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Abstract

This work introduces a learning scheme using Bayesian Neural Networks (BNNs)1

to solve constrained optimization problems in a setting with limited labeled data2

and restricted model training time. We propose a Semi-Supervised BNN for this3

practical but complex regime wherein training commences in a sandwiched fashion,4

alternating between a supervised (using labeled data) learning step for minimizing5

cost, and an unsupervised (using unlabeled data) learning step for enforcing con-6

straint feasibility. Both supervised and unsupervised steps use Bayesian approach7

where variational inference is used for approximate Bayesian inference. We show8

that the proposed Semi-supervised learning method outperforms conventional BNN9

and deep neural network (DNN) architectures for important non-convex constrained10

optimization problems from energy network operations, with 50% reduction in11

mean square error (MSE) along with halving of optimality and feasibility gaps12

without requiring correction or projection steps.13

1 Introduction14

Bayesian Neural Networks (BNNs) attempt to bring the advantages of Bayesian statistics into the15

function-approximating capabilities of deep neural networks (DNNs) and have found application in16

areas ranging from medical image segmentation to fluid dynamics [2, 7, 12, 4, 5]. Improvements in17

underlying algorithms for training and inference have led to better understanding of BNNs [8, 1, 13]18

and enabled their use as surrogates for Bayesian optimization [11]. In recent years, DNNs have19

been applied to solve various optimization problems with physics-based constraints on variables,20

particularly in energy networks [21, 6, 3, 18, 14, 10]. Here, the primary motivation is to replace time-21

consuming optimization algorithms with ML proxies, enabling instantaneous solutions to problems22

on large number of instances. While promising in mimicking optimization solvers, they either23

rely on enormous labeled datasets to train ML models [14] or require time-consuming constraint24

correction steps within the framework [3, 6, 21]. We propose a novel BNN-based framework to learn25

optimization proxies with minimal labeled data and within training time constraints. Leveraging26
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BNNs’ ability to perform with limited data, the semi-supervised approach addresses the challenge of27

scarce labeled data in optimization problems with uncertainty. Initial results show that our method28

outperforms standard approaches in low-data regimes, avoids correction steps, and maintains fast29

prediction speeds, making it suitable for large number of instances.30

2 Proposed Semi-supervised BNN Learning31

Semi-supervised learning methods aim to leverage unlabeled data to improve the performance of ML32

algorithms under minimal amount of labeled data availability [20]. Approaches in this area include33

augmenting unlabeled data with cheap pseudo-labels, developing an unsupervised loss function, and34

minimizing it with the supervised loss function[17, 20]. For example, data augmentation approach35

has been used before in the context of image classification using the notion of semantic similarity [17].36

However, this notion is not readily extensible to ML proxies for constrained optimization problems,37

where slight variations in input might lead to significant changes in output.38

To circumvent aforementioned difficulty, we propose a feasibility-based data-augmentation scheme39

where feasibility relates to the constraints of the optimization problem. To the best of our knowledge,40

these ideas have not been explored in the context of BNN algorithms to solve large-scale optimization41

problems. Though not directly addressing this problem, one related work worth noting is that of loss42

function-based prior design [16] for output constraint satisfaction [19].43

Problem Setup: We consider nonlinear constrained optimization problems having both equality g(·)44

and inequality constraints h(·), with decision y and input x variables as vectors.45

min
y

c(y) (1)

s.t. g(x,y) = 0 (2)
h(x,y) ≤ 0 (3)

Furthermore, we assume that ∀x ∈ X , there exists at least one feasible solution for (1). The goal46

is to develop a BNN surrogate that provides an approximate optimal value of decision variables ŷt47

for a given test input vector xt ∈ X . Let D = {(xi,y
⋆
i )}Ni=1 denote the labeled dataset where y⋆

i is48

obtained by solving the optimization problem (1) for xi. We assume inexpensive sampling for input49

vector x and construct the unlabeled data set Du = {xj}Mj=1.50

BNN Set-up and Training: Mathematically, we denote the BNN as fw(x), where w are the weights51

and biases that follow an isotropic normal prior p(w) with covariance σ2I .52

The supervised part of the BNN training aims to compute the posterior distribution over the weights53

given labeled data D, and is expressed as: p(w|x,y) ∝ p(y|x, w) p(w) where p(y|x, w) is the54

likelihood of the labeled data (x,y ∈ D) given the weights, p(w) is the prior over the weights. The55

posterior distribution p(w|x,y) encapsulates the uncertainty about the weights after observing the56

labeled data. Due to the computational challenges of finding the normalization constant, approximate57

methods such as variational inference (VI) [9] are used to compute the posterior. For predictions,58

the posterior prediction is approximated as p(yt|xt,D) = Ep(w|D)[p(fw(x
t)]. Moreover, we use59

Gaussian likelihood p(y|x, w) =
∏

i N (yi|fw(xi), σ
2
s) with σ2

s being a parameter in VI, controlling60

the spread of Gaussian around the target values (noise variance) and xi,yi ∈ D.61

To effectively incorporate the unlabeled data Du into the learning process, it is necessary to define a62

suitable likelihood function. We propose to augment this unlabeled data using the necessary feasibility63

condition which vector y must satisfy to be a solution of (1). Consider a function L(y,x) which64

measures the feasibility of a solution candidate y for a given input x such that one term measures the65

equality gap and other term measures one sided inequality gap or violations, with equal emphasis on66

both, as67

L(y,x) = ∥g(x,y)∥2︸ ︷︷ ︸
Equality Gap

+ ∥ReLU[h(x,y)]∥2︸ ︷︷ ︸
Inequality Gap

(4)

For any given feasible solution yc
2, L(yc,x) = 0 for the given input. Under the consideration68

that for each input there exist a solution of (1), we can argue that for each input the feasibility gap69

2Not necessarily optimal for (1).
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function (4) has optimal value or true label of 0. We can augment the unlabeled dataset Du such70

that it becomes a labeled feasibility dataset i.e. Df = {xj , 0}Mj=1, 0 . Now considering that input71

sampling is cheap, the construction of this labeled feasibility dataset has no additional computational72

cost. Similar to the supervised data, we can define a Gaussian likelihood for unsupervised training73

step as p(L|x, w) =
∏

j N (0|L
(
fw(xj),xj

)
, σ2

u) with noise variance of unsupervised learning σ2
u74

and xj ∈ Df .75

For obtaining optimization proxy, we parameterize the candidate solution fw(x), using deep network76

architectures and use a sandwich style semi-supervised training for the BNN as shown in Figure77

1.The idea is to alternatively use labeled dataset D and augmented feasibility dataset Df for cost78

optimality and constraint feasibility respectively, to update network weights and biases. Further, the79

Bayesian inference step (Sup and UnSup) is performed for a fixed number of iterations with total80

training time being constrained to Tmax. Finally, the prediction of mean estimate Ey and predictive81

variance estimate Vy is done using a unbiased Monte-carlo estimator via sampling 100 weights from82

the final weight posterior pmW .83

Sup

p1W ≡ p(w|(y|x) ∝ p(y|x, w)p0w

UnSup Sup . . . UnSup

pm−1
W ≡ p(w|x) ∝ p(L|x, w)pm−2

w

Sup Predict
p0W

N (0, σ2I)

pmW

Ey,Vy

p1W pm−1
Wp2W

Ts Tu

Tmax

Figure 1: Flowchart of proposed Semi-supervised BNN learning. The Sup block represents supervised
learning stage with labeled dataset D and UnSup block represents unsupervised learning with
augmented feasibility dataset Df . Learning time upper limits are represented as Ts, Tu and Tmax for
Sup, UnSup and complete Semi-supervised BNN learning respectively.

3 Numerical Results: AC Optimal Power Flow84

To demonstrate the effectiveness of the proposed semi-supervised learning approach, we focus on85

the Alternating Current Optimal Power Flow (ACOPF) problem, a crucial decision-making task in86

electrical power systems. ACOPF aims to determine the least-cost generator set-points while adhering87

to the operational and physical constraints of the energy network. The problem’s inputs are real88

and reactive power load vectors, and the outputs include generator set-points (real and reactive) and89

complex node voltages in polar form (magnitude and angle). Variations in the load vector constitute90

the input dataset X . Furthermore, the mathematical formulation of the ACOPF used in this study91

represents a non-convex optimization problem, as described in [3]. Additionally, we utilize the92

publicly available dataset for the 57-Bus system from the DC3 repository [3], for comparative studies.93

Our neural network architecture has four sub-network of two hidden layers (100 neuron each) with94

ReLU activation function. These four sub-networks are trained to predict real power generation,95

reactive power generation, voltage magnitude and voltage angle outputs, separately without any96

overlap. The BNNs are trained using variational inference, utilizing Numpyro package while DNNs97

are trained (with MSE loss over labeled data) using Pytorch. All training-testing is performed98

using a Mac Pro machine with Apple M1 Max processor. We fix Ts = 30 sec. and Tu = 50 sec.99

for all Semi-supervised BNN learning instances, following Figure 1. Further, Figure 2 represents100

the performance of various models with different number of labeled data. All networks have same101

architecture and best BNN (and DNN) represents the results with hyperparameter optimization (like102

learning and decay rate). The semi-supervised method uses the best BNN hyperparameters, without103

any further optimization (details in Appendix A). It is clear that in low labeled data regime, both104

BNN and proposed Semi-supervised BNN outperforms the DNN approach in terms of MSE errors for105

various outputs. For feasibility, proposed Semi-supervised method outperforms BNN while DNN’s106

mean equality gap (Eq. Gap) performance improves faster than other methods with increase in107

number of labeled training samples. This feasibility emphasizing behavior of standard DNN with108

MSE loss has also been noted in [3], with higher optimality gap as seen in Cost subfigure of Figure 2.109
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Figure 2: Comparative performance of DNN, BNN, and the proposed semi-supervised learning
method across various training set sizes, evaluated by mean square error (MSE) and mean gap. The
gray strip highlights the key training data range of 500 to 1000 samples. The semi-supervised method
utilizing 20,000 unlabeled samples in Df , with a batch size of 1000 and Tmax = 1000 seconds.

Before presenting further comparisons, we discuss the significance of the numerical errors and the110

potential improvements in the ACOPF problem. The cost values in ACOPF problems are in USD and111

mean value of cost for 57-Bus test case is $ 3.7× 104 or 3.7 in per-unit system. Therefore, a mean112

error of 0.02 in per-unit system will imply the different $200 across the testing instances. Further, in113

per-unit the voltage magnitude error requirement is below 10−5 as it will be equivalent of error 1 Volt114

for a 100 kilo-Volt system. More importantly, our target is to reduce the error values lower than the115

least count of the measuring instrument placed in the system to measure these quantities. Moreover, a116

0.01 mean equality gap means that on average, 1.0 Megawatt of power imbalance occurs at a node.117

We compare the proposed method’s performance with various supervised and semi-supervised118

methods from [3] in Table 1, considering the target error discussion. It is clear that proposed method119

of Semi-supervised learning outperforms DNN method in terms of optimality and feasibility. Further,120

the objective gap and feasibility gaps are comparable using proposed approach even without the121

correction step involved in other state-of-art methods, (from [3] and [21]) in Table 1. Implication122

of the absence of correction step can be seen in the testing time3, where the proposed approach and123

BNN have testing times similar to that of DNN while methods with correction step have one order of124

magnitude higher testing time. The reduction in testing time is crucial in the context of total time125

constrained situations which is the target application category for our BNN and Semi-supervised126

BNN based optimization proxies. The total time refers to the sum of the time required to obtain127

labeled dataset, training time and prediction time and is strictly limited in the case of ACOPF. The128

label generation time is reduced by using fewer supervised training samples and for the ACOPF,129

we constrain the training time to be Tmax = 1000 sec 4. The testing or prediction time will also be130

required to be as low as possible because we want to predict the solution of the ACOPF problem for131

a very large number of input instances in a given short time. This is crucial because one of the major132

application of these optimization proxies is in computing probabilistic estimates and the number of133

instances we can predict in a given time, will directly affect the accuracy of these estimates.134

4 Conclusion and Future Works135

The proposed Semi-supervised BNN has shown promise in working with low labeled dataset for136

constrained optimization problems. A major limitation is the higher time requirement to perform137

Bayesian inference, limiting the size of unlabeled dataset which can be used. Future work will involve138

scaling of the proposed scheme to larger size optimization problems, improving optimality-feasibility139

learning connections between Sup and UnSup blocks and exploiting BNN’s predictive variance140

information for active learning.141

Broader Impacts:142

Improved solution of optimization problems will lead to more efficient resource utilization, benefiting143

industries by reducing costs and minimizing environmental impact. Further, improving ACOPF144

3Time required to predict one single output given one testing input after model is trained i.e. time required
for one forward pass

4Note that we are using unoptimized code without any GPUs which leaves potential to reduce further with
optimized code and use of GPUs.
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Table 1: Results on ACOPF over 100 test instances for 57-Bus. We compare the performance of the
proposed method without any projection with 1000 labeled samples, with various existing methods
from [3]. The optimality gap is from the optimizer solution with 0.949 sec. per sample solving time.

Method Correction Obj. Gap Mean Eq. Mean Ineq. Testing Time (s)
Proposed No 0.02 (0.00) 0.01 (0.00) 0.00(0.00) 0.003 (0.000)
BNN No 0.04 (0.00) 0.02 (0.00) 0.00 (0.00) 0.003 (0.000)
DC3 [3] Yes 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.089 (0.000)
DC3, no soft loss [3] Yes 0.70 (0.05) 0.07 (0.00) 0.03 (0.01) 0.088 (0.000)
Eq. NN [21] Yes 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.039 (0.000)

solution pipeline will directly help in combating climate change by optimizing the use of renewable145

energy and ensuring secure power grid operations [15].146
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Appendix210

A Implementation Details211

Table 2: Hyper-parameters and Implementation Details

Hyper-parameter DNN BNN Semi-supervised BNN
Learning Rate 10−2,10−3, 10−4 10−2,10−3, 10−4 10−3

Decay Rate 10−3,10−4, 10−5 10−3,10−4, 10−5 10−4

Batch Size (Sup) 100 100 100
Batch Size (UnSup) – – 1000

Tmax (sec.) 1000 1000 1000
σ for p(w) – 10−2 10−2

Optimizer Adam Adam Adam
Loss Function MSE TraceMeanELBO TraceMeanELBO
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Figure 3: Performance of the Semi-supervised BNN on the 57-Bus ACOPF problem over training
time. This figure illustrates the Mean Squared Error (MSE) and Mean Gap metrics for various
outputs— aggregated output vector, objective value as cost, real power set-points, reactive power
set-points, voltage magnitude, and voltage angle—plotted against the training time. The results offer
insights into the effectiveness and efficiency of the semi-supervised BNN framework in solving the
57-Bus ACOPF problem.
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