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ABSTRACT

Visual reasoning is crucial for understanding complex multimodal data and ad-
vancing Artificial General Intelligence. Existing methods enhance the reasoning
capability of Multimodal Large Language Models (MLLMs) through Reinforce-
ment Learning (RL) fine-tuning (e.g., GRPO). However, current RL approaches
sample action |'| groups solely from the policy model itself, which limits the up-
per boundary of the model’s reasoning capability and leads to inefficient training.
To address these limitations, this paper proposes a novel RL framework called
Vision-EKIPL. The core of this framework lies in introducing high-quality ac-
tions generated by external auxiliary models during the RL training process to
guide the optimization of the policy model. The policy learning with knowl-
edge infusion from external models significantly expands the model’s exploration
space, effectively improves the reasoning boundary, and substantially accelerates
training convergence speed and efficiency. Experimental results demonstrate that
our proposed Vision-EKIPL achieved up to a 5% performance improvement on
the Reason-RFT-CoT Benchmark compared to the state-of-the-art (SOTA). It re-
veals that Vision-EKIPL can overcome the limitations of traditional RL methods,
significantly enhance the visual reasoning performance of MLLMs, and provide a
new effective paradigm for research in this field.

1 INTRODUCTION

Visual reasoning, a core cognitive ability involving interpretation, inference, and logical thinking
based on visual information, has emerged as a critical and highly challenging research frontier
within the field of Artificial Intelligence Lindstrom & Abraham| (2022); |OpenAll (2024). This ca-
pability serves as a fundamental cornerstone for numerous complex Al applications, ranging from
image recognition [Petrou & Petrou| (2010); Ji et al.| (2024) and scene understanding (Cordts et al.
(2016); [Yang et al.| (2024b)) to autonomous robotic navigation [Ji et al.| (2025)); [Li et al.| (2024c) and
autonomous driving |[Hao et al.| (2025b; 2024bjajc), underscoring its growing strategic importance.

To effectively enhance the visual reasoning capability of machines, the research community has
explored diverse technical approaches. Current mainstream research paradigms can be broadly
categorized into three types: (1) neural-symbolic methods |Garcez et al.| (2019); |Amizadeh et al.
(2020Db)); [Choi et al.| (2024); [Zhang et al.| (2024a); |Gupta & Kembhavil (2023)), which aim to inte-
grate the exceptional pattern recognition strengths of deep neural networks with the inherent logical
rigor and interpretability of symbolic systems. (2) Supervised Fine-Tuning (SFT) of MLLMs Xu
et al.| (2024a)); |Thawakar et al.|(2025a)), which relies on large-scale annotated datasets for end-to-end
training to directly optimize model performance on specific visual reasoning tasks. (3) Reinforce-
ment Learning (RL) based methods|Tan et al.| (2025); Huang et al.|(2025)), exemplified by techniques
(e.g., Group Relative Policy Optimization (GRPO)|Shao et al.|(2024))). Such methods leverage RL’s
reward mechanisms to activate the latent reasoning potential within pretrained models, demonstrat-
ing favorable generalization capability, particularly when tackling complex visual-cognitive tasks
involving mathematical logic derivation or code understanding, thus garnering increasing attention.

'In this work, we define “action” as a complete response (i.e., a full rollout), consisting of multiple gen-
erated tokens, rather than a single token prediction. This definition aligns with group-based rollout evaluation
and is consistent with prior work such as GRPO Shao et al.| (2024).
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Q: Subtract all cyan spheres. How many
spheres are left?

the image and identified the objects.

There are 9 objects in total in the image.

T can see one sphere that is cyan.

To find the number of spheres left after
subtracting the cyan sphere, I need to subtract
the number of cyan spheres from the total
number of spheres in the image.

Looking at the image, there are four spheres: one

B
Q: How many points are located on the
circumference of the circle in the given diagram?

<think>\n I need to visually inspect the image
and count the points that are located on the
boundary of the circle. The image shows

acircle with points labeled A, B, C, and O. Points
A, B, and C are clearly located on the
circumference of the circle. Point O is

located at the center of the circle, not on the
circumference. Therefore, there are 3 points
on the circumference of the circle that are

Q: Alright the first image shows the central view
of initial state, the second image shows the final

state, and the attributes of the initial objects are
listed below:\n(0, cylinder, small, purple, glass)\n(1,
cube, medium, blue, glass)\nWhat is the
transformation process that can achieve the change

from inital state to final state?

e

<think>\nComparing the initial state and the final
state, the blue cube numbered 1 became a blue
sphere, while the purple cylinder (numbered 0)
moved forward in position.\n</think>\n\n

cyan, one orange, one for purple and one yellow.
So, there are 4 spheres in fotal.
Subtracting the 1 cyan sphere from the 4 total

<answer>\n- change_position(0, behind)
\n change_shape(1, sphere)

|
I
I
I
I
|
I
<think> Okay, let's see. I have already analyzed I
I
I
|
I
: \n¢</answer>

spheres leaves 3 spheres.

explicitly labeled.
Therefore, the number of spheres left is 2.
</think><answer> 3 </answer> I

\n¢/think>\n\n<answer>\n3\n</answer>
Figure 1: The output examples of Vision-EKIPL on three visual reasoning tasks, which shows
superior reasoning results.

However, despite the notable successes achieved by RL-based methods on a series of visual reason-
ing tasks, recent studies [Yue et al.| (2025) have revealed a noteworthy phenomenon: the reasoning
paths generated by models post-RL training appear, to a large extent, not to surpass the inherent
capability scope of the pretrained foundation model. This suggests that the performance enhance-
ments conferred by RL training might predominantly stem from its role as a preference optimizer.
Specifically, RL reinforces the model’s sampling strategy via reward signals, biasing it towards se-
lecting known reasoning paths that have historically yielded high rewards, thereby more efficiently
generating correct answers. Yet, this mechanism carries an inherent potential bottleneck: it may ex-
cessively favor the exploitation of known successful paths, consequently inhibiting the exploration
of novel or more complex reasoning paths. A potential consequence is that the reasoning boundary
of a RL-fine-tuned model, compared to its foundation model counterpart with vast potential, might
not only fail to expand but could potentially constrict. Furthermore, existing RL methods commonly
suffer from slow convergence rates and low training efficiency.

To overcome the dual limitations of current RL methods concerning reasoning boundary expan-
sion and training efficiency, this paper introduces a novel reinforcement learning framework named
Vision-EKIPL. Its core innovation lies in significantly broadening the sources of information dur-
ing the policy learning process. At each input state, the framework not only samples actions based
on the current policy model but also incorporates actions from multiple external auxiliary models
into the candidate set. Subsequently, these candidate actions are ranked based on the reward signals
they receive, and the top-k highest-reward actions are selected to form a high-quality action group.
The group is then utilized to guide the optimization of the policy model. Through this mechanism,
Vision-EKIPL effectively broadens the policy model’s exploration space by integrating potential so-
lutions offered by diverse “experts” (i.e., the auxiliary models), aiding in the discovery of effective
reasoning paths that might be overlooked by a single policy model.

In essence, our method aims to significantly elevate the reasoning frontier of the policy model by
proactively introducing and integrating external knowledge (manifested as high-quality actions from
auxiliary models) during the optimization process, enabling it to explore and learn richer, more com-
plex reasoning strategies, thereby effectively mitigating the potential reasoning capacity attrition
associated with standard reinforcement learning fine-tuning. Concurrently, by directly leveraging
high-quality actions from external models to guide the optimization of the policy model, our method
also substantially enhances the convergence rate and overall efficiency of the training process. From
a broader perspective, this approach can be conceptualized as a promising hybrid paradigm of super-
vised fine-tuning (data distillation) and reinforcement learning. When the initial reasoning capacity
of the policy model is comparatively limited, the model exhibits a greater propensity to select knowl-
edge acquired from external models for supervised learning; conversely, as the policy model’s own
capablhty progressively advances, it gradually leans towards autonomous exploration of deeper rea-
soning strategies. Vision-EKIPL achieves up to a 5% performance improvement compared to the
state-of-the-art(SOTA) on the Reason-RFT-CoT Benchmark. The output examples of Vision-EKIPL
are provided in Fig. [I] Although this research primarily validates the efficacy of the framework on
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visual reasoning tasks, the proposed framework possesses commendable generality and can theoret-
ically be flexibly applied to a broader spectrum of artificial intelligence domains, including various
linguistic tasks, visual tasks, and multimodal tasks.

Our main contributions can be summarized as follows:

* We propose Vision-EKIPL, an innovative reinforcement learning framework that signif-
icantly enhances the visual reasoning capability of MLLMs by integrating high-quality
actions generated by external models to assist the optimization of the policy model.

* We demonstrate that incorporating high-quality actions from external models during pol-
icy optimization effectively broadens the policy model’s action exploration space, thereby
expanding its reasoning boundary.

» Through extensive experiment evaluation, we verify the effectiveness of the Vision-EKIPL
framework, offering valuable insights for advancing visual reasoning research and intro-
ducing a new paradigm potentially conducive to promoting multimodal learning research.

2  METHOD

2.1 PRELIMINARIES

Problem Definition. Visual reasoningAmizadeh et al.|(2020a); Thawakar et al.| (2025b); |Xu et al.
(2024b)) can be formally defined as the task of inferring conclusions or answers by jointly analyzing
visual and textual information. Given a visual input I (e.g., images or videos) and an associated
textual description or question 7T, the objective is to generate a corresponding answer A. This
process can be formalized as:

P:(I,T)—= A

where I € REXWXC denotes the visual input, characterized by height H, width W, and the number
of channels C. The textual input T typically consists of natural language queries or descriptions,
while the output A represents the inferred answer, which may be expressed in natural language
or structured formats. Through this mapping, visual reasoning models are designed to effectively
integrate and interpret multimodal information to perform complex reasoning tasks.

Group Relative Policy Optimization (GRPQO). GRPQShao et al.| (2024)) presents a novel re-
inforcement learning framework that has demonstrated strong performance in models such as
DeepSeek R1Guo et al.| (2025a). The fundamental objective of GRPO is to enhance the reasoning
capability of model by iteratively refining its policy based on the relative performance of sampled
actions within a group.

The process commences with the current policy my for a given state s. A group of N actions,
{01,092, ...,0n},is sampled from the policy’s output distribution 7y (0|s). Each sampled action o; in
this group is subsequently evaluated using a reward function R(o;), which quantifies the desirability
or effectiveness of the action.

A key element of GRPO is the computation of an advantage score for each action. The advantage
A; for the action o; is defined as:

R(0;) — mean({R(01), R(02),...,R(on)})
std({R2(01), R(02), ..., R(on)})
Actions yielding a positive advantage are considered superior to the group average, while those with
a negative advantage are deemed inferior. After computing the advantage A;, GRPO evaluates the

ratio of the probabilities of each action under the updated policy 7y, and the previous policy g
denoted as ratio;.

A= ey

old ?

ratlol = ﬂ-enew(oi | S) / ﬂ-eold (Oi ‘ S) (2)

The policy model parameters 6 are then updated to increase the likelihood of selecting actions that
demonstrated positive advantages and decrease the probability of choosing actions with negative
advantages. This update is typically performed using gradient-based optimization method. To mit-
igate excessive policy updates and enhance training stability, GRPO constrains ratio; to the interval
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Figure 2: Overview of the proposed Vision-EKIPL framework. Vision-EKIPL samples high-quality
action groups from the action sets of the external models and the policy model based on reward
function (RF) evaluation, and then optimizes the policy model using the high-quality action group
through the GRPO algorithm.

[1—0,1+ d]. Moreover, to encourage the learned policy to remain in proximity to the reference dis-
tribution 7¢, a Kullback-Leibler (KL) divergence penalty, weighted by a coefficient 3, is integrated
into the optimization objective. Finally, the optimization objective of GRPO can be formulated as
follows:

Jarpo(0) = ESNQ’{Oi}fLN”OM

1
N Z min(ratioi A,
i=1

3)
clip (ratio;, 1 — ¢, 1 +¢€) Ai) — 8Dk, [7r9||7r,,ef]]

where @) denotes the candidate question set, Dk denotes the KL regularization. s is typically
a frozen pre-trained MLLM. In a nutshell, GRPO aims to maximize the expected advantage, often
incorporating this KL divergence as a penalty term.

2.2 EXTERNAL KNOWLEDGE-INFUSED POLICY LEARNING

The overall framework of Vision-EKIPL is illustrated in Fig. 2] Vision-EKIPL is a reinforcement
learning framework designed to enhance the visual reasoning capability of MLLMs. The key in-
sight of Vision-EKIPL is leveraging high-quality actions generated by external auxiliary models to
guide the optimization of the policy model, thereby infusing novel reasoning knowledge and further
expanding the model’s reasoning capacity.

Sampling Action Groups beyond policy model. We introduce a total of M auxiliary models to
support the learning process. Although the auxiliary actions are not solely derived from 7y, as long
as the set of actions drawn, for example, from previous policy iterations or a dedicated exploration
space, collectively encompasses the entire trajectory space that the current target policy 7, can
generate, then employing these mixed actions in importance sampling remains theoretically valid,
with unbiasedness guaranteed. We have proven it theoretically in the appendix A. Given an input

state s = (x, ¢), where = denotes the visual encoding of the input image and ¢ represents the textual

encoding of the question, GRPO first samples a group of actions {0f,..., 0%} from the current
policy 7. Additionally, for each auxiliary model 7%, it samples a corresponding group of actions
{ofj ey oﬁ,j }. The sampling process is as follows:

o) ~mp(o]x,q), fori=1,2,...,N 4)
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ofjww¢j(0|x,q), fori=1,2,...,N, 5)
fory=1,2,...,. M
All these sampled actions are then combined into a total action group O:
M
O={of|i=1,...N} U [J{o{" |i=1,...,N} (6)
j=1

Reward Calculation. Each sampled action o; is assigned a reward R(o;) based on verifiable crite-
ria. In the context of visual reasoning tasks, the reward function R(o;)Tan et al.| (2025) integrates
two components: a format reward Rformat(0;) and an accuracy reward R,..(0;). The format reward
enforces adherence to a structured response format, while the accuracy reward assesses the correct-
ness of the output, thereby striking a balance between structured reasoning and factual accuracy.
The reward function is formally defined as:

R(Oi) = Rformat(oi) + Racc(oi). (7)

The reward calculation follows the criteria outlined below:

* If the response provides a correct final answer,the model receives an positive accuracy
reward. Otherwise, the model receives 0 reward. For the specific definition of accuracy
reward, please refer to|Tan et al.|(2025).

* If the response encloses its reasoning within <think></think> tags and its final answer
within <answer></answer> tags, the model receives a format reward of +1. Otherwise,
the model receives 0 reward.

Action Selection and Advantage Computation. The actions within the action group O are sorted
in descending order based on their reward values, and the top-G actions are selected to form the
group of high-quality action T" : {01, 09, ..., 0¢}, along with their corresponding group of rewards
R:{ri,re,...,ac}

The rewards within the sampled reward group R are normalized to compute the relative advantages
{41, As, ..., Ag}, which are computed as shown in Eqn. [I} After computing the relative advan-
tages for the action group 7', the policy model is updated following Eqn. [3]

3 EXPERIMENT

3.1 EXPERIMENTAL DETAILS

In this paper, we employ the Reason-RFT-CoT Dataset [Tan et al.| (2025) to evaluate our method.
The experiments are organized into the following three task categories: (1) Visual Counting This
task assesses multimodal reasoning by integrating linguistic, visual, and mathematical skills to solve
arithmetic problems within 3D block-based scenes. (2) Structure Perception This visual reasoning
task requires models to interpret structural information across various mathematical geometries,
medical imaging, chart layouts, and architectural designs. (3) Spatial Transformation This spatial-
visual reasoning task evaluates a model’s ability to infer single-step or multi-step transformation
actions by analyzing initial and final visual states of 3D scenes presented from multiple perspectives
(e.g., center, left, right). Each task contains in-domain test set and out-of-domain test set. Specific
information can be found in|Tan et al.| (2025).

Implementation Details In our experiments, we utilize Qwen2-VL-2B and Qwen2-VL-7B |Wang
et al.| (2024) as policy models. For external models, we selected GPT-40 Hurst et al.| (2024) and
Gemini-1.5-Pro [Team et al.| (2024). Our implementation is based on the open-source frameworks
Open-R1|Huggingface|(2025) and vLLM Kwon et al.|(2023) to ensure reproducibility of results and
system scalability. For hyperparameters, we employed a cosine learning rate schedule with a peak
value of 5 x 10~7 and adopted the AdamW optimizer to optimize the policy model, setting N and
G to 8, with a default KL penalty of 3 = 0.005. Based on the dataset size, we set the number of
epochs for Visual Counting task, Spatial Transformation task, and Structure Perception task to 1,
1, and 5, respectively. To ensure stability and statistical significance of the results, we repeat each
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major experiment three times under the same setting and report the average accuracy across runs as
the final result. All experiments are conducted on a server equipped with 8 A100 GPUs.

API Cost Considerations Incorporating high-quality actions generated by external models such
as GPT-40 and Gemini-1.5-Pro introduces non-negligible API costs. These costs include both in-
ference latency (typically 1-3 seconds per query depending on sequence length and model load)
and monetary expenses (approximately 0.01-0.03 per query, varying with provider pricing tiers).
Although these costs are relatively minor in small-scale experiments, they may accumulate signifi-
cantly in large-scale training or deployment scenarios. In future work, exploring cost-effective open-
source alternatives or distillation-based approaches to mitigate reliance on expensive APIs could be
a promising direction.

Baselines for comparison To evaluate the performance and generalization capabilities of different
training strategies, adhering to the settings in |Tan et al.|(2025)), the methods compared in this paper
are as follows: (1) SFT-based methods—ANS-SFT, which fine-tunes on answer generation, and
CoT-SFT, which uses supervised learning with chain-of-thought (CoT) reasoning. (2) RL-based
methods Reason-RFT-Zero, which applies RL training directly to the base model, Reason-RFT,
which first performs supervised learning with partial chain-of-thought (CoT) data before RL training
and Vision-EKIPL, which integrates the external auxiliary models into the RL training.

To conduct the comprehensive evaluation, we adopt Qwen2-VL-Instruct Wang et al.| (2024)) as the
base model, assessing both its 2B and 7B variants to investigate the influence of model scale. Ad-
ditionally, the most advanced open-source models [Bai et al.| (2025); |Abdin et al.| (2024); L1 et al.
(2024b)); |Chen et al.| (2024)); Meta Al} (2024); Agrawal et al.| (2024) and proprietary models [Hurst
et al.| (2024); Team et al.[(2024)) are incorporated as baselines to assess the performance of various
training paradigms.

Table 1: Results on three visual reasoning tasks. The best results among different training
paradigms are highlighted in bold, while the second-best results are underlined. “ID” denotes in-
domain test data, and “OOD” denotes out-of-domain test data.

| Visual Counting | Structure Perception | Spatial Transformation

Method

etho Clevr-Math Super-Clevr AVG GeoMath Geometry3k AVG TRANCE TRANCE-L TRANCE-R AVG

D 00D D 00D D 00D

Proprietary Models
GPT-40-2024-08-06/Hurst et al. (2024] 68.10 3431 51.20| 50.18 43.49 46.83| 4255 28.67 29.76 35.88
Gemini-1.5-Pro|Team et al. (2024) 61.80 37.50 49.65| 50.12 48.38 4945 2622 18.76 19.88 22.71
Open-Source Models
Qwen2.5-VL-3B-Instruct|Bai et al. (2025) 75.90 39.30 57.60| 36.75 37.44 37.09 8.57 8.26 8.31 8.42
Phi-3.5-Vision-4B-Instruct/Abdin et al. (2024 21.40 15.20 18.30| 36.83 50.25 43.54 7.42 2.45 4.02 533
Llava-OneVision-7B|Li et al. [(2024b] 69.70 29.10 49.40| 77.63 43.66 60.64| 10.00 8.33 8.74 9.27
Qwen2.5-VL-7B-Instruct|Bai et al. [(2025) 74.60 35.20 54.90| 44.00 45.61 4480 19.63 13.12 13.42 16.45
InternVL-2.5-8B|Chen et al. (2024) 93.50 35.30 64.40| 63.00 47.32 51.60 7.19 6.62 6.63 6.91
Llama-3.2-11B-Vision|Meta AI(2024} 10.30 9.50 9.90 13.75 20.85 17.30 8.22 8.40 9.03 8.47
Pixtral-12B|Agrawal et al. (2024) 42.60 22.90 32.75| 3038 36.09 3323 7.35 5.03 5.22 6.42
Qwen2VL-2B-Instruct
Zero-Shot 82.40 32.00 57.20| 25.86 20.63 23.25 3.78 4.60 4.67 4.35
+ ANS-SFTTan et al. (2025] 96.20 39.20 67.70| 51.34 22.50 36.92| 7139 49.24 50.33 58.99
+ CoT-SFTTan et al. (2025] 85.50 46.50 66.00| 43.05 25.25 34.15| 6437 43.19 42.86 50.14
+ Reason-RFT-ZerdTan et al. (2025] 98.40 44.80 71.60| 47.68 32.50 40.09| 42.13 34.07 33.41 33.74
+ Reason-RFTTan et al. (2025) 96.80 51.20 74.00| 49.03 33.13 41.08| 74.61 64.05 64.08 67.58
+ Vision-EKIPL(Ours) 99.10 52.30 7570 | 49.70 34.50 42.10| 78.23 65.12 65.45 69.60
Qwen2VL-7B-Instruct
Zero-Shot 98.60 42.10 70.35| 43.30 43.88 4359 1353 12.72 12.78 13.01
+ ANS-SFTTan et al. (2025] 95.00 33.90 64.45| 51.34 25.38 38.36| 82.19 54.29 54.83 63.77
+ CoT-SFTTan et al. (2025] 87.30 42.40 64.85| 50.49 33.00 41.75| 81.31 47.90 47.80 59.00
+ Reason-RFT-ZerdTan et al. (2025 99.40 53.00 76.20| 55.00 54.75 54.88| 67.67 57.20 56.15 56.68
+ Reason-RFTTan et al. (2025) 95.60 51.00 7330 59.27 49.25 5426| 79.97 59.36 58.61 65.98
+ Vision-EKIPL(Ours) 99.70 53.30 76.50 | 60.10 56.75 58.42| 83.32 62.35 60.47 68.71

3.2 MAIN RESULTS

Results on In-Domain Tasks To evaluate the In-Domain (ID) performance of Vision-EKIPL rela-
tive to different training paradigms and baseline models across visual reasoning tasks, we conducted
extensive training and evaluation on 2B/7B models for three tasks. The results, presented in Tab.
indicate the following: (1) Visual Counting RI.-based methods consistently outperformed all
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open-source and proprietary baseline models, as well as SFT-based methods, across both 2B and 7B
models, with Vision-EKIPL achieving the best performance among the 7B models; (2) Structure
Perception RL-based methods surpassed SFT-based methods in the 7B model, while ANS-SFT
demonstrated the best performance in the 2B model. CoT-SFT showed limited improvement, po-
tentially because enforced reasoning supervision hindered cognitive enhancement. Furthermore,
Vision-EKIPL in the 7B model outperformed all proprietary models and most open-source models,
with the exception of InternVL-2.5-8B |Chen et al.| (2024)) and Llava-OneVision-7B [Li et al.| (2024a);
(3) Spatial Transformation Vision-EKIPL achieves the highest performance, surpassing all base-
line models. Unlike Reason-RFT, Vision-EKIPL does not require supervised fine-tuning to activate
its reasoning capacity, yet still outperforms Reason-RFT. This demonstrates that incorporating high-
quality actions from external models can effectively raise the model’s reasoning capacity.

Results on Out-of-Domain Generalization To validate the out-of-domain (OOD) performance
of Vision-EKIPL relative to different training paradigms and baseline models across visual reason-
ing tasks, we conducted comprehensive experiments on 2B/7B models for three tasks. The results,
presented in Tab. |1} reveal the following: (1) Visual Counting RL-based methods demonstrate su-
perior generalization capability compared to SFT-based methods in both 2B and 7B models. Specif-
ically, Vision-EKIPL outperforms ANS-SFT by 13% (2B) and 19% (7B), and also surpasses all
open-source and proprietary baselines. Notably, compared to traditional RL methods (e.g., Reason-
RFT), Vision-EKIPL significantly expands the model’s reasoning boundary, enabling the model to
explore and find correct reasoning paths on complex problems that Reason-RFT could not find. (2)
Structure Perception RL-based methods consistently outperform SFT-based methods, with Vision-
EKIPL achieving the best results in both 2B and 7B models (8% higher than Reason-RFT on 2B
model), while Reason-RFT achieves comparable performance in the 2B model. SFT-based methods
shows limited impact, especially in the 7B model; (3) Spatial Transformation RL-based meth-
ods surpass SFT-based methods in both 2B and 7B models, while significantly outperforming all
baseline models. Vision-EKIPL (2B) exhibits exceptional OOD generalization capability, exceed-
ing GPT-40 Hurst et al.| (2024) by 34% and Gemini-1.5-Pro [Team et al.| (2024) by 47%. Overall,
Vision-EKIPL surpasses all open-source and proprietary baselines, as well as other training meth-
ods, demonstrating exceptional performance in visual reasoning generalization capability.

——@— ANS-SFT ~——{l}— Reason-RFT-ZERO ——{}— Reason-RFT —@— Vision-EKIPL + SFT+Vision-EKIPL
§ %0 §9«
g g
2o S sET <ol Yk SFT
" )
* Zero-Shot * Zero-Shot

o 1600 200 6100 12500 25600 51200 0 1000 200 600 12800 25600 51200
Sample/# Sample/#
(a) (b)

Figure 3: Results of different methods on the Spatial Transformation task across training processes.
(a) Evaluation results for 2B model on ID task, (b) Evaluation results for 2B model on OOD task.

3.3 TRAINING EFFICIENCY EVALUATION

To demonstrate the data efficiency of Vision-EKIPL during training, we trained all methods on the
TRANCE dataset and recorded intermediate and validation results, as illustrated in Fig. E} Vision-
EKIPL demonstrates excellent data efficiency in both in-domain (ID) and out-of-domain (OOD)
tasks. The main findings include: (1) On ID tasks, Vision-EKIPL surpasses the performance of
Reason-RFT using only 25% of the training data (12,800 samples). Furthermore, when Vision-
EKIPL underwent SFT training using the CoT dataset before RL training, following the settings in
Tan et al.| (2025)), it achieves 93% of Reason-RFT’s performance using only 12% of the training
data. (2) On OOD tasks, Vision-EKIPL achieves the performance of Reason-RFT using only 12%
of the data, demonstrating strong generalization capability.
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3.4 ANALYSIS ON THE SOURCES OF ACTION

As illustrated in Fig[] we tracked the dynamic evolution of the ratio of actions sampled from the
external models and the policy model within the group of actions utilized for parameter updates
during the training process of the 2B model on the TRANCE dataset. We can observe that, as the

Ratio/%
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|
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Figure 4: Ratio of actions sampled from the external models and the policy model

number of training iterations increases, the proportion of actions originating from the external mod-
els gradually decreases, while the proportion of actions from the policy model itself progressively
increases within the group of actions used for updating the policy model’s parameters.

This phenomenon can be attributed to the initial stages of training: the reasoning capability of the
policy model is relatively weaker compared to the auxiliary models (or external models). Conse-
quently, actions sampled from the policy model typically receive lower rewards than those provided
by the auxiliary models. To effectively guide the optimization direction of the policy model, we
prioritize the selection of actions generated by the auxiliary models.

However, with further model optimization and deeper training, the reasoning capability of the policy
model improves significantly, and the rewards obtained from its generated actions also increase
accordingly. At this stage, to fully leverage the policy model’s own learning outcomes and accelerate

its convergence, we increasingly select actions generated by the policy model to drive the model’s
optimization.
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Figure 5: Pass@k curves of ]f)(?i)SG model,Reason-RFT and Vision-EKIﬂi) on the Spatial Transforma-
tion task. Evaluation results for 2B model (a) and 7B model (b) on ID task.

3.5 PUSH FORWARD THE BOUNDARY OF THE MODEL’S REASONING ABILITY

As shown in Fig. [5] we conduct a comparative analysis of the Pass@ K scores for Vision-EKIPL,
Reason-RFT, and the base model under varying k values. The Pass @ K metric reflects the likelihood
that a model produces at least one correct answer across K independent samples, and thus serves

as a proxy for evaluating the upper bound of the model’s reasoning capability when given sufficient
exploration opportunities.

At lower values of &, both Vision-EKIPL and Reason-RFT outperform the base model, indicating
that reinforcement learning helps guide the model toward more accurate reasoning paths in the early
stages. However, a noteworthy phenomenon emerges as k increases: the Pass@ K score of Reason-
RFT begins to fall behind that of the base model. This suggests that although Reason-RFT improves
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sample efficiency, it may limit the diversity of the model’s reasoning space by overemphasizing
high-reward but familiar reasoning patterns, thus constraining its exploratory capacity.

In contrast, Vision-EKIPL demonstrates a consistently superior performance across all k values.
Especially at larger k, its Pass@ K score significantly surpasses both the base model and Reason-
RFT. This clearly highlights Vision-EKIPL’s ability to push the reasoning frontier forward. Its core
advantage lies in the integration of high-quality actions generated by external expert models during
training. These actions serve as distilled supervision targets, enabling the policy model to learn
diverse and novel reasoning strategies that would otherwise be inaccessible through self-sampling.

4 RELATED WORK

Visual Reasoning This technology has broad application prospects, including visual counting
Lindstrom & Abraham|(2022);|L1 et al.[(2023)), geometric problem solving|Gao et al.| (2023)); | Kazemi
et al. (2023); |Lu et al.| (2023)); Zhang et al.| (2024b); |Shi et al.| (2024)), visual transformation reason-
ing Hong et al.| (2021)), scientific research |Lu et al| (2022); |[Kembhavi et al.|(2016), and robotic
task planning |[Hu et al.| (2023)); [J1 et al.| (2025); |[Hao et al.| (2025a). Early work in visual reason-
ing relied on programmatic generationJohnson et al.|(2017)); Gupta & Kembhavi|(2023); Suris et al.
(2023) or neuro-symbolic methods Garcez et al.|(2019);/Amizadeh et al.|(2020b); (Choi et al.| (2024);
Zhang et al.| (2024a). In recent years, driven by the rapid development of MLLMs, the field has seen
breakthrough progress. For example, LLaVA-CoT |Xu et al.{(2024a)) employs a multi-stage Chain-of-
Thought (CoT) Wei et al.|(2022) supervised fine-tuning (SFT) strategy, while Insight-V [Dong et al.
(2024) combines SFT with reinforcement learning (RL). DeepSeek-R1-Zero |Guo et al.| (2025a) in-
troduced a rule-based RL approach, significantly enhancing reasoning capability. Building upon
DeepSeek-R1 |Guo et al.| (2025a), we propose a novel RL method that substantially improves the
model’s reasoning performance.

Reinforcement Learning Reinforcement learning (RL) has demonstrated significant efficacy in
enhancing the reasoning capabilities of Large Language Models (LLMs) through iterative, feedback-
driven refinement Christiano et al.|(2017); Silver et al.[(2017);|Shao et al.|(2024);|Yang et al.|(2024al);
Ying et al.|(2024)); Hui et al.|(2024);|Zhang et al.|(2024c). Notable methodologies include Reinforce-
ment Learning from Human Feedback (RLHF) |Ouyang et al.[(2022) and Reinforcement Learning
from Al Feedback (RLAIF)|Bai et al.[(2022), both of which leverage either human or Al-generated
feedback to refine model behavior. Within the domain of vision-language tasks, RL has been suc-
cessfully employed to align model predictions with human preferences and mitigate the occurrence
of hallucinations [Sun et al.| (2023); |Yu et al.| (2024aib); |Zhao et al.| (2023)). More recently, advance-
ments such as DeepSeek-R1-Zero |Guo et al.|(2025b)) have introduced GRPO [Shao et al.| (2024), a
technique that utilizes rule-based rewards to strengthen reasoning abilities without requiring super-
vised fine-tuning. GRPO has been further adapted for specialized applications, with Visual-RFT
Liu et al.| (2025) employing it for visual grounding and Med-R1 [Pan et al.| (2025) applying it to
medical reasoning tasks.Vision-R1 Huang et al.| (2025) and Reason-RFT [Tan et al.| (2025) adopt a
two-stage training paradigm—CoT supervised fine-tuning followed by GRPO-based reinforcement
fine-tuning—to enhance the reasoning performance of MLLMs. Distinctly, our Vision-EKIPL is the
first to leverage high-quality actions generated by external models to guide policy-model optimiza-
tion, thereby infusing novel reasoning knowledge and significantly advancing reasoning ability.

5 CONCLUSION

In this paper, we propose Vision-EKIPL, a novel reinforcement learning framework designed to
enhance the generalization capability of visual reasoning models. This is achieved by skillfully in-
troducing high-quality actions generated by external auxiliary models to guide the optimization of
the policy model during the RL training process. This innovative approach significantly expands the
model’s exploration space, enabling the model to effectively surpass traditional reasoning boundary,
while also substantially accelerating training convergence speed and overall efficiency. Extensive ex-
periments demonstrate the effectiveness of Vision-EKIPL, providing valuable insights for advancing
visual reasoning research and introducing a new paradigm in multimodal learning.
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6 ETHICS STATEMENT

This work introduces a self-rewarding direct preference optimization framework aimed at improving
the reasoning reliability of Large Vision-Language Models (LVLMs). All experiments are conducted
using publicly available datasets and open-source base models, ensuring that no private or sensitive
data is involved. We acknowledge that, despite the integration of process-level reward modeling and
memory-based error avoidance mechanisms, the model may still produce incorrect or biased outputs.
Therefore, we strongly discourage the use of our method in high-stakes or ethically sensitive sce-
narios, such as generating deceptive information or automating critical decision-making processes.
In accordance with ICLR’s Code of Ethics, all contributions have been properly disclosed, and the
authors assume full responsibility for the content and claims made in this paper.

7 REPRODUCIBILITY STATEMENT

This study is committed to ensuring that the experimental results of our method are fully repro-
ducible. All experiments were conducted on a server equipped with 8 A100 GPUs.

Our implementation is based on two open-source frameworks: Open-R1 and vLLM. The code will
be made publicly available upon the final publication of the paper to facilitate reproducibility within
the research community.

The following models were used in our experiments:

¢ Policy Models: Qwen2-VL-2B and Qwen2-VL-7B.
¢ External Auxiliary Models: GPT-40 and Gemini-1.5-Pro.

The experimental evaluation utilized the Reason-RFT-COT dataset, which contains three types of
tasks:

* Visual Counting: Assesses multi-modal reasoning capabilities to solve arithmetic prob-
lems based on 3D block scenes.

* Structure Perception: Requires the model to interpret structural information in various
mathematical geometries, medical images, chart layouts, and architectural designs.

 Spatial Transformation: Evaluates the model’s ability to analyze the initial and final vi-
sual states of a 3D scene and infer single-step or multi-step transformation actions.

The main hyperparameter settings were as follows: We adopted a cosine learning rate schedule
with a peak value of 5 x 10~7 and used the AdamW optimizer to optimize the policy model. The
hyperparameters N and G were both set to 8, and the default KL penalty was 3 = 0.005. To
ensure the stability and statistical significance of our results, all main experiments were repeated
three times under the same settings, and the average accuracy was reported as the final result. Based
on the dataset size, the number of training epochs for the visual counting, spatial transformation,
and structure perception tasks were set to 1, 1, and 5, respectively.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen
Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A
highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jes-
sica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet, et al.
Pixtral 12b. arXiv preprint arXiv:2410.07073, 2024.

Saeed Amizadeh, Hamid Palangi, Alex Polozov, Yichen Huang, and Kazuhito Koishida. Neuro-

symbolic visual reasoning: Disentangling. In International Conference on Machine Learning,
pp- 279-290. Pmlr, 2020a.

10



Under review as a conference paper at ICLR 2026

Saeed Amizadeh, Hamid Palangi, Alex Polozov, Yichen Huang, and Kazuhito Koishida. Neuro-
symbolic visual reasoning: Disentangling. In International Conference on Machine Learning,
pp- 279-290. Pmlr, 2020b.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and align-
ing for generic visual-linguistic tasks. In IEEE/CVF conference on computer vision and pattern
recognition, pp. 24185-24198, 2024.

Minkyu Choi, Harsh Goel, Mohammad Omama, Yunhao Yang, Sahil Shah, and Sandeep Chinchali.
Towards neuro-symbolic video understanding. In European Conference on Computer Vision, pp.
220-236. Springer, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In IEEE conference on computer vision and pattern recognition, pp.
3213-3223, 2016.

Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei
Liu. Insight-v: Exploring long-chain visual reasoning with multimodal large language models.
arXiv preprint arXiv:2411.14432, 2024.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,
Jianhua Han, Hang Xu, Zhenguo Li, et al. G-llava: Solving geometric problem with multi-modal
large language model. arXiv preprint arXiv:2312.11370, 2023.

Artur d’Avila Garcez, Marco Gori, Luis C Lamb, Luciano Serafini, Michael Spranger, and Son N
Tran. Neural-symbolic computing: An effective methodology for principled integration of ma-
chine learning and reasoning. arXiv preprint arXiv:1905.06088, 2019.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025b.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14953-14962, 2023.

Peng Hao, Chaofan Zhang, Dingzhe Li, Xiaoge Cao, Xiaoshuai Hao, Shaowei Cui, and Shuo
Wang. Tla: Tactile-language-action model for contact-rich manipulation. arXiv preprint
arXiv:2503.08548, 2025a.

Xiaoshuai Hao, Ruikai Li, Hui Zhang, Dingzhe Li, Rong Yin, Sangil Jung, Seung-In Park, Byun-
gln Yoo, Haimei Zhao, and Jing Zhang. Mapdistill: Boosting efficient camera-based hd map
construction via camera-lidar fusion model distillation. In European Conference on Computer
Vision, pp. 166—183, 2024a.

11



Under review as a conference paper at ICLR 2026

Xiaoshuai Hao, Mengchuan Wei, Yifan Yang, Haimei Zhao, Hui Zhang, Yi Zhou, Qiang Wang,
Weiming Li, Lingdong Kong, and Jing Zhang. Is your HD map constructor reliable under sensor
corruptions? In Advances in Neural Information Processing Systems, 2024b.

Xiaoshuai Hao, Hui Zhang, Yifan Yang, Yi Zhou, Sangil Jung, Seung-In Park, and ByungIn Yoo.
Mbfusion: A new multi-modal bev feature fusion method for hd map construction. In IEEE
International Conference on Robotics and Automation, pp. 15922—-15928, 2024c.

Xiaoshuai Hao, Yunfeng Diao, Mengchuan Wei, Yifan Yang, Peng Hao, Rong Yin, Hui Zhang,
Weiming Li, Shu Zhao, and Yu Liu. Mapfusion: A novel bev feature fusion network for multi-
modal map construction. Information Fusion, pp. 103018, 2025b.

Xin Hong, Yanyan Lan, Liang Pang, Jiafeng Guo, and Xueqi Cheng. Transformation driven visual
reasoning. In IEEE/CVF Conference on computer vision and pattern recognition, pp. 6903-6912,
2021.

Yingdong Hu, Fangqi Lin, Tong Zhang, Li Yi, and Yang Gao. Look before you leap: Unveiling the
power of gpt-4v in robotic vision-language planning. arXiv preprint arXiv:2311.17842, 2023.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-rl: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025.

Huggingface. open-rl: Fully open reproduction of deepseek-rl. https://github.com/
huggingface/open-r1, 2025. [Online; accessed: 2025-01-24].

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen?2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Yuheng Ji, Yue Liu, Zhicheng Zhang, Zhao Zhang, Yuting Zhao, Gang Zhou, Xingwei Zhang,
Xinwang Liu, and Xiaolong Zheng. Advlora: Adversarial low-rank adaptation of vision-language
models. arXiv preprint arXiv:2404.13425, 2024.

Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, et al. Robobrain: A unified brain model for robotic
manipulation from abstract to concrete. arXiv preprint arXiv:arXiv:2502.21257, 2025.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual reasoning.
In IEEFE international conference on computer vision, pp. 2989-2998, 2017.

Mehran Kazemi, Hamidreza Alvari, Ankit Anand, Jialin Wu, Xi Chen, and Radu Soricut. Ge-
omverse: A systematic evaluation of large models for geometric reasoning. arXiv preprint
arXiv:2312.12241, 2023.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. In European Conference on Computer Vision,
pp- 235-251, 2016.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan

Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

12


https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Under review as a conference paper at ICLR 2026

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024b.

Dingzhe Li, Yixiang Jin, Yuhao Sun, Hongze Yu, Jun Shi, Xiaoshuai Hao, Peng Hao, Huaping
Liu, Fuchun Sun, Jianwei Zhang, et al. What foundation models can bring for robot learning in
manipulation: A survey. arXiv preprint arXiv:2404.18201, 2024c.

Zhuowan Li, Xingrui Wang, Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin
Van Durme, and Alan L Yuille. Super-clevr: A virtual benchmark to diagnose domain robust-
ness in visual reasoning. In IEEE/CVF conference on computer vision and pattern recognition,
pp. 14963-14973, 2023.

Adam Dahlgren Lindstrom and Savitha Sam Abraham. Clevr-math: A dataset for compositional
language, visual and mathematical reasoning. arXiv preprint arXiv:2208.05358, 2022.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, pp. 2507-2521,
2022.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Meta AL Llama 3 at connect 2024: Vision for edge and mo-
bile devices, 2024. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision—-edge-mobile—-devices/. Accessed: 2025-
02-15.

OpenAl Learning to reason with Ilms. https://openai.com/index/
learning-to-reason-with-11ms/, 2024. Accessed: 2025-03-02.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Jiazhen Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan Zhu, Hongwei Bran Li, Chen Chen, Cheng
Ouyang, and Daniel Rueckert. Medvlm-r1: Incentivizing medical reasoning capability of vision-
language models (vlms) via reinforcement learning. arXiv preprint arXiv:2502.19634, 2025.

Maria MP Petrou and Costas Petrou. [Image processing: the fundamentals. John Wiley & Sons,
2010.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See-Kiong Ng, Lidong Bing, and Roy
Ka-Wei Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language
models. arXiv preprint arXiv:2406.17294, 2024.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with
factually augmented rlhf. arXiv preprint arXiv:2309.14525, 2023.

13


https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Under review as a conference paper at ICLR 2026

Didac Suris, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. In IEEE/CVF International Conference on Computer Vision, pp. 11888—11898, 2023.

Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. arXiv preprint
arXiv:2503.20752, 2025.

Gemini Team, Petko Georgiev, Ving lan Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer,
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal under-
standing across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan,
Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, et al. Llamav-o1: Rethink-
ing step-by-step visual reasoning in llms. arXiv preprint arXiv:2501.06186, 2025a.

Omkar Thawakar, Dinura Dissanayake, Ketan More, Ritesh Thawkar, Ahmed Heakl, Noor Ahsan,
Yuhao Li, Mohammed Zumri, Jean Lahoud, Rao Muhammad Anwer, et al. Llamav-o1: Rethink-
ing step-by-step visual reasoning in llms. arXiv preprint arXiv:2501.06186, 2025b.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, pp. 24824-24837, 2022.

Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-o1: Let vision language
models reason step-by-step. arXiv preprint arXiv:2411.10440, 2024a.

Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and Li Yuan. Llava-ol: Let vision language
models reason step-by-step. arXiv preprint arXiv:2411.10440, 2024b.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024a.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. arXiv preprint
arXiv:2412.14171, 2024b.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
toward verifiable reasoning. arXiv preprint arXiv:2402.06332, 2024.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu,
Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment
from fine-grained correctional human feedback. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13807-13816, 2024a.

Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,
Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for
super gpt-4v trustworthiness. arXiv preprint arXiv:2405.17220, 2024b.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Mingyu Zhang, Jiting Cai, Mingyu Liu, Yue Xu, Cewu Lu, and Yong-Lu Li. Take a step back:

Rethinking the two stages in visual reasoning. In European Conference on Computer Vision, pp.
124-141. Springer, 2024a.

14



Under review as a conference paper at ICLR 2026

Renrui Zhang, Xinyu Wei, Dongzhi Jiang, Ziyu Guo, Shicheng Li, Yichi Zhang, Chengzhuo Tong,
Jiaming Liu, Aojun Zhou, Bin Wei, et al. Mavis: Mathematical visual instruction tuning with an
automatic data engine. arXiv preprint arXiv:2407.08739, 2024b.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
ol-coder: an ol replication for coding. arXiv preprint arXiv:2412.00154, 2024c.

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong, Jiaqi Wang, and Conghui He. Beyond hal-
lucinations: Enhancing lvims through hallucination-aware direct preference optimization. arXiv
preprint arXiv:2311.16839, 2023.

15



Under review as a conference paper at ICLR 2026

A IMPORTANCE SAMPLING CORRECTION AND ITS PROPERTIES

This section presents a rigorous derivation and properties of importance sampling when samples
are drawn from a general proposal distribution g(o | s), rather than the reference policy mg_,,. We
introduce the unbiased IS transformation, the self-normalized IS (SNIS) estimator, bias bounds, the
effective sample size (ESS), and explicit formulas for mixture proposals.

A.1 BASIC IDENTITY AND CORRECTION

Consider the expectation under the reference policy:

J = Eowﬂgold(~\s) [g(O)] )
where ¢g(0) denotes any integrable function (in our case, often the product of a policy ratio and an
advantage term, e.g., g(0) = ”“‘“W((sl‘j))A( )). When samples are drawn from a proposal ¢(o | s),
the unbiased IS transformation is obtained via the importance weight

_ Toqa(0]s)
Y= gy
yielding
J=Eonr,,,, [9(0)] = Eong °ld (o | )} = Eonq|w(0) g(0)]. (8)
For g(o0) = MA( , Eq. equatlonreduces to
_ M00a (0] ) Moo (0] 8) 4 e (0] )
e LR ar R R e nC)

Hence, when using samples from a proposal ¢, the correct unbiased estimator requires the ratio

%g)(o), rather than % (unless ¢ = 7).

A.2 SAMPLE-BASED ESTIMATORS

Suppose we draw o1, . .., 0, ~ g, with weights w; = w(0;) and function values g; = g(0;).

Unnormalized IS:
~ 1<
Jis = -~ Zl w; Gi,
i
which is unbiased under mild regularity conditions.

Self-Normalized IS (commonly used in practice):

n
-~ - ~ w’L
Jsnis = E Wi Gis w; = 2”7“}
i=1 J=1"J

This reduces variance but introduces a small bias that vanishes as n — oco.

A.3 EFFECTIVE SAMPLE SIZE (ESS)

The dispersion of normalized weights can be measured by the effective sample size:

n 2
(X wi)

When q is close to mg,_,, the weights are nearly constant and ESS ~ n; if weights are highly
imbalanced, ESS becomes much smaller, leading to unstable estimates. In practice, monitoring
ESS, weight variance, or high quantiles (e.g., 95% percentile of weights) provides insight into IS
quality.

ESS ~
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A.4 BIAS BOUND VIA TOTAL VARIATION

If one ignores the correction and directly uses E,[g] as an approximation to J, the bias can be
bounded as

T0o1a

51~ Bl = | [ #0) (5010(0) = (0)) o] < ol [ [ (o) = at0)] o
= 2llglloo - TV(70.10: 4) (10)

where TV (p, q) = % J |p — g is the total variation distance. Thus, the approximation bias is jointly
controlled by the function magnitude and the distributional divergence.

A.5 EXPLICIT WEIGHTS FOR MIXTURE PROPOSALS

In many settings, the proposal ¢ is a mixture of multiple policies. For instance, if samples are pooled
from the reference policy 7y,,, and M auxiliary policies {7y, }M |, the unfiltered proposal can be

old j=1
modeled as

1 M
a01) = 577 (T 5) + Ym0 9).

with the importance weight
T0o1a (0 | S)
M :
ﬁ(ﬂgold (0 | 3) + Zj:l T, (0 | 8))
If additional selection is performed (e.g., top-G filtering), the actual proposal becomes the condi-
tional distribution
walo]s) — 4ol 1ocS)
¥ Jq(o]s)1{o€ S}do’

where S denotes the selection set. Corresponding weights are then computed as g, (0 | $)/gse1(0 |

w(o) =

A.6 ALGORITHMIC PSEUDOCODE

Algorithm 1 Importance-Weighted Estimation with Proposal ¢

Require: Samples {0;}? ; ~ ¢g(o | s); function values g; = g(o;); reference and candidate policy

densities N .
Ensure: IS estimate Jig, SNIS estimate Jgnis, ESS
. s 0;|s
1: Compute weights w; < Mo1a (01 | )
) q(oi | )
2: Jig E Z?:l w; g;
. ~ W
3: Normalize: W; + —7——
R Zj:l wj
4: JsNIS ¢ Yoiq Wy gg
n
. Wy
5: ESS « (X w) Z’n—l ;)
2?1 wi

6: return jls, Jsnis, ESS

A.7 DISCUSSION AND PRACTICAL REMARKS

* If ¢ = 7y, then w = 1, and Eq. equation [9] reduces to the standard policy ratio form

Tonew
o A(o).

* When q deviates substantially from 7y_,,, IS or SNIS correction is essential. Monitoring
ESS and weight statistics provides diagnostics for stability.
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* If ¢ is analytically intractable (e.g., after complex filtering), approximate calculations of
q(o) and corresponding bias analysis should be reported. Ablation comparing (A) uncor-
rected ratios, (B) exact IS, and (C) SNIS can empirically validate the approximation.

A.8 SUMMARY

For samples drawn from a general proposal ¢, unbiased estimation of expectations under 7y . re-
old
. . . . . Uy . .
quires incorporating importance weights w = %. In the common case g(0) = 7::’9‘&14(0), this is
old

equivalent to using the corrected ratio ”'%. Approximate forms that drop w may still be employed

in practice but should be accompanied by theoretical justification (e.g., bias bound in Eq. equa-
tion[I0) and empirical validation via ESS and ablation studies.

B LLM USAGE FOR PAPER WRITING

In the preparation of this paper, large language models (LLMs) were used solely for the purpose
of polishing and refining the English language expression of the original author-written content.
This includes improving grammatical fluency, sentence structure, and overall readability. All tech-
nical content, experimental results, methodological descriptions, figures, tables, and conclusions
were generated and verified exclusively by the authors. The use of LLMs was strictly limited to
post-writing language enhancement and did not involve any contribution to the scientific reasoning,
analysis, or intellectual substance of the work. In accordance with ICLR’s Policy 1 on LLM usage,
we disclose this assistance here and in the submission form. Per ICLR’s Policy 2, the authors take
full responsibility for the entirety of the paper’s content, including any language edits facilitated by
LLMs.
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