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ABSTRACT

We propose UNIFIED-IO, a model that performs a large variety of AI tasks span-
ning classical computer vision tasks, including pose estimation, object detection,
depth estimation and image generation, vision-and-language tasks such as region
captioning and referring expression, to natural language processing tasks such
as question answering and paraphrasing. Developing a single unified model for
such a large variety of tasks poses unique challenges due to the heterogeneous in-
puts and outputs pertaining to each task, including RGB images, per-pixel maps,
binary masks, bounding boxes, and language. We achieve this unification by ho-
mogenizing every supported input and output into a sequence of discrete vocab-
ulary tokens. This common representation across all tasks allows us to train a
single transformer-based architecture, jointly on over 90 diverse datasets in the
vision and language fields. UNIFIED-IO is the first model capable of performing
all 7 tasks on the GRIT benchmark and produces strong results across 16 diverse
benchmarks like NYUv2-Depth, ImageNet, VQA2.0, OK-VQA, Swig, VizWiz-
Ground, BoolQ, and SciTail, with no task-specific fine-tuning. Code and demos
for UNIFIED-IO are available at: unified-io.allenai.org

1 INTRODUCTION

We present UNIFIED-IO, the first neural model to jointly perform a large and diverse set of AI tasks
spanning classical computer vision (such as object detection, segmentation, and depth estimation),
image synthesis (such as image generation and image in-painting), vision-and-language (like visual
question answering, image captioning, and referring expression) and NLP (such as question an-
swering and paraphrasing). Unified general-purpose models avoid the need for task-specific design,
learn and perform a wide range of tasks with a single architecture, can utilize large, diverse data
corpora, can effectively transfer concept knowledge across tasks, and even perform tasks unknown
and unobserved at design and training time.

Building unified models for computer vision has proven to be quite challenging since vision tasks
have incredibly diverse input and output representations. For instance, object detection produces
bounding boxes around objects in an image, segmentation produces binary masks outlining regions
in an image, visual question answering produces an answer as text, and depth estimation produces
a map detailing the distance of each pixel from the camera. This heterogeneity makes it very chal-
lenging to architect a single model for all these tasks. In contrast, while the landscape of natural
language processing (NLP) tasks, datasets, and benchmarks is large and diverse, their inputs and
desired outputs can often be uniformly represented as sequences of tokens. Sequence to sequence
(Seq2Seq) architectures (Raffel et al., 2020; Brown et al., 2020), specifically designed to accept
and produce such sequences of tokens, are thus widely applicable to many tasks. Unified models
employing such architectures have been central to much recent progress in NLP.

Unified models for computer vision typically use a shared visual backbone to produce visual em-
beddings but then employ individual branches for each of the desired tasks. These include models
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Figure 1: UNIFIED-IO is a single sequence-to-sequence model that performs a variety of tasks in
computer vision and NLP using a unified architecture without a need for either task or modality-
specific branches. This broad unification is achieved by homogenizing every task’s input and output
into a sequence of discrete vocabulary tokens. UNIFIED-IO supports modalities as diverse as im-
ages, masks, keypoints, boxes, and text, and tasks as varied as depth estimation, inpainting, semantic
segmentation, captioning, and reading comprehension.

like Mask R-CNN (He et al., 2017) for classical visual tasks that use an ImageNet pre-trained en-
coder followed by branches for detection and segmentation, trained in a fully supervised manner. In
the vision and language (V&L) domain, CNN backbones feed visual features to transformer archi-
tectures that also combine language, followed by task-specific heads for visual question answering,
referring expression, visual commonsense reasoning, etc. (Lu et al., 2019; Li et al., 2019; Tan &
Bansal, 2019). A more recent trend has seen the emergence of unified architectures that do away
with task-specific heads and instead introduce modality-specific heads (Hu & Singh, 2021; Cho
et al., 2021; Gupta et al., 2022a; Wang et al., 2022b) – for instance, a single language decoder that
serves multiple tasks requiring language output like captioning and classification. However, most
progress in unified models continues to be centered around V&L tasks, owing to the simplicity of
building shared language decoders and is often limited to supporting just a handful of tasks.

UNIFIED-IO is a Seq2Seq model capable of performing a variety of tasks using a unified architecture
without a need for either task or even modality-specific branches. This broad unification is achieved
by homogenizing every task’s output into a sequence of discrete tokens. Dense structured outputs
such as images, segmentation masks and depth maps are converted to sequences using a vector
quantization variational auto-encoder (VQ-GAN) (Esser et al., 2021), sparse structured outputs such
as bounding boxes, and human joint locations are transcribed into sequences of coordinate tokens,
and language outputs are converted to sequences using byte-pair encoding. This unification enables
Unified-IO to jointly train on over 90 datasets spanning computer vision, V&L, and NLP tasks with
a single streamlined transformer encoder-decoder architecture (Raffel et al., 2020).

Our jointly trained UNIFIED-IO is the first model to support all 7 tasks in the General Robust Im-
age Task (GRIT) Benchmark (Gupta et al., 2022b) and obtains the top overall score of 64.3 when
averaging across all tasks, handily beating the second best model by 32.0. We further evaluate
UNIFIED-IO on 16 diverse benchmarks across computer vision and NLP, without any fine-tuning
towards any individual benchmark, and find that it performs remarkably well compared to special-
ized (or fine-tuned) state-of-the-art models.

2 VISION, LANGUAGE AND MULTI-MODAL TASKS

UNIFIED-IO is designed to handle a wide range of language, vision and language, and classic vision
tasks in a unified way. To fully test this capability, we gather 95 vision, language, and multi-modal
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Example
Source

Size Input Modalities Output Modalities

Datasets Size Percent Rate Text Image Sparse Dense Text Image Sparse Dense

Image Synthesis 14 56m 43.0 18.7 ✓ ✓ ✓ ✓ - ✓ - -
Image Synthesis from Text RedCaps 9 55m 41.9 16.7 ✓ - - - - ✓ - -
Image Inpainting VG 3 1.2m 0.9 1.5 ✓ ✓ ✓ - - ✓ - -
Image Synthesis from Seg. LVIS 2 220k 0.2 0.6 ✓ - - ✓ - ✓ - -

Sparse Labelling 10 8.2m 6.3 12.5 ✓ ✓ ✓ - - - ✓ -
Object Detection Open Images 3 1.9m 1.5 3.6 - ✓ - - - - ✓ -
Object Localization VG 3 6m 4.6 7.1 ✓ ✓ - - - - ✓ -
Keypoint Estimation COCO 1 140k 0.1 0.7 - ✓ ✓ - - - ✓ -
Referring Expression RefCoco 3 130k 0.1 1.1 ✓ ✓ - - - - ✓ -

Dense Labelling 6 2.4m 1.8 6.2 ✓ ✓ - - - - - ✓

Depth Estimation NYU Depth 1 48k 0.1 0.4 - ✓ - - - - - ✓

Surface Normal Estimation Framenet 2 210k 0.2 1.1 - ✓ - - - - - ✓
Object Segmentation LVIS 3 2.1m 1.6 4.7 ✓ ✓ - - - - - ✓

Image Classification 9 22m 16.8 12.5 - ✓ ✓ - ✓ - - -
Image Classification ImageNet 6 16m 12.2 8.1 ✓ ✓ - - ✓ - - -
Object Categorization COCO 3 6m 4.6 4.4 - ✓ ✓ - ✓ - - -

Image Captioning 7 31m 23.7 12.5 - ✓ ✓ - ✓ - - -
Webly Supervised Captioning CC12M 3 26m 19.7 8.8 - ✓ - - ✓ - - -
Supervised Captioning VizWiz 3 1.4m 1.1 1.7 - ✓ - - ✓ - - -
Region Captioning VG 1 3.8m 2.9 2.0 - ✓ ✓ - ✓ - - -

Vision & Language 16 4m 3.0 12.5 ✓ ✓ ✓ - ✓ - - ✓

Visual Question Answering VQA 2.0 13 3.3m 2.5 10.4 ✓ ✓ ✓ - ✓ - - -
Relationship Detection VG 2 640k 0.5 1.9 - ✓ ✓ - ✓ - - -
Grounded VQA VizWiz 1 6.5k 0.1 0.1 ✓ ✓ - - ✓ - - ✓

NLP 31 7.1m 5.4 12.5 ✓ - - - ✓ - - -
Text Classification MNLI 17 1.6m 1.2 4.8 ✓ - - - ✓ - - -
Question Answering SQuAD 13 1.7m 1.3 5.2 ✓ - - - ✓ - - -
Text Summarization Gigaword 1 3.8m 2.9 2.5 ✓ - - - ✓ - - -

Language Modelling 2 - - 12.5 ✓ - - - ✓ - - -
Masked Language Modelling C4 2 - - 12.5 ✓ - - - ✓ - - -

All Tasks 95 130m 100 100 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Tasks UNIFIED-IO learns to complete. From left to right, columns show an example of one of the
sources used for the task, the number of datasets, total number and percent of examples relative to the entire
training corpus, and sample rate during multi-task training. Subsequent columns show what modalities are
required for the tasks, and highlighted rows show aggregated statistics for groups of similar tasks.

datasets from 62 publicly available data sources as targets for our model to learn during multi-task
training. These datasets cover a wide range of tasks, skills, and modalities.

We categorize the input and output modalities of each task into 4 different types: Text – natural
language tokens; Image – RGB images; Sparse – a small number of location coordinates within
the image; Dense – per-pixel labels such as depth maps, surface normal maps, etc. We group
related datasets into 8 groups and 22 tasks to facilitate our training and analysis:

Image Synthesis. Given a text description, partially occluded image and inpainting target, or seg-
mentation map containing a semantic class for some pixels, generate a matching image. Data sources
with image and text pairs (Desai et al., 2021), bounding boxes (Krishna et al., 2017) or semantic seg-
mentation (Gupta et al., 2019) can be used to build these tasks.

Sparse Labelling. Given an image and a natural language query, identify the target regions or key-
point locations that are being referred to. Tasks include object detection (Kuznetsova et al., 2020),
object localization (Rhodes et al., 2017), human pose estimation (Lin et al., 2014), and referring
expression (Kazemzadeh et al., 2014).

Dense Labelling. Given an image, produce per-pixel labels for that image. Labels include the
distance of that pixel to the camera (Nathan Silberman & Fergus, 2012), surface orientation (Bae
et al., 2021) or semantic class (Lin et al., 2014).

Image Classification. Given an image and optionally a target bounding box, generate a class name
or tag of that image or target region. This group includes image classification (Deng et al., 2009)
and object categorization (Pinz et al., 2006) datasets.

Image Captioning. Given an image and optionally a bounding box, generate a natural language
description of that image or target region. We include both crowd-sourced (Chen et al., 2015) and
webly supervised (Changpinyo et al., 2021) captions.
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Figure 2: Unified-IO. A schematic of the model with four demonstrative tasks: object segmentation,
visual question answering, depth estimation and object localization.

Vision & Language. A broad category for other tasks that require joint reason over image con-
tent and a natural language query. There are many popular vision and language datasets, and we
categories these datasets into 3 tasks – visual question answering (Antol et al., 2015); relationship
detection (Lu et al., 2016) and grounded VQA (Chen et al., 2022a).

NLP. Tasks with text as the only input and output modalities, including text classification (Williams
et al., 2018), question answering (Rajpurkar et al., 2016) and text summarization (Graff et al., 2003).

Language Modeling. The masking language modeling pre-training task (See Section 3.3) using text
from C4 (Raffel et al., 2020) and Wikipedia (Foundation), which we include to ensure the knowledge
gained from language pre-training is not lost during multi-task training. Other pre-training tasks
are not included because the relevant datasets are already used in other supervised tasks (e.g., for
captioning or classification).

Table 1 shows the details of tasks and groups. We list an example dataset source, number of datasets,
number of examples, percent of the total number of examples, and sampling rate during training
(Section 3.3) for each group and task. Subsequent columns show what modalities are required
for the inputs and outputs. We defer additional task details, inference details, the complete list of
datasets and visualizations to the Appendix A.1.

3 UNIFIED-IO

Our goal is to build a single unified model that can support a diverse set of tasks across computer
vision and language with little to no need for task-specific customizations and parameters. Such
unified architectures can be applied to new tasks with little to no knowledge of the underlying ma-
chinery, enable general pre-training to benefit many diverse downstream applications, be jointly
trained on a large number of tasks, and better allows knowledge to be shared between tasks.

3.1 UNIFIED TASK REPRESENTATIONS

Supporting a variety of modalities such as images, language, boxes, binary masks, segmentation
masks, etc. without task-specific heads requires representing these modalities in a shared and unified
space. To do this, we discretize the text, images, and other structured outputs in our tasks and
represent them with tokens drawn from a unified and finite vocabulary.
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Text representation. Following Raffel et al. (2020), text inputs and outputs are tokenized using
SentencePiece (Kudo & Richardson, 2018). Following past works such as McCann et al. (2018);
Raffel et al. (2020); Gupta et al. (2022a); Wang et al. (2022b) we also specify each task with a
natural language prompt (excluding some tasks like VQA, which are fully specified by their text
inputs) in order to indicate what task should be performed. For example, “What is the depth map of
the image?” for depth estimation or “What region does “cat” describe?” for object localization.

Images and dense structures representation. A variety of tasks in computer vision requires the
model to produce high-dimensional outputs such as images (e.g., image in-painting) or per-pixel
labels (e.g., depth estimation). To handle these modalities, we first convert per-pixel labels into
RGB images. For depth, we construct a grayscale image by normalizing the depth map. For surface
normal estimation, we convert the x/y/z orientations into r/g/b values. For segmentation, we map
each instance present in the image to a unique color. We randomly select colors for each instance
and specify the color-to-class mapping in the text instead of using universal color-to-class mapping.
This avoids requiring a fixed list of classes and avoids having colors that may only be marginally
different due to the presence of a large number of classes.

Then we encode these images as discrete tokens using a VQ-GAN. In particular, we use the
imagenet-pretrained VQ-GAN from Esser et al. (2021) with 256 × 256 resolution, a compres-
sion ratio of 16, and 16384 codebook size. The VQ-GAN codebook is added to the vocabulary as
additional tokens that can be generated by the decoder. During training, the tokens for the target
image are used as targets. During inference, the VQ-GAN decoder is used to convert the generated
image tokens into an output image.

Sparse structures representation. We encode sparse structures such as bounding boxes or hu-
man joints by adding 1000 special tokens to the vocabulary to represent discretized image coordi-
nates (Chen et al., 2022b). Points are then encoded with a sequence of two such tokens, one for the
x and one for the y coordinates, and boxes are encoded using a sequence of four tokens, two for the
upper right corner and two for the lower left corner. Labeled boxes are encoded as a box followed by
a text class label, and joints are encoded as a sequence of points followed by a text visibility label.
This allows us to handle a wide variety of tasks that use these elements in their inputs or output (see
Appendix A.1 for examples).

3.2 UNIFIED ARCHITECTURE

Universally representing a wide variety of tasks as input and output sequences of discrete tokens en-
ables us to employ architectures that have been proven successful in natural language processing. In
UNIFIED-IO, we propose a pure transformer model largely following the design of T5 (Raffel et al.,
2020). In particular, UNIFIED-IO is an encoder-decoder architecture where both the encoder and
decoder are composed of stacked transformer layers, which in turn are composed of self-attention
transformers, cross-attention transformers (in the decoder), and feed-forward neural networks. The
layers are applied residually, and layer norms are applied before each transformer and feed-forward
network. See Raffel et al. (2020) for details.

We make a few architectural changes to adapt the T5 architecture to our setting. First, to handle input
images, we reshape the image into a sequence of patches that are embedded with linear projection
similar to Dosovitskiy et al. (2021). Second, we expand the vocabulary to include the location
tokens and the image tokens used in the VQ-GAN. Third, we extend the 1-d relative embedding
(Dosovitskiy et al., 2021) to 2-d with a fixed number of learned embeddings. We also add abso-
lute position embedding to the token embedding following Devlin et al. (2019), since the absolute
position information is essential to image tasks.

We use a maximum of 256 and 128 text tokens for inputs and outputs respectively, and a maximum
length of 576 (i.e. 24 × 24 patch encoding from a 384 × 384 image) for image inputs and 256 (i.e.
16 × 16 latent codes from a 256 × 256 image) for image outputs. In this work, we present four
versions of UNIFIED-IO ranging from 71 million to 2.9 billion parameters, as detailed in Table 2.

3.3 TRAINING

UNIFIED-IO is trained in two stages – A pre-training stage that uses unsupervised losses from text,
image, and paired image-text data, and a massive multi-task stage where the model is jointly trained
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Model Encoder Layers Decoder Layers Model Dims MLP Dims Heads Total Params

UNIFIED-IOSMALL 8 8 512 1024 6 71M
UNIFIED-IOBASE 12 12 768 2048 12 241M
UNIFIED-IOLARGE 24 24 1024 2816 16 776M
UNIFIED-IOXL 24 24 2048 5120 32 2925M

Table 2: Size variant of UNIFIED-IO. Both encoder and decoder are based on T5 implementation (Raffel
et al., 2020). Parameters of VQ-GAN (Esser et al., 2021) are not included in the total parameter count.

on a large variety of tasks. Since our goal is to examine whether a single unified model can solve a
variety of tasks simultaneously, we do not perform task-specific fine-tuning although prior work
(Lu et al., 2020; Wang et al., 2022b) shows it can further improve task performance.

Pre-training. To learn good representations from large-scale webly supervised image and text data,
we consider two pre-training tasks: text span denoising and masked image denoising. The text span
denoising task follows Raffel et al. (2020) – randomly corrupt 15% of the tokens and replace the
consecutive corrupted tokens with a unique mask token. The masked image denoising task follows
Bao et al. (2022) and He et al. (2022) – randomly masked 75% of the image patches, and the goal is
to recover the whole image. When another modality is present, i.e. image or text, the model can use
information from that modality to complete the tasks.

We construct the pre-training dataset by incorporating publicly available language data (i.e., plain
texts from Common Crawl), vision data (i.e., raw images from different datasets), and V&L data
(i.e., image caption and image label pairs). For V&L data, we add a simple prompt “An image of ”
at the beginning of the caption or categories to indicate it is multi-modal data (Wang et al., 2022d).

We pre-train UNIFIED-IO on this combination of datasets with an in-batch mixing strategy. We
equally sample data with the text and image denoising objective. For text denoising, half of the
samples are from pure text data, i.e. C4 and Wikipedia. The other half is constructed from image and
class data, such as Imagenet21k (Ridnik et al., 2021) or image and caption data, such as YFCC15M
(Radford et al., 2021). For image denoising, we also use the same caption and class data and some
image-only data from datasets for our vision tasks. We sample from datasets in proportion to dataset
size. See Appendix A.2 for details.

Multi-tasking. To build a single unified model for diverse vision, language, and V&L tasks, we
construct a massive multi-tasking dataset by ensembling 95 datasets from 62 publicly available data
sources. See Section 2 for task details and Appendix A.1 for dataset visualizations.

We jointly train UNIFIED-IO on this large set of datasets by mixing examples from these datasets
within each batch. We equally sample each group (1/8) except for image synthesis (3/16) and
dense labeling (1/16) since dense labeling has significantly fewer data and image synthesis has
significantly more data than other groups. Within each group, we sample datasets proportional to
the square root of their size to better expose the model to underrepresented tasks. Due to the large
variance in dataset size, some tasks are still rarely sampled (e.g. depth estimation only has a 0.43%
chance of being sampled). See Appendix A.3 for details and visualizations.

Implementation Details. Due to space limitation, see Appendix A.4 for implementation details.

4 EXPERIMENTS

We now present results for UNIFIED-IO on the GRIT benchmark (Sec 4.1), ablate training data
via the GRIT ablation benchmark (Sec 4.2) and evaluate UNIFIED-IO on 16 other benchmarks in
computer vision and NLP (Sec 4.3). Appendix A.5 shows the evaluation of the same concept and
new concept on GRIT and A.6 shows the prompt generalization. Qualitative examples are in A.9.

4.1 RESULTS ON GRIT

The General Robust Image Task (GRIT) Benchmark (Gupta et al., 2022b) is an evaluation-only
benchmark designed to measure the performance of models across multiple tasks, concepts, and
data sources. GRIT aims to encourage the building of unified and general purpose vision models
and is thus well suited to evaluate UNIFIED-IO. GRIT has seven tasks that cover a range of visual
skills with varying input and output modalities and formats: categorization, localization, VQA, refer
expression, segmentation, keypoint, and surface normal estimation.
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Categorization Localization VQA Refexp Segmentation Keypoint Normal All

ablation test ablation test ablation test ablation test ablation test ablation test ablation test ablation test

0 NLL-AngMF [4] - - - - - - - - - - - - 49.6 50.5 7.2 7.1
1 Mask R-CNN [42] - - 44.7 45.1 - - - - 26.2 26.2 70.8 70.6 - - 20.2 20.3
2 GPV-1 [39] 33.2 33.2 42.8 42.7 50.6 49.8 25.8 26.8 - - - - - - 21.8 21.8
3 CLIP [87] 48.1 - - - - - - - - - - - - - 6.9 -
4 OFALARGE [108] 22.6 - - - 72.4 - 61.7 - - - - - - - 22.4 -
5 GPV-2 [53] 54.7 55.1 53.6 53.6 63.5 63.2 51.5 52.1 - - - - - - 31.9 32.0

6 UNIFIED-IOSMALL 42.6 - 50.4 - 52.9 - 51.1 - 40.7 - 46.5 - 33.5 - 45.4 -
7 UNIFIED-IOBASE 53.1 - 59.7 - 63.0 - 68.3 - 49.3 - 60.2 - 37.5 - 55.9 -
8 UNIFIED-IOLARGE 57.0 - 64.2 - 67.4 - 74.1 - 54.0 - 67.6 - 40.2 - 60.7 -
9 UNIFIED-IOXL 61.7 60.8 67.0 67.1 74.5 74.5 78.6 78.9 56.3 56.5 68.1 67.7 45.0 44.3 64.5 64.3

Table 3: Comparison of our UNIFIED-IO models to recent SOTA on GRIT benchmark. UNIFIED-IO is the
first model to support all seven tasks in GRIT. Results of CLIP, OFA obtained from GRIT challenge.

UNIFIED-IO is the first model to support all seven tasks in GRIT. As seen in Table 3, UNIFIED-IOXL

outperforms all prior submissions to GRIT obtaining average accuracy of 64.3 on test. The next best
submission is GPV-2 (Kamath et al., 2022) which obtains 32.0 and can only support 4 out of 7 tasks.
UNIFIED-IOXL also outperforms the multi-task checkpoint of OFALARGE (Wang et al., 2022b) on
VQA, refer expression and categorization.

Mask R-CNN (He et al., 2017) is a strong baseline for core vision tasks. UNIFIED-IOXL outperforms
Mask R-CNN on localization and segmentation. The reason is UNIFIED-IOXL shows little degrada-
tion in performance between the same concept and the new concept as discussed in Appendix A.5.
On keypoint, our model is worse compared to Mask R-CNN (68.1 vs. 70.8). The reason is we have
2-stage inference for keypoint – first locate the person using the object localization prompt, then find
keypoints for each detected region.

NLL-AngMF (Bae et al., 2021) is a SOTA model for surface normal estimation. Our model gets
strong results compared to NLL-AngMF (44.3 vs. 49.6). Since our image tokenizer is only pre-
trained on ImageNet without any surface normal data, the upper bound of our method through
reconstruction is 59.8 on FrameNet (Kazemzadeh et al., 2014). This suggests our score could be
considerably improved by training a stronger image tokenizer.

4.2 ABLATIONS

To better understand how multi-tasking affects learning, we perform ablations by leaving out
individual task groups from multi-task training. Due to computational constraints, we ablate
UNIFIED-IOLARGE and train for 250k steps. If ablating a task group, we reduce the number of
training steps so that all models are trained on approximately the same number of examples for each
of the remaining task groups. Results are shown in Table 4 on GRIT and MNLI (Williams et al.,
2018).

In spite of supporting a large number of heterogeneous tasks, Unified-IO is able to perform well
across all tasks. Reducing this heterogeneity by removing task groups does not impact the perfor-
mance of individual tasks significantly. This is notable since removing a task group significantly
reduces the scope of what a model needs to learn while keeping the model capacity fixed. This
empirically demonstrates the effectiveness of the proposed unified architecture for massive hetero-
geneous task support.

An exception is that removing the NLP group significantly boosts categorization, which might indi-
cate that the sentence classification task interferes with image classification. Removing captioning
also boosts performances on VQA and a few other tasks, which might be caused by captioning re-
quiring a relatively large amount of model capacity to learn free-form text generation, in contrast
to VQA that requires short answer phrases from a limited vocabulary. Removing image synthesis
causes a major regression in keypoint. Manual inspection shows that the model predicts standing-
human shaped keypoints even for people in very different postures, suggesting the model learned
to rely on priors instead of the image content. We also see minor regressions in localization and
referring expression, suggesting that image synthesis tasks, possibly image in-painting in particular,
had a surprising positive transfer to understanding sparse structured outputs. It is possible that an
ablation analysis on the XL model may yield different outcomes, but we are unable to perform an
XL-based analysis due to limited compute.

7



Published as a conference paper at ICLR 2023

Model Step Categorization Localization VQA Refexp Segmentation Keypoint Normal MNLI

UNIFIED-IOLARGE 250k 50.3 63.4 65.7 73.4 51.8 69.2 40.7 85.1

w/o Image Synthesis 200k 52.7 62.9 64.2 72.0 53.6 18.3 42.2 84.3
w/o Sparse 220k 52.6 - 64.1 - 51.3 - 38.5 83.8
w/o Dense 235k 49.5 62.4 65.6 72.9 - 66.7 - 84.8
w/o Classification 220k - 63.1 64.0 73.7 52.1 66.8 39.1 84.6
w/o Captioning 220k 49.7 65.0 68.0 74.7 54.2 67.4 39.2 85.3
w/o V&L 220k 50.9 - - 72.5 51.9 70.0 38.2 84.4
w/o NLP 220k 56.1 64.3 65.9 74.6 52.0 69.3 39.9 -
w/o Language Modelling 220k 52.9 64.7 66.7 74.7 52.7 70.2 39.9 83.5

Table 4: Ablation study on holding out tasks groups and evaluating on GRIT and MNLI (Williams et al., 2018)
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Split val val val test-dev test test test-dev test-std test val val val val test val val test
Metric RMSE Acc. Acc. Acc. Acc. Acc. Acc. IOU Acc. Acc. CIDEr CIDEr CIDEr CIDEr F1 Acc Acc

Unified SOTA UViM - - - Flamingo - Flamingo - - - - - - - T5 PaLM -
0.467 - - - 57.8 - 49.8 - - - - - - - 92.20 92.2 -

UNIFIED-IOSMALL - 42.8 38.2 57.7 31.0 24.3 42.4 35.5 17.3 76.5 - 45.1 80.1 - 84.9 65.9 87.4
UNIFIED-IOBASE - 63.3 43.2 61.8 37.8 28.5 45.8 50.0 29.7 85.6 - 66.9 104.0 - 87.9 70.8 90.8
UNIFIED-IOLARGE - 71.8 50.5 67.8 42.7 33.4 47.7 54.7 40.4 86.1 - 87.2 117.5 - 87.5 73.1 93.1
UNIFIED-IOXL 0.475∗ 79.1 53.2 77.9 54.0 45.2 57.4 65.0 49.8 91.1 21.2 100.0 126.8 122.3 89.2 79.7 95.7

Single or fine- BinsFormer CoCa MAE CoCa KAT GPV2 Flamingo MAC-Caps JSL OFA SVT CoCa - OFA Turing NLR ST-MOE DeBERTa
tuned SOTA 0.330 91.00 60.3 82.3 54.4 38.1 65.7 27.3 39.6 91.0 18.3 122.4 - 145.3 93.8 92.4 97.7

∗Due to a dataset error we are not able to report results for the SMALL/BASE/LARGE models on NYU2 and report results for an XL model retrained with a slightly
different distribution of tasks, see the Appendix A.8 for more discussion.

Table 5: Comparing the jointly trained UNIFIED-IO to specialized and unified fine-tuned SOTA models across
Vision, V&L and Language tasks. Benchmark datasets are: NYUv2 (Nathan Silberman & Fergus, 2012), Ima-
geNet (Deng et al., 2009), Places365 (Zhou et al., 2017), VQA 2.0 (Goyal et al., 2017), A-OKVQA (Schwenk
et al., 2022), VizWizVQA (Gurari et al., 2018), VizWizG (Chen et al., 2022a), Swig (Pratt et al., 2020), SNLI-
VE (Xie et al., 2019), VisComet (Park et al., 2020), Nocaps (Agrawal et al., 2019), COCO Captions (Chen
et al., 2015), MRPC (Dolan & Brockett, 2005), BoolQ (Clark et al., 2019), and SciTail (Khot et al., 2018).

4.3 RESULTS ON ADDITIONAL TASKS

We report results on 16 additional tasks used in our training setup. For these tasks, we do not expect
to get state-of-the-art results since specialized models are usually designed and hyper-parameter
tuned for a single task, while we are evaluating a single jointly trained model. We also avoid ex-
tensive task-specific tricks like color jittering, horizontal flipping, CIDEr optimization, and label
smoothing, which are often responsible for considerable gains in individual task performance. We
leave such task-specific tuning for future work. See Table 5 for the results. When possible, we
additionally report the best prior result on these tasks from a unified model, meaning a model that
is trained in a multi-task setting and a unified architecture (no task-specific head or customizations)
with at least three other tasks.

UNIFIED-IO provides strong performance on all these tasks despite being massively multi-tasked.
We review more fine-grained results below.

Depth Estimation. On depth estimation, UNIFIED-IO achieves 0.475 rmse, which is behind
SOTA (Li et al., 2022e) but similar the recently proposed unified model, UViM (Kolesnikov et al.,
2022), despite being trained to do far more tasks. More discussion can be found in A.8.

Image Classification. UNIFIED-IO achieves 79.1 on ImageNet and 53.2 on Places365, showing
the model was able to retain the knowledge of many fine-grained classes despite being massively
multi-tasked. Notably, we achieve this without the extensive data augmentations methods typically
used by SOTA models (Yu et al., 2022a; He et al., 2022).

Visual Question Answering. UNIFIED-IO is competitive with fine-tuned models on VQA (Alayrac
et al., 2022; Kamath et al., 2022; Gui et al., 2021), and achieves SOTA results on A-OKVQA.
Relative to Flamingo, UNIFIED-IO performs better on VizWiz-QA but worse on OK-VQA.

Image Captioning. Despite the lack of CIDEr optimization, UNIFIED-IO is a strong captioning
model and generalizes well to nocaps. Since UNIFIED-IO is trained on many captioning datasets, it
is likely the use of style tags following Cornia et al. (2021) would offer additional improvement by
signaling UNIFIED-IO to specifically generate COCO-style captions during inference.
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NLP tasks.: UNIFIED-IO achieves respectable results on three NLP tasks but lags behind SOTA
models (Smith et al., 2022; Zoph et al., 2022; He et al., 2021). This can partly be attributed to scale.
Modern NLP models contain 100 billion+ parameters and with more extensive NLP pre-training.

4.4 LIMITATIONS

For object detection, while UNIFIED-IO generally produces accurate outputs (see Appendix A.9),
we find the recall is often poor in cluttered images. Prior work (Chen et al., 2022b) has shown this
can be overcome with extensive data augmentation techniques, but these methods are not currently
integrated into UNIFIED-IO. Our use of a pre-trained VQ-GAN greatly simplifies our training and
is surprisingly effective for dense prediction tasks. However, it does mean UNIFIED-IO has limited
image generation capabilities (recent works (Yu et al., 2022b) have shown this method can be greatly
improved but was not available at the time of development). We also found in a small-scale study
that our model does not always understand prompts not in the training data (see Appendix A.6).

5 RELATED WORK

Constructing models that can learn to solve many different tasks has been of long-standing interest
to researchers. A traditional approach to this problem is to build models with task-specialized heads
on top of shared backbones (He et al., 2017; Liu et al., 2019; Lu et al., 2020). However, this requires
manually designing a specialized head for each task and potentially limits transfer across tasks. An
alternative is to build unified models – models that can complete many different tasks without task-
specialized components. In NLP, this approach has achieved a great deal of success through the use
of pre-trained generative models (Raffel et al., 2020; Brown et al., 2020; Chowdhery et al., 2022).

Inspired by this success, there has been a recent trend to build unified models that can be additionally
applied to tasks with visual or structured inputs and outputs. Many models have been proposed for
tasks with text and/or image input and text output (Cho et al., 2021; Wang et al., 2022d; Li et al.,
2022b; Wang et al., 2021; Kaiser et al., 2017; Sun et al., 2022; Chen et al., 2022d; Wang et al.,
2022c). However, these models can not produce any structured or visual output.

More recent unified models can additionally support image locations, which allows tasks like object
detection or region captioning. This can be done by using bounding boxes proposed by an object
detector (Cho et al., 2021; Kamath et al., 2022) or including a bounding box output head (Gupta
et al., 2022a; Dou et al., 2022; Chen et al., 2022c; Kamath et al., 2021; Li et al., 2022d). Alterna-
tively, image locations can be encoded as special tokens in the input/output text (Yang et al., 2021;
Yao et al., 2022; Zhu et al., 2022) following Chen et al. (2022b). UNIFIED-IO follows this design,
but applies it to a wider set of tasks than previous works, including key-point estimation, image
in-painting, and region captioning.

Concurrent to our work, OFA (Wang et al., 2022b) proposes a similar approach that also supports im-
age locations and text-to-image synthesis. However, OFA does not support dense labeling tasks such
as depth estimation, segmentation, and surface normal estimation. Other closely related models in-
clude UViM (Kolesnikov et al., 2022) which generates a discrete guiding code for a D-VAE to build
an autoregressive model for panoptic segmentation, depth prediction, and colorization; Pix2Seq v2
(Chen et al., 2022c) which extends Pix2Seq to segmentation, keypoint estimation, and image cap-
tioning; Visual Prompting (Bar et al., 2022) adapts the pre-trained visual model to novel downstream
tasks by image inpainting. UNIFIED-IO covers all these tasks, and focuses on multi-tasking rather
then task-specific fine-tuning. Additional discussions are presented in Appendix A.10.

6 CONCLUSION

We have presented UNIFIED-IO, a unified architecture that supports a large variety of computer
vision and NLP tasks with diverse inputs and outputs, including images, continuous maps, binary
masks, segmentation masks, text, bounding boxes, and keypoints. This unification is made possible
by homogenizing each of these modalities into a sequence of discrete tokens. The 2.9B parameter
UNIFIED-IO XL model is jointly trained on 90+ datasets, is the first model to perform all 7 tasks on
the GRIT benchmark and obtains impressive results across 16 other vision and NLP benchmarks,
with no benchmark fine-tuning or task-specific modifications.
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A APPENDIX

A.1 TASKS DETAILS

UNIFIED-IO is jointly trained on a large and diverse set of vision, language and vision & language
tasks. In this section, we describe these tasks in detail and show the prompts we use during training
and inference (text on the left of example cards). We also provide qualitative examples of both the
ground truth and the predictions made by UNIFIED-IO.

A.1.1 IMAGE SYNTHESIS TASKS

Image Synthesis from Text. This task requires generating an image that matches a sentence. Train-
ing data comes from 4 captioning datasets: COCO Caption (Chen et al., 2015), Conceptual Captions
3M and 12M (Changpinyo et al., 2021), and RedCaps (Desai et al., 2021) as well datasets used for
image classification using the object class as the input caption. Specialized image generation models
like DALL·E 2 (Ramesh et al., 2022) use an order of magnitude more data, but we limit our sources
to these sets for training efficiency.

What is the 
complete image? 

Text:  “a white sink in 
a small tiled 
bathroom”
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Image Inpainting. This task requires filling in a region of an image with a target object. Training
data for this task is built from object bounding box annotations from Open Images (Kuznetsova
et al., 2020), Visual Genome (Krishna et al., 2017) and COCO (Lin et al., 2014). For each object,
the input image becomes the source image with the object’s bounding box blanked out. The input
prompt provides the bounding box’s location and the target category. The target output is the original
image.
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Fill in the blank 
region “loc257 
loc425 loc575 

loc758” person”?

Image Synthesis from Segmentation. This task involves generating an image that matches an
input semantic segmentation, i.e., a set of class labels for some or all of the pixels in the image.
UNIFIED-IO is trained for this task using segmentation annotations from COCO (Lin et al., 2014),
Open Images (Kuznetsova et al., 2020), and LVIS (Gupta et al., 2019) as input. Following the
method from Section 3.1 the segmentation input is converted into a RGB image paired with a prompt
listing the color-to-class mapping, and the target output is the source image.
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What is the 
complete image? 

Segmentation color: 
”white:  knob, silver: 

cupboard, olive: 
drawer,  lime …"
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A.1.2 SPARSE LABELLING TASKS

Object Detection. UNIFIED-IO is trained on object detection annotations from Visual Genome,
Open Images, and COCO. For this task the input is a static prompt and an image, and the output
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text includes the bounding boxes and class names of all objects in the image. We randomize the
order of the output objects during training, but for simplicity leave integrating more complex data-
augmentation techniques (Chen et al., 2022b) to future work.

What objects are in 
the image ?
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loc100 loc745 loc495 
loc991 chair loc293 
loc100 loc753 loc763 
bed loc262 loc103 
loc841 loc1096 bicycle

bicycle

chair

bed
Viz

* text outputs omitted for brevity

Object Localization. Object localization requires returning bounding boxes around all objects of
a given category. Training data is derived from our object detection training data by constructing a
training example from each category of objects present in an image. The input is then the image, a
prompt specifying the target class, and the output is a list of all boxes that contain an instance of that
class. The class for each box (which is always the class specified in the prompt) is included in the
output for the sake of keeping the output format consistent with the object detection output. Object
localization can use input categories which are not present in the image. To handle this, we construct
negative samples by randomly selecting categories not present in the image to use as input, in which
case the output is an empty sequence.

Which regions does 
the text “giraffe” 

describe ?
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loc431 loc202 loc827 
loc335 giraffe 
loc109 loc337 loc934 
loc954 giraffe

* text outputs omitted for brevity

Referring Expression Comprehension. The task requires the model to localize an image region
described by a natural language expression. The annotation is similar to Object Localization, except
that the target is specified with natural language expression instead of class name. Datasets for
this task include RefCOCO (Kazemzadeh et al., 2014), RefCOCO+ (Kazemzadeh et al., 2014) and
RefCOCOg (Mao et al., 2016).

Which region does 
the text “man in 

solid black” 
describe ?
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EXPRESSIO
N
S

loc270 loc856 
loc640 loc982

Keypoint Estimation. Keypoint estimation requires returning the location of 17 keypoints on a
human body (e.g., eyes, nose, feet, etc.) for each person in an image. While it is possible to perform
this task in one pass by listing the keypoints of all people in the image in a single output sequence,
this can result in an extremely long output sequence, so UNIFIED-IO uses a multi-step approach
instead. To do this UNIFIED-IO is trained to complete the subtask of detecting the keypoints for
single a person in a given region. For this subtask, the input prompt specifies the target region and
and the output is a list of 17 points (a pair of locations tokens for the x and y coordinates) along
with a visibility labels (1 for not visible, 2 for partly visible, 3 for fully visible). Non-visible points
are preceded by two copies of a new special tokens that indicate there are no valid coordinates.
The keypoint metric does not award points for correctly identifying non-visible points, so during
inference we mask that special token so the model makes a best-effort guess for the coordinates
of every single point. Training data for this subtask comes from COCO human pose data (Lin
et al., 2014) with the ground-truth person regions as input. During inference we locate person
regions using the object localization prompt, then apply UNIFIED-IO again to find keypoints for
each detected region.
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TRU
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KEYPO
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Find the human 
joints in the region 

“loc260 loc375 
loc726 loc545”.

loc307 loc487 loc299 
loc499 loc295 loc481 
loc315 loc507 loc305 
loc455 loc369 loc517 
loc359 loc413 loc457 
loc527 loc429 loc387 
loc423 loc529 ….

* text outputs omitted for brevity

A.1.3 DENSE LABELLING TASKS

Object Segmentation. Object segmentation requires finding the binary segmentation mask of each
instance of a particular category in an image. The input is an image and a prompt that includes the
target class, while the output is an RGB image with black background and instances of that class
filled in with unique colors following the method in Section 3.1. The output image is resized to
match the input image if needed using a nearest-neighbor resizing method, and binary masks are
built from each unique color. In practice the output image from UNIFIED-IO can have slightly non-
uniform colors or extraneous background pixels, likely due to limitation in what the D-VAE can
decode/encode, so the output pixels are clustered by color and and connected components of less
than 8 pixels are removed to build cleaned instance masks. Segmentation annotations come from
Open Images LVIS, and COCO.

What is the 
segmentation of 

“apple” ?
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Depth Estimation. Depth estimation requires assigning each pixel in an image a depth value. This
task uses a static prompt as input, and the output is a grayscale image representing the normalized
depth at each pixel. The generated output image is reiszed to the same size as the input image and
then pixel values are rescaled to the maximum depth in the training to get an output depth map.
Training data comes from the NYU Depth Dataset V2 (Nathan Silberman & Fergus, 2012).

What is the depth 
map of the image ?
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Surface Normal Estimation. UNIFIED-IO is trained on FrameNet (Huang et al., 2019a) and Blend-
edMVS (Yao et al., 2020) surface normal estimation datasets. For this task the input is a static prompt
and an image and the output is an RGB representation of the x/y/z orientation of the surface at each
pixel. The generated output image is resized to match the input image and converted back to x/y/z
orientations to produce the final output.
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What is the surface 
normal of the 

image ? 
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A.1.4 IMAGE CLASSIFICATION TASKS

Image Classification. UNIFIED-IO is trained on 6 image classification datasets: ImageNet
2012 (Deng et al., 2009), ImageNet21k (Ridnik et al., 2021), Places365 (Zhou et al., 2017), Sun397
(Xiao et al., 2010), iNaturalist (Van Horn et al., 2018) and Caltech birds 2011 (Welinder et al.,
2010). For this task the input is an image and a static prompt, and the output is a class name. During
inference we compute the log-probability of each class label in the dataset being evaluated and re-
turn the highest scoring one. This ensures UNIFIED-IO does not return a category from a different
categorization dataset that is a synonym or hypernym of the correct label.

What is in this 
image ?
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sea snake sea snake

Object Categorization. This task identifies which label, from a given set, best corresponds to
an image region defined by an input image and bounding box. The input is the image, a prompt
specifying the image region and the output is the target class name. We convert object detection
annotations from Visual Genome, Open Images, and COCO for this task. Inference is constrained
to return a valid label for the target label set just as with image classification.

What is the category 
of  the region 

“loc389 loc560 
loc684 loc684”? 
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horse horse

A.1.5 IMAGE CAPTIONING TASKS

Image Captioning. Image captioning data comes from the same manually annotated and unsuper-
vised sources used for Image Generation. In this case the inputs and output are reversed, the input
is an image and the static prompt, and the output is a caption that matches the image.

What does the 
image describe ?

TRU
TH

PRED
IC

TIO
N

IM
AG

E
C
APTIO

N
IN

G

A clock that is 
hanging underneath 

a glass arch

A large clock in a 
large room with a 

glass ceiling

Region Captioning. Region captioning tasks a model with generating a caption that describes a
specific region in the image. Our format for this task is identical to Image Captioning except the
region is included in the input prompt. Visual Genome (Krishna et al., 2017) is used for the training
data.

What does the 
region “loc100 
loc780 loc323 

loc1006” describe ? 
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a person falling in 
the water

a man falling in the 
water
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A.1.6 VISION & LANGUAGE TASKS

Visual Question Answering. UNIFIED-IO is trained on a collection of VQA datasets including
VQA 2.0 (Goyal et al., 2017), Visual Genome, VizWizVQA (Gurari et al., 2018), OKVQA (Marino
et al., 2019) and A-OKVQA (Schwenk et al., 2022). For VQA, the question is used as the prompt,
and the output is the answer text. For VQA, it is common to constrain the model to predict an answer
from a fixed last of common VQA answers (Wang et al., 2022b;d) during inference, but we avoid
doing this since we find it does not benefit UNIFIED-IO in practice.

We additionally convert data from several other datasets in a VQA format, including imSitu (Yatskar
et al., 2016), where we treat predicting the verb and then the related slots as separate VQA ques-
tions, VisualCOMMET (Park et al., 2020) where we convert the before/after/intent into questions
by converting the input regions into location tokens, SNLI-VE (Xie et al., 2019) where we integrate
the entailed text into an input question, and VCR (Zellers et al., 2019a) where we again integrate
the input regions into the prompt by encoding them with location tokens and integrate the rationales
into the target text for the answer justification task.

How many signs are 
there ?
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Answer-Grounded Visual Question Answering. This task requires both answering a question and
returning a binary mask specifying the region of the image used to answer the question. The format
for this task follows the one for VQA except that a binary mask is also used as an additional output.
Training data comes from VizWiz-VQA (Chen et al., 2022a), a dataset designed to train models that
could benefit people with visual impairments.

What color is this 
band ?
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gold gold

Relationship Detection. This task requires predicating a relationship between a pair of objects
which are grounded by bounding boxes. The prompt contains both the object regions, and the
output is the predicted predicate. There are 2 datasets in this tasks: Visual Genome (Krishna et al.,
2017) and Open Images (Kuznetsova et al., 2020).

What is the 
relationship between " 
loc245 loc291 loc351 
loc379 flower " and " 

loc379 loc223 loc1059 
loc535 vase " ?
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flower 
on vase

flower 
on vase

A.1.7 NATURAL LANGUAGE PROCESSING TASKS

Question Answering. Following prior work in natural language processing (Raffel et al., 2020), QA
tasks are formatted by placing both the question and any text context (e.g., an paragraph containing
the answer) into the prompt and training the model to generate the text answer. UNIFIED-IO is
trained on several QA datasets including SQuAD 2.0 (Rajpurkar et al., 2016), other training datasets
from the MRQA (Fisch et al., 2019) shared tasks (Trischler et al., 2017; Joshi et al., 2017; Dunn
et al., 2017; Yang et al., 2018; Kwiatkowski et al., 2019), QA datasets from SuperGLUE (Wang
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et al., 2019; Clark et al., 2019; Khashabi et al., 2018; Roemmele et al., 2011), Cosmos QA (Huang
et al., 2019b), OpenBookQA (Mihaylov et al., 2018), and HellaSwag (Zellers et al., 2019b). If
the text context is longer then our maximum sequence length we use a sliding-window approach
following Devlin et al. (2019) which exposes the model to different windows of text from the context
and returns the highest-confidence answer.

context: Uptake of O 2 from the air is the 
essential purpose of respiration, so oxygen 
supplementation is used in medicine. 
Treatment not only increases oxygen levels in 
the patient's blood….
question: What medical treatment is used to 
increase oxygen uptake in a patient?
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Q
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N
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oxygen 
supplementation

oxygen 
supplementation

Text Classification. Also following past work (Raffel et al., 2020), text classification tasks are
formatted by placing the input sentences and a query in the prompt and training the model to generate
the target class. Datasets include tasks from GLUE and SuperGLUE (Wang et al., 2018; 2019;
Warstadt et al., 2018; Socher et al., 2013; Dolan & Brockett, 2005; Iyer et al., 2017; Cer et al., 2017;
Williams et al., 2018; Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009; Levesque et al., 2012; Williams et al., 2018; De Marneff et al., 2019; Pilehvar & os’e
Camacho-Collados, 2018), as well as SNLI (Bowman et al., 2015), SciTail (Khot et al., 2018),
IMDB Reviews (Maas et al., 2011), and PAWS (Zhang et al., 2019).
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Yes it entails

context: Swansea striker Lee Trundle has 
negotiated a lucrative image-rights deal with 
the League One club. Lee Trundle is in 
business with the League One club. 
question: Does this sentence entail the 
following sentence?

Yes it entails

Text Summerization. Text summarization is done again by providing the input paragraph and a
prompt as input and generating a summary as output. We use the Gigaword dataset (Graff et al.,
2003; Rush et al., 2015) for training data.
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context: Uptake of O 2 from the air is the 
essential purpose of respiration, so oxygen 
supplementation is used in medicine. 
Treatment not only increases oxygen levels in 
the patient's blood….
question: What medical treatment is used to 
increase oxygen uptake in a patient?
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ERING

oxygen 
supplementation
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TEXT
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N

Yes it entails

loc431 loc202 loc827 
loc335 giraffe 
loc109 loc337 loc934 
loc954 giraffe

loc270 loc856 
loc640 loc982

Find the human 
joints in the region 

“loc260 loc375 
loc726 loc545”.

loc307 loc487 loc299 
loc499 loc295 loc481 
loc315 loc507 loc305 
loc455 loc369 loc517 
loc359 loc413 loc457 
loc527 loc429 loc387 
loc423 loc529 ….

context: Swansea striker Lee Trundle has 
negotiated a lucrative image-rights deal with 
the League One club. Lee Trundle is in 
business with the League One club. 
question: Does this sentence entail the 
following sentence?

oxygen 
supplementation

Yes it entails

What color is this 
band ?
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loc379 flower " and " 

loc379 loc223 loc1059 
loc535 vase " ?
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* text outputs omitted for brevity

* text outputs omitted for brevity

context: Sri Lankan president Chandrika 
Kumaratunga called on the country's private 
sector to invest in the establishment of 
townships while pledging to provide 
government assistance for such ventures, 
official radio said Saturday.
question: What is a short summary of this 
document?

TRUTH
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N

TEXT
SUM

M
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N
Sri Lankan president 

calls for private 
sector investment

Sri Lankan president 
calls for private 

sector investment in 
townships

A.1.8 LANGUAGE MODELING TASKS

Mask Language Modeling. Following T5 (Raffel et al., 2020), the mask language modelling ob-
jective randomly samples and then drops out 15% of tokens in the input sequence. All consecutive
spans of dropped-out tokens are replaced by a single sentinel token. The target is to recover the
dropped tokens given the sentinel token. We use C4 (Raffel et al., 2020) and Wikipedia (Founda-
tion) datasets.

Beginners <extra_id_1000> Taking Place in 
Missoula! Do you want to get better at 
making delicious BBQ? You will have 
<extra_id_1001> this on your calendar now. 
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<extra_id_1000> 
BBQ Class 

<extra_id_1001> 
the opportunity, put

<extra_id_1000> 
BBQ Class 

<extra_id_1001> a 
date
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Figure 3: Pre-training objectives (inner circle), annotation types (middle circle), and datasets (outer circle)
used in pre-training of UNIFIED-IO. Sizes correspond to the sampling rate in the training distribution. Best
viewed in color.

A.2 PRE-TRAINING DATA DISTRIBUTION

Figure 3 shows a visualization of pre-training data distribution used by UNIFIED-IO. As discussed
in Section 3.3, we equally sample data with the text denoising and image denoising objective (in-
ner circle of Figure 3). For text denoising, half of the samples are from pure text data, i.e. C4 and
Wikipedia. The other half is constructed from image and class, such as Imagenet21k (Ridnik et al.,
2021) or image and caption, such as YFCC15M (Radford et al., 2021). For image denoising, we use
the text information when class and caption are present in the data source and sample the dataset pro-
portional to the dataset size. For both text and image denoising, we randomly drop both modalities
10% of the time if both text and image as inputs.
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Figure 4: Task groups (inner circle), tasks (middle circle), and datasets (outer circle) used in multi-task training
of UNIFIED-IO. Sizes correspond to the sampling rate in the training distribution. Best viewed in color.

A.3 MULTI-TASKING DATA DISTRIBUTION

Figure 4 shows a visualization of the multi-task training distribution used by UNIFIED-IO from
Table 1. As discussed in Section 3.3, we equally sample each group (1/8) except image synthesis
(3/16) and dense labeling (1/16) since dense labeling has a much smaller sample size compared to
image synthesis. We sample tasks and datasets (middle and outer circle) with a temperature-scaled
mixing strategy to make sure the model is sufficiently exposed to underrepresented tasks. We raise
each task’s mixing rate to the power of 1/T and then renormalize the rates so that they sum to 1.
Following Raffel et al. (2020), we use T = 2 in our experiments.

Due to the large variance in dataset size, some of the tasks are rarely sampled. For example, the depth
estimation task only has the NYU Depth dataset source (Nathan Silberman & Fergus, 2012) and thus
the sampling rate is only 0.43%. However, the model still works well for depth estimation tasks, even
outperforming concurrent work (Kolesnikov et al., 2022) (0.385 vs. 0.467 RMSE). We suspect the
large model capacity and masked image denoising pre-training improve the performance. Similarly,
Grounding VQA (Chen et al., 2022a) has 0.15% sample rate, but the model can still achieve state-
of-the-art performance on this task partly because it is trained on many related datasets for VQA and
segmentation.
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A.4 IMPLEMENTATION DETAILS

The total vocabulary size is 49536, with 32152 language tokens, 1000 location tokens, and 16384
vision tokens. We use the imagenet pretrained VQ-GAN checkpoints with 16384 tokens and f =
161. Please refer (Esser et al., 2021) During training, we random sub-sample 128 image patches for
pre-training state and 256 image patches (out of 576) for multi-task stage. We do not use dropout.
Adafactor (Shazeer & Stern, 2018) optimizer is used to save memory. We use a learning rate of
10−2 for the first 10,000 steps and then decay at a rate of 1/

√
k. We train with β1 = 0.9 and

β2 = 1.0 − k−0.8, where k is the step number. We use global norm gradient clipping with 1.0
and find this is crucial to stabilized XL training. We train the Small, Base and Large with a
batch size of 204 8 and XL with batch size of 1024 due to memory consideration. 4-way in-layer
parallelism and 128-way data parallelism were used to scale the 3B model training. For all models,
we train 1000k steps – 500k for pre-training and multi-task training respectively.

A.5 EVALUATION ON THE SAME CONCEPT AND NEW CONCEPT

restricted params (M)
Categorization Localization VQA Refexp Segmentation Keypoint Normal

same new same new same new same new same new same new same new

0 NLL-AngMF ✓ 72 - - - - - - - - - - - - 50.7 -
1 Mask R-CNN ✓ 58 - - 51.9 40.8 - - - - 44.9 0.3 70.9 - - -
2 GPV-1 ✓ 236 58.7 0.8 48.3 37.8 58.4 74.0 29.7 23.1 - - - - - -
3 CLIP 302 49.1 46.7 - - - - - - - - - - - -
4 OFALARGE 473 28.9 15.8 - - 74.9 88.6 63.4 58.5 - - - - - -
5 GPV-2 370 85.0 13.5 54.6 54.2 69.8 81.7 57.8 48.3 - - - - - -

6 UNIFIED-IOSMALL 71 52.9 31.9 47.5 61.5 59.0 72.5 54.2 45.7 37.4 48.5 46.6 - 33.6 -
7 UNIFIED-IOBASE 241 60.3 47.5 57.9 68.4 68.0 81.8 72.5 62.2 45.8 57.2 60.2 - 37.7 -
8 UNIFIED-IOLARGE 776 63.0 52.7 63.3 70.9 72.1 84.3 79.2 66.3 50.4 62.2 67.7 - 40.3 -
9 UNIFIED-IOXL 2925 66.1 60.1 65.6 74.4 78.6 90.2 83.5 72.4 53.0 64.2 68.2 - 45.1 -

Table 6: Generalization to new concepts on the GRIT ablation set.

GRIT provides a breakdown of metrics into two groups: same for samples that only contain concepts
seen in the primary training data (a set of common datasets like COCO, ImageNet, and Visual
Genome), and new for samples containing at least one concept unseen in primary training data.
Table 6 shows results for UNIFIED-IO and other leaderboard entries for the ablation set, divided
into the same and new concepts.

UNIFIED-IOXL shows little degradation in performance between same and new, compared to com-
peting entries. On some tasks UNIFIED-IO is even able to outperform on the new split compared
to the same. This indicates that the volume of training data used to train UNIFIED-IO has a broad
coverage of concepts, and provides almost as effective a level of supervision as provided by large
standard vision datasets like COCO. Furthermore, since UNIFIED-IO is a uniquely unified architec-
ture with no task-specific parameters, it is very likely able to effectively transfer knowledge across
different tasks.

In comparison to Mask-RCNN (row 1), GRIT metrics show UNIFIED-IO (row 14) is better by a
large margin on new concepts, i.e., non-COCO examples (74.4 vs 40.8 for localization and 64.2 vs
0.3 on segmentation), but is still superior on the COCO-like examples (65.6 vs 51.9 for localization
and 53.0 vs 44.9 on segmentation). UNIFIED-IO is also able to beat GPV-2 (row 5) on new concepts
by large margins across all 4 tasks supported by GPV-2 even though GPV-2 is exposed to these
concepts via webly supervised data and is designed to transfer concept knowledge across skills.

A.6 PROMPT GENERALIZATION CASE STUDY

To better understand how different prompts affect UNIFIED-IO, we do a case study on referring
expressions. In particular, we re-evaluate UNIFIED-IO on the GRIT referring expression ablation set
while replacing the prompt used during training (first row in the table) with a paraphrase (following
rows). Results are shown in Table 7.

1https://github.com/CompVis/taming-transformers
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Prompt Refexp Score

0 Which region does the text “ REFEXP ” describe ? 78.9

1 Which region does the text “REFEXP” describe? 76.7
2 Which region matches the text “ REFEXP ” ? 77.4
3 Locate the “ REFEXP ” . 65.6
4 Which region can be described as “ REFEXP ” ? 64.8
5 Locate the region described by “ REFEXP ” . 43.2
6 Where is the “ REFEXP ” ? 41.5
7 Where is the “REFEXP”? 0.1

Table 7: Case study on GRIT referring expressions using different prompts. The first prompt is the
one used during training, the others are paraphrases. REFEXP is replaced by the referring expression
text of individual examples during evaluation.

Overall, we find that the model has some capacity to generalize to paraphrases of the prompt (e.g.,
row 3 works reasonably well despite using completely different words), but there are paraphrases
that result in a very significant performance decrease (e.g. rows 5, 6, and 8). We also find removing
the spaces around the punctuation sometimes results in minor regressions (row 0 vs row 1) and
sometimes in sharply reduced performance (row 6 vs row 7), showing UNIFIED-IO can be sensitive
to formatting details. We hypothesize that this is caused by the SentencePiece tokenizer changing the
tokenization of the referring expression if the quotes are not separated from it by spaces. Building
multi-task models that can generalize to different prompts, and ideally to prompts for completely
new tasks, is an exciting avenue for future work.

A.7 CROSS TASK GENERALIZATION CASE STUDY

Qualitative examples for UNIFIED-IO when applied to two out-of-domain settings, surface normal
detection on COCO images and animal pose estimation, are included in Figure 5 with the other qual-
itative examples. For surface normal detection, we find that the model produces plausible images
even for objects like cats or humans that are not in the surface normal training data. However, other
scenes, such as outdoor scenes (Figure 5 bottom right), are less coherent.

Despite not being trained on animal pose estimation, UNIFIED-IO is able to sometimes find animal
keypoints. For animals standing or crouching on two legs, the keypoints are reasonably accurate
(first two images), however for animals standing on four legs the model will find leg and eye points
but then guess arm positions that would make sense for a person instead of attaching points to the
other legs. While this hints that the model was able to combine skills learned from human pose
estimation data with the knowledge of animals learned from other tasks, it also shows that more
work is needed to fully realize this potential.

A.8 NYUV2 RESULTS

The first version of UNIFIED-IO multi-tasking data distribution contains two sources of
depth dataset. nyu depth v2 from Tensorflow Dataset2 and a pre-processed version from
sparse-to-dense.pytorch3. Since the original NYUv2 dataset has a lot of 0-distance re-
gions (holes) which can be problematic for sequence training, we included the latter source because
it replaces the 0-distance holes with approximations. The second version of UNIFIED-IO model
we trained for code release is trained on an updated multi-tasking data distribution that only con-
tains the Tensorflow source of the NYUv2 dataset, and we find a significant drop in performance
for XL model 0.475 vs. 0.385 while other tasks maintain similar performance. We suspect the rea-
son is sparse-to-dense.pytorch has a different split and contaminates the training data for
NYUv2 evaluation. Our final result is a little worse compared to UViM 0.475 vs. 0.467.

2https://www.tensorflow.org/datasets/catalog/nyu depth v2
3http://datasets.lids.mit.edu/sparse-to-dense/data/nyudepthv2.tar.gz
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ANIMAL POSE ESTIMATION
Find the animal joints in this region.
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COCO SURFACE NORMAL ESTIMATION
What is the surface normal of the image?

Figure 5: Qualitative examples on out-of-domain inputs. We directly evaluate UNIFIED-IOXL on animal pose
estimation and surface normal of human or outdoor scenes.

A.9 QUALITATIVE EXAMPLES

Here we present qualitative examples of predictions from UNIFIED-IO for all training tasks. For
brevity, if prompts are identical for each example we only show the prompt once, and if the prompt
follow the same template for each example we show the template with parts that would be substi-
tuted with different words or location tokens underlined, and then show just the substitution with
individual examples.

A.10 OTHER RELATED WORK

Other Modalities. Multi-modal models for video (Li et al., 2022c;a; Wang et al., 2022a; Alayrac
et al., 2022; Zellers et al., 2021; Yu et al., 2022a), audio (Zellers et al., 2022; Jaegle et al., 2022),
and other modalities including game-playing and robot controlling (Reed et al., 2022; Jaegle et al.,
2022; Liang et al., 2022) have also been studied. Integrating these modalities is an important line
of research, however existing models often do not even support sparse structured output and do not
support dense structured outputs, so they do not meet our objective of supporting classic vision tasks.

Vision & Language Pre-Training. Vision and language pre-training has become standard prac-
tice for multi-modal models, including both unified models and non-unified models that require
task-specific heads to be trained from scratch during fine-tuning. Many initial pre-training strate-
gies were inspired by BERT (Devlin et al., 2019) and included masked-language-modeling, image-
text-matching, or mask-region-modeling objectives, often supplemented with objectives using the
predictions of a strong object detector model (e.g, VILBERT (Lu et al., 2019), LXMERT (Tan &
Bansal, 2019), VisualBERT (Li et al., 2019)). More recently contrastive-image-text losses (Radford
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IMAGE SYNTHESIS
What is the complete image? Text

small personal pizza with 
bacon and spinach

many large kites flying in the 
sky

the train is on the tracks in the 
station

a beach area with black birds 
flying over it

IN
PU

T
PRED

IC
TIO

N

IMAGE INPAINTING
Fill in the blank region with this

train kite truck bench
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N

IMAGE GENERATION FROM SEGMENTATION
What is the complete image? Segmentation color

fuchsia: tree, lime: dirt…. yellow: field, aqua: baseball… lime: building, navy: wall… white: tree, red: building…

Figure 6: Image synthesis qualitative examples.

et al., 2021; Li et al., 2022b; 2021) or auto-regressive generation losses (Wang et al., 2022d;a; Yu
et al., 2022a), have become common. Several works have also directly used object detection or
segmentation datasets for pre-training Yuan et al. (2021); Wang et al. (2022b); Sun et al. (2022).
The generalized masked-data-modeling objective used in UNIFIED-IO is similar to the ones used in
several recent works (Wang et al., 2022c; Peng et al., 2022; Singh et al., 2022).
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OBJECT DETECTION
Locate all objects in the image.

bike

chair

bed

umbrella

car

person

plant
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dog
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OBJECT LOCALIZATION
What region does this describe?

person skis parking-meter bottle
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REFERRING EXPRESSIONS
What region does this describe?

chair at white table animal most out of water gray-tie man dark coat with hood
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KEYPOINT ESTIMATION
Find the human joints in this region.

Figure 7: Sparse labelling qualitative examples.
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DEPTH ESTIMATION
What is the depth map of the image?

IN
PU

T
PRED

IC
TIO

N

SURFACE NORMAL ESTIMATION
What is the surface normal of the image?
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OBJECT SEGMENTATION

What is the segmentation of this?
pizza bed apple grass

Figure 8: Dense labelling qualitative examples.
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IMAGE CLASSIFICATION
What is in this image?

sea snake pirate ship whippet go-kart

IN
PU

T
PRED

IC
TIO

N

REGION CLASSIFICATION
What is the category of this region?

bottle frisbeelabtop bird

Figure 9: Image classification qualitative examples.
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IMAGE CAPTIONING
What does this image describe?

A large clock in a large room 
with a glass ceiling.

A flock of birds flying in a 
cloudy sky over a beach.

A man with a thin slice of pizza 
in his mouth.

A black and white cat wearing 
a purple knit hat
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REGION CAPTIONING

tall grass along the water a women holding a kite green shirt on mannequin a surfboard hanging on a wall

What does the region describe?

Figure 10: Image captioning qualitative examples.

32



Published as a conference paper at ICLR 2023

IN
PU

T
PRED

IC
TIO

N

VISUAL QUESTION ANSWERING

What colors are the fire 
hydrant?

What kind of a person usually 
eats food like this?

What are the cats laying next 
to?

Which vegetable in this soup 
is heart shaped?

black and yellow vegetarian remote controls carrot
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GROUNDED VQA

Is there anything written on 
the screen?

What color is the wall? What is this? What's in this can?

yes blue water soup
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RELATIONSHIP DETECTION

writing on sign cow eating grass window on building hand of man

What is the relationship between region and region?

Figure 11: Vision and language qualitative examples.
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QUESTION ANSWERING

context: … a residual of the 
force is observed between 
hadrons (the best known 
example being the force that 
acts between nucleons in 
atomic nuclei)…          
question: What force acts 
between nucleons?

context: The tournament book 
of the London 1883 
international chess 
tournament requires that: ``A 
Pawn reaching the eighth 
square must be named as a 
Queen or piece…                          
question: In chess, can you 
promote a pawn to a pawn?

context: Terra preta (black 
earth), is distributed over large 
areas in the Amazon forest.. 
The development of this fertile 
soil allowed agriculture and 
silviculture in the previously 
hostile environment;.    
question: The development of 
Terra Preta allowed for what?

context: Now someone stands 
alone in a grand formal 
hallway. Head bowed, he...                       
(0) holds his hands in his 
pockets. (1) joins people. (2) 
jogs down a hallway. (3) peers 
into a microphone.      
question: Which option is the 
most likely continutation of 
this paragraph?

nuclear force yes agriculture and silviculture (0) holds his hands in his 
pockets
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SENTENCE CLASSIFICATION

sentence1: Everyone really 
loved the oatmeal cookies; 
only a few people liked the 
chocolate chip cookies. Next 
time, we should make more of 
them
question: Does the word 
“them” refer to the chocolate 
chip cookies?

sentence1: Ahern, who was 
travelling to Tokyo for an EU-
Japan summit yesterday, will 
consult with other EU leaders 
by telephone later this week.
sentence2: A summit between 
Europe and Japan is taking 
place in the Japanese capital.
question: Is the relation of the 
sentences entailment, neutral 
or contradiction?

sentence1: Lu reclined in a 
soft chair wearing a woolly 
coat near the blackened 
capsule.
sentence2: "It's great to be 
back home," said Lu, dressed 
in a woolly coat near the 
blackened capsule.
question: Are these sentence 
paraphrases?

sentence1: The Rhine Gorge 
between Rüdesheim am Rhein 
and Koblenz is listed as a 
UNESCO World Heritage Site
sentence2: The Rhine Gorge is 
between Koblenz and what 
other city?
question: Does the first 
sentence contain the answer 
to the second sentence?

no entailment no yes
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TEXT SUMMERIZATION

context: European stocks 
finished on a mixed note 
Tuesday, as continental 
markets recouped earlier 
losses after a positive start to 
trading in U.S. equity markets . 
question: What is a one 
sentence summary of this 
document?

context: Hungary and 
Bulgaria, which both share 
borders with Serbia and 
Croatia, want U.S. and other 
international troops to stay 
longer than currently planned 
in Bosnia to keep the peace in 
the former Yugoslavia. 
question: What is a one 
sentence summary of this 
document?

context: Toyota rolled out its 
first UNK Lexus luxury model 
Tuesday  as the world 's top 
automaker seeks to turn itself 
around by pushing the 
increasingly popular green 
technology . 
question: What is a one 
sentence summary of this 
document?

European stocks end mixed Hungary Bulgaria want longer 
U.S. presence in Bosnia

Bernanke says fed ready to act 
on economy

Toyota rolls out first UNK Lexus 
luxury model

context: Federal reserve 
chairman Ben Bernanke 
sought to assure Wall Street 
and congress Tuesday that the 
U.S. central bank will be able 
to reel in its extraordinary 
economic stimulus and 
prevent a flare up of inflation.
question: What is a one 
sentence summary of this 
document?

Figure 12: Natural language processing qualitative examples.
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