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ABSTRACT

Evaluating the performance of perception module in autonomous driving is one
of the most critical tasks in developing these complex intelligent systems. While
module-level unit test methodologies adopted from traditional computer vision
tasks are viable to a certain extent, it still remains far less explored to evaluate how
changes in a perception module can impact the planning of an autonomous vehicle
in a consistent and holistic manner. In this work, we propose a principled framework
that provides a coherent and systematic understanding of how perception modules
affect the planning of an autonomous vehicle that actually controls the vehicle.
Specifically, planning of an autonomous vehicle is formulated as an expected utility
maximisation problem, where all input signals from upstream modules jointly
provide a world state description, and the planner aims to find the optimal action
to execute by finding the solution to maximise the expected utility determined by
both the world state and the action. We show that, under some mild conditions, the
objective function can be represented as an inner product between the world state
description and the utility function in a Hilbert space. This geometric interpretation
enables a novel way to analyse the impact of noise in world state estimation on
the solution to the problem, and leads to a universal quantitative metric for such
purpose. The whole framework resembles the idea of transcendental idealism in
the classical philosophy literature, which gives the name to our approach.

1 INTRODUCTION

Autonomous driving has recently risen as a fast-advancing realm in both industry and academia, and
receives a surge of interest from engineering and scientific communities (Yurtsever et al., 2020; Sun
et al., 2020). As an intricate system, an autonomous driving vehicle consists of numerous hardware
components and interactive onboard modules. As one such core component, the onboard perception
module serves as the major source of real-time characterisation of the dynamic environment an
autonomous vehicle (AV) navigates through.

To evaluate and improve the perception module, conventional perception tasks (such as detection,
segmentation, tracking) have been well defined and corresponding performance measurements are
established in computer vision to benchmark performance of perception algorithms (Lin et al.,
2014). Despite their great success in driving the development of advanced perceptual information
processing modules, almost all such metrics exclusively focus on the perception-level performance in
a deployment-agnostic fashion, for instance, how close a detected object is to the ground truth, while
ignoring the actual impact of the result to the entire AV system. Indeed, not all perception errors
translate the same to the planning of an AV. Obviously, miss detecting a vehicle in front of an AV is
far more serious than one behind far away. This problem is further compounded by the heterogeneity
of perception errors that share little semantics in common (“How dose an error of 5m/s in velocity
compare to that of a size 25% larger?”), where intuitive manual engineering is widely used (Caesar
et al., 2020). Although these issues are typically addressed by integrating road test in the real world,
the process is extremely costly and time-consuming (Wachenfeld and Winner, 2016; Åsljung et al.,
2017). In result, tools are in great demand to effectively and efficiently measure the impact of
perception to the whole autonomous driving system before deployment on road. Unfortunately, these
solutions still remain far less explored in the research literature.
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Figure 1: Illustration of behaviour change v.s. driving cost (best viewed colour). The change in
AV behaviour due to perception error is not always correlated to the cost of consequence. In (a) the
AV has to circumvent the erroneously perceived cone by making a large detour. While for (b) the AV
only needs to make a slight detour to the right, yet it inevitably hits the cone. In this case, although
the behaviour change is far less than that of (a), the consequence is significantly worse (“hitting an
object” v.s. “making a large detour”). In (c) the consequence of either way is indifferent to the AV in
moving forward, yet the change in behaviour is considerable in terms of spatiotemporal motion. As
for (d), if there are two falsely detected cones on both sides, which are close enough to the AV when
passing by despite no collision, the AV still decides to maintain the same motion as in the ground
truth case. Therefore, the final behaviour of the AV does not change given the perception error, but
the cost of passing by two close objects already changes the planning process, which will be missed
by the metrics that only look at the AV behaviour or planning result.

Most recently, the community starts to approach this problem with some initial efforts (Sun et al.,
2020; Philion et al., 2020; Ivanovic and Pavone, 2021; Deng et al., 2021). Despite some success,
these preliminary solutions only exploit certain aspects of the problem, either implicitly relying on
weak correlation between behaviour change and driving cost (Philion et al., 2020), inferring the
holistic cost via local properties (Ivanovic and Pavone, 2021), or coarse levels (Sun et al., 2020). In
this work, we propose a principled and universal framework to quantify how noise in perception
input affects the AV planning. This is achieved by explicitly analysing the process of AV planning,
in the context of expected utility maximisation (Osborne and Rubinstein, 1994), and evaluating
the change of utility values critical to the AV reasoning subject to input perception errors. Under
some mild conditions (Section 3.3), we show that this planning process can be formulated as an
optimisation problem with linear objective function in a Hilbert space, where utility to optimise
is the inner product of an action-wise utility function and the world state distribution represented
by perception. This geometric interpretation reveals many natural and insightful properties of the
problem, for example, any input error can be decomposed into two parts: one that does not affect the
utility comparison (planning-invariant error) and the other one that directly changes the planning
problem (planning-critical error). Based on this novel insight, we derive a metric that quantify how
a perception error changes the planning process.

We want to emphasise the necessity of understanding impacts of perception errors on an autonomous
driving system via the process of planning, rather than purely from the final result (i.e., the AV
behaviour, or the trajectory output from the planning module), as proposed by previous works (Philion
et al., 2020). This results from the fact that, the final planning result does not necessarily reflect how
AVs evaluate the situation, reason with the environment, and assess the costs of actions. In fact, the
correlation between behaviour change and the actual consequence is weak, or even negative in many
common cases, as illustrated in Figure 1. Actually, most works implicitly or explicitly integrate some
priori knowledge of consequences of perception errors into metric design. The complexity of such
impact on autonomous driving, however, is far beyond hand-crafted rules, defeating their purposes
despite tremendous amounts of manual efforts, e.g., Deng et al. (2021) assumes that severity of an
error should be weighted proportional to the reciprocal of its cubed Manhattan distance to the AV,
regardless of its position relative to the AV (in front or behind the AV). In contrast, we make little
such presumption and fully rely on the planning process to infer the error consequence in a fully
transparent way, which enables our solution to capture many critical cases. In this regard, the core
principle of our design resembles the idea in the philosophical system of transcendental idealism,
proposed by Immanuel Kant in his classical work Critique of Pure Reason (Kant, 1998), which argues
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that, due to the limitation of the observer’s sensibility, cognition of external objects is processed
never as they are in themselves, but via the cognitive faculties and subject to the interpretation of the
observer’s experience. For the same reason, the consequence of environment misrepresentation for an
AV due to perception errors is naturally reflected via the change in its planning (the core component
of an AV that interprets its environment) and measured by the extra loss incurred, which gives the
name to our framework: transcendental idealism of planner (TIP).

2 LITERATURE REVIEW

Planning for Autonomous Vehicles. We consider the behavioural decision and motion planning as
the planning process, which generates the vehicle behaviour to execute by the controller given the
observation up to the planning time. There is a rich literature to address these fundamental problems
in autonomous driving, which can be roughly categorised into canonical module-based and data-
driven methods. The former relies on explicit modelling of target accomplishment in optimisation
frameworks and seeks the optimal solution as the result (Schwarting et al., 2018). The latter, on
the other hand, aims to directly map raw sensor data into the AV behaviour or final vehicle control
signals by leveraging the approximation power of deep learning and massive data (Bojarski et al.,
2016; Grigorescu et al., 2020), which has attracted increasing attention recently. In this work, we aim
to explore the internal mechanism of a planner to gain some insights of the impacts on planning from
perception noise, and specifically focus on the module-based planning with explicit target achieving
process. Extension of results in this work to data-driven planning is left for future work.

Behaviour based Metrics for Upstream Modules. Recent works aimed to assess the performance of
perception from the autonomous driving system viewpoint mostly approach the problem in heuristic
ways. Considering black-box planning models, Philion et al. (2020) implicitly hypothesise that driving
consequences of perception errors are directly correlated to the change in an AV spatiotemporal
trajectories planned, and propose the planning KL-divergence (PKL) to measure the impact. While
intuitive, it fails to incorporate the context of environment and does not precisely reflect the real
cost of input noise in many common traffic scenarios. To deal with the specific problem of object
representation, Deng et al. (2021) study how object shapes can affect autonomous driving and
devise the support distance error (SDE) to quantify such effect. In a very recent work, Ivanovic and
Pavone (2021) start looking into the planning process and employs sensitivity as a probe of input
signal’s contribution to AV behaviour. This, however, implicitly leverages local-only properties of
differentiable cost functions to infer global results. In comparison, our proposed approach captures
the big picture of planning process and applies to far more general cases.

3 AV PLANNING AS EXPECTED UTILITY MAXIMISATION

To evaluate the performance of perception module from the AV planning perspective in a principled
manner, we start by introducing the preliminary basics, and then review the expected utility maximi-
sation (EUM) as the optimal AV action framework. After that, the interpretation of EUM in a Hilbert
space is presented, based on which our metric for perception is derived.

3.1 PRELIMINARY

We first present the mathematical basics to facilitate the following theoretical analysis. Unless
otherwise specified explicitly, all notations follow the standardised one in Goodfellow et al. (2016).
A probability space {Φ,F ,P} is defined by a sample space Φ, an event space F (a σ-algebra on Φ),
and a Borel probability measure P on F . A random variable X : Φ → Rd (d ∈ N) is induced from
{Φ,F ,P} with distribution function FX(x). When absolutely continuous, FX(x) =

∫ x

−∞ fX(t) dt,
where fX(x) is the probability density function (PDF). L2(X , ρ) denotes the space of square-
integrable functions, and ρ is a Lebesgue measure accordingly. A Hilbert space H = (T , ⟨·, ·⟩) is
defined on a complete space T with inner-product ⟨·, ·⟩H and induced norm∥·∥H. Let S ⊂ H be a
subspace of a Hilbert space H, S⊥ = {x ∈ H| ⟨x, y⟩ ,∀y ∈ S} is the orthogonal complement of
S (i.e., the set of all vectors orthogonal to S). The linear span of a set S is span(S). nv := v/∥v∥ is
an element of unit length in a normed vector space by normalising element v.

3.2 AUTONOMOUS VEHICLES AS RATIONAL AGENTS

An AV is an intelligent agent that aims to accomplish some predefined goals in an interactive and
uncertain environment. For this, an AV is constantly faced with the problem of planning in the
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dynamic environment, and the quality of planning determines how well the goals can be achieved.
By the classical EUM theory (Osborne and Rubinstein, 1994), at any given time t, an agent aims to
achieve the maximum expected reward, defined by the utility function U , via execution of the optimal
action a∗t such that

a∗t = argmaxa∈Da,t
E
[
U(St, a)

]
, (1)

where Da,t is the set of all feasible AV actions at time t; s ∈ S, a random variable with distribution
function FSt

(s), is the world state at time t in the world state space S; and

EU(FSt
, a) := E

[
U(St, a)

]
=
∫

s∈S U(s, a) dFSt
(s). (2)

Intuitively, the utility function encodes the goal or reward the AV is supposed to achieve, for example,
to reach a destination in time, to minimise likelihood of collision with other objects, and to avoid
sharp change in motion, and FSt(s) captures uncertainty about the stochastic environment given
all prior world knowledge and historical observations up to t, which are estimated by modules like
localisation and perception. Architectures of many modern AV planners still follow this classical
framework (Paden et al., 2016; Buehler et al., 2009; Fan et al., 2018).

3.3 EXPECTED UTILITY MAXIMISATION IN THE HILBERT SPACE

To gain some insights into the expected utility of (1) and how input noise is consumed by the planning
process, we introduce an interpretation in the Hilbert space to leverage geometric tools available from
linear algebra. We first establish the conditions under which a probability measure can be embedded
into a Hilbert space, followed by the interpretation of EUM from a geometric perspective in Section 4.
For brevity, all proofs are left in Appendix G.
Theorem 1 (Probability Measure Embeddings in Hilbert Space). Let {X , d} be a compact metric
space with d as the metric function, p be a Borel probability measure on X , and X be a random
variable on X with distribution function FX(x). If FX(x) is absolutely continuous and the density
function fX is square-integrable, i.e., fX ∈ L2, then there exists a unique element1µp ∈ H such that

EX

[
g(x)

]
=

〈
µp, g

〉
H , ∀g ∈ H, (3)

where element µp denotes the embedding of probability measure p in the Hilbert space H =
(L2, ⟨·, ·⟩), with the inner product given by

⟨g, h⟩H :=
∫

x
g(x)h(x)ρ(dx). (4)

The critical condition of FX(x) being absolutely continuous with a square-integrable density function
fX in Theorem 1 is actually general and includes many popular distributions as special cases (see the
discussion in Appendix F). Theorem 1 establishes a mapping from probability measures of continuous
random variables to H. Additionally, the mapping is also injective by the following result.
Theorem 2 (Injection of Probability Measure Embeddings). Let p and q be two Borel probability
measures defined on a compact metric space {X , d} with absolutely continuous distribution functions,
then p = q almost everywhere if and only if µp = µq , where µp and µq are the embeddings of p and
q in H, respectively.

A similar result for mixed distributions is also available in the appendix (Theorem 4). Under the mild
conditions in the aforementioned results, the expected utility maximisation of (1) can be rewritten as

a∗ = argmaxa∈Da
Es∼p(s)

[
U(s, a)

]
= argmaxa∈Da

〈
µp, Ua

〉
H , ∀U(s, a) ∈ H. (5)

Given the injective correspondence between p and µp established above, we can leverage many tools
in algebra (such as inner product, orthogonality, projection, and subspace) to analyse the impact of
perception result on AV planning via the EUM in H, denoted “planning utility Hilbert space”, where
the topological structure is exclusively determined by its inner product.

4 PERCEPTION EVALUATION VIA AV PLANNING

In this section, we derive the extra cost of planning incurred by perception errors through the
theoretical foundation established in Section 3. While the actual world state characterisation p(s)
consists of signals from modules other than perception (e.g., localisation), for brevity we assume that
the perception module is the only source for world state estimation in the following discussion.

1Referred to as a unique class of functions that are equal almost everywhere.
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Figure 2: (a) Illustration of EUM in H. ∆U = Ua∗−Ua defines the behaviour direction; ξ represents
the preference score; µp and µq are the embeddings of the ground truth and noisy perception result,
respectively; ∆µ is the perception error, which is decomposed into the planning-critical error (PCE)
∆µ∥, and the planning-invariant error (PIE) ∆µ⊥; and the shaded area corresponds to Ha. (b) A toy
example of PCE and PIE (best viewed colour). The AV is moving forward on a road of width 6m,
where there is a cone in front, the belief of its position is a distribution on a line across the road (the
x axis). The ground truth distribution p is U[−3,−2], a uniform distribution with support [−3,−2],
while the perception believes its location (distributed as q) is U[−1,0]. The AV has two action options:
1) to move forward (a∗, the red arrow), and the utility function is U1(x) = −10 · 1x∈[−1,1] with x
being the position of the cone (only large loss for collision with the cone); 2) to make a hard brake (a,
the grey arrow), and the utility function is a constant U2(x) = −5 (loss of hard braking is identical
regardless of the cone position). In this case, the ∆U and ∆µ are illustrated in the top right, while
the decomposition of PIE ∆µ⊥ and PCE ∆µ∥ are on the bottom right. Note that, ∆µ∥ is of the same
shape as ∆U (up to a negative constant), and ⟨∆U,∆µ⊥⟩ = 0.

4.1 BREAKDOWN OF PERCEPTION ERRORS

Consider a general case where the candidate action set is Da = {ai}, and each action is associated
with a distinct utility function U(s, ai) ∈ H such that∥∥U(s, ai)− U(s, aj)

∥∥
H > 0 ⇔ ai ̸= aj , ∀ai, aj ∈ Da.

Let a∗ be the optimal action per EUM of (5) given the ground truth distribution of world state p(s).
For a specific a ̸= a∗, ∆U(a∗, a) = Ua∗ − Ua, and the planning half-space in H is

Ha := {f |
〈
f,∆U(a∗, a)

〉
H > 0, f ∈ H}. (6)

Given the actual perception result q(s), a∗ is preferred over a by EUM if and only if µq ∈ Ha, i.e.,

ξ(q; a∗, a) :=
〈
µq,∆U(a∗, a)

〉
H = EU(q, a∗)− EU(q, a) > 0, (7)

with ξ(q;α, β) denoting the α-β preference score given q, which exclusively decides the result of
EUM. As illustrated in Figure 2(a), the final planning is made correctly if and only if

µq ∈ ⋂
a∈Da/{a∗}Ha. (8)

When there is an error in perception q(s) (i.e.,
∥∥µq − µp

∥∥
H > 0), the preference of (7) may be

affected, i.e., ξ(q; a∗, a) ̸= ξ(p; a∗, a), so is the preference between a∗ and a by EUM. To understand
how the difference ∆µ = µq − µp affects the result of EUM, we further decompose ∆µ into two
orthogonal components:

∆µ = µq − µp = ∆µ∥ +∆µ⊥, (9)
where

∆µ∥ = ⟨∆µ, n∆U ⟩n∆U =
⟨∆µ,∆U⟩
∥∆U∥2

H
∆U (10)

is the projection of ∆µ onto unit vector n∆U (denoted behaviour direction) parallel to Ua∗ −Ua, and

∆µ⊥ ∈ span({∆U})⊥ (11)
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Algorithm 1: TIP Score Evaluation
Input :An observation sequence from perception q({st}0t=−τ ) and its ground truth p({st}0t=−τ )
Output :TIP score of q({st}0t=−τ )

Get the candidate trajectory set Da,p, and the optimal action a∗ ∈ Da,p from the planner with the ground
truth perception input p({st}0t=−τ )

Get the candidate trajectory set Da,q from the planner with the noisy perception input q({st}0t=−τ )
Define the reference action set Da := Da,p ∪ Da,q

foreach a ∈ Da do
Compute four estimates via finite-size samples:

ÊU1 = 1
n

n∑
i=1

U(s
(i)
q , a∗), ÊU2 = 1

n

n∑
i=1

U(s
(i)
q , a), ÊU3 = 1

n

n∑
i=1

U(s
(i)
p , a∗), ÊU4 = 1

n

n∑
i=1

U(s
(i)
p , a)

where {s(i)q }ni=1 are n i.i.d. observations from q({st}0t=−τ ), and similar for {s(i)p }ni=1

Compute ∆̂ξ(a∗, a; q, p) = ÊU1 − ÊU2 − ÊU3 + ÊU4

end
Compute and output the result I (q, p;U,Da) = mina∈Da ∆̂ξ(a∗, a; q, p)

is the projection of ∆µ onto the orthogonal complement of the subspace spanned by the behaviour
direction. In the presence of perception error ∆µ, as illustrated in Figure 2(a), the change in preference
score of (7) is only determined by ∆µ∥:

∆ξ(a∗, a; q, p) = ξ(q; a∗, a)−ξ(p; a∗, a) = ⟨∆µ,∆U⟩ = ⟨∆µ∥ +∆µ⊥,∆U⟩ = ⟨∆µ∥,∆U⟩. (12)

For this reason, we denote ∆µ∥ as the planning-critical error (PCE), and ∆µ⊥ as the planning-
invariant error (PIE). This observation reveals a pivotal fact: not all errors in world state estimation
or perception are of equivalent impact on the AV planning, and the subspace span({∆U})⊥ contains
all errors that would not affect EUM at all. A toy example of PCE and PIE is shown in Figure 2(b).
Given this interpretation, we define the maximum reduction in the preference score of a∗ over any
candidate actions as the measure of impact from the perception error on AV planning:

I (q, p;U,Da) = mina∈Da ∆ξ(a∗, a; q, p). (13)

4.2 EVALUATION OF PERCEPTION ERROR IMPACT BY TIP
In practice, combining (7) and (12), the evaluation of perception error impact can be reduced to the
calculation of four expected utilities:

∆ξ(a∗, a; q, p) = Eq(s)

[
U(s, a∗)

]
− Ep(s)

[
U(s, a∗)

]
− Eq(s)

[
U(s, a)

]
+ Ep(s)

[
U(s, a)

]
. (14)

Computing these expectations in analytical forms typically requires strong assumptions on the forms
of both utility and distribution functions, which substantially limits the flexibility and representation
capacity. To allow for maximum representation flexibility, we resort to numerical methods and
estimate the expected utilities from finite-size samples of world states, and show that the solution
is both statistically consistent and uniformly efficient under the mild conditions in Theorem 3.
Specifically, for a fixed action a, given an i.i.d. sample of the utilities {U(Si, a)}ni=1 with Si drawn
from the state distribution pS(s), an unbiased estimator of the expected utility based on U-statistics is

EUa = 1
n

∑n
i=1U(Si, a). (15)

Under many common practical conditions, we show that fast convergence rate via uniform bound of
the estimator of (15) can be achieved by the following observation.
Theorem 3 (Exponential Convergence Rate). If there exists an M ∈ R such that U(S, a) < M
almost surely, then

Pr
(∣∣∣EUa − E

[
U(S, a)

]∣∣∣ > ε
)
< 2e−

nε2

2L , ∀ε > 0, L = min
(
M2,Var(U(S, a)) +Mε/3

)
. (16)

The exponential convergence rate at O(e−n) provided by Theorem 3 is significant in the sense that it
depends on (i) neither the dimensionality of the original state space S (i.e., the curse of dimensionality
is not invoked), nor (ii) the distribution pS(s) and utility functions (i.e., U(S, a) and pS(s) can take
any arbitrary forms). To facilitate the understanding of our approach, the pseudo code for evaluating
TIP is provided in Algorithm 1, which sketches the basic routine to compute TIP score of a perception
input sequence q({st}0t=−τ ) from t = −τ to t = 0 for planning at t = 0.
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at this level. When the miss detection happens behind
the AV, both TIP and PKL ignore its impact unlike the
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5 EMPIRICAL STUDY

In this section, we evaluate how the proposed TIP works in practice via extensive experiments on
both synthetic and real data. Due to the space constraint, more details are left in the appendix.

5.1 BASIC SETTINGS

All AVs used in the experiment are based on the same type of regular passenger vehicles. The planner
deployed in the autonomous driving system is derived from the popular open-sourced project of
Apollo (Fan et al., 2018). It consists of various sub-modules of routing, object motion prediction,
cost generation, path finder, and trajectory optimisation. At each planning time instant, these sub-
modules (except the trajectory optimisation) analyse the environment, input history, and establish the
target utility function for final trajectory optimisation, i.e., the objective utility function U(·, s) is first
created with the perception input as (part of) hyper-parameters. The path finder then provides multiple
initial paths as candidates for path-wise trajectory optimisation, and the final choice is determined
by a utility decider. The goals the planner strives to achieve include motion smoothness, traffic rule
compliance, safety, progress to the destination, etc. The planner has been extensively verified via
rigorous road tests in major cities with millions of population (See Appendix B for more details).

All experiments are implemented in scenarios as the standard protocol in autonomous driving (Ried-
maier et al., 2020). Scenarios used are collected from real world road tests (see more details
in Appendix D). We consider the planning problem at a particular frame in a scenario at a time,
and evaluate the utility of an action (a spatiotemporal trajectory the AV executes) for the next three
seconds, following the basic setup of (Philion et al., 2020). For comparison, three baselines are
adopted from the spectrum of perception metrics: 1) at the conventional end, nuScenes dataset
score (NDS) (Caesar et al., 2020) combines several traditional scoring results for 3D object detection
into a single performance measure, 2) SDE average precision distance-weighted (SDE-APD) (Deng
et al., 2021) focuses more on support distance errors near the AV in an ego-centric fashion, and
3) PKL (Philion et al., 2020) serves as the representative for AV behaviour-driven metrics.

5.2 RESULTS ON SYNTHETIC DATA

In the first set of experiments, we aim to gain some understanding of various metrics in reaction to
common types of perception noises. A dataset is synthesised from our curated road test scenarios
by adding controlled noise to the 3D object ground truth of vehicles, to enable clear observation on
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Figure 5: Comparison of metrics on real data (best viewed colour). Left: Metrics on different
checkpoints during training. Middle: Scatter plot of impacts of perception noise measured by TIP and
PKL. Note the number of data points close to the x-axis (PKL = 0), which correspond to critical errors
in planning due to the perception noise captured by TIP yet missed by PKL since the AV behaviours
are similar with and without the noi se. Right: First one is the ground truth with corresponding AV
behaviour (the spatio-temporal trajectory represented by the green tube with the z-axis as the temporal
dimension); second one shows that a false positive (pointed to by the red arrow) causes an outrageous
planning error with a jerk of −76.4m/s3 while the typical limit is around −1.0m/s3 (Wang et al.,
2018), despite a mild change in behaviour by PKL. PKL and TIP of this case are highlighted by the
red circle in the scatter plot (the middle figure). See details in Figure 9 and Figure 10 of Appendix C.1.

the sensitivity of metrics to specific types of perception errors. For this, 1000 5s-long scenarios are
assembled, with the number of objects per scene between 30 and 500, where AVs are moving on an
average speed at least 5m/s. The ground truth is annotated by professionally trained human operators.
All objects in the scenario are labeled with location, heading, category, and bounding box from 3D
point clouds recorded from LiDARs on AVs during road tests.

In total, six types of errors are considered. The false positives are tested by adding “ghost” vehicles
scattered within a 70m-by-30m box centred at the AV, with motion properties randomly perturbed
from the AV. The miss detection is created by removing objects from the ground truth randomly
with a certain probability (i.e., miss detection rate). Other noises involving location, yaw, velocity
and size are sampled from zero-mean Gaussian distributions with different variances and added to
corresponding properties of objects in ground truth. The comparisons are shown in Figure 3. While all
metrics are negatively correlated with all six types of perception noises, NDS saturates in some types
(e.g., velocity) due to its design. SDE-APD, also involving manual engineering, exhibits varying
sensitivity at different noise levels (especially for the velocity, as the default matching threshold 0.2m
is easily overwhelmed by speed noise larger than 1m/s. Selectivity of TIP tends to be more consistent
than PKL, in the sense that, while both may predict results at similar dynamic ranges when the noise
is mild, the former indicates larger loss when input perception errors intensify in most cases.

We further investigate behaviour of TIP in some individual cases. In a typical miss detection scenario,
we remove a stationary vehicle in front of or behind moving AVs. As shown in Figure 4, outcomes
rendered by TIP change with different planner settings, and it predicts the miss detection of the worst
loss at the border of collision events when the accdident could have been avoided by a small margin if
the obstacle is successfully detected. This reveals the superior resolution of TIP in identifying critical
events from the planning perspective that would have been missed by other baselines. The case also
shows that NDS and SDE-APD fail to distinguish errors at both sides of the AV, due to their spatial
or directional homogeneity by design.

5.3 RESULTS ON REAL DATA

In the second set of experiments, we study the results from the real perception module deployed on
our AVs, which is exemplified by a 3D object detection model that predicts class, location, heading,
velocity and size of objects from LiDAR point clouds. TIP is independent of the specific detector and
can be applied to various methods (Lang et al., 2019; Yin et al., 2021; Shi et al., 2020). We adopt an
end-to-end multi-view fusion (MVF) based model to synergise the birds-eye and perspective views of
point clouds (Zhou et al., 2019). The model is trained on 780K LiDAR sweeps using annotations of
vehicle, pedestrian and cyclist with detection range [-67.2m, 124.8m]×[-51.2m, 51.2m].

A typical challenge in developing the perception model is to determine how much training is needed
to reach a satisfactory level of performance. Conventional solutions require a variety of heterogeneous
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Table 1: Comparison of different detectors across metrics (↑).
Detector NDS SDE-APD PKL TIP

MVF + Tracking 0.730 0.843 -8.1 -10.5
MVF (PN-T) 0.693 0.852 -9.2 -11.7

5F-MVF (PN-T) 0.744 0.878 -7.9 -9.1

Table 2: Subjective evaluation.
Metric v.s. TIP
NDS 17.6% / 82.4%

SDE-APD 34.5% / 65.5%
PKL 38.8% / 61.2%

metrics to measure different aspects of the algorithm, including mean average precision (mAP) for
detection and mean squared errors in predicted motion properties. Recently, some unified metrics like
NDS (Caesar et al., 2020) are also proposed by manual engineering. These metrics hardly predict
outcome of the driving quality improvement of a perception model change, and in most cases the
conclusion can only be made from large-scale real road tests, which is almost infeasible for such
purpose (Wachenfeld and Winner, 2016; Åsljung et al., 2017).

We evaluate the performance of our 3D object detection model on the same benchmark as in Sec-
tion 5.2 and compare the model output against the ground truth. The model is trained for 15 epochs,
and results are reported in the left of Figure 5. Not surprisingly, NDS tends to increase as the model
training progresses and the final checkpoint models usually achieve the best performance since
NDS combines the errors that are aligned with the loss functions optimised during training. When
evaluated with the AV involved, however, the observation is not quite similar. SDE-APD implies that
the training, without the AV context, seems to struggle with improving results on close-by objects
as the losses are dominated by large number of far-away yet more challenging objects. From either
behaviour or planning perspectives, both TIP and PKL indicate that the last checkpoint model is
not among the best possible models during training. Instead, models somewhere in the middle of
the training can provide better autonomous driving performance. Actually, neither TIP nor PKL is
improved significantly beyond the 7th epoch, suggesting that early termination of training may be
even more beneficial to driving quality. More importantly, we notice that TIP disagree with PKL
on scenarios across models of top performance, where there are quite some critical cases identified
by TIP yet missed by PKL. The difference is illustrated in the middle of Figure 5 by the scatter
plot of randomly sampled scenarios, where the PKL values are almost zero while the TIP scores
are non-trivial for quite a number of cases, suggesting the drastic impact of the perception errors on
the AV planning process despite similar AV behaviour outputs with or without these errors (related
individual examples are discussed in Appendix C.1).

To compare other 3D detectors for offline applications (e.g., auto labelling (Qi et al., 2021)), we
implement two offline models with PillarNet (Shi et al., 2022) enhanced with transformer modules as
the basic detector. The first one, denoted MVF (PN-T), uses the point cloud only from the current
frame for prediction. The second one, denoted 5F-MVF (PN-T), leverages 5 consecutive frames
around the current one to predict. Results are reported in Table 1. Both offline models, with far
less restriction on resources, have better performance by SDE-APD. MVF (PN-T), however, cannot
produce precise velocity out of observation from only one frame, which leads to inferior performance
by other three metrics (MVF + tracking is the onboard model discussed above). 5F-MVF (PN-T)
delivers overall best results across all metrics, despite the marginal gap computed by PKL.

To further justify the soundness of the proposed approach on the scenario level, we also implement a
set of subjective evaluation similar to that in (Philion et al., 2020). We collect 258 pairs of scenarios
with actual perception noises and check weather TIP, PKL or NDS disagree on the relative severity
(i.e., one believes the perception error in scenario A is worse than that in scenario B while the other
one thinks alternatively). These scenario pairs are compared and rated by 10 randomly selected
human drivers to decide on which is worse from the human perspective. The result reported in Table 2
suggests that human drivers side with TIP over other three baselines.

6 CONCLUSION

In this work, we propose a principled framework to evaluate perception from the perspective of
planning for autonomous driving. Our approach explicitly exploits the properties of module-based
planners and effectively identifies perception noises that may cause large planning change in the
context of expected utility maximisation. Extensive experiments on both synthetic and real data
confirm that our approach is capable of distinguishing perception errors that would not be separated
by conventional metrics or those only exclusively focusing on AV behaviours.
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7 ETHICS STATEMENT

Autonomous driving directly involves interaction with human beings, animals and other assets
in the real world. Any performance measure tools for autonomous driving may not identify or
cover all possible failure cases of AVs that may lead to negative or even catastrophic consequences.
TIP is not an exception, despite the principle to precisely reflect the potential loss in planning by
design. It is critical that any researchers and practitioners of TIP should still implement standard and
comprehensive safety protocols to ensure legitimate compliance to appropriate laws and rules, to
minimise the likelihood of any potential negative impacts.

8 REPRODUCIBILITY STATEMENT

The submission includes three major technical parts: theory, implementation, and empirical study.
The main results of theoretical analysis and treatments are presented in Section 3.3 and Section 4.2.
The detailed explanation and complete proofs are presented in Appendix F and Appendix G. The
computation of TIP is provided as pseudo-code as in Algorithm 1. For the empirical study, the
planner is derived from the open-sourced Apollo with configuration fine-tuned on real road test data
as depicted in Appendix B. NDS is computed via the open-sourced implementation. SDE-APD is
implemented in house according to the original paper (Deng et al., 2021). PKL is implemented
following the open-sourced project.
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A ADDITIONAL LITERATURE REVIEW

Expected Utility Maximisation. Almost all solutions proposed so far in the artificial intelligence
realm to develop intelligent agents have followed the rational-action strategy as opposed to the
human-like behaviour strategy, i.e., the optimal decision made by a rational agent should optimise
some achievement measurement on consequences of its decision, which is, ideally, well aligned with
the predefined high-level goals (Russell and Norvig, 2009). Among many possible formulations of
the outcome measurement, the expected utility (EU) hypothesis is one of the most popular frameworks
in the decision theory (von Neumann and Morgenstern, 1944). While first introduced to characterise
human behaviours in microeconomics, the idea also finds great success in many other domains,
including the optimal decision for artificial intelligence systems (Osborne and Rubinstein, 1994).

Embedding Probability Measures in Hilbert Space. Embedding probability measures into a
Hilbert space has been explored in the literature for kernel methods (Berlinet and Thomas-Agnan,
2011; Smola et al., 2007). These methodologies exclusively focus on the reproducing kernel Hilbert
space, which is spanned by Mercer kernel functions. However, the implicit requirement on function
continuity may restrict its applicability to our problem, where either utility and probability density
functions may be discontinuous. In this work, we consider a less restrictive Hilbert space where only
square-integrability is needed and more flexible functions are possible.

B AUTONOMOUS VEHICLE PLANNER

We start by introducing the autonomous vehicle planner, which provides the fundamental toolkit for
the proposed evaluation framework. Our planner is designed to control an Level 4 AV running in
urban areas of major modern cities. Its modulized architecture is similar to many popular utility-based
planners (e.g., (Fan et al., 2018)), which consists of four major components as illustrated in Figure 6:

• The predictor infers the motion information sm in the future (i.e., t > 0) for all dynamic
road objects from perception input history (i.e., t ⩽ 0) up to the planning time (i.e., t = 0).

• The action proposer analyses the current environment at the planning time from (1) the
perception input, (2) future object motion input, and (3) other inputs (e.g., localisation,
traffic lights, semantic maps, routing path, etc.), and proposes various sets of behaviours
(e.g., “go straight” and “lane change”) for the AV with an initial feasible spatiotemporal
trajectory for each set.

• The trajectory optimiser takes results of above components as input, and finds the optimal
spatiotemporal trajectory for each behaviour set by numerically solving an optimisation
problem with the initial feasible trajectory from the proposer as the starting point.

• The optimal trajectories from all behaviour sets are then submitted to the action decider,
which assemblies all information to evaluate the utilities of different candidate actions (with
corresponding optimal spatiotemporal trajectories), and makes the final decision on the a∗.

Similar to many popular architectures (e.g., (Fan et al., 2018)), our planner utility function U(a, s) is
of the general form

U(s, a) =
∑

i
λiUi(s, a) + Us(s) + Ua(a),

where λi are the (static) coefficients, the atomic element function Ui depending on both a and s
characterises the “compatibility” of action a and scenario s, Us(s) depicts the current environment,
and Ua(a) evaluates the quality of the action. These terms can be categorized into the following
groups.

• The smooth motion group encourages motion without abrupt change in acceleration, and
penalises large jerks (i.e., the derivative of acceleration).

• The safety distance to road obstacles group is designed to keep the AV away from other
road objects to minimise the collision likelihoods. This distance is defined as ℓ2 distance
between the AV spatiotemporal sweeping contour and a foreign object on the road.

• The legal motion satisfaction group is designed to enforce the AV to strictly follow all
applicable traffic rules when in motion. For instance, the cost for crossing solid yellow lines
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is so significant as that such behaviour is prohibited unless a collision cannot be avoided
otherwise. Some other legal options also come at certain prices too to discourage high-risk
behaviour (e.g., lane changes in crowded scenes).

• The progress to the destination group aims to guide the AV to achieve the goal in the big
picture and reach the final destination.

The aforementioned planner deployed onboard our AVs have gone through rigorous road test in urban
areas of major cities with millions of population. Results of more than 10,000 miles on average tested
every week indicate that the planner achieves 111.3 miles per intervention (MPI), which suggests that
the planner used in this work is a reasonable and validated one.

C MORE COMPARISONS TO RELATED METRICS

In comparison to the other advanced metrics (PKL (Philion et al., 2020), IPA (Ivanovic and Pavone,
2021), SDE (Deng et al., 2021)) that are recently proposed for more effective perception evaluation,
our approach provides a universal and principled solution to evaluate the impact of perception noise
from the perspective of the planning process of an AV.

C.1 COMPARISON WITH PKL

Here we provide more empirical results to better understand the difference between the proposed TIP
and PKL (planning KL-divergence) (Philion et al., 2020).

Results on Synthetic Data

Figure 7 demonstrates a scatter plot for scene-wise TIP and PKL results on the synthetic data
generated as described in Section 5.2 with 6 false positives per scene. It is observed that some results
are very close to either x- or y-axis (the top right corner), suggesting that TIP and PKL deviate in
determining if a perception error (i.e., false positive) is crucial to planning on these cases. A typical
scenario of such disagreement is shown in Figure 8, where the behaviour of the AV does not change
significantly with ground-truth or noisy perception inputs (PKL = -0.248), yet the planning process
has changed quite a lot (TIP = -61.654) due to the affinity of false positive objects that has drastically
change the planning cost to close objects. In this case, TIP is capable of detecting serious perception
errors that PKL fails to identify.

Results on Real Data

On the real data, we also have similar observations, and demonstrate the actual scene for one such
scenario in Figure 9. As shown in this case, a false detection of a vehicle in front of the AV does not
change the behaviour considerably (PKL = -0.802), while the significant planning cost change is
reflected by TIP with value -115.42. More individual examples are shown in Figure 10

Overall, on both synthetic and real data, we show that the proposed TIP can efficiently and effectively
capture perception errors critical to the planning that may be missed by PKL. This confirms our
motivation to exploit the actual AV planning process, as opposed to the AV behaviour (i.e., the result
of planning), to gain insights into the impact of input perception error on the whole AV system.

Action 
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Figure 6: Diagram of the major components in our planner which is used for computing the proposed
perception evaluation metric TIP.
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Figure 7: Result on the false positive synthetic data. The data points (downsampled for clarity)
close to x-axis (PKL = 0) correspond to the cases where the AV behaviours under ground truth and
noisy perception inputs are identical. The data points close to y-axis (TIP = 0) correspond to the
cases where the AV planning preference between the optimal action and others are identical under
ground truth and noisy perception inputs. Note the number of cases where TIP disagrees with PKL
on the impact on AV planning.

C.2 COMPARISON WITH IPA

IPA (injecting planning-awareness) is recently developed in (Ivanovic and Pavone, 2021) to encode
the planning error based on the hypothesis that the impact of object location error is proportional to
the gradient magnitude of the planning cost functions involving the AV-object distance. This solution
however requires differentiability of the planning cost functions, while our approach does not and is
thus more applicable to the Level 4 AVs that are typically structured as a modularized pipeline of
individual components including perception, prediction, planning, etc. Even more serious is that it
fails to account for all cases since the local properties (gradients) do not always reflect the global
ones (overall losses). To illustrate this, consider a scenario, where the cost of AV being close to an
object is 1/d. Now assume that there are the following two cases of object location errors.

• Case one: The ground truth distance of an object to the AV is 1m, and the noisy distance
estimated by perception is 0.9m. Per the metric IPA defined in (Ivanovic and Pavone, 2021),
the result is ∣∣∣∣∣ d

dd
(1/d)

∣∣∣∣
d=1

∣∣∣∣∣|∆d| = 1×|1.0− 0.9| = 0.1,

while the actual cost difference is
∣∣ 1
0.9 − 1

1

∣∣ = 1/0.9− 1 = 0.111.

• Case two: The ground truth distance of an object to the AV is 2m, and the noisy distance
estimated by perception is 2.5m. Per the metric IPA defined in (Ivanovic and Pavone, 2021),
the result is ∣∣∣∣∣ d

dd
(1/d)

∣∣∣∣
d=2

∣∣∣∣∣|∆d| = 0.25×|2.5− 2.0| = 0.125,

while the actual cost difference is
∣∣ 1
2 − 1

2.5

∣∣ = 0.5− 1/2.5 = 0.1.

Obviously, the metric IPA of case two is larger than case one, while the actual error in planning cost
is the other way, as Taylor series up to first order terms adopted by IPA cannot precisely delineate the
cost function value change over large range input variation.
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Figure 8: Illustration of AV behaviours in ground truth and synthetic scenes with false positives.
The green tube represents the spatiotemporal trajectory of the AV with the z-axis as the temporal
dimension (same for the rest). Bold solid lines are boundary of driving areas (e.g., curbs, vegetarian
zoom dividers), while light solid lines are centre lines of vehicle lanes with dashed lines as the lane
boundaries. Road objects are marked with 3D bounding boxes in green. Sub-figures in the first
(second) row are birds-eye view (side view) of the scene, and sub-figures in the left (right) column
correspond to ground truth (noisy) perception input (same for the rest). In this case, the AV intends to
move forward under the ground truth perception input (the left column); in the presence of perception
input noise (the right column), the AV behaviour remains almost unchanged (PKL = -0.248), since
two false positive vehicles (pointed by red arrows) on its both sides force the AV to keep moving
straight, yet the close-to-object cost (safety distance to road obstacles) has changed considerably
during planning, and is reflected by the score of TIP -61.654.

D SCENARIO COLLECTION

The scenarios used in this work are curated from AV road test in real world from public roads in
urban areas of megacities, e.g., central business districts, populated residential communities, major
commercial areas, etc. Each scenario is a 10s-long excerpt extracted from a continuous interval
of road test, which consists of 1) all raw data recordings (LiDAR point clouds, camera images,
positioning signals, etc.) from the road test during the interval, and 2) the portion of offline generated
high-definition (HD) and birds-eye view (BEV) raster maps that cover the field of perception during
the interval. The duration of road test ranges from tens of minutes to several hours, and covers various
times of both weekdays and weekends from early morning till late night during a period of more
than one year, providing a rich blending in weather condition (e.g., sunny, cloudy, rainy, and snowy),
traffic intensity (e.g., rush hours on highways and crowded streets during holidays), road participant
diversity (e.g., private cars, cyclists, pedestrians, and emergency vehicles), and so forth. The scenarios
are selected from non-trivial situations (i.e., those with few traffic participants are filtered out) with
balance in AV motion speed, diversity of traffic participants, weather, geographical locations, etc.
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Figure 9: Illustration of AV behaviours in reaction to ground truth and actual noisy perception
inputs. Under the ground truth perception input (the left column), the AV is clear to move forward
with a soft braking to keep distance to another vehicle (“82”) in front. Given the noisy perception
input (the right column), however, the AV has to hard brake to avoid potential collision with the
false positive vehicle close to it in front (marked by the red arrow). In either cases, since the AV
speed is slow and is braking (either soft or hard), the difference in behaviour is insignificant (PKL =
-0.802), yet the consequence of the false positive is by no means trivial: the false positive causes a
hard brake and virtual collision (between the behaviours under ground truth perception input and
false positive), which is precisely captured by the proposed TIP (TIP = -115.42). The kinematic
motion for the ground truth scenario (bottom left) is a = −0.36m/s2, j = −0.72m/s3, and for the
noisy scenario (bottom right) is a = −0.36m/s2, j = −76.4m/s3. Note how sharp the braking
changes in presence of the noisy perception (jerk: −0.72m/s3 v.s. −76.4m/s3). Clearly, this is a
critical error from the system perspective.

E BREAKDOWN OF TIP

In order to facilitate understanding of the TIP evaluation process, we have illustrated the evaluation
steps in Figure 11, where a typical false negative case is used for the analysis.

F EXAMPLES AND NON-EXAMPLES OF SQUARE-INTEGRABLE DENSITY
FUNCTIONS

Theorem 1 in the main text requires square-integrability of a density function,which includes many
popular cases that may be used for constructing the utility function for planning.

Example 1 (Bounded PDFs). If both the support and range of the PDF f(x) of an random variable
is bounded, then f(x) is square-integrable, e.g., uniform distributions.
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Figure 10: Illustration of more AV behaviours in reaction to ground truth and actual noisy
perception inputs. Two more outrageous perception errors are shown where an object location is
improperly perceived such that it is superimposed with the AV. The ground truth is shown on the left
and the actual noisy perception is on the right. For the top case: TIP = -132.4, PKL = 0.0, acceleration
a = 0.03m/s2, jerk j = 0.09m/s3 (for both ground truth and actual noisy perception scenarios). For
the bottom case: TIP = -75.0, PKL = 0.04, a = −0.35m/s2, j = −2.43m/s3 (for the ground truth
scenario), and a = −0.35m/s2, j = −2.61m/s3 (for the actual noisy perception scenario).

Example 2 (Parametric PDFs). PDFs of many popular parametric statistical models are square-
integrable, e.g., (sub-)Gaussian, (sub-)Laplace, Gamma (including exponential, Erlang, and χ2

distributions), etc.
Example 3 (Mixture Models of Countable Components with Square-Integrable PDFs). The PDF of
a mixture model is of the form:

f(x) =
∑

i
αifi(x), αi > 0,

∑
i
αi = 1, (17)

where fi(x) is the PDF of the i-th component out of the countable set {fi(x)}. f(x) of (17) is
square-integrable if ∀i, fi ∈ L2 and M = supi∥fi∥H < +∞ as∫ ∣∣f(x)∣∣2 dx =

∫ ∑
i,j

αiαjfi(x)fj(x) dx =
∑
i,j

αiαj

〈
fi, fj

〉
H (18)

⩽
∑
i,j

αiαj∥fi∥H
∥∥fj∥∥H ⩽ M2 < +∞.

A variety of mixture models are included such as Gaussian mixture models and mixtures of Gamma
distributions.
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Figure 11: Breakdown of TIP for a typical miss detection scenario. A stationary vehicle 30m in
front of the AV is missed by the onboard object detector. Four scenes are: 1) (top left) ground truth
behaviour (a∗) in ground truth environment (p) with EU -5.83 (hard brake to avoid a collision); 2)
(top right) ground truth behaviour (a∗) in noisy perceived environment (q) with EU -80.8 (hard brake
without any obstacles in front); 3) (bottom left) candidate behaviour (a) in ground truth environment
(p) with EU -183.0 (move forward and collide with the object in front); 4) (bottom right) candidate
behaviour (a) in noisy perceived environment (q) with EU -58.3 (move forward). Planned (for AV) or
predicted object motion in a scene is rendered as a coloured spatiotemporal trajectory (3D tube with
z-axis as time), e.g., each tube consists of locations of the corresponding object at time t (t is the
coordinate of the z- or vertical axis). Note that in the lower left scene the candidate AV behaviour
a (move forward at a constant speed) is evaluated against the ground truth environment (p), which
collides with the object at the end of 3s. Corresponding utilities are shown under all cases, and TIP
in this case is −199.7 according to the calculation of expected utilities in (15).

On the other hand, since ℓ1 and ℓ2 norms are not necessarily equivalent in infinite-dimensional spaces,
there are indeed some density functions f(x) ∈ L1 with infinite ℓ2 norm.

Non-Example 1 (Square-Unintegrable PDFs). Let the distribution FX of a random variable X be

FX(x) =


0, x ∈ (−∞, 0)
1√
a
x

1
2 , x ∈ [0, a]

1, x ∈ (a,+∞)

where a > 0 is the parameter; and the density function is then

f(x) =

{
1

2
√
a
x− 1

2 , x ∈ (0, a)

0, otherwise

where f(x) is not square-integrable since x−1 increases too fast as x → 0.
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G PROOFS OF THEOREMS IN THE MAIN TEXT

G.1 NOTATIONS

Besides the notations in Section 3.1, a few more are introduced as follows. A unit step function is
W (x− c) = 1x∈[c,+∞), c ∈ R. L1(X , ρ) denotes the space of absolutely integrable functions.

G.2 EMBEDDING PROBABILITY MEASURES IN H

PROOF (Theorem 1). Since FX(x) is absolutely continuous, there exists a density function fX(x) ∈
L1 such that

d

dx
FX(x) = fX(x) (19)

almost everywhere. Since fX(x) ∈ L2 , let M =∥fX∥ < +∞, ∀g ∈ H, we have∣∣∣EX

[
g(x)

]∣∣∣ = ∣∣∣∣∫
x

g(x) dFX(x)

∣∣∣∣ (20)

=

∣∣∣∣∫
x

g(x)f(x)ρ(dx)

∣∣∣∣ (21)

⩽
∫
x

∣∣g(x)∣∣∣∣f(x)∣∣ ρ(dx) (22)

⩽M ||g||H, (23)
where (23) follows from the Cauchy-Schwarz inequality (Rudin, 1976, Theorem 11.35). Thus, the
linear functional EX [·] is bounded on H and

EX

[
g(x)

]
=

∫
x

g(x) dFX(x) =

∫
x

fX(x)g(x)ρ(dx) = ⟨fX , g⟩H , ∀g ∈ H,

where µp := fX ∈ H is the embedding of the probability measure in H. Now assume that there
exists another element µ′ ∈ H such that

EX

[
g(x)

]
=

〈
µ′, g

〉
H , ∀g ∈ H.

Since µp − µ′ ∈ H, we have∥∥µp − µ′∥∥2
H =

〈
µp − µ′, µp − µ′〉

H
=

〈
µp, µp − µ′〉

H −
〈
µ′, µp − µ′〉

H
= EX

[
µp − µ′]− EX

[
µp − µ′]

= 0.

Therefore, the embedding µp for probability measure p in H is a unique equivalence class of the
functions that are equal almost everywhere.

G.3 INJECTION OF PROBABILITY MEASURE EMBEDDINGS IN H

To prove the injection of probability measure embedding in Theorem 2, a preliminary result of
(Dudley, 2002, Lemma 9.3.2) is first introduced.
Lemma 1. If (X , d) is a metric space, p and q are two probability measures on X , then Ex∼p(x) [g] =
Ex∼q(x) [g] ,∀g ∈ Cb(X ) if and only if p = q, where Cb(X ) is the space of all bounded continuous
functions on X .

PROOF (Theorem 2). Now we prove this theorem in the following two directions.

Necessity. Since the embedding of a probability measure is unique in H, it is easy to see that µp = µq

if p = q.

Sufficiency. Note that, by Weierstrass extreme value theorem (Rudin, 1976, Theorem 4.16), any real
continuous function g ∈ C(X ) on the compact space X is bounded, i.e., ∀g ∈ C(X ),∃M ∈ R such
that

∣∣g(x)∣∣ < M, ∀x ∈ X . It follows that C(X ) ⊂ L2(X ) since∫
X

∣∣g(x)∣∣2 ρ(dx) ⩽ M2|X | < +∞.

20



Under review as a conference paper at ICLR 2023

Now if µp = µq almost everywhere, we have∣∣∣Ep

[
g(x)

]
− Eq

[
g(x)

]∣∣∣ = ∣∣∣〈µp, g
〉
−
〈
µq, g

〉∣∣∣ = ∣∣∣〈µp − µq, g
〉∣∣∣ (24)

⩽
∥∥µp − µq

∥∥
H∥g∥H = 0, ∀g ∈ C(X ). (25)

Thus p = q by Lemma 1.

G.4 APPROXIMATION OF EXPECTATION FOR DISCRETE/MIXED DISTRIBUTIONS IN H

While Theorem 1 in the main text only addresses the continuous distributions, a similar result can be
found given point-wise continuity conditions for general distributions, which can be decomposed
into absolutely continuous and discrete parts (Chung, 2000).

Theorem 4 (Approximation of Mixed Distribution). Let Fac(x) be an absolutely continuous distribu-
tion function with density function fX(x); Fd(x) =

∑
i biW (x−ai) a discrete distribution function of

point mass at a countable set {ai} such that bi > 0 and
∑

i bi = 1; FX(x) = λFac(x)+(1−λ)Fd(x)
a mixed distribution function with λ ∈ (0, 1) as the convex combination coefficient. If fX(x) is
square-integrable, and g(x) ∈ L2 is uniformly continuous at {ai}, then there exists a sequence of
{µp,n} ⊂ H such that

lim
n→∞

〈
µp,n, g

〉
H = EX

[
g(x)

]
. (26)

We start by considering a simple discrete case by the following lemma.

Lemma 2. Let FX(x) = W (x− a) be a discrete distribution function with point mass at a ∈ X . If
g(x) ∈ L2 is continuous at a, then there exists a sequence of {µp,n} ⊂ H such that

lim
n→∞

〈
µp,n, g

〉
H = EX

[
g(x)

]
. (27)

PROOF (Lemma 2). ∀ε > 0, since g(x) is continuous at a, there exists a a radius r > 0 such that

g(a)− ε ⩽ g(x) ⩽ g(a) + ε, ∀x ∈ B(a, r)

with a positive measure V = ρ(B(a, r)) > 0, where B(a, r) ⊂ X is a neighbourhood of r around a.
Define

hε(x) =
1

V
1x∈B(a,r) ∈ H.

We have
g(a)− ε < ⟨hε, g⟩H < g(a) + ε.

Thus,
lim

n→∞

〈
h 1

n
, g
〉
H

= g(a) = EX

[
g(x)

]
.2

Lemma 2 implies that the expected value of a function continuous at the point mass of a delta
distribution can be approximated by an inner product in H with any arbitrary precision.

PROOF (Theorem 3). Note that

EX

[
g(x)

]
= λ

∫
x

g(x) dFac(x) + (1− λ)
∑

i
big(ai).

Since Fac(x) is absolutely continuous, by Theorem 1, there exists a µ ∈ H such that∫
x

g(x) dFac(x) = ⟨µ, g⟩H , ∀h ∈ H. (28)

On the other hand, ∀ε > 0, since g(x) is uniformly continuous at {ai}, there exists a radius r > 0
such that ∀i,

g(ai)− ε < g(x) < g(ai) + ε, ∀x ∈ B(ai, r)

2{h 1
n
} itself, however, is not a Cauchy sequence, thus it has no limit.
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and V = ρ(B(ai, r)) > 0 (translation invariance of Lebesgue measures in Rd). Define

hε(x) =
1

V

∑
i
bi1x∈B(ai,r) ∈ H.

We have∑
i
big(ai)− ε =

∑
i
big(ai)− ε

∑
i
bi < ⟨hε, g⟩H < g(a) + ε

∑
i
bi =

∑
i
big(ai) + ε,

Thus
lim
n→∞

〈
h 1

n
, g
〉
H

=
∑

i
big(ai). (29)

Combining (28) and (29) leads to

lim
n→∞

〈
λµ+ (1− λ)h 1

n
, g
〉
H

= λ

∫
x

g(x) dFac(x) + (1− λ)
∑

i
big(ai) = EX

[
g(x)

]
.

G.5 UNIFORM CONVERGENCE RATE OF EXPECTED UTILITY ESTIMATORS

PROOF (Theorem 3). Assume that {Xi}ni=1 and independent and Xi ∈ [ai, bi] almost surely. Let
X̄ = 1

n

∑
i Xi.

Per Hoeffding’s inequality (Hoeffding, 1963, Theorem 2), for any ε > 0,

Pr
(
X̄ − E

[
X̄
]
> ε

)
< exp

{
− 2n2ε2∑n

i=1(bi − ai)2

}
. (30)

By symmetry, it also holds true that, for any ε > 0,

Pr
(
X̄ − E

[
X̄
]
< −ε

)
< exp

{
− 2n2ε2∑n

i=1(bi − ai)2

}
. (31)

Combining one-side inequalities of (30) and (31) leads to

Pr
(∣∣∣X̄ − E

[
X̄
]∣∣∣ > ε

)
< 2 exp

{
− 2n2ε2∑n

i=1(bi − ai)2

}
⩽ 2 exp

(
− nε2

2M2

)
, ∀ε > 0, (32)

where M = sup({|a1| , · · · ,|an| ,|b1| , · · · ,|bn|}).
On the other hand, Bernstein inequality (Bernstein, 1946) also provides an improved revision of
Chebyshev’s inequality by incorporating both almost-sure bound and variance bound:

Pr
(∣∣∣X̄ − E

[
X̄
]∣∣∣ > ε

)
< 2 exp

{
− nε2

2Var(X̄) + 2Mε/3

}
, ∀ε > 0. (33)

The proof is completed by setting Xi = U(Si, a) and taking the lowest bound of (32) and (33) for
the tail probability of

∣∣∣X̄ − E
[
X̄
]∣∣∣.
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