different datasets.
This underscores the value of rapidly switching between different hierarchies and also partitioning
methods.

Notably, Cover tree combinations consistently perform worse than Euclidean k-means, with compara-
ble results for KD trees and HST-DPOs in Appendix E. This raises the question of whether HSTs are

4For non-deterministic algorithms, we also provide the standard deviation for the clustering accuracy.
5Note that the SHiP clustering framework simultaneously obtains the optimal solutions for every value of k.
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always well-suited for representing the underlying cluster structure in data, and under what conditions
their use can effectively accelerate machine learning pipelines [18, 44, 53, 73].

If the ground truth number of clusters is given to our framework, k-median and k-means over the
dc-dist (essentially density-connected k-median and k-means) achieve even slightly better results
(see Table 6; Appendix). Furthermore, we point out that Ward agglomerative clustering is ultrametric
in nature and, therefore, falls under the umbrella of our framework [57].

Table 3: ARI values for the SHiP framework on the DC and Cover tree ultrametrics (resp. first/second
column group). ARI values for competitor algorithms are in the third column group. Euclidean
k-means, SCAR, and Ward are given the ground-truth k value. Full version: Table 6 in the Appendix.

DC tree Cover tree competitors
k-center k-median k-means k-center k-median k-means Eucl. SCAR Ward AMD- DPCDataset Stability MoE Elbow Stability MoE Elbow k-means DBSCAN

Ta
bu

la
rD

at
a

Boxes 90.1 99.3 97.9 2.6 42.1± 4.7 24.2± 1.6 93.5± 4.3 0.1± 0.1 95.8 63.9 25.9
D31 79.7 42.7 82.9 46.5± 1.8 62.0± 5.4 67.7± 3.2 92.0± 2.7 41.7± 5.4 92.0 86.4 18.5
airway 38.0 65.9 58.8 0.8 18.2± 2.4 12.0± 1.4 39.9± 2.0 −0.9± 0.5 43.7 31.7 65.1
lactate 41.0 41.0 67.5 0.1 4.1± 0.6 1.7± 0.2 28.6± 1.1 1.5± 1.0 27.7 71.5 0.0
HAR 30.0 46.9 52.8 14.7± 8.8 14.2± 4.7 9.6± 2.2 46.0± 4.5 5.5± 3.2 49.1 0.0 33.2
letterrec. 12.1 16.6 17.9 5.8± 0.2 7.2± 0.6 6.2± 0.3 12.9± 0.6 0.4± 0.1 14.7± 0.9 7.9 0.0
PenDigits 66.4 73.1 75.4 8.0± 0.8 12.0± 0.6 8.9± 0.5 55.3± 3.2 0.9± 0.3 55.2 55.6 28.8± 1.1

Im
ag

e
D

at
a

COIL20 81.2 72.8 72.6 46.4± 4.4 46.6± 2.1 47.7± 2.0 58.2± 2.8 33.5± 2.0 68.6 39.2 35.9± 0.1
COIL100 80.1 66.8 70.0 44.6± 4.2 46.6± 1.5 50.1± 1.2 56.1± 1.4 16.7± 0.8 61.4 14.2 0.2
cmu_faces 60.2 56.6 66.5 8.6± 3.1 37.1± 4.1 34.2± 2.1 53.2± 4.7 38.5± 2.9 61.6 0.7 0.6
OptDigits 55.3 77.0 77.0 40.9± 3.5 20.9± 2.3 18.1± 2.4 61.3± 6.6 14.4± 4.1 74.6± 2.4 63.2 0.0
USPS 33.7 29.3 29.3 12.0± 1.7 8.7± 1.0 11.2± 1.5 52.3± 1.7 2.9± 0.9 63.9 0.0 21.0
MNIST 19.7 41.7 46.0 11.1± 1.7 5.4± 0.6 5.4± 0.6 36.9± 1.0 1.3± 0.4 52.7 0.0 -

8 Conclusions and Limitations

This paper proposed and evaluated a generalization of standard hierarchical clustering. Our theoretical
contributions suggest new algorithms for hierarchical clustering under, for example, the Dasgupta
objective [22], as well as connections to spectral clustering [49]. We leave both to future work.
Furthermore, although our approach enables Sort(n)-time access to novel clustering hierarchies
after fitting an ultrametric, the initial ultrametric computation remains the performance bottleneck. A
key limitation is that the clustering quality depends significantly on this choice of ultrametric. I.e., we
find that the dc-dist consistently produces high-quality clusterings across different hierarchy/partition
combinations while HSTs produce subpar results. We therefore suggest that future work focuses on
developing fast algorithms for fitting ultrametrics which effectively model the data.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the paper’s main contributions: (1) proving
that center-based clustering objectives can be solved optimally in ultrametrics in Sort(n)
time, (2) demonstrating that these solutions form hierarchical structures, and (3) introducing
the SHiP framework with extensive experimental validation. These claims align with the
detailed theoretical results in Section 2-4 and the experimental results in Section 5-6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses computational limitations in the runtime analysis, ac-
knowledges that different ultrametrics produce different clustering structures (Figure 5),
and notes that HST implementations achieve worse performance than Euclidean k-means in
certain cases. The paper also acknowledges that fitting the ultrametric is computationally
intensive compared to the subsequent steps.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper states all assumptions about ultrametrics and center-based clus-
tering. Complete proofs for all theorems are provided in the appendices, while the main
paper provides proof sketches. The theoretical framework is built systematically, starting
with definitions of relaxed ultrametrics and LCA-trees (Section 3), then proving the main
theorems about optimal clustering (Section 4).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed information about the experimental setup,
dataset characteristics (Table 4), implementation details (Appendix C), and algorithm
specifications. It describes how ultrametrics are constructed, how hierarchies are de-
rived, and how partitions are extracted. The paper also mentions code availability at
https://github.com/pasiweber/SHiP-framework.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is provided at https://github.com/pasiweber/
SHiP-framework. The paper also uses standard benchmark datasets and third-party
implementations (mlpack for KD trees, Cover trees) with proper citations.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper details the experimental settings including dataset characteristics
(Table 4), implementation details (Section 5.3), parameter settings (e.g., µ=5 for dc-dist),
and evaluation metrics (ARI, NMI, AMI, correlation coefficient). The experimental setup
for comparing different combinations of ultrametrics, hierarchies, and partitioning methods
is clearly described.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports that results were obtained over ten runs as indicated in Tables
3 and 2. The comprehensive tables in the appendix provide detailed performance metrics
across multiple datasets and method combinations, allowing for comparison of relative
performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 5.3 specifies "All experiments were performed with Python 3.12 on 2x
Intel 6326 with 16 hyperthreaded cores each and 512GB RAM." Table 5 provides detailed
runtime information for each component of the framework across different datasets, reported
in minutes, seconds, and milliseconds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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Answer: [Yes]

Justification: The research presents algorithmic and theoretical contributions to clustering
methods without ethical concerns. The paper properly credits prior work, uses standard
benchmark datasets, and makes no claims that would violate the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents theoretical and algorithmic contributions to foundational
clustering methods without direct application-specific societal impacts. The work focuses on
improving computational efficiency and theoretical understanding of clustering algorithms.
Any impacts would be mediated through specific applications of clustering, which would
require additional context-specific consideration.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper introduces algorithms for clustering and doesn’t release high-risk
models or datasets that could be misused. The work focuses on theoretical results and
algorithmic improvements for clustering methods using standard benchmark datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the sources of existing algorithms and libraries used,
including mlpack for KD trees and Cover trees, and provides a URL for the HST-DPO
implementation. The standard benchmark datasets used are referenced in Table 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new clustering framework (SHiP) with detailed al-
gorithm descriptions, theoretical foundations, and implementation details. The code is
made available at https://github.com/pasiweber/SHiP-framework. The appendix
provides extensive documentation of the algorithms and their efficient implementation
(Algorithms 1-5 in Section 9).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve human subjects research, so IRB approval is not
applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs as part of its core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs for Sections 3 and 4

In this section, we prove Theorem 3.3, Corollary 3.4, and Theorem 4.2 from the main body of the
paper. We restate each here:
Theorem 3.3. Let (L, d′) be a finite relaxed ultrametric space. Then there exists LCA-tree T with
LCA-distance d and a bijection f : L ↔ leaves(T ) such that, for all `i, `j ∈ L, d′(`i, `j) =
d (f(`i) ∨ f(`j)).
Corollary 3.4. Let T be an LCA-tree. For any leaf ` ∈ T , let p(`) = [`, ηa, . . . , ηb, r(T )] be the path
from ` to the root of the tree r(T ). Then the LCA-distances on T form a relaxed ultrametric if and
only if, for all ` ∈ leaves(T ) and ηi, ηj ∈ p(`), the following conditions are satisfied:

(1) d(`) ≥ 0 and (2) ηi � ηj =⇒ d(ηi) ≤ d(ηj).

Theorem 4.2. Let (L, d) be a finite relaxed ultrametric space represented over an LCA-tree T . Let
n = |L| and z ∈ N>0. Then, for both the k-center and (k, z)-clustering objectives on T , there
exists an algorithm which finds the optimal solutions {C1, . . . ,Cn} for all k ∈ [n] in Sort(n) time.
Furthermore, the respective partitions H = {P1, . . . ,Pn} obtained by assigning all leaves in T to
their closest center satisfy Definition 4.1.

A.1 Overview of Ideas

We begin with a more thorough proof outline to the one that appears in the main body of the paper.

First, we will define a relaxation of ultrametrics and show a few immediate properties of these
spaces. Their key property is that there is essentially an equivalence relation induced by any relaxed
ultrametric: for any distance value d, the sets of points that are within distance d of each other
partition the space. This is a generalization of the ideas in Carlsson et al. [14].

We then show that all relaxed ultrametrics can be represented as lowest-common-ancestor-trees
(LCA-trees). These are rooted trees where every node has a value associated with it. The distance
between two leaves in an LCA-tree is the value in their lowest common ancestor. Furthermore,
all LCA-trees are (relaxed) ultrametrics if the values are monotonically non-decreasing along the
path from any leaf to the root (Corollary 3.4). As a result, there is a bijective relationship between
LCA-trees and ultrametrics (Theorem 3.3). We proceed by only considering ultrametrics in the
LCA-tree data structure.

We now consider the center-based clustering objectives over these LCA-trees. Here, a centers are
placed on leaves of the tree and the point-to-center distances are given by the LCA-distances. For
k-center, we will see that the well-known strategy of farthest-first traversal [31] (which achieves
a 2-approximation in Euclidean space) is actually optimal in ultrametrics. This algorithm works
by placing the first center on a random leaf and then, for each subsequent center, placing it on the
node which induces the highest cost. The intuition here is that the farthest-first traversal’s standard
2-approximation is a direct consequence of the triangle inequality, so changing this to the strong
triangle inequality resolves the approximation constant.

We now reduce the algorithm of farthest-first traversal in an ultrametric to sorting the nodes in the
LCA-tree. By placing this first center on any leaf, every other leaf in the tree gets mapped to it. Thus,
the largest point-center distance corresponds to two leaves whose LCA is the root of the tree. We
must therefore place our subsequent centers on leaves until there is no point-center distance which
goes through the root of the LCA-tree. This is done by placing centers in subtrees in which there
are no placed centers. After the root has been handled, we will place centers in accordance with
the root’s children, focusing on the one which has largest value first. By Corollary 3.4, it must be
the case that the LCA-tree’s values grow as we approach the root. Thus, the runtime being Sort(n)
comes from the fact that the farthest-first traversal algorithm “fills in” the tree from the root down. As
a result, we will solve k-center in an ultrametric by sorting the distances from largest to smallest and
placing the corresponding centers.

Given this, we will conclude the proof by showing how to reduce the general problem of (k, z)-
clustering (such as k-means) to this k-center algorithm. We will consider these through the lens of
the cost-decreases of placing k-means or k-median centers in an ultrametric. That is, if we have an
optimal solution for some value of k, then the optimal solution for k + 1 centers will have a lower
cost. Thus, there is a cost-decrease associated with placing each optimal center. Our key observation
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is that these cost-decreases themselves satisfy the strong triangle inequality. We will also show that
greedily choosing centers that maximize these cost-decreases gives optimal k-means and k-median
solutions in an ultrametric. Putting the pieces together, these results imply that we can apply the
k-center algorithm in the LCA-tree of cost-decreases to get optimal k-means and k-median solutions.

Notation. We use T to represent an arbitrary rooted tree with root r. We use η to represent arbitrary
internal nodes and ` to represent arbitrary leaves. We also assume that every internal node η in the
tree is equipped with a value, which we write by d(η). We use the notation ηi � ηj to indicate that
ηj lies on the path from ηi to r. We use children(η) and parent(η) to indicate the direct children and
parent of a node. Lastly, we use the notation from [22] with `i ∨ `j denoting the lowest common
ancestor (LCA) of a set of nodes/leaves and T [η] denoting the subtree rooted at η. Thus, T [`i ∨ `j ] is
the smallest subtree containing both `i and `j .

For notation on clustering, we define (k, z)-clustering as finding the set of centers C ∈ T with
|C| = k which minimize

Costz(T,C) =
∑

`∈leaves(T )

min
c∈C

d(`, c)z.

This corresponds to k-median and k-means for z = 1 and z = 2, respectively. We also define
k-center clustering as finding the C which minimizes

Cost∞(T,C) = max
`∈leaves(T )

min
c∈C

d(`, c).

A.2 Ultrametrics and LCA-Trees

In this section, we introduce relaxed ultrametrics and prove Theorem 3.3 and Corollary 3.4.

Throughout the literature, the stand-out candidate for a hierarchical (dis-)similarity measure is the
ultrametric. We will, however require a looser definition, which we refer to as a relaxed ultrametric:

Definition 3.1. Let L be a set. Then d : L × L → R≥0 is a relaxed ultrametric over L if, for all
`i, `j , `k ∈ L, the following conditions are satisfied:

(1) d(`i, `j) = d(`j , `i) ≥ 0 and (2) d(`i, `k) ≤ max(d(`i, `j), d(`j , `k)).

We will prove our results over these relaxed ultrametrics. We note that the set of ultrametrics is a
subset of the set of relaxed ultrametrics. That is, strict ultrametrics have the additional condition that
the distance between two points is 0 if and only if they are the same point. Thus, our theoretical
results immediately apply to all ultrametrics.

The strong triangle inequality in Definition 3.1 is what allows ultrametrics to capture hierarchical
relationships. Specifically, the strong triangle inequality implies that any three points in an ultrametric
space must form an isosceles triangle with an angle less than 60 degrees:

Fact A.1. Let d be a dissimilarity measure on a space L, which satisfies the strong triangle inequality.
Then for any `i, `j , `k ∈ L, one of the following holds:

1. d(`i, `j) ≤ d(`i, `k) = d(`j , `k)

2. d(`i, `k) ≤ d(`i, `j) = d(`j , `k)

3. d(`j , `k) ≤ d(`i, `j) = d(`i, `k)

Proof. Assume that all three are unequal, so WLOG d(`i, `j) < d(`i, `k) < d(`j , `k). Then the
strong triangle inequality does not hold, since d(`j , `k) 6≤ max(d(`i, `j), d(`i, `k)).

Similarly, assume that the singleton edge is longer than the two others, i.e. d(`i, `k) = d(`j , `k) <
d(`i, `j). This also breaks the strong triangle inequality, since d(`i, `j) 6≤ max(d(`i, `j), d(`j , `k)).
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As a result, for any three points in a relaxed ultrametric space, knowing two of the pairwise distances
is sufficient to give the ordering of all three. For example, if two of the distances in a triangle are
equal, then the third must be equal to this distance or smaller.

This naturally extends to groups of more than 3 points. Consider the case where we have n points
{x1, x2, . . . , xn} so that for any xi, xj , we have ultrametric distance d(xi, xj) < ε for any small
ε > 0. Now let y be a point with d(x1, y) = δ with δ � ε. Since the x’s are all close to one
another, Fact A.1 implies that d(xi, y) must also equal δ for all i. This has the following fundamental
consequences:

Theorem 3.3. Let (L, d′) be a finite relaxed ultrametric space. Then there exists LCA-tree T with
LCA-distance d and a bijection f : L ↔ leaves(T ) such that, for all `i, `j ∈ L, d′(`i, `j) =
d (f(`i) ∨ f(`j)).

We first put this in context before giving its proof. Theorem 3.3 states that any ultrametric can
be represented over the leaves of a tree, with the property that the distance between two leaves is
uniquely determined by the value in their LCA. We note that variants of this theorem have been given
elsewhere [45, 57, 58]; nonetheless, the results later in this section require the form given above. We
refer to this data structure as an LCA-tree and the “distances” in this tree as LCA-distances.

Proof. We use Fact A.1 to design an algorithm to construct the tree T by repeatedly splitting the
relaxed ultrametric over its largest distance dmax. First, let us see that dmax induces a partition over
L. Let `i ∈ L be any point and let L`i = {`j : d(`i, `j) < dmax} ∪ {`i} be the set consisting of `i
and all the points closer to it than dmax. Now let `k ∈ L \ L`i be any other point not in L`i . By
definition d(`i, `k) = dmax. Furthermore, by Fact A.1, d(`j , `k) = dmax for all `j ∈ L`i . Thus,
dmax induces a partition on a relaxed ultrametric where, across any two points in distinct clusters,
the distance is necessarily dmax.

We now use this idea to devise an algorithm that embeds the ultrametric in an LCA-tree. This
algorithm receives a relaxed ultrametric space (L, d) as input. It begins by instantiating a (initially
empty) root node r which will serve as the root of the LCA-tree. Let dmax be the largest distance
in (L, d) and let P be the partition induced by dmax. Assign d(r) = dmax. For each group in the
partition, make a node and assign it as a child of the root r.

We apply this construction recursively for each of the children. The base case occurs when L has
either one or two points. If there is only one point, xi ∈ L, we simply return a leaf `i. This leaf is
given weight d(`i) = d(`i, `i) and we define f(xi) = `i. If L has two points, xi and xj ∈ L, then
we create two leaves `i and `j as children of the input node. The mapping is arbitrarily defined as
f(xi) = `i and f(xj) = `j . We assign the input node with weight d(η) = d(xi, xj) and give the
leaves weights d(`i) = d(`i, `i) and d(`j) = d(`j , `j).

We inductively verify that this construction produces a valid LCA-tree and that all distances in the
relaxed ultrametric are preserved by the LCA-distances. In the base case, the space (L, d) has either
one or two points. We respectively represent these as a singleton root node or a rooted tree with two
children. In both cases, the value of the root is the distance between the two points and the distance
of each point to itself is the value in the leaves. Thus, in the base case, all pairwise distances in L are
preserved via the LCA-distances.

In the inductive step, assume that (L, d) has more than two points, that the maximal distance is dmax,
and that all smaller distances are represented via distinct trees. By the above logic, the distance
between any two nodes in separate trees must be dmax. Since the construction described above
assigns the value dmax to the root and assigns the existing trees to it as children, this new node is
a parent to the already-existing trees. Thus, their internal LCA-trees and LCA-distances are not
affected. However, the LCA between any nodes in separate subtrees has value dmax. Therefore, the
entire ultrametric (L, d) is preserved.

The following corollary gives the sufficient conditions for an LCA-tree to correspond to a relaxed
ultrametric:

Corollary 3.4. Let T be an LCA-tree. For any leaf ` ∈ T , let p(`) = [`, ηa, . . . , ηb, r(T )] be the path
from ` to the root of the tree r(T ). Then the LCA-distances on T form a relaxed ultrametric if and
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only if, for all ` ∈ leaves(T ) and ηi, ηj ∈ p(`), the following conditions are satisfied:

(1) d(`) ≥ 0 and (2) ηi � ηj =⇒ d(ηi) ≤ d(ηj).

Proof. We first assume that we have an LCA-tree satisfying the conditions and show that it must be a
relaxed ultrametric. First, note that the LCA-distances in the tree satisfy symmetry by the definition
of LCA: d(`i, `j) = d(LCA(`i, `j)) = d(`j , `i). Furthermore, conditions (1) and (2) together ensure
the non-negativity conditions required for a relaxed ultrametric. Therefore, it remains to show the
strong triangle inequality.

Let `i, `j and `k be three leaves in the LCA-tree. If they all have the same LCA (i.e., `i ∨ `j =
`j ∨ `k = `i ∨ `k), then the leaves are equidistant in the LCA-tree, and the strong triangle inequality
is satisfied. Thus, assume WLOG that `i ∨ `j � `i ∨ `k. This implies that `i ∨ `k = `j ∨ `k.
Consequently, the strong triangle inequality is satisfied:

`i ∨ `j � `i ∨ `k = `j ∨ `k =⇒
↑

By Assumption

d(`i ∨ `j) ≤ d(`i ∨ `k) = d(`j ∨ `k).

We now prove the other direction of the if-and-only-if: we assume an LCA-tree whose LCA-distances
are a relaxed ultrametric and show that it must satisfy conditions 1 and 2. By the non-negativity of
the ultrametric, the condition d(`) ≥ 0 is satisfied for all leaves `. Regarding the second condition,
assume for the sake of contradiction that it is not satisfied. Then we must have nodes ηi and ηj
with ηi � ηj and d(ηi) > d(ηj). We now choose leaves `i, `′i and `j so that `i ∨ `′i = ηi and
`i ∨ `j = `′i ∨ `j = ηj . Then we have d(`i, `j) = d(`′i, `j) < d(`i, `

′
i).

This is in violation of Fact A.1 and therefore contradicts our assumption that the LCA-distances are
ultrametric.

As a result of Corollary 3.4, if we wish to show that a tree’s LCA-distances satisfy the strong triangle
inequality, we need to show that the tree’s values are non-decreasing on paths from the leaves to
the root. Going forward, every discussion of ultrametrics will implicitly be through their LCA-tree
representation.

A.3 k-Center in Ultrametrics

A.3.1 Structure of a Center-Based Solution

We first describe how cluster memberships are defined in an LCA-tree. Recall that centers are placed
on leaves and a cluster is the set of points which is closest to a center. Since many of the center-to-leaf
relationships are equidistant in an LCA-tree, we use the “marking” procedure from [18] to define a
consistent notion of cluster attribution.

Let C = [c1, . . . ck] be k arbitrarily ordered centers that correspond to distinct leaves in the LCA-tree.
We obtain the cluster memberships Ci = {` ∈ T : ci = argminc∈C d(`, c)} by adding the centers
in the given order and, for each center placed, marking the nodes in the tree from the corresponding
leaf to its lowest unmarked ancestor. Thus, if we place center ci in a leaf node, we go up the tree
towards the root and mark every node with “Ci” until we hit a previously marked node. Leaves are
then assigned to clusters by finding their lowest marked ancestor. An example is shown in Figure 5a,
where we first place a center in subtree T1 and mark every node on the path from the center to the
root with C1. We then add the second center in subtree T2 and mark along its path to the root until
we reach an already-marked node. We therefore have that the leaves in T1 ∪ T3 belong to cluster C1

and the leaves in T2 belong to cluster C2.

Put simply, if a node η is marked, then there is a center in T [η]. We note that this attribution of leaves
to centers applies in both the k-center and the (k, z)-clustering settings and is independent of the
algorithm used to obtain the centers.

Interestingly, the number of optimal center-based clustering solutions in any LCA-tree is necessarily
exponential in k. This is shown in Figure 5b: the set of distances from leaves in the tree to ci does
not change regardless of whether we place ci on `i, `j or `k. When describing optimal solutions,
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(a) A visualization of the marking procedure. We first place center c1 and
mark every node from it to the root. We then place center c2 and mark
every node from it to its lowest unmarked ancestor.
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(b) The cost of the clustering does
not depend on which leaf the cen-
ter ci is assigned to.

Figure 5: A visualization of how leaves get assigned to centers in the LCA-tree.

we consider them equivalent up to such swaps in the last layer of the tree. We discuss heuristics for
choosing the “best” of these optimal solutions in Appendix C.1.2.

We lastly formalize the notion of hierarchical clusters:

Definition 4.1. (Lin et al. [48]) A cluster hierarchy H = {P1, . . . ,Pn} is a set of partitions where

for k = 1 : P1 ⊆ L, and
for 1 < k ≤ n : Pk = (Pk−1 \ Ci) ∪ {Cj , Cl}, such that (a) Ci = Cj ∪ Cl ∈ Pk−1

with Cj ∩ Cl = ∅, (b) Cj 6= Ci and Cl 6= Ci, and (c) i 6= j 6= l.

In short, a hierarchical set of solutions means that the clustering in Pk is the same as the one at Pk−1

except that a single cluster was split apart. We say a cluster Ci ∈ H if ∃ Pj ∈ H with Ci ∈ Pj .

A.3.2 k-Center in LCA-trees

We now develop our center-based clustering algorithms in LCA-trees, starting with the k-center
clustering task. Recall that the k-center objective requires finding k centers that minimize

Cost∞(T,C) = max
`∈T

min
c∈C

Dist(`, c).

Using the marking construction, we can succinctly state the cost of any k-center solution in an
LCA-tree:

Fact A.2. Let C be a set of centers in an LCA-tree T . Let η be the most expensive marked node in T
with at least one unmarked child. Then Cost∞(T,C) = d(η).

Proof. We will show a bijection between the leaf-to-center distances induced by solution C and the
nodes which are marked and have an unmarked child. Since the cost of a k-center solution is the
maximum over all such leaf-to-center distances, it will therefore be the maximum-valued such node.

First, we show that all leaf-to-center distances are contained in nodes which are both (a) marked and
(b) have an unmarked child. Let c be any center in C and let ` be any leaf that is closest to center
c, i.e., c = argminc′∈C d(`, c′). Let η = c ∨ `. Then condition (a) is true of η by definition of the
marking procedure: notice that c∨ `j is marked for all leaves `j ∈ T . To see why (b) is true, consider
that if every child of η is marked, then c could not have been the closest center to `i (by Corollary
3.4).

It similarly holds that all nodes which are marked and have an unmarked child correspond to a
leaf-to-center assignment. I.e., any such node η is marked, implying there is a center in T [η]. η also
has an unmarked child. Consequently, there is a leaf ` ∈ T [η] whose LCA with the center-set is η.

Thus, the k-center cost is equal to the maximum leaf-to-center distance. As shown above, this in turn
is equivalent to the maximum value among nodes which are marked and have an unmarked child.
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Farthest-First Traversal. Although the k-center task is NP-hard in the general metric setting,
Fact A.2 allows us to solve it optimally (and almost trivially) in an LCA-tree using the farthest-first
traversal algorithm [32, 28, 31].

We implement farthest-first traversal in an LCA-tree as follows. We assign the first center to a random
leaf in the tree. For each subsequent center, we find the node whose value is equal to the cost of the
solution (per Fact A.2). This node must have at least one unmarked child. We therefore choose one
of these unmarked children at random and place the next center at a random leaf in it. We do this
iteratively until we have placed n centers. This is formalized in Algorithm 1. By Corollary 3.4, this
algorithm will only place a center for the subtree at node η if it has already placed a center for the
subtree at parent(η).

Algorithm 1 LCA-tree Farthest First Traversal
Input: LCA-tree T

1: Place first center on random leaf and mark T accordingly
2: while unmarked node exists do
3: ηi = highest value marked node with at least one unmarked child
4: while ηi has unmarked child ηj do
5: Place a center on random leaf in T [ηj ] and mark T accordingly
6: end while
7: end while
8: Return centers

Lemma A.3. Let T be an LCA-tree satisfying the conditions in Corollary 3.4 and let k ∈ [n]. Then
the farthest-first traversal algorithm finds the optimal k-center solution in T .

Proof. Let k be any value in [n− 1] (if k = n, there is only one solution which is trivially optimal).
Assume for contradiction that the ‘greedy’ k-center solution Cg which is obtained by farthest-first
traversal is not optimal. Then there must be another clustering Co of k centers that is actually
optimal, i.e. Cost∞(T,Co) < Cost∞(T,Cg). The two solutions must differ by at least one center
placement and, consequently, the sets of nodes which these solutions mark must also differ. Let η be
the maximum value node which is marked in Cg but not in Co.

Since Co did not mark η, we have Cost∞(T,Co) ≥ d(parent(η)) ≥ d(η) by Fact A.2 and Corollary
3.4. However, Cg has marked η. Furthermore, for all nodes η′ ∈ T with d(η′) > d(η), Algorithm
1 has necessarily placed a center in T [η′] (otherwise it would not have reached the state where it
placed a center on T [η]). Therefore, we must have Cost∞(T,Cg) ≤ d(η). This gives the desired
contradiction.

Interestingly, this correctness proof does not depend on which leaf gets chosen as the center in a
subtree – just that any leaf is chosen. Also, the solutions induced by this clustering are necessarily
hierarchical:

Corollary A.4. Let {C1, . . . ,Cn} be the sets of k-center solutions obtained by Algorithm 1. Let
the respective partitions be H = {P1, . . . ,Pn} obtained by assigning all leaves in T to their closest
center in each solution. Then H satisfies Definition 4.1.

Proof. For k = 1, all leaves belong to a single center. Now assume we have the farthest-first traversal
solution Ck for some 1 < k ≤ n− 1 and are placing the next center ck+1. This center will be placed
in the subtree belonging to an unmarked node η whose parent is marked. Before placing ck+1, all of
T [η] belonged to a single center in Ck per the marking procedure. After placing ck+1, all of T [η]
belongs to it. Thus, one cluster which was present in the Ck solution was split into two clusters.

Unfortunately, the naive farthest-first algorithm may take O(n2) time to obtain all clusterings for
k ∈ {1, . . . , n} since, when placing center ci, we may have to search through O(n) nodes to find the
one with the next-highest cost. However, we can improve this to Sort(n) time – the time it takes to
sort a list of the O(n) values in the LCA-tree – by noting that the nodes’ values grow as we go up the
tree. Thus, it is sufficient to sort the internal nodes by these costs and then place their corresponding
centers in that order. The following lemma formalizes this intuition:
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Lemma A.5. There exists an algorithm that performs farthest-first traversal in an LCA-tree in
Sort(n) time.

Proof. Before providing the algorithm, we first give an overview of the ideas which facilitate it.
Assume we have placed k − 1 centers and are placing the k-th one. If the cost is induced by node η,
then this means that at least one of η’s children is marked and at least one is unmarked. Let ηm be the
marked one and ηu be the unmarked one. We must therefore place a center in T [ηu] in order to shrink
the cost induced by d(η). We refer to the leaf where this center will be placed as η’s corresponding
center.

Thus, our algorithm must separate the nodes in the tree into two components. Either a node gets
marked when a center is placed in its parent’s subtree or it will have a center placed in its subtree.
This partitioning is accomplished by Algorithm 2: at a given node η, Algorithm 3 assigns η’s
corresponding center as the corresponding center of its left-most child. For η’s remaining children,
we store their value in a global dictionary. Algorithm 2 finally returns the dictionary of nodes in the
tree and their values. This requires a single depth-first search and therefore Algorithm 2 runs in O(n)
time.

Given the output of Algorithm 2, we have a list of all the nodes whose corresponding centers must be
placed. We now notice that, when placing the k-th center in accordance with the cost d(η), we have
necessarily placed the centers with respect to η’s parent (per Corollary 3.4 and Fact A.2). Thus, we
can simply sort these nodes by their costs and place the corresponding centers in this order. This is
done by Algorithm 3 and runs in Sort(n) time.

Algorithm 2 CorrespondingCenters
Input: node η in an LCA-tree; dict Costs mapping nodes to distances; dict c mapping nodes to
corresponding centers

1: if η is leaf then
2: c[η] = η
3: Return
4: end if

5: ChildCount = 0
6: for η′ ∈ children(η) do
7: CorrespondingCenters(η′, Costs)
8: if ChildCount = 0 then
9: c[η] = c[η′]

10: else
11: Costs[η′] = d(η)
12: end if
13: ChildCount += 1
14: end for
15: Return

Algorithm 3 Ultrametric-kCenter
Input: LCA-tree T

1: Costs, c = { }, { }
2: CorrespondingCenters(T .root, Costs, c) // assume pass-by-reference
3: Costs = OrderedDict(Costs) // sorted from largest to smallest
4: for η ∈ Costs do
5: Place center at c[η]
6: end for

In this sense, the hierarchy of optimal k-center solutions is essentially isomorphic to the LCA-tree.
I.e. in the k-center hierarchy, the costs are precisely equal to the values of the nodes and we place
centers which correspond to nodes ordered by their value. Thus, given a binary LCA-tree, its k-center
hierarchy is necessarily equivalent to it.
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Together, Lemma A.3, Corollary A.4 and Lemma A.5 prove the following statement about k-center
in LCA-trees.

Theorem A.6. Let T be an LCA-tree satisfying the conditions in Corollary 3.4 and n be the number of
leaves in T . Then there exists an algorithm which finds the optimal k-center solutions {C1, . . . ,Cn}
for all k ∈ Nn in Sort(n) time. Furthermore, the respective partitions H = {P1, . . . ,Pn} obtained
by assigning all leaves in T to their closest center satisfy Definition 4.1.

We lastly note that this runtime is tight:

Lemma A.7. Let T be an LCA-tree satisfying the conditions in Corollary 3.4. Then there is a worst-
case instance on which one cannot find all the optimal k-center solutions on T for k ∈ {1, . . . , n} in
faster than Sort(n) time.

Proof. Consider a rooted tree that is complete and balanced: every leaf is at the same depth, and
every internal node has two children. Let the leaves all be at depth w, so that there are 2w leaves.
Starting at depth w, assign the leaves’ unique values from 1 to 2w. Then, for the nodes at depth w− 1,
assign them unique values from 2w + 1 to 2w + 2w−1. Continue this process until we reach the root
node, to which we assign value 2w+1. As a result, we visit the tree’s nodes one-by-one from the
lowest level to the root and maintain a counter of the number of visited nodes. Each node is assigned
the value of the counter when it is visited.

Labeling the nodes by these values necessarily gives us an LCA-tree: all values are non-negative, and
values are non-decreasing along paths from the leaves to the root. Furthermore, all internal nodes
at depth i have distinct values. Suppose we are now performing k-center and have placed centers
for all the nodes at depth w − 1 but have not yet for the nodes at depth w. There are, therefore,
O(n) available nodes on which to place centers. Of these, only one has the maximum leaf-to-center
distance and therefore induces the cost.

Thus, we cannot place the remaining O(n) centers faster than the time it takes to sort the remaining
leaves’ parents by their costs.

A.4 (k, z)-clustering in LCA-trees

The result for k-center essentially boils down to the speed and optimality of the classic 2-
approximation when applied in an ultrametric. We now turn to the more interesting result that
the optimal (k, z)-clustering solutions behave very similarly to the optimal k-center ones:

Theorem A.8. Let T be an LCA-tree satisfying the conditions in Corollary 3.4, n be the number
of leaves in T , and z be any positive integer. Then there exists an algorithm which finds the
optimal (k, z)-clustering solutions {C1, . . . ,Cn} for all k ∈ Nn in Sort(n) time. Furthermore, the
respective partitions H = {P1, . . . ,Pn} obtained by assigning all leaves in T to their closest center
satisfy Definition 4.1. are hierarchical.

A.4.1 Optimal (k, z) Centers in Subtrees.

We start by considering what happens when we have a (k − 1, z)-clustering solution in an LCA-tree
and place the k-th optimal center. Placing this center will create a trail of markings from the leaf up
until the first marked node along the path to the root. The key insight which we will utilize is that this
center is necessarily optimal everywhere along this trail:

Lemma A.9. Let cz = OPT1,z(T ) be an optimal (1, z)-clustering solution for LCA-tree T . Then
for every subtree T ′ ⊂ T such that cz ∈ T ′, cz is an optimal (1, z)-clustering solution for T ′.

Proof. We show this inductively. The base case is the trivial LCA-tree of one node where, inherently,
the only choice of the center is optimal, and there are no subtrees. For the inductive case, consider
LCA-tree T whose root has k children, such that each child has an optimal center placed within it.
Our goal is to show that if we were to have one center for all of T , the optimum would be one of the
k centers in its subtrees.

If we only had one center to place for all of T , that center must be in one of its subtrees. WLOG,
let the optimal center for T be in the subtree T1. Thus, our cost for one center is necessarily of
the form cost1(T ) = cost1(T1) +

∑k
i=2 |Ti| · d(root(T ))z , where |Ti| is the number of leaves in
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the i-th subtree of T . By the inductive hypothesis, we already had an optimal center for subtree
T1, implying that cost1(T1) is minimized by choosing the optimal center in T1. The other term∑k

i=2 |Ti| · d(root(T ))z does not depend on where in T1 the center is placed. Therefore, the optimal
center from T1 remains optimal for T .

The key thing to note about Lemma A.9 is that it must also apply to all internal nodes of an LCA-tree.
I.e., suppose we place an optimal center with respect to the unmarked subtree T ′ ⊂ T . Since T ′

is unmarked, Lemma A.9 holds for T ′. Consequently, every internal node in the LCA-tree has an
optimal center (leaf) associated with it. We give this its own definition:

Definition A.10. Let T be an LCA-tree satisfying the conditions in Corollary 3.4, let η be a node in
T , and let z be a positive integer. Then η’s corresponding z-center is cz(η) = OPT1,z(T [η]).

Lemma A.9 is the key property of (k, z)-clustering in ultrametric spaces that makes the entire proof
go through. To illustrate its effectiveness, consider the Euclidean 1-means setting on a dataset of two
clearly separated clusters. The Euclidean mean falls between the two clusters. In contrast, Lemma
A.9 says that, in the ultrametric setting, the optimal 1-means solution is not only located within one
of the two cluster, but that it is optimal for the cluster in which it is located. In practice, this means
that after placing an optimal center, we can essentially forget about it – it is guaranteed to be optimal
for any set of points it serves.

Overview of Proof for Theorem A.8. We now give a simple blueprint illustrating how we use this
for fast, optimal (k, z)-clustering. Assume we have placed the first center and have left a set of nodes
unmarked. For each such unmarked node, we can determine its optimal center as well as how much
the subtree’s (k, z)-clustering cost would decrease by placing this center. Curiously, an application of
Lemma A.9 shows that these cost-decreases themselves satisfy the strong triangle inequality. Another
application of Lemma A.9 then allows us to show that greedily choosing the maximum cost-decrease
gives an optimal (k, z)-clustering solution in an LCA-tree. As a result, we can apply a variant of the
k-center algorithm to the LCA-tree of cost decreases.

Notation. We require additional notation to simplify the presentation. Let us define the cost of a
node as

NodeCost(η, z) = |T [η]| · d(parent(η))z,

where |T [η]| is the number of leaves in the subtree rooted at η. This represents the cost contributed
by η’s leaves when η is unmarked, but its parent is marked. In essence, this is the cost of T [η] in a
(k, z)-clustering solution if there is no center in T [η]. Similarly, we define the cost decrease at η as

CostDecrease(η, z) = NodeCost(η, z)− Cost(T [η], cz(η)),

where Cost(T [η], cz(η)) =
∑

`∈leaves(T [η]) d(`, cz(η))
z . Here, cz(η) is η’s corresponding z-center.

We define the cost-decrease of the root node to be infinite.

In essence, the cost-decrease quantifies how much placing an optimal center in T [η] would decrease
the subtree’s total cost. Importantly, the cost-decrease of a node η assumes that parent(η) – the node
directly above η – is marked. We will see in Lemma A.13 that this is a reasonable assumption: every
useful center we will place in the (k, z)-clustering setting will always have a marked parent.

A.4.2 Proving Theorem A.8.

First, we see that all of the corresponding z-centers can be found in O(n) time on an LCA-tree:

Lemma A.11. Let T be an LCA-tree satisfying the conditions in Corollary 3.4. Then there exists an
algorithm which, for all η ∈ T , finds cz(η) and Cost(T [η], cz(η)) in O(n) time. Furthermore, this
algorithm stores the cost-decrease for all nodes η′ for which cz(η

′) 6= cz(parent(η′)).

Proof. This is accomplished by Algorithm 4, which is essentially a depth-first implementation of
Lemma A.9’s proof.
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Algorithm 4 Corresponding-z-Centers
Input: node η in an LCA-tree; dict Costs mapping nodes to their ; dict CostDecreases mapping
nodes to their cost decrease; dict cz mapping nodes to their corresponding-z-centers

1: if η is leaf then
2: cz[η] = η
3: Costs[η] = d(η)
4: Return
5: end if

6: if η is root then
7: ParentDist = d(η) + 1
8: CostDecreases[η] = ∞
9: else

10: ParentDist = d(parent(η))
11: end if

12: SumOfCosts =
∑

η′∈children(η) |T [η′]| · d(η)
13: CostIfChosen = {η′: 0 for η′ ∈ children(η)}
14: ChildCostDecreases = {η′: 0 for η′ ∈ children(η)}
15: for η′ ∈ children(η) do
16: Corresponding-z-Centers(η′, Costs, CostDecreases, cz)
17: CostIfChosen[η′] = SumOfCosts −|T [η′]| · d(η) + Costs[η′]
18: ChildCostDecreases[η′] = |T [η]|·ParentDist - CostIfChosen[η′]
19: end for

20: ChosenChild = argmax(ChildCostDecreases)
21: cz[η] = cz[ChosenChild]
22: Costs[η] = CostIfChosen[ChosenChild]
23: for η′ ∈ children(η) such that η′ is not ChosenChild do
24: CostDecreases[η′] = |T [η′]| · d(η)
25: end for
26: Return

We prove by induction that Algorithm 4 finds the costs for all internal nodes. In the base case, our
current node η is a leaf. Thus, η’s corresponding z-center is η and the cost of η to this center is simply
d(η).

We now essentially reuse the logic from Lemma A.9 to prove the inductive step. We begin the
inductive step with a node η along with the costs and corresponding z-centers of each of η’s children.
That is, for all η′ ∈ children(η), we have access to both cz(η) and Cost(T [η′], cz(η′)). We now seek
the optimal center for η and what the cost would be in T [η] after placing this center. By Lemma A.9,
we know that the optimal center for η is one of its children’s corresponding z-centers. I.e., cz(η)
must be equal to cz(η

′) for one of the children η′. We, therefore, test what the cost would be if we
placed the center at each of the children and chose the minimum. By Lemma A.9, this center must be
optimal. We therefore record the cost of placing this center in η, concluding the correctness proof.

Since this is done by depth-first search, the algorithm runs in O(n) time.

Rather than thinking about corresponding z-centers as those which minimize the cost, we will instead
think of them through the equivalent notion of the centers which maximize the cost-decrease. The next
lemma shows the peculiar property that these cost-decreases themselves form a relaxed ultrametric:

Lemma A.12. Let T be an ultrametric LCA-tree which satisfies the conditions in Corollary 3.4 and
let T ′ be the LCA-tree obtained by replacing all values in T by the cost-decreases. I.e., for all η ∈ T ′,
d(η) = CostDecrease(η, z). Then, the LCA-distances over T ′ also satisfy the conditions in Corollary
3.4.

Proof. By Corollary 3.4, showing that T ′ satisfies the strong triangle inequality simply requires
verifying that the cost-decreases are non-negative and monotonically non-decreasing along any
leaf-root path in T ′. We first show that they are monotonically non-decreasing.
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Let η be an unmarked node with h children whose parent is marked. We now place the optimal
center cz in T [η]. WLOG, this center must land in one of η’s children’s subtrees. Call this child ηc,
implying that cz(η) = cz(ηc). We now show that the cost-decrease of η is greater than or equal to
the cost decrease of ηc by separating CostDecrease(η, z) into a sum of terms, of which ηc is a subset:

CostDecrease(η, z) = NodeCost(η, z)− Cost(T [η], cz(η))

=

|T [ηc]| · d(parent(η))z +
∑

η′∈children(η)
η′ 6=ηc

|T [η′]| · d(parent(η))z


− Cost(T [η], cz(η))

=

|T [ηc]| · d(parent(η))z +
∑

η′∈children(η)
η′ 6=ηc

|T [η′]| · d(parent(η))z



−

Cost(T [ηc], cz(η)) +
∑

η′∈children(η)
η′ 6=ηc

|T [η′]|d(η)z



≥

NodeCost(ηc, z) +
∑

η′∈children(η)
η′ 6=ηc

|T [η′]| · d(parent(η))z

−

Cost(T [ηc], cz(η)) +
∑

η′∈children(η)
η′ 6=ηc

|T [η′]|d(η)z


= (NodeCost(ηc, z)− Cost(T [ηc], cz(η)))

+
∑

η′∈children(η)
η′ 6=ηc

|T [η′]| · (d(parent(η))z − d(η)z)

= CostDecrease(ηc, z) +
∑

η′∈children(η)
η′ 6=ηc

|T [η′]| · (d(parent(η))z − d(η)z)

≥ CostDecrease(ηc, z),

where both inequalities are due to d(parent(η)) ≥ d(η). It must also be the case that
CostDecrease(η) ≥ CostDecrease(η′), where η′ 6= ηc is any other child of η. This is by transi-
tivity, since CostDecrease(ηc) ≥ CostDecrease(η′) by Lemma A.9. Thus, the cost-decreases are
monotonically non-decreasing along paths from the leaves to the root.

It remains to be shown that the cost-decreases are necessarily non-negative. For this, we rely on
the fact that the original distances in T are non-negative. Since we already know that they are
monotonically non-decreasing, we must only show that the cost-decrease of placing a center at a
leaf is non-negative. To this end, let ` be any leaf. By Corollary 3.4. Then CostDecrease(`, z) =
NodeCost(`, z) − Cost(T [`], cz(`)). However, Cost(T [`], cz(`)) = d(`) while NodeCost(`, z) ≥
d(parent(`)). Thus, CostDecrease(`, z) ≥ d(parent(`))− d(`) ≥ 0.

We note that the cost-decrease at a leaf ` is not necessarily 0, meaning that the LCA-tree of cost
decreases is not an ultrametric (but still a relaxed ultrametric). This is why we required the definition
of relaxed ultrametrics rather than standard ones.
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The next lemma shows that not only do these cost-decreases satisfy the conditions in Corollary
3.4, but they are also monotonically increasing in all relevant settings. In other words, if T [η1] has
non-zero cost, then placing a center there decreases this cost by a non-zero amount.
Lemma A.13. Let T be an ultrametric LCA-tree satisfying the conditions in Corollary 3.4 and
let z be a positive integer. For any leaf ` ∈ T , let p(`) = [`, ηi, . . . , ηj , r(T )] be the path from `
to the root. Then for all η1, η2 ∈ p(`) such that d(η1) > 0, η1 � η2 =⇒ CostDecrease(η1) <
CostDecrease(η2).

Proof. By Lemma A.12, we know that the cost decreases are monotonically non-decreasing along
paths to the root. Thus, it remains to show that the cost-decrease at a node η1 is non-zero if d(η1) > 0.
To do this, we first decompose the cost-decrease at η:

CostDecrease(η1) = NodeCost(η1)− Cost(T [η1], cz(η1))
= |T [η1]| · d(parent(η1))− Cost(T [η1], cz(η1))

= d(parent(η1)) ·

 ∑
η′∈children(η1)

|T [η′]|

− Cost(T [η1], cz(η1)).

Now, let ηc be the child of η1 containing cz(η1). Much as in the proof of Lemma A.12, we rewrite
the above in terms of the costs in ηc and the costs in the other children:

CostDecrease(η1) = d(parent(η1)) ·

|T [ηc]|+
∑

η′∈children(η1)
η′ 6=ηc

|T [η′]|



− Cost(T [ηc], cz(η1))− d(η1) ·

 ∑
η′∈children(η1)

η′ 6=ηc

|T [η′]|



=

 ∑
η′∈children(η1)

η′ 6=ηc

|T [η′]|

 · (d(parent(η1))− d(η1))

+ d(parent(η1)) · |T [ηc]| − Cost(T [ηc], cz(η1))
≥ d(parent(η1)) · |T [ηc]| − Cost(T [ηc], cz(η1))
≥ d(parent(η1)) · |T [ηc]|
≥ d(η1) · |T [ηc]|
> 0

where the first inequality is by the fact that d(η1) ≤ d(parent(η1)), the second is due to the fact that
the costs are strictly non-negative, the third is by the fact that d(parent(η1)) > d(η1), and the fourth
inequality is by the assumption that d(η1) > 0.

Lemma A.13 allows us to address the fact that the cost-decrease at a node η was defined under the
assumption that η’s parent is marked. By Lemma A.13, the cost decreases are either strictly increasing
along paths to the root or are 0. Thus, if two nodes have equivalent non-zero cost-decreases, their
subtrees must be disjoint.8 As a result, when we go through the nodes sorted by their cost-decreases,
it will always be the case that the next node we place will either have its parent marked or will have a
cost-decrease of 0 (in which case it is irrelevant in terms of the optimal solutions).

We finally move to our last lemma, which shows that greedily maximizing cost-decreases results in
an optimal (k, z)-clustering over the LCA-tree.

8Formally, for two nodes η1, η2 ∈ T with CostDecrease(η1) > 0 and CostDecrease(η2) > 0, we have that
CostDecrease(η1) = CostDecrease(η2) =⇒ T [η1] ∩ T [η2] = ∅.
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Lemma A.14. The optimal (k, z)-clustering solution over an LCA-tree can be obtained by greedily
choosing the k centers that, at each step, maximize the cost-decrease.

Proof. We show this by contradiction. Consider that there is a solution that was obtained greedily
and another, different one that is actually optimal. We now map every center in the “optimal” solution
to its closest center in the “greedy” one and observe how the optimal solution’s cost changes. There
are two cases that can occur: either all of the greedy centers receive one optimal center each, or there
is at least one greedy center that receives more than one optimal center and another that receives
none.

We start with the case where each greedy center cg has one optimal center co mapped to it. By
definition, co must be in the set of points that are assigned to cg. Thus, it is either (a) in T [cg]
or (b) in another subtree whose parent was marked by cg. In case (a), Lemma A.9 states that the
greedy algorithm must have chosen co. In case (b), by the greedy algorithm, T [cg] has greater cost
minimization than T [co]. Thus, we can decrease the cost of the optimal solution by replacing co with
cg, giving a contradiction. Therefore, we conclude that if one optimal center was mapped to each
greedy center, then the solutions must be equivalent.

It remains to consider the case where more than one optimal center was mapped to a greedy center cg .
WLOG, let there be two optimal centers c1o and c2o that are mapped to cg. By a similar argument as
above, cg must be the same as one of these optimal centers, i.e. cg = c1o. By extension, c2o 6= cg . Now
consider the greedy center elsewhere in the tree that had no optimal center mapped to it. Call this
center c′g. This means that the greedy algorithm had both T [c2o] and T [c′g] available to it but chose
T [c′g]. Thus, CostDecrease(T [c2o]) < CostDecrease(T [c′g]). We can therefore decrease the cost of
the optimal solution by replacing center c2o with center c′g . This gives the desired contradiction.

This brings us to the primary result of this chapter, restated from before:
Theorem A.8. Let T be an LCA-tree satisfying the conditions in Corollary 3.4, n be the number
of leaves in T , and z be any positive integer. Then there exists an algorithm which finds the
optimal (k, z)-clustering solutions {C1, . . . ,Cn} for all k ∈ Nn in Sort(n) time. Furthermore, the
respective partitions H = {P1, . . . ,Pn} obtained by assigning all leaves in T to their closest center
satisfy Definition 4.1. are hierarchical.

Proof. We use Algorithm 4 from Lemma A.11 to find the cost-decreases for (k, z)-clustering in the
LCA-tree. By Lemma A.12, these satisfy the strong triangle inequality. Furthermore, by Lemma
A.14, greedily choosing centers that maximize the cost-decreases gives an optimal (k, z)-clustering.

Thus, running farthest-first traversal on the cost-decrease LCA-tree will give the partitions for
(k, z)-clustering solutions. This guarantees that the corresponding partitions are hierarchical.

However, we must be careful about where we place the centers: while running a naive farthest-first
traversal on the cost-decrease LCA-tree will give the partitions of the optimal (k, z)-clustering
solutions, it will not necessarily give the optimal centers. This is due to the fact that the farthest-first
traversal is optimal regardless of which center we pick for every subtree. Luckily, we have already
addressed this. When considering the LCA-tree of cost-decreases, we have a mapping between every
cost-decrease and the center that induces it. Thus, we will perform the farthest-first traversal by
placing the nodes’ corresponding z-centers. This ensures that both the partition and the centers align
with the optimal (k, z)-clustering solutions.

Putting this all together, our final algorithm – Algorithm 5 – is quite simple. We first run Algorithm
4 to return a list of nodes and their cost-decreases. Importantly, Algorithm 4 returns only the cost-
decreases for those nodes η′ with cz(η

′) 6= cz(parent(η′)). We then sort this list in Sort(n) time.
By the discussion after Lemma A.13’s proof, we can safely go through this list and place the nodes’
corresponding z-centers: the nodes with non-zero cost-decrease will always have their parent marked.
The nodes with zero cost-decrease come at the end of the sorted list and do not affect the optimality
of the solution. By Lemma A.9, each corresponding z-center is immediately optimal in every node
that it marks. Thus, Algorithm 5 optimally solves the (k, z)-clustering objective in LCA-trees which
satisfy the conditions in Corollary 3.4. The bottleneck in this algorithm remains the time to sort the
O(n) internal values in the LCA-tree.

35



Algorithm 5 Ultrametric-kz
Input: LCA-tree T

1: Costs, CostDecreases, cz = { }, { }, { }
2: Corresponding-z-Centers(T .root, Costs, CostDecreases, cz) // pass-by-reference
3: CostDecreases = OrderedDict(CostDecreases)
4: for η ∈ CostDecreases do
5: Place center at cz(η)
6: end for

Together, Theorems A.6 and A.8 prove Theorem 4.2 from the main body of the paper.

B Further Details for Section 5 - Choosing a Partition

B.1 Ultrametric Elbow Method
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Figure 6: Left: an example hierarchy H = {P1,P2, . . .}; P ′ 6∈ H is then an example partition which
belongs to H. Right: P ′′ is not a partition since `2 and `3 each belong to clusters C2 and C5.

We begin by quickly showing Corollary 5.1, which holds as a direct consequence of Lemma A.13 in
Section A.4:
Corollary 5.1. Let P and L correspond to the n partitions and losses obtained in accordance with
Theorem 4.2 for the (k, z)-clustering objective. Let ∆i = Li+1 − Li. Then either ∆i < ∆i+1 ≤ 0
or ∆i = ∆i+1 = 0 for all i ∈ [n− 1].

Proof. Lemma A.13 states that the cost-decreases associated with nodes in an LCA-tree mono-
tonically increase along paths from any leaf to the root or are all 0. By Lemma A.14, we solve
(k, z)-clustering using farthest-first traversal over the LCA-tree of cost-decreases. I.e., we start at the
root and greedily pick the cluster that gives the maximal cost-decrease at that step. Consequently,
each cost-decrease we pick must be smaller than the previous one.

Thus, let ∆′
k = Lk−Lk+1 = −∆k. By Lemma A.13, we have ∆′

k > ∆′
k+1 ≥ 0 or ∆′

k = ∆k+1 = 0.
Plugging in ∆ = −∆′ completes the proof.

Choosing the elbow Although there are many methods for finding the elbow index, we are in
the privileged setting where a single elbow exists and is clearly delineated. Inspired by Shi et al.
[68], we simply define the elbow as the index where there most strongly appears to be a right angle.
Namely, let ~vi = (i,Li) be the (x, y) position of the i-th point in the elbow plot. Then, for every
index k ∈ {2, . . . , n− 1}, let θk be the angle induced by the vectors9 (~v1 − ~vk) and (~vk − ~vn). We
define the elbow as being at the index k where θk is closest to 90 degrees. Since Theorem 4.2 gives
us all of the partitions for k ∈ {1, . . . , n} simultaneously, this index can be found O(n) time given
the cluster hierarchy.

9In practice, we normalize the k values and the costs to be in [0, 1] so that the scales are comparable.
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Figure 7: The same elbow plot as in Figure 3b with values of k from 1 to n. The chosen elbows are
higlighted with circles.

We note that Figure 3b only plots the elbow curves for values of k up to 100. This is because plotting
until k = n makes the plot look in practice like a vertical line followed by a horizontal line, as seen
in Figure 7. However, we use all values of k from 1 to n when choosing the elbow.

B.2 Agglomerative Clustering Algorithms under our Framework

Corollary 3.4 and Theorem 4.2 imply that a large set of agglomerative clustering algorithms can
be interpreted as k-center over various relaxed ultrametrics. As an example, consider the complete
linkage algorithm [41]. Here, one starts with every point in its own cluster and recursively merges
those clusters Ci, Cj which have the smallest merge distance argminCi,Cj

maxxi∈Ci,xj∈Cj d(xi, xj).
Importantly, with each subsequent merge, the merge distances are monotonically non-decreasing.
Thus, by Corollary 3.4, labeling each cluster in the hierarchy by its merge distance gives us a
relaxed ultrametric and, by Theorem 4.2, k-center over this ultrametric gives us the complete-linkage
hierarchy. Indeed, this is true of any agglomerative clustering method where the merge distances
progressively grow as we approach the root cluster.

B.3 Thresholding

We quickly explain how one can partition a cluster hierarchy by thresholding. We assume that the
cluster hierarchy H has every internal node labeled by its cluster’s cost. As discussed in the main
body of the paper, this constitutes a relaxed ultrametric.

Now let ε be any threshold value. We can return the set of clusters that have cost less than ε by
depth-first search in O(n) time. This is precisely what DBSCAN* does on the dc-dist relaxed
ultrametric. Namely, DBSCAN* returns clusters of core points that are within ε of each other under
the dc-dist. Under the dc-dist’s relaxed ultrametric definition, this is specifically the set of nodes with
a value less than ε.

B.4 Cluster Value Functions

The idea is a generalization of the excess-of-mass measure in HDBSCAN: we have a user-defined
function v(C) which assigns a non-negative value to each cluster in the hierarchy. I.e., v(C) ≥ 0 for
all clusters C ∈ H. Then the best partition maximizes the sum of these values:

Definition B.1. Given a value function v, we define the best partition under v as the partition that
maximizes the sum of valuations. I.e. Pv(H) = argmaxP belonging to H

∑
C∈P v(C).

This brings us to the following result:

Theorem B.2. Let H be a cluster hierarchy. Let v be a function such that, for all C ∈ H, v(C) can
be obtained in O(1) time. Then there exists an algorithm to find the best partition Pv(H) in O(n)
time.
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Proof. The algorithm for finding the best clustering is essentially Algorithm 3 from Campello et al.
[12]. We provide our own version of it in Algorithm 6 for completeness’ sake.10 It works by depth-
first search where, at each node, we simply calculate its value and compare it against the sum of the
values of its children. Since calculating the value takes O(1) time and there are O(n) nodes in the
cluster hierarchy, the algorithm therefore runs in O(n) time.

We prove its correctness inductively. In the base case, we have a single leaf whose best clustering is
simply the leaf itself. In the inductive case, we are given a cluster C in the hierarchy and have the
best clusterings of C’s children. We seek to find Bv(C). By the non-overlapping requirement, if we
include C in Bv(C), then we cannot include any of its children. Similarly, since the values of the
children are non-negative, if we include one child, then we may as well include all of them. Thus,
Bv(C) is either {C} or {C ′ : C ′ ∈ children(C)}.

Algorithm 6 BestClustering
Input: node C in an cluster hierarchy;
Output: the best clustering under this node Bv(C), the value of the clustering v(C);

1: if C is leaf then
2: Bv(C) = {C}
3: Return Bv(C)
4: end if

5: ChildValues = 0
6: ChildClusterings = {}
7: for C ′ ∈ children(C) do
8: Bv(C

′), v(C ′) = BestClustering(C ′)
9: ChildValues += v(C ′)

10: ChildClusterings.append(Bv(C
′))

11: end for
12: if v(C) > ChildValues then
13: Return {C}, v(C)
14: end if
15: Return ChildClusterings, ChildValues

The stability cluster value function. We now introduce the stability cluster value function from
Campello et al. [12]. Let C be any cluster in a hierarchy and let C ′ be C’s parent in that hierarchy.
Then the stability objective can be roughly phrased as the following:

vE(C) = |C| ·
(

1

L(C)
− 1

L(C ′)

)
(1)

We note that our description of the stability criterium differs slightly from the original function
discussed in [12, 13, 53]. Namely, we omit here the notion that singleton points may fall out of
the clustering as it is not easy to represent in our notation and the differences are negligible for the
purposes of this discussion. Our implemented stability criterion is the original (correct) one. For a
full discussion of the original function, we refer the reader to the referenced literature.

In either case, the stability value function can be interpreted as emphasizing those clusters that have a
large number of points and have significantly lower costs than their parent. While we find that the
stability criterion performs well in the k-center hierarchy, it can produce sub-par partitions when
applied in the (k, z)-clustering hierarchies. This is because the per-point cost in the (k, z)-clustering
task is comparable to the per-cluster cost in the k-center objective.

To be consistent with the literature [12], we utilize the stability cluster value function in the noisy
setting. Given a user defined parameter µ representing the minimum cluster size, we first prune the
tree so that all nodes with fewer than µ children are removed. We then run the stability value function
over the remaining points. This selects a set of internal nodes to represent the clusters. Finally, we

10Note, we write Bv(C) to refer to the best clustering of the cluster hierarchy rooted at C.
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re-introduce the points which were pruned away. If the re-introduced points are in the sub-tree of a
cluster, we assign them to the cluster. If, instead, they are not below a cluster found by the stability
function, we label them as “noise”.

B.5 Further details on the dc-dist ultrametric

We begin by proving Proposition 6.3:

Proposition 6.3. Let (L, d′) be a metric space. Then, the dc-dist over L is a relaxed ultrametric.

Proof. Note that it is known that the minimax distances over a space constitute an ultrametric [26].
Thus, we have that ddc(`i, `j) = d(`j , `i) and that ddc(`i, `j) ≥ 0 for all `i, `j .

To show that the dc-dist is a relaxed ultrametric, we will leverage that the only difference between it
and the minimax distance is that the minimax distance of a point to itself is 0 while the dc-dist of a
point to itself is its mutual reachability. Thus, we will prove that the dc-dist is a relaxed ultrametric
by showing that the distance to itself is non-negative and that it inherits the strong-triangle inequality
from the minimax ultrametric. Together, these imply the two properties for Corollary 3.4.

First, note that ddc(`i, `i) = max(||`i − `i||, κµ(`i), κµ(`i)) = max(0, κµ(`i)) = κµ(`i). Thus, the
dc-dist of a point to itself is the distance of `i to its µ-th nearest neighbor in the ambient metric.
This is necessarily non-negative. Similarly, the mutual-reachabilities for any other pair of points are
also necessarily non-negative. Because the dc-dist is the minimax distance over the pairwise mutual
reachabilities and the pairwise mutual reachabilities are all non-negative, the dc-dist must also be.

Let us now show that the dc-dist satisfies the second property of Corollary 3.4. First, notice that
the dc-dist of a point to itself is necessarily less than or equal to the dc-dists of that point to
any other point in the set, i.e., ddc(`i, `i) ≤ max(ddc(`i, `j), ddc(`j , `i)) for all `j . To see this,
consider the mutual reachability of `i to any other point `j is necessarily greater than mµ(`i, `i).
Namely, mµ(`i, `j) = max(d′(`i, `j), κµ(`i), κµ(`j)) ≥ κµ(`i). As a result, any step in the mutual
reachability MST that originates at `i will be at least as large as mµ(`i, `i) = ddc(`i, `i). Put simply,
a point’s closet point under the dc-dist is itself. Pairing this with the inheritance of the strong triangle
inequality from the minimax distance gives us the second property of Corollary 3.4.

Thus, we have shown the two properties for Corollary 3.4: the dc-dists are non-negative and are
non-decreasing as we traverse the DC tree from any leaf to the root. Consequently, it is a relaxed
ultrametric.

Relationship to DBSCAN and HDBSCAN. First, Campello et al. [12] showed that one can obtain
DBSCAN* partitions using the single-linkage hierarchy over the mutual reachabilities. Rephrasing
into this paper’s notation, they showed that one can obtain DBSCAN* embeddings by thresholding
the dc-dist’s LCA-tree at a user-defined value ε; i.e., removing all nodes η in the LCA-tree with
d(η) > ε. Subsequently, Beer et al. [6] proved that k-center can be optimally solved over the dc-dist
and that these partitions correspond to single-linkage over the mutual reachabilities. In this sense,
one can think of k-center on the minimax distances as equivalent to single-linkage clustering. Lastly,
Campello et al. [12] showed that, given the dc-dists’s LCA-tree, one can choose a partition from it by
optimizing the EoM cluster merging criterium over the pruned tree.

C Runtime Speedups / Efficient Operations

We now give an overview of how we implement the theory from Section A.3 and A.4 in practice
in our codebase. We assume that we have already computed an ultrametric so that queries to the
ultrametric require O(1) time. From this, we describe how we build an LCA-tree, how to transform it
to other clustering hierarchies, and how we extract partitions from it. We center this discussion on the
dc-dist’s dc-tree as a point of reference since we believe that this is the most common use case of our
framework. However, we note that the discussion applies immediately to any relaxed ultrametric.

C.1 Building and utilizing the hierarchy efficiently (theoretical complexities)

The overall structure of our implementation is the following:
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1. Building the hierarchy
(a) Compute annotations of cost-decreases over the dc-tree bottom up. These contain

information that we will use for creating hierarchies.
(b) Sort the annotations.
(c) Create the hierarchy in a way that takes O(n) time utilizing the parent pointers in the

annotations and in-place pointer updating.

2. Get each solution in O(n)
(a) Annotate each node in the tree with the k that resulted in creating this node, given that

the k-th center is chosen.
(b) Top-down (or bottom-up) algorithm that cuts all edges in the tree going from k-

annotation > k to k-annotation ≤ k. The result is all nodes above the cut.
(c) Small edge case to deal with for nodes with > 2 children.

3. Initialize smart pointer access to the leaves in the tree so that internal nodes can get their
leaves in constant time.

C.1.1 Building the new LCA-tree of cost-decreases

How we build the tree in O(n · log(n)).
Two main functions:

• Annotate tree

• Create hierarchy

Annotating the tree
‘Annotate tree’ creates the annotations for each internal node in the tree. Each annotation is the
following: Ak = [cost_decrease, center, parent_pointer, tree_node].

Idea C.1. Only maximal annotations for a given center will be picked with the greedy algorithm.

By maximal annotations, we mean those highest in the tree corresponding to a specific center, i.e., the
annotation for that center with the highest annotated cost-decreases. To see this, consider that only
maximal annotations will be children of marked paths of other, already picked, centers in the tree.

Idea C.2. The cluster corresponding to the parent center p′ of the maximal annotation of p is exactly
the cluster/set of points from which choosing p will exclusively take points.

This comes from the fact that each annotation is maximal in its corresponding subtree, which means
that the maximal subtree above always will have chosen that center first. Also, any other center
p′′ chosen within that subtree of the maximal annotation of p′ will have taken disjoint points from
that center p′’s cluster that p cannot otherwise a contradiction and p′′ should have been the parent
annotation of p.

We formally define the parent center as the single center in solution k − 1 that contains all points of
the k’th center, which will get assigned for k. We now get the following insights needed to make
building the tree efficient:

1: We only need to store one annotation for each center, where we just store the highest / best
annotation cost-decrease for that center. This can be updated as the annotations are computed.
2: Each annotation/center can contain a pointer to the parent center.

Having these, we now have all the information required to build the tree - for each new center, we
have exactly the cost-decrease corresponding to picking it and the parent center. We can sort the list
of annotations, and each k solution will correspond to the first k centers picked in that order.

Building the tree from the annotations
First, we sort the annotations. Picking the first annotation corresponds to the root node and cluster of
all points with that center. Picking a subsequent new center will always correspond to a split in the
tree, splitting up the parent center’s cluster. One side of the split will be what is left over from the
parent cluster, and the other side will be the new cluster for this k. The only caveat is that if there
are multiple, some number a, annotations with the same cost-decrease and parent, we only get a+ 1
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nodes from this multi-split. We get a node for each of the a new centers and the a+ 1’st node for
what is left over in the partition of the parent node’s cluster.

Now, the key is that the cost-decreases are decreasing in the sorted order. This means that any
subsequent annotations with a parent that already has been split up will always create a new split at
the lowest possible node/cluster corresponding to that parent center, and all nodes above that also
correspond to that parent center will never get new splits from them. This means that we can maintain
for each center the current lowest/active node, which will be where any new center pointing to it
should split from. This can easily be managed within the annotations with a pointer that is updated as
the tree is created.

The steps are then generally the following at a given k’th annotation for some center ck in the traversal
of the sorted list:

Case 1: If the parent node p corresponding to some center cp has no offspring, add two new nodes
below. One for the new annotation and p′ for the old center representing that nodes have been taken
from it. For the new node for ck, update the annotation to point to it.

Case 2: If the parent p already has offspring associated with a higher cost-decrease, then add the
new split nodes below p′ that then have to exist as that other offspring will have created that in case
1. Update the parent center’s annotation to now point to p′ instead of p, as we can now be sure
everything pointing to that center should never be added to p but instead to p′ or further below at a
later point. For the new node for ck, update the annotation to point to it.

Case 3: The other offspring of the parent node has the same cost-decrease associated with the current
annotation. This means the p′ has already been created, so just add a singular new node as a child of
p corresponding to center ck. For the new node for ck, update the annotation to point to it.

Complexity Computing the annotations is a single-pass bottom-up algorithm over the tree that does
constant work in each tree node. As there are O(n) nodes in the tree, this step has a worst-case
complexity of O(n).

Sorting the list of annotations has a worst-case complexity of O(n · log(n)) as there are n annotations
to sort.

Computing the tree from the sorted annotations does a single scan over the list of annotations, with
constant work in any iteration and, therefore, a worst-case complexity of O(n).

Therefore, the total worst-case complexity is O(n · log(n)).

C.1.2 Optimizing the tree: Resolving ties better

An important observation is that due to the number of equidistant points under the relaxed ultrametric,
many centers will often have tied distances to points between them. For example, consider that we
have placed our first center c1 and it marks every node along the path to the root. Now let there be
two subtrees Ti and Tj which are not marked but whose parent node is marked. We now place a
center c2 in Ti. This creates a new path of markings that stops at the root of Ti.

Now notice that every node in Tj is equidistant to center c1 and to center c2. Thus, we can leave
Tj assigned to c1, or we can re-assign it to c2, and the cost remains unchanged. Over the course of
placing k clusters, there will inevitably be many such ties, implying that there are an exponential
number of optimal solutions!

The previous theory described this setting by simply utilizing a “first come, first served” principle
and never re-assigning points to new clusters. However, under the dc-dist and other minimax path
distances, this may result in unintuitive clusterings. To see this, consider a set of 10 copies of the
same cluster which are equally spaced apart. Let there be two centers assigned to these: c1 is placed
in the first copy of the cluster, and c2 is placed in the second copy of the cluster. The remaining 8
clusters must now be assigned to either c1 or c2. However, due to them being equally spaced apart,
we can assign each of these 8 clusters to either center and the cost will remain the same.

Our recommendation on how to resolve this is to introduce a secondary heuristic for tie-breaking.
Namely, if a subtree is equidistant to two centers under the ultrametric, assign it to the center which it
is closest to in the data’s original metric. I.e., if our ambient distance metric is Euclidean, then we use
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the Euclidean distance as a tie-breaker. This provides the intuitive clustering that one expects when
looking at groups of points.

In practice, we achieve this by giving each internal node in the tree a representative point - the
Euclidean mean of its leaves. Each annotation not yet marked (and thus chosen at a later k) maintains
the closest center based on the Euclidean distance to its representative, which is resolved between
any center that marks its parent. At the k where this annotation itself is chosen, we have found the
best annotation, and thus, the internal node that this annotation and sub-tree of nodes itself should
become a subtree of. We update all annotation pointers in this way by placing the centers one by one,
following the path from the center to the leaf checking distances to unmarked sub-trees, and updating
the pointer if the new center is closer than other tied centers that had already been marked.

As this is just a processing step over the annotations before the tree is actually constructed, it can
easily be plugged in/out based on a boolean flag. Furthermore, the choice of heuristic can also easily
be changed, but here it should be kept in mind that it might influence the running time if any complex
function is used.

The choice of using the mean point as a representative and comparing Euclidean distances is based
on the following: under the dc-dist, one often gets one cluster which consists of multiple equidistant
sub-clusters. These equidistant sub-clusters often follow snaky paths throughout the ambient space.
Let us now suppose our large cluster gets split into two, implying that its sub-clusters must get
assigned to one of these two new groups. Since the sub-clusters are all equidistant, they can be
arbitrarily assigned to either of the two groups. By breaking ties so that the sub-clusters are closest
to each other in the ambient space, we dramatically increase the chance of the sub-clusters getting
re-assigned in an intuitive manner.

Complexity
This process requires traversing the tree from the leaf to the root for all centers placed. To construct
the full hierarchy/dendrogram/tree of solutions, we do constant time calculations (scales with dimen-
sionality) at each visit of an internal node, as it only requires computing the Euclidean distance of two
points. This means that the worst-case complexity becomes O(n2) in the case of a fully unbalanced
tree, but in practice and expectation, this will be much closer to O(n · log(n)).

C.1.3 Find solution for a given k

To find the solution for a given k efficiently, we start out by annotating each node of the new tree with
additional information. Generally, the insight is that going from k to k + 1 corresponds to splitting
up a single node/cluster into two new nodes in the tree. A slight detail is that some nodes will have
multiple children, where the "split" is implicit as all the children split from the same node. We can
mark at which k each node is split from the parent in constructing the tree, where k is just the current
iteration. We simply mark all new nodes created in an annotation with that k.

To then recover a solution for a given k, all that is required is to cut all edges in the tree going from
k′ ≥ k to k′ < k. The solution is the clusters associated with all the nodes above the cut. The only
note is that if a leaf is reached and no cut is found in that path, the leaf is just part of the solution.

The correctness of this algorithm comes from the fact that any clusters below this cut only existed at
a higher k′′ than the solution for k we are recovering.

Complexity
Marking the tree is done with a constant factor added to the complexity of the list traversal of building
the tree, so O(n).

Finding the cut can also be done in a single traversal of the tree top-down, simply stopping the
traversal of a given branch when a cut is found and returning the nodes. So this is also O(n).

Furthermore, the solution for a given k can be stored, and the algorithm to find another k can be
"resumed" from this solution, making finding similar k values very fast, almost constant.

C.1.4 Find leaves for a given node quickly / labeling a solution

We create an array of the id’s in the leaves, where each id is inserted in postfix order. This means that
looking at the tree, each internal node of the tree will correspond to a continuous area of that array. If
we store the bounds of those segments in each internal node, the nodes corresponding to a node can
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be returned in constant time by just returning that continuous segment of data of the new array. Only
a single postfix order traversal of the tree is required to set up this array and pointers in the internal
node, which then takes O(n).

However, if we want to recover the labels in the standard form of each label being in the order that
the points were provided, a traversal of the recovered solution is required, putting the corresponding
label in the right place in an output array of labels. Simply put, the label value of point p has to be
inserted in place p of the output array of labels. This requires worst-case O(n) complexity for a given
k solution, as it is just a linear scan with constant work for each of the n points.

D The Algorithms

We now describe how these algorithms are implemented. We use the terminology n-ary dc-tree to
refer to a non-binary LCA-tree storing dc-dist relationships. Again, this immediately transfers to all
relaxed ultrametrics.

Algorithm 7 describes how we find the corresponding z-centers and the costs associated with them
in practice. Algorithm 8 describes how we use this information to obtain the corresponding (k, z)-
clustering hierarchy. Algorithm 9 shows how we extract clusterings for a specific value of k from a
hierarchy. Lastly, Algorithm 10 describes how we implement the tie-breaking heuristic assuming
Euclidean distance.

Algorithm 7 k-centroid-annotation
Input: An n-ary dc-tree T over the dataset X, power z, array A

1: if |T | = 1 then
2: A[T.id] = {(T.parent.dist)z, T.id, nullP tr}
3: return 0, T.id
4: else
5: bestCost = ∞, bestCenter = −1
6: for C ∈ T.children do
7: subCost, subCenter = k-centroid-annotation (C, z)
8: currCost = subCost+ (T.dist)z · (T.size − C.size)
9: if currCost < bestCost then

10: bestCost = currCost, bestCenter = currCenter
11: end if
12: end for
13: for C ∈ T.children do
14: A[C.id].parent = bestCenter
15: end for
16: costDecrease = (T.parent.distz · T.size − bestCost
17: A[T.id] = {costDecrease, bestCenter, nullP tr}
18: return bestCost, bestCenter)
19: end if
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Algorithm 8 k-centroid-hierarchy
Input: An n-ary dc-tree T over the dataset X, power z

1: A = k-centroid-annotation (T, z, [T.size])
2: Sort(A)
3: Root = Node(parent = nullP tr, cost = −1, id = A[0].center)
4: A[0].tree = Root
5: for acur ∈ A[1]...A[n− 1] do
6: Nnew = Node(parent = nullP tr, cost = −1, id = acur.center)
7: acur.tree = Nnew

8: apar = A[acur.parent], cp = apar.tree.cost
9: if cp 6= acur.cost ∧ cp ≥ 0 then . Parent has added children with higher cost

10: Npar = apar.tree.children[0]
11: Npar.cost = acur.costDecrease
12: Nnew.parent = Npar

13: N ′
par = Node(parent = Npar, cost = −1, id = Npar.id)

14: Npar.children.add(N ′
par) . Add same center node as first child

15: Npar.children.add(Nnew)
16: apar.tree = Npar . Update annotation to point to lowest corresponding node
17: else if cp < 0 then . Parent has no children added
18: Nnew.parent = apar.tree
19: N ′

par = Node(parent = apar.tree, cost = −1, id = apar.id)
20: apar.tree.children.add(N ′

par)
21: apar.tree.children.add(Nnew)
22: else . Parent has children added with same cost
23: apar.tree.children.add(Nnew)
24: Nnew.parent = apar.tree
25: end if
26: end for
27: return Root
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Algorithm 9 k-centroid-cluster
Input: An annotated k-centroid hierarchy-tree T over the dataset X, searchK

1: if |T | = 1 then
2: Output T
3: end if
4: maxK = maxK(T.children),minK = minK(T.children)
5: if maxK ≤ searchK then . Every edge should be cut
6: for C ∈ T.children do
7: k-centroid-cluster(C, searchK)
8: end for
9: else . Only some edges should be cut

10: A = []
11: for C ∈ T.children do
12: if C.k > searchK ∨ C.is_orig_cluster then . Non-cut edges merge with original
13: A.add(C)
14: else
15: Output C
16: end if
17: end for
18: Output Merge(A)
19: end if

Algorithm 10 Optimize Annotations
Input: Sorted list of annotations in decreasing order A, tree T annotated with representatives

1: for acur ∈ A do . For each annotation
2: N = acur.leaf
3: while N 6= null do . Traverse from center leaf to root
4: N.mark(acur.center)
5: for C ∈ N.children do
6: if C.mark = null then . Any unmarked children of marked path
7: C.anno.bestParent = min{C.anno.bestParent, Euclid(C.rep,Anno.center)}
8: end if
9: end for

10: N = N.parent
11: end while
12: end for
13: Return A . Return list of annotations with updated pointers
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Cover tree KD tree HST-DPO
k-median/GT k-median/GT k-median/GT

(a) Comparison of HST ultrametrics using the k-median hierarchy and the ground-truth value of k.

DC tree DC tree DC tree
k-center/Stability k-median/MoE k-means/Elbow

(b) Comparison of hierarchy/partition combinations on the dc-dist ultrametric.

Figure 8: A visualization of ultrametrics and hierarchy/partition combinations on the D31 dataset.

E Implementations of the used HSTs

We build KD trees, Cover trees using the C++ library mlpack4 [20], and build HST-DPO trees using
the C++ code from https://github.com/yzengal/ICDE21-HST.

F Used Datasets

Table 4 lists the datasets on which we validated and compared the proposed framework SHiP to other
competitors.

G Tables – Runtimes and performance metrics

Table 5 shows the runtimes, Table 6 the ARI values, Table 7 shows the NMI values, Table 8 shows
the AMI and Table 9 shows the correlation coefficients cores for all datasets.
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Table 4: Dataset properties. Number of samples (n), dimensions (d), number of ground truth clusters
(k), number of noise points (#noise), and the source.

Dataset n d k #noise Source

D
en

si
ty

-b
as

ed
2D

-D
at

a

Boxes 21,600 2 12 0 [78]

To
m

as
B

ar
to

n
B

en
ch

m
ar

k

D31 3100 2 31 0 [5]
3-spiral 312 2 3 0 [5]
aggregation 788 2 7 0 [5]
chainlink 1,000 3 2 0 [5]
cluto-t4-8k 8,000 2 6 764 [5]
cluto-t5-8k 8,000 2 7 1,153 [5]
cluto-t7-10k 10,000 2 9 792 [5]
cluto-t8-8k 8,000 2 8 323 [5]
complex8 2,551 2 8 0 [5]
complex9 3,031 2 9 0 [5]
compound 399 2 6 0 [5]
dartboard1 1,000 2 4 0 [5]
diamond9 3,000 2 9 0 [5]
jain 3,373 2 2 0 [5]
pathbased 299 2 3 0 [5]
smile1 1,000 2 4 0 [5]

Synth_low 5,000 100 10 500 [40]
Synth_high 5,000 100 10 500 [40]

R
ea

l-W
or

ld
D

at
a

Ta
bu

la
rD

at
a

Mice 1,077 68 8 0 [50]
adipose 14,947 2 12 0 [11]
airway 14,163 2 10 0 [11]
lactate 39,825 2 6 0 [11]
HAR 10,299 561 6 0 [50]
letterrec. 20,000 16 26 0 [50]
Pendigits 10,992 16 10 0 [50]

Im
ag

e
D

at
a

COIL20 1,440 16,384 20 0 [60]
COIL100 7,200 49,152 100 0 [59]
cmu_faces 624 960 20 0 [50]
Optdigits 5,620 64 10 0 [50]
USPS 9,298 256 10 0 [37]
MNIST 70,000 784 10 0 [46]
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