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Abstract

Existing algorithms for ensuring fairness in AI use a single-shot training strategy, where an AI model 1

is trained on an annotated training dataset with sensitive attributes and then fielded for utilization. 2

This training strategy is effective in problems with stationary distributions, where both the training 3

and testing data are drawn from the same distribution. However, it is vulnerable with respect to 4

distributional shifts in the input space that may occur after the initial training phase. As a result, 5

the time-dependent nature of data can introduce biases and performance degradation into the model 6

predictions. Model retraining from scratch using a new annotated dataset is a naive solution that is 7

expensive and time-consuming. We develop an algorithm to adapt a fair model to remain fair and 8

generalizable under domain shift using solely new unannotated data points. We recast this learning 9

setting as an unsupervised domain adaptation (UDA) problem. Our algorithm is based on updating 10

the model such that the internal representation of data remains unbiased despite distributional shifts 11

in the input space. We provide empirical validation on three common fairness datasets to show that 12

the challenge exists in practical setting and to demonstrate the effectiveness of our algorithm. 13

1 Introduction 14

AI has been extensively utilized in automating heavy and electric industry tasks such as logistics & transportation, re- 15

tail & e-commerce, and entertainment and gaming. The effectiveness of AI in these practical domains has motivated its 16

adoption in various decision-making processes that are more consequential in lives of people. These tasks encompass 17

loan application processing, parole decisions in prison systems, healthcare, and police deployments Chouldechova & 18

Roth (2018). The increasingly growth of adopting AI can be attributed to the advances in deep learning, which enables 19

the training of complex and generalizable neural architectures using large datasets in a blind end-to-end scheme. A 20

notable advantage of the data-driven learning approach is that it reduces the requirement for laborious feature engi- 21

neering through the end-to-end training procedure. However, deep learning methods also come with disadvantages, 22

such as the time-consuming training procedure, lack of interpretability, and requiring costly data annotation. 23

It is well documented that some of the best AI models are biased against certain racial or gender sub-groups Eidinger 24

et al. (2014); Zhang et al. (2017); Cirillo et al. (2020) and can produce adverse outcomes for disadvantaged groups. 25

Hence, fairness is a major concern for using AI in societal decision-making processes. This concern is particularly 26

important in deep learning because data-driven learning can unintentionally lead to training unfair models due to the 27

inherent biases that exist in annotating training datasets by human workers or skewed data distributions conditioned 28

on certain sensitive attributes Buolamwini & Gebru (2018). As a result, training models by simply minimizing the 29

empirical error on relevant datasets may add spurious correlations between majority subgroup features and positive 30

outcomes for them. This unwanted outcome happens because statistical learning primarily discovers correlations 31

rather than causation. Thus, the decision boundary of AI models may be informed by group-specific characteristics 32

that are irrelevant to the decision task Dua & Graff (2017). For example, since the income level is generally correlated 33

positively with the male gender, it can lead to training models with unfair decisions against female loan applicants. 34

The crucial concern about fairness in AI and the need to overcome the resulting adverse effects have resulted in 35

significant research interest from the AI community. The first attempt to address bias in AI is to arrive at a commonly 36

agreed-upon definition of fairness. Pioneer works in this area focused on defining quantitative notions for fairness 37

based on commonsense intuition and using them to quantitatively demonstrate the presence and severity of bias in 38

AI Buolamwini & Gebru (2018); Caliskan et al. (2017). Most existing fairness metrics consider that the input data 39

points possess characteristics of protected subgroups Feldman et al. (2015), e.g., gender and race, in addition to 40
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standard features that are used for model training based on empirical risk minimization (ERM). Based on subgroup41

membership, majority and minority populations emerge, or in general subgroups, which can be used to define fairness42

metrics. A model is then assumed to be fair if its predictions possess a notion of probabilistic independence for data43

membership into the subgroups Mehrabi et al. (2021) (see Section 5.1.3 for definitions of common fairness metrics).44

Fairness in an AI models can be reinforced by mapping data into a latent space in which data representations are45

independent from the sensitive attributes. For example, we can benefit from adversarial learning for this purpose46

Zhang et al. (2018). Since the sensitive attributes are absent in the latent space, decision-making will not consider47

sensitive attributes. Despite being an effective approach, most existing fair model training algorithms consider that48

the data distribution will remain stationary after the training stage. This assumption is rarely true in practical settings,49

particularly when a model is used over extended periods, because societal applications are dynamic but fairness metrics50

are normally static. As a result, a fair model might fail to maintain its fairness under the input-space distributional51

shifts or when the model is used on differently sourced tasks Pooch et al. (2019). The naive solution of retraining the52

model after distributional shifts requires annotating new data points to build datasets representative of the new input53

distribution. This process, however, is time consuming and expensive for deep learning and is challenging when data54

annotation becomes a persistent tasks. As a result, it is highly desirable to develop algorithms that can preserve model55

fairness under distribution shifts. Unfortunately, this problem has been marginally explored in the AI literature.56

The negative effect of distributional shifts on the perofrmnace of AI models is well-known and the problem of model57

adaptation has been investigated extensively in the unsupervised domain adaptation (UDA) literature Tzeng et al.58

(2017); Daumé III (2009). The goal in UDA is to train a model with a good generalization performance on a target59

domain, where only unannotated data is available. The idea is to transfer knowledge from a related source domain,60

where annotated data is accessible. A primary group of UDA algorithms achieves this goal by matching the source61

and the target distributions in a shared embedding space Redko et al. (2017) such that the embedding space is domain-62

agnostic. As a result, a classifier that receives its input from the embedding space will generalize well in the target63

domain, despite being trained solely using the source domain annotated data. To align the two distributions in such an64

embedding, data points from both domains are mapped into a shared feature space that is modeled as the output space65

of a deep neural encoder. The deep encoder is then trained to minimize the distance between the two distributions,66

measured in terms of a suitable probability distribution metric. However, existing UDA algorithms overlook model67

fairness and solely consider improving model performance in the target domain. In this work, we adopt the idea of68

domain alignment in UDA to preserve model fairness and mitigate model biases introduced by domain shift.69

Contribution: We address the problem of preserving the model fairness and the model generalization under distribu-70

tional shifts in the input space when only unannotated data is accessible after an initial training stage. We model this71

problem within the classic unsupervised domain adaptation paradigm. Our specific contributions include:72

• We develop an algorithm that minimizes distributional mismatches that results from domain shift in a shared73

embedding space to maintain model fairness and model performance in non-stationery learning settings.74

• We build three AI tasks using three standard fairness benchmarks and demonstrate that in addition to model75

performance, model fairness is compromised when domain shift exists in real-world applications.76

• We conduct extensive empirical explorations and demonstrate that the existing methods for fairness in AI are77

vulnerable in our learning setting and show that the proposed algorithm is effective.78

2 Related Work79

2.1 Fairness in AI80

There are various approaches for training a fair model for a single domain. A primary idea in existing works is to81

map data points into an embedding space at which the sensitive attributes are entirely removed from the representative82

features, i.e., an attribute-agnostic space. As a result, a classifier that receives its input from this space will make83

unbiased decisions due to the independence of its decisions from the sensitive attributes. After training the model,84

fairness can also be measured at the classifier output using a desired fairness metric. Ray et al. 2020 develop a fair-85

ness algorithm that induces probabilistic independence between the sensitive attributes and the classifier outputs by86

minimizing the optimal transport distance between the probability distributions conditioned on the sensitive attributes.87
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Hence, the transformed probability in the embedding space then becomes independent (unconditioned) from the sen- 88

sitive attributes. Celis et al. 2019b study the possibility of using a meta-algorithm for fairness with respect to several 89

disjoint sensitive attributes. Du et al. 2021 have followed a different approach. Instead of training an encoder that 90

removes the sensitive attributes in a latent embedding space and then training a classifier, they propose to debias the 91

classifiers by leveraging samples with the same ground-truth label yet having different sensitive attributes. The idea is 92

to discourage undesirable correlation between the sensitive attribute and predictions in an end-to-end scheme, allowing 93

for the emergence of attribute-agnostic representations in the hidden layers of the model. Agarwal et al. 2018 propose 94

an approach that incrementally constructs a fair classifier by solving several cost-constrained classification problems 95

and combining results. Zhang et al. 2018 train a deep model to produce predictions independent of sensitive attributes 96

by training a classifier network to predict binary outcomes and then inputting the predictions to an adversary that 97

attempts to guess their sensitive attribute. By optimizing the network to make this task harder for the adversary, their 98

approach leads to fair predictions. Beutel et al. 2017 benefit from removing sensitive attributes to train fair models 99

by indirectly enforcing decision independence from the sensitive attributes in a latent representation using adversarial 100

learning. They also amend the encoder model with a decoder to form an autoencoder. Since the representations are 101

learned such that they can self-reconstruct the input, they become discriminative for classification purposes as well. 102

These work consider stationery settings. Our work builds upon using adversarial learning to preserve fairness when 103

distribution shifts exist. In order to combat domain shift, our idea is to additionally match the target data distribution 104

with the source data distribution in the latent embedding space, a process that ensures classifier generalization. 105

2.2 Unsupervised Domain Adaptation 106

Works on domain alignment for UDA follow a diverse set of strategies. The goal of existing works in UDA is solely 107

to improve the prediction accuracy in the target domain in the presence of domain shift without exploring the problem 108

of fairness. The closest line of research to our work addresses domain shift by minimizing a probability discrepancy 109

measure between two distributions in a shared embedding space. Selection of the discrepancy measure is a critical 110

task for these works. Several UDA methods simply match the low-order empirical statistics of the source and the 111

target distributions as a surrogate for the distributions. For example, the Maximum Mean Discrepancy (MMD) metric 112

is defined to match the means of two distributions for UDA Long et al. (2015; 2017). Correlation alignment is another 113

approach to include second-order moments Sun & Saenko (2016). Matching lower-order statistical moments overlooks 114

the existence of discrepancies in higher-order statistical moments. In order to improve upon these methods, a suitable 115

probability distance metric can be incorporated into UDA to consider higher-order statistics for domain alignment. 116

A suitable metric for this purpose is the Wasserstein distance (WD) or the optimal transport metric Courty et al. 117

(2016); Bhushan Damodaran et al. (2018). Since WD possesses non-vanishing gradients for two non-overlapping 118

distributions, it is a more suitable choice for deep learning than more common distribution discrepancy measures, e.g., 119

KL-divergence. Optimal transport can be minimized as an objective using first-order optimization algorithms for deep 120

learning. Using WD has led to a considerable performance boost in UDA Bhushan Damodaran et al. (2018) compared 121

to methods that rely on aligning the lower-order statistical moments Long et al. (2015); Sun & Saenko (2016). 122

2.3 Domain Adaptation in Fairness 123

Works on benefiting from knowledge transfer to maintain fairness are relatively limited. Madras et al. 2018a benefit 124

from adversarial learning to learn domain-agnostic transferable representations for fair model generalization. Coston 125

et al. 2019 consider a UDA setting where the sensitive attributes for data points are accessible only in one of the 126

source or the target domains. Their idea is to use a weighted average to compute the empirical risk and then tune 127

the corresponding data point-specific weights to minimize co-variate shifts. Schumann et al. 2019 consider a similar 128

setting, where they define the fairness distance of equalized odds, and then use it as a regularization term in addition to 129

empirical risk, minimized for fair cross-domain generalization. Hu et al. 2019 address fairness in a distributed learning 130

setting, where the data exist in various servers with private demographic information. Singh et al. 2021 consider that 131

a causal graph for the source domain data and anticipated shifts are given. They then use feature selection to estimate 132

the fairness metric in the target domain for model adaptation. Zhang and Long 2021 explore the possibility of training 133

fair models in the presence of missing data in a target domain using a source domain with complete data and find 134

theoretical bounds for this purpose. Our learning setting is relevant yet different from the above settings. We consider 135

a standard UDA setting where the sensitive attributes are accessible in both domains. The challenge is to adapt the 136

model to preserve fairness in the target domain without requiring data annotation when domain shift occurs. 137
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Figure 1: Block-diagram description of the proposed framework for preserving fairness under domain shift. First, a fair model is
trained on a fully labeled source domain: (a) minimizing binary cross entropy loss against the source labels (Eq. 1) ensures the
learnt embeddings are informative with respect to the classification task (b) adversarial optimization with respect to the sensitive
attribute (Eq. 2) makes the learnt embeddings conditionally independent from the sensitive attributes. During adaptation on the
unlabeled target domain: (c) Sliced Wasserstein Distance is minimized between the target embedding distribution and the source
embedding distribution (Eq. 4) in order to maintain the relevance of the source classifier on the target domain, (d) the fairness loss
is also minimized on the target domain to ensure conditional independence of the embeddings and sensitive attributes.

3 Problem Formulation138

We first describe can train a fair model, then explain how the problem extends to a non-stationery setting, and offer139

our solution in the next section. Consider a source domain S , where we are given an annotated training dataset140

Ds = (Xs, As, Y s) ∈ RN×d × {0, 1}N × {0, 1}N for which Xs ∈ Rn represents feature vectors with dimension141

d and Y s represents the binary labels. Additionally, As represents binary sensitive attributes for each data point,142

e.g., race, sex, age, etc. Each triplet (xs, as, ys) is drawn from the source domain distribution PS(X, A), where143

the feature vector corresponds to characteristic features that are used for decision-making, e.g., occupation length,144

education years, credit history, etc. Our goal is to train a fair model with respect to the sensitive attributes, e.g., sex,145

race, etc. to perform binary decision making, e.g., approving for a loan, parole in prison system, etc.146

In classic parametric supervised learning, we select a family of predictive functions fθ : (Xs, As) → Y s, parameter-147

ized with learnable parameters θ. We then search for the model with the optimal parameter based on ERM on the fully148

annotated dataset Ds, as a surrogate for a model with the expected error on the unknown source domain distribution:149

θ̂ = arg min
θ

Lsl = arg min
θ

{ 1
N

N∑
i=1

Lbce(fθ(xs, as), ys)}, (1)

where Lbce is a suitable loss function such a binary cross-entropy loss. Under certain conditions, solving equation 1150

leads to training a generalizable model during the testing stage. However, there is no guarantee to obtain a fair model151

because only prediction accuracy is optimized in equation 1. Inherent bias in the training dataset, e.g., over/under-152

representation of subgroups, can lead to training a biased model. Note that although the sensitive attributes are not153

used in equation 1, the sensitive attribute may still be highly correlated with the decision features due to data collection154

procedures. For example, a human operator might have subconsciously consider a sensitive attribute for annotation.155

An effective approach to train a fair model is to map the domain data into a latent embedding space such that the156

encoded data representations are fully independent from the sensitive attributes A. There are various approaches157

to implement this idea via training an appropriate encoding function. Inspired by adversarial learning, a group of158
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fairness algorithms rely on solving a min-max optimization problem for this purpose Beutel et al. (2017); Madras 159

et al. (2018b); Zhang et al. (2018). To this end, we first consider that the end-to-end predictive model fθ(·) : Rd → R2
160

can be decomposed into an encoder subnetwork eu(·) : Rd → Rz , with learnable parameters u, followed by a classifier 161

subnetwork gv(·) : Rz → R2 with learnable parameters v, where fθ(·) = (gv ◦ eu)(·) and θ = (u, v). The parameter 162

z denotes the dimension of the latent embedding space that we want to be sensitive-agnostic which is modeled as the 163

output space of the encoder subnetwork. To induce “independence from the sensitive attribute” in the latent space, we 164

consider an additional classification network hw(·) : Rz → R2 with learnable parameters w. This classifier is tasked 165

to predict the corresponding sensitive attribute as using the latent space representations eu(xs, as). 166

The core idea is to induce “probabilistic independence from sensitive attributes” by training eu(·) and hw(·) in an ad- 167

versarial learning scheme, where eu(·) plays the role of the generator network and hw(·) is the discriminator network. 168

In other words, if the latent representations are independent from the sensitive attribute, A, the classifier h(·) would 169

perform poorly. To this end, consider the loss function for predicting the sensitive attributes: 170

Ls
fair = Lbce((hw ◦ eu)(xs, as), as). (2)

To train an attribute-agnostic encoder, we solve the following alternating min-max optimization process to train a fair 171

model based on adversarial learning scheme Goodfellow et al. (2014): 172

1. We fix the encoder eu(·) and minimize the fairness loss Lfair through updating the attribute classifier hw(·). 173

2. We then fix the attribute classifier hw(·) and maximize the fairness loss Lfair by updating the encoder eu(·). 174

The first step will perform ERM for the attribute prediction classifier, conditioned on the encoder network being fixed. 175

The second step will keep the classifier fixed and ensures that the latent data representations are as little informative 176

as possible about the sensitive attribute A. Similar to vanilla adversarial learning, empirical explorations demonstrate 177

that the above iterative alternations between the two optimization steps will lead to training an encoder that produces 178

latent representations that are independent from the sensitive attribute when the attribute classifier fails to predict the 179

sensitive attributes. To train a fair and generalizable model, we combine equations 1 and 2 and solve: 180

û, ŵ, v̂ = arg min
u,w,v

Lsl + αLs
fair, (3)

to learn extracting features that are discriminative for performing the original classification task via gv(·). The high- 181

level description of this procedure is presented in Figure 1, top portion. 182

The above approach would suffice in practice if we have a single source domain, i.e., the data distribution is stationery 183

and the testing data points are drawn from the source domain distribution. In our formulation, we consider that the test 184

data is drawn from a second target domain T with a different data distribution PT (X, A) ̸= PS(X, A). The target 185

domain may be result of drifts in the input space or can occur when we want to use the model in a different domain. 186

We also assume that we only have access to the unannotated dataset Dt = (Xt, At) in the target domain. Due to 187

the distribution gap between the two domains, we need to update the model to remain fair in the target domain which 188

will require annotating Dt. Our goal is to make this process more practical by relaxing the need for data annotation. 189

To this end, we formulate this problem in a UDA setting. UDA tackles the challenge of performance degradation 190

under domain shift. The core idea in UDA is to improve generalization on the target domain via updating the encoder 191

network such that the empirical distance between the distributions eu(PS(X, A)) and eu(PT (X, A)) is minimized, 192

i.e., the two distributions are aligned such that the embedding space becomes domain agnostic. Under this restriction, 193

the classifier gv(·) that is trained on the source domain will generalize on the target domain. While this idea has been 194

explored extensively in the UDA literature, it is insufficient to guarantee fairness after the adaptation phase. Our goal 195

is to extend UDA to perserve model fairness in the target domain in addition to maintaining model generalization. 196

4 Proposed Algorithm 197

While adversarial learning has been used extensively to address UDA similar to training a fair model, solving two 198

coupled adversarial learning problems to address our problem can be challenging. In our approach we still use adver- 199

sarial learning to preserve fairness but benefit from metric learning to maintain model generalization Lee et al. (2019); 200
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Redko et al. (2017). The block-diagram description of our proposed approach is presented in Figure 1. We follow a201

two phase process. Initially, we train a fair model on the source domain dataset (Xs, As, Y s) and then update it to202

work well on the target domain. To train a fair mode, we use the following three steps iteratively to solve equation 3:203

1. We optimize the classifier fθ(·) = (gv ◦ eu)(·) network in an end-to-end scheme by minimizing equation 1.204

This process will generate informative and discriminative latent features for decision making.205

2. We then fix the feature extractor encoder eu(·) and optimize the sensitive attribute classifier hw(·) by min-206

imizing the loss in equation 2. This step will enforce the sensitive attribute classifier to extract information207

from the representations in the embedding space that can be used for predicting the sensitive attribute A.208

3. We freeze the sensitive attribute classifier hw(·) and update the encoder subnetwork eu(·) in order to maxi-209

mize the fairness loss function in equation 2. This step will force the encoder to produce representations that210

are independent from the sensitive attribute A to enforce fairness.211

The above steps leads to training a fair and generalizable model. In the second phase, we update the model to remain212

fair and generalizable when used on the target domain. We first explain the classic UDA approach.213

The classic adaptation process relies only on aligning the two distributions in the embedding space, i.e.,214

e(PS(X, A)) ≈ e(PT (X, A)). We follow metric minimization to enforce domain alignment Lee et al. (2019);215

Redko et al. (2017). The idea is to select a suitable probability distribution distance d(·, ·) and minimize it as a loss216

function at the encoder output, i.e. d(e(PS(X, A)), e(PT (X, A))). As a result, the encoder is trained to guarantee217

domain-agnostic embedding features at its output. Compared to using adversarial learning, this approach requires less218

hyperparameter tuning and the resulting optimization problem is more stable. The choice of the distribution distance219

d(·, ·) is a design choice and various metric have been used for this purpose. We use the Sliced Wasserstein Distance220

(SWD) Redko et al. (2017) for this purpose. SWD is defined based on optimal transport or the Wasserstein Distance221

(WD) metric to broaden its applicability in deep learning. The upside of using WD is that it has a non-zero gradient222

even when the support for two distributions are non-overlapping. WD has been used successfully to address UDA223

but the downside of using WD is tat it is defined in terms of an optimization problem. As a result, minimizing WD224

directly is a challenging task because often we need to solve another optimization problem to compute WD. The idea225

behind defining SWD is to develop a metric with closed-form solution by slicing two high-dimensional distributions to226

generate 1D projected distributions. Since WD has a closed-form solution for 1D distributions, SWD between the two227

high-dimensional distributions is computed as the average of these 1D WD slices. In addition to having a closed-form228

solution, SWD can be computed using empirical samples from the two distributions as follows:229

Lswd = 1
K

K∑
i=1

W D1(⟨e(xs, as), γi⟩, ⟨e(xt, at), γi⟩), (4)

where, WD1(·, ·) denotes the 1D WD distance, K is the number of random 1D projections we are averaging over and230

γi is one such projection direction. We use random projection to estimate averaging over all possible projections. We231

can then solve the following problem to maintain model generalization on the source domain:232

Lsl + γLswd. (5)

If we only align the two distributions using equation 5, the model fairness can be compromised because when the233

encoder is updated to maintain model generalization, there is no guarantee that the embedding space remains inde-234

pendent from the sensitive attributes. Hence, the model can become biased. To preserve fairness in the target domain235

under distributional shifts, we augment the iterative steps (1) − (3) described above with the following two steps:236

4. We minimize the empirical SWD distance between e(PS(X, A)) and e(PT (X, A)) via equation 4. This step237

ensures the source-trained classifier g(·) will generalize on the target domain samples from e(PT (X, A)).238

5. We repeat steps (2) and (3) using solely the sensitive attributes of the target domain.239
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The additional steps will update the model on the target domain to preserve both fairness and generalization accuracy. 240

Following steps (1)-(5), the total loss function that we minimize would become: 241

Lbce(ŷ, ys) + αLs
fair + βLt

fair + γLswd, (6)

where the trad-off hyperparameters α, β, and γ can be tuned using cross validation. Algorithm 1 summarizes the 242

above described training process for our proposed algorithm, named FairAdapt. 243

5 Empirical Validation 244Algorithm 1 FairAdapt (α, β, γ, thresh, ITR)
1: for itr = 1, . . . , ITR do
2: Source Training:
3: Optimize αLbce via 1.
4: Optimize βLfair via 2 and freezing u.
5: Optimize −βLfair via 2 and freezing h.
6: if itr > thresh then
7: Target Adaptation:
8: Optimize γLswd via 4.
9: Optimize βLfair via 2 and freezing u.

10: Optimize −βLfair via 2 and freezing h.
11: end if
12: end for
13: return u, g

We adopt existing common datasets in the AI fairness 245

literature and tailor them for our formulation. 246

5.1 Experimental Setup 247

We first describe our empirical exploration setting. 248

5.1.1 Datasets and Tasks 249

Common datasets in the fairness literature pose bi- 250

nary decision-making problems, e.g., approval of a 251

credit application, alongside relevant features used for 252

decision-making by professionals, e.g., employment his- 253

tory, credit history etc., and group-related sensitive at- 254

tributes, e.g., sex, race, nationality, etc. Based on sensi- 255

tive group membership, data points can be part of privi- 256

leged or unprivileged subgroups. For example, with respect to sex, men are part of the privileged group while women 257

are part of the unprivileged group.We perform experiments on three datasets widely used by the AI fairness commu- 258

nity. We consider sex as our sensitive attribute because it is recorded for all three datasets. These datasets are: 259

The UCI Adult dataset1 is part of the UCI database Dua & Graff (2017) and consists of 1994 US Census data. The 260

task associated with the dataset is predicting whether annual income exceeds 50k. After data cleaning, the dataset 261

consists of more than 48, 000 entries. Possible sensitive attributes for this dataset include sex and race. 262

The UCI German credit dataset 2 contains financial information for 1000 different people applying for credit and is 263

also part of the UCI database. The predictive task involves categorizing individuals as acceptable or non-acceptable 264

credit risks. Sex and age are possible sensitive attributes for the German dataset. 265

The Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) recidivism dataset 3
266

maintains information of over 5, 000 individuals’ criminal records. Models trained on this dataset attempt to predict 267

people’s two year risk of recidivism. For the COMPAS dataset, sex and race may be used as sensitive attributes. 268

5.1.2 Evaluation Protocol 269

Experiments on these datasets have primarily considered random 70/30 splits for the training and test splits. While 270

such data splits are useful in evaluating overfitting for fairness algorithms, features for training and test sets will be 271

sampled from the same data distribution. As a result, randomly splitting the datasets is not suitable for our learning 272

setting because domain shift will not exist between the training and the testing splits. Instead, we consider natural 273

data splits obtained from sub-sampling the three datasets along different criteria to generate the training and testing 274

splits. We show that compared to random splits, where learning a model that guarantees fairness on the source domain 275

is often enough to guarantee fairness on the target domain predictions, domain discrepancy between the source and 276

target domains can lead to biased or degenerate predictions on the target domain, even if the model is initially trained 277

1https://archive.ics.uci.edu/ml/datasets/Adult
2https://archive.ics.uci.edu/ml/datasets/statlog+(German+credit+data)
3https://github.com/propublica/COMPAS-analysis/
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to be fair. For details about the splits for each dataset, please refer to the supplementary material. In short, these splits278

introduce domain gap between the testing and training splits to generate appropriate tasks for our setting.279

Next, for each of the three datasets, we will generate source/target data splits where ignoring domain discrepancy280

between the source and target can negatively impact model fairness. Per dataset, we produce three such splits. We281

characterize the label distributions and sensitive attribute conditional distributions for the Adult dataset in Table 1. We282

provide similar analysis for the German and COMPAS datasets in the supplementary material.283

Adult Dataset. We use age, education and race to generate the source and target domains. These domains can be284

a natural occurrence in practice, as gathered census information may differ along these axes geographically. For285

example, urban population is on average more educated than rural population 4, and more ethnically diverse 5. Thus, a286

fair model trained on one of the two populations will need to overcome distribution shift when evaluated on the other287

population. The source/target splits we consider are as follows:288

1. Source Domain: White, +12 education years. Target Domain: Non-white, Less than 12 education years.289

2. Source Domain: White, Older than 30. Target Domain: Non-white, younger than 40.290

3. Source Domain: Younger than 70, +12 education years. Target Domain: Older than 70, less than 12291

education years.292

In Table 1, we analyze the conditional distributions of the labels and sensitive attribute for the above data splits. For the293

random split (A), we see that the conditional distributions of the sensitive attributes are identical in both domains which294

is expected due to absence of domain shift. For the three splits that we generated, we observe all three distributions:295

P (Y ), P (A|Y = 0), P (A|Y = 1) differ between the source and the target domains. We also note the label distribution296

becomes more skewed towards Y = 0. Table 1 suggests that common UDA methods would fail to perserve fairness.297

Split Source Target
Size Y=0 A=0|Y=0 A=0|Y=1 Size Y=0 A=0|Y=0 A=0|Y=1

A 34120 0.76 0.39 0.15 14722 0.76 0.39 0.15
A1 12024 0.53 0.41 0.16 5393 0.91 0.49 0.18
A2 29466 0.66 0.34 0.14 2219 0.97 0.48 0.30
A3 11887 0.52 0.42 0.16 778 0.89 0.39 0.17

Table 1: Data split statistics corresponding to the Adult dataset: the row with no number, i.e., “A”, corresponds to random data
splits. The numbered rows, i.e., A1,A2,A3 correspond to statistics for specific splits that we prepared. The columns represent the
probabilities of specific outcomes for specific splits, e.g., P (Y = 0), when using sex as sensitive attribute.

5.1.3 Fairness Metrics298

There exist a multitude of criteria developed for evaluating algorithmic fairness Mehrabi et al. (2021). The goal is to299

define fairness intuitively and then come up with a computable quantitative metric based on a notion of independence.300

In the context of datasets presenting a privileged and unprivileged group, these metrics rely on ensuring predictive301

parity between the two groups under different constraints. The most common fairness metric employed is demographic302

parity (DP) P (Ŷ = 1|A = 0) = P (Ŷ = 1|A = 1), which is optimized when predicted label probability is identical303

across the two groups. However, DP only ensures similar representation between the two groups, while ignoring actual304

label distribution. Equal opportunity (EO) Hardt et al. (2016) conditions the fairness value on the true label Y , and is305

optimized when P (Ŷ = 1|A = 0, Y = 1) = P (Ŷ = 1|A = 1, Y = 1). EO is preferred when the label distribution is306

different across privilege classes, i.e., P (Y |A = 0) ̸= P (Y |A = 1). A more constrained fairness metric is averaged307

odds (AO), which is minimized when outcomes are the same conditioned on both labels and sensitive attributes, i.e.,308

P (Ŷ |A = 0, Y = y) = P (Ŷ |A = 1, Y = y), y ∈ {0, 1}. EO is a special case of AO, for the case where y = 1.309

Following the AI fairness literature, we report the“ left hand side and right hand side difference ∆” for each of the310

above measures. Under this format, ∆ values that are close to 0 will signify that the model maintains fairness, while311

4https://www.ers.usda.gov/topics/rural-economy-population/employment-education/rural-education/
5https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=99538
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values close to 1 signify a lack of fairness. Tuning a model to optimize fairness may incur accuracy trade offs Madras 312

et al. (2018a); Kleinberg et al. (2016); Wick et al. (2019). For example, a classifier which predicts every element to be 313

part of the same group, e.g., P (Ŷ = 0) = 1 will obtain ∆EO = ∆EO = ∆AO = 0, without providing informative 314

predictions. Our approach has the advantage that the regularizers of the three employed losses LCE , Lfair, Lswd can 315

be tuned in accordance with the importance of accuracy against fairness for a specific task. 316

5.1.4 Methods for Comparison 317

To the best of our knowledge, no prior method has exactly addressed our learning setting. For this reason, we evaluate 318

our work against four popular fairness preserving algorithms: Meta-Algorithm for Fair Classification (MC) Celis et al. 319

(2019a), Adversarial Debiasing (AD) Zhang et al. (2018), Reject Option Classification Kamiran et al. (2012), and 320

Exponentiated Gradient Reduction Agarwal et al. (2018). Comparison against these methods reveals the weakness 321

of existing methods and strength of our method. The shortcoming of these methods provides the motivation behind 322

developing our algorithm. We additionally report as baseline (Base) version where we only minimize Lbce without 323

optimizing fairness or minimizing distributional distance. This baseline corresponds to the performance of a naive 324

source-trained classifier and serves as a lowerbound to show the amount of performance boost we obtain. 325

5.2 Comparison Results 326

We report balanced accuracy (Acc.), demographic parity (∆DP ), equalized odds (∆EO) and averaged opportunity 327

(∆AO) in our comparison results to study both accuracy and fairness. Desirable accuracy values are close to 1, while 328

desirable fairness metric values should be close to 0. Prior studies have shown that there is a trad-off between the 329

performance accuracy and the model fairness. Results are averaged over 7 runs to make comparisons statistically 330

meaningful. We use sex as the sensitive attribute A because it is a shared attribute across all datasets. 331

Alg. Adult German COMPAS
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.74 0.35 0.30 0.28 0.64 0.03 0.16 0.05 0.68 0.22 0.27 0.18
MC 0.71 0.13 0.09 0.08 0.63 0.22 0.18 0.20 0.65 0.22 0.22 0.20
AD 0.67 0.11 0.13 0.08 0.53 0.35 0.46 0.38 0.62 0.28 0.25 0.29
ROC 0.71 0.05 0.01 0.01 0.55 0.11 0.04 0.09 0.52 0.02 0.03 0.02
EGR 0.65 0.06 0.02 0.01 0.51 0.01 0.04 0.02 0.63 0.02 0.02 0.02
Ours 0.70 0.00 0.07 0.08 0.64 0.00 0.05 0.01 0.65 0.00 0.02 0.03

Table 2: Results for random data splits.

As a sanity check experiment, we first report performance results for the standard random splits that are commonly 332

used in the fairness literature in Table 2. Since for the standard splits, the source and the target are sampled from the 333

same distribution, there is no domain shift. We observe in Table 2 that the baseline approach obtains the highest accu- 334

racy across all datasets, but does not lead to fair predictions according to the three fairness metrics. The rest of method 335

preserve fairness significantly better than the baseline but their performance accuracies are less than the baseline. This 336

observation aligns well with what has been reported in the fairness literature. Importantly, our method leads to the 337

best accuracy performance compared to the methods that maintain fairness. Our method leads to the minimum demo- 338

graphic parity which indicates that the embedding space is fully independent from the sensitive attributes. We also see 339

that our method matches the best averaged opportunity on the German dataset, and best equalized odds on the COM- 340

PAS dataset, despite the fact that our method is not directly minimizing these metrics. These observations are critical 341

because as it can be seen from Table 2, methods that maintain fairness, pay a cost in terms of performance accuracy. 342

But our method is more robust in this aspect. We conclude that our algorithm successfully learns a competitively fair 343

model when domain shift does not exist while leading to the best performance accuracy. 344

We then present results for the three data splits for each of the considered datasets that we prepared. These are custom 345

splits for each dataset such that domain shift exists during the testing phase. 346

Adult dataset We report results on the three splits of the Adult dataset in Table 3. On the first split, MC obtains 347

the highest accuracy of 0.68, and AD obtains accuracy of 0.63 which is higher accuracy than our method. However, 348

none of the methods maintains fairness better than our method, as can be seen by the large ∆DP, ∆EO, ∆AO values. 349
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On the remaining splits, our method is able to maintain fairness after adaptation while being competitive in terms of350

accuracy performance. We conclude that existing fairness-preserving methods struggle with domain shift between the351

source and target, while our method is positioned to overcome the challenge of domain shift.352

Alg. Race, Education Race, Age Age, Education
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.63 0.34 0.53 0.42 0.60 0.24 0.25 0.24 0.59 0.90 0.92 0.91
MC 0.68 0.28 0.32 0.28 0.63 0.05 0.26 0.15 0.63 1.00 1.00 1.00
AD 0.63 0.21 0.33 0.25 0.60 0.25 0.25 0.25 0.51 0.16 0.15 0.16
ROC 0.59 0.34 0.25 0.31 0.62 0.02 0.20 0.11 0.50 0.00 0.00 0.00
EGR 0.62 0.06 0.16 0.10 0.59 0.02 0.19 0.11 0.56 0.43 0.40 0.42
Ours 0.62 0.01 0.05 0.01 0.62 0.00 0.19 0.10 0.52 0.01 0.06 0.03

Table 3: Performance results for the three splits of the Adult dataset

COMPAS dataset results for the COMPAS dataset are reported in Table 4. On the first data split, MC again achieves353

the best accuracy. However, none of the methods we compare against besides EGR are able to preserve fairness. We354

are able to obtain higher accuracy than EGR while also obtaining improved fairness scores. On the second data split,355

our method is able to achieve the highest accuracy and also the lowest fairness scores amongst the methods. EGR, AD,356

and Base are not able to maintain fairness, while MC and ROC provide degenerate results because their performances357

is similar to random assignment. On the third data split, our method achieves the best results when both the accuracy358

and fairness are considered together. We can see that AD, ROC, and EGR lead to degenerate models that works similar359

to random label assignment. Note that a fair model is not helpful if it assigns labels randomly. We conclude that our360

method works effectively for this dataset and is able to maintain both accuracy and fairness under domain shift.361

Alg. Age, Priors Race, Age, Priors Age, Priors, Charge
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.54 0.29 0.27 0.28 0.49 0.33 0.56 0.43 0.58 0.52 0.54 0.52
MC 0.58 0.33 0.36 0.33 0.50 0.00 0.00 0.00 0.53 0.53 0.49 0.52
AD 0.52 0.62 0.73 0.66 0.47 0.70 0.72 0.70 0.49 0.77 0.77 0.77
ROC 0.53 0.28 0.09 0.21 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00
EGR 0.49 0.05 0.10 0.06 0.53 0.27 0.34 0.26 0.51 0.10 0.17 0.11
Ours 0.53 0.00 0.05 0.02 0.65 0.15 0.17 0.19 0.54 0.16 0.18 0.18

Table 4: Performance results for the three splits of the COMPAS dataset

German dataset in Table 5, we present the results on the German dataset. In the first data split, our approach once362

again demonstrates competitive performance in terms of accuracy while achieving the best fairness performance. This363

highlights the ability of our method to strike a balance between accuracy and fairness, making it a compelling choice364

for domain adaptation tasks. Moving on to the second data split, our method outperforms all other approaches by365

obtaining the highest accuracy and demonstrating the best fairness performance across all fairness metrics. Note that366

the solution of ROC is degenerate. On the last data split, our method achieves the best fairness performance while367

still maintaining a decent accuracy. This proves the robustness of our approach, even in challenging scenarios, where368

fairness is a critical concern. On a wholistic view, we observe that ROC yields good fairness scores but fails to provide369

informative predictions. On the other hand, MC, AD, an EGR do not adequately maintain fairness.370

From Tables 3–5, we conclude that existing algorithms for training fair models are vulnerable in our setting. FairAdapt371

is effective and well-suited for preserving model fairness and perofrmnace accuracy on tasks associated with domain372

shift. Its ability to achieve competitive accuracy while ensuring fairness makes it a promising choice for real-world373

applications where domain adaptation and fairness are crucial considerations.374

5.3 Analytic and Ablative Experiments375

To provide a more intuitive understanding of our method, we visualize the impact of domain shift by generating 2D376

embeddings of the source and target domain features in the shared embedding space. For this purpose, we employ the377
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Alg. Employment Credit hist., Empl. Credit hist., Empl.
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.67 0.09 0.05 0.07 0.58 0.07 0.10 0.06 0.56 0.35 0.35 0.32
MC 0.67 0.06 0.12 0.03 0.56 0.15 0.34 0.22 0.55 0.30 0.34 0.30
AD 0.52 0.53 0.58 0.55 0.53 0.40 0.56 0.46 0.52 0.44 0.52 0.46
ROC 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.62 0.13 0.09 0.11
EGR 0.57 0.22 0.36 0.27 0.50 0.43 0.44 0.43 0.50 0.01 0.00 0.00
Ours 0.62 0.01 0.05 0.02 0.58 0.02 0.01 0.01 0.55 0.01 0.02 0.01

Table 5: Performance results for the three splits of the German dataset

UMAP McInnes et al. (2020) visualization tool, which helps us create meaningful visual representations that encode 378

the geometry of high dimensions. The resulting visualizations are presented in Figure 2. We have compared the source 379

and target features resulting from a random split of the Adult dataset (Figure 2 (a)) with our first custom split (Figure 380

2 (b)). Upon examining the visualization of the random split, we notice that the source and target samples exhibit a 381

considerable degree of similarity. However, when using a custom split, we observe a substantial discrepancy between 382

the two distributions, indicating the existence of distributional mismatch. This disparity can have a significant impact 383

on the model’s ability to generalize effectively. Our numerical results align with this observation, indicating that in the 384

presence of domain shift, maintaining both model generalization and fairness becomes a challenging task. 385

Figure 2: UMAP embeddings of the source and target feature spaces for random and custom splits of the Adult dataset

We additionally provide ablative experiments to investigate the impact of the different components of our approach 386

on the downstream performance. We have compared the performances on the COMPAS dataset in Table 6 for four 387

variants of our algorithm: (1) Base, similar to the main experiments, where no fairness or distributional minimization 388

metric is used, (2) SWD, only the loss Lswd is minimized (3) Fair, training is performed only with respect to Lfair on 389

the source and target domains (4) Our complete pipeline using both fairness and adaptation objectives. We can see that 390

on all data splits, utilizing all losses leads to the best performance in terms of fairness. On the first split, the Fair only 391

model is able to achieve competitive fairness results at the cost of accuracy. The SWD only approach achieves better 392

accuracy but at the cost of fairness. Combining the two losses leads to improved accuracy over the Fair only model, 393

and also improved fairness. Due to Lswd being minimized at the encoder output space, both classifier and fairness 394

head benefit from a shared source-target feature space. On the second split we observe the SWD only model has 395

poorest performance, and the Fair Only and combined model have similar fairness performance, with the combined 396

model obtaining higher accuracy. This signifies the adversarial fair training process can act as a proxy task during 397

training, improving model generalization. Finally, SWD achieves the best perofrmnace in the best perofrmnace but at 398

the cost of fairness. We obtain better perofrmnace over Fair baseline while achieving similar fairness. We conclude 399

from the ablative experiments that all components that we use in our method are crucial to obtain good performances. 400

In the previous experiments, we only considered sex as the sensitive attribute. We assess the performance of our 401

proposed algorithm when using a different sensitive attribute. For this purpose, we utilize the German dataset and des- 402
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ignate age as the sensitive attribute. The results of these experiments are presented in Table 7. Similar to our previous403

experiments where sex was chosen as the sensitive attribute, FairAdapt continues to exhibit outstanding performance404

by achieving the best demographic parity score among all the methods considered. Moreover, it outperforms other405

fairness-preserving approaches while maintaining accuracy values close to those of the Base model which does not406

maintain fairness. This observation demonstrates the robustness of our approach in terms of the choice of sensitive407

attribute. Regardless of the choice of the sensitive attribute, our algorithm consistently provides strong fairness results408

and competitive accuracy. This versatility indicates that our method can adapt to various fairness settings and has the409

potential to cover a wide range of domain adaptation tasks where fairness is a critical consideration.410

Alg. Age, Priors Race, Age, Priors Age, Priors, Chrg.
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.68 0.22 0.27 0.18 0.54 0.29 0.27 0.28 0.58 0.52 0.54 0.52
SWD 0.56 0.29 0.38 0.32 0.45 0.44 0.33 0.40 0.59 0.64 0.69 0.64
Fair 0.50 0.01 0.08 0.04 0.64 0.15 0.17 0.19 0.52 0.17 0.19 0.20
Ours 0.53 0.00 0.05 0.02 0.65 0.15 0.17 0.19 0.54 0.16 0.18 0.18

Table 6: Ablative experiments using a subset of losses on the COMPAS dataset

Alg. Empl. Credit hist., Empl. Credit hist., Empl.
Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO Acc. ∆DP ∆EO ∆AO

Base 0.63 0.46 0.33 0.40 0.61 0.19 0.15 0.16 0.58 0.23 0.25 0.19
MC 0.59 0.32 0.29 0.30 0.67 0.35 0.18 0.27 0.61 0.12 0.18 0.11
AD 0.51 0.54 0.61 0.55 0.50 0.53 0.52 0.54 0.52 0.50 0.60 0.53
ROC 0.54 0.09 0.02 0.07 0.51 0.05 0.03 0.04 0.59 0.24 0.18 0.21
EGR 0.50 0.03 0.03 0.03 0.56 0.12 0.23 0.16 0.50 0.02 0.01 0.01
Ours 0.62 0.02 0.09 0.02 0.59 0.02 0.16 0.06 0.62 0.02 0.18 0.04

Table 7: Results on the German dataset when optimizing fairness metrics with respect to the age sensitive attribute

For additional experiments about the dynamics of learning when our method is used, please refer to the Appendix. In411

summary, we analyzed the effect of adaptation process on target domain accuracy and demographic parity on the target412

domain as more training epochs are performed. We observed that the target accuracy consistently increased while413

demographic parity on both the source and target domains remained relatively unchanged, i.e., fairness is maintained.414

These observations validate that our algorithm leads to desired effects on the model performance.415

6 Conclusions and Future Work416

We study the problem of fairness under domain shift. Fairness preserving methods have overlooked the problem of417

domain shift when deploying a source trained model to a target domain. Our first contribution is providing different418

data splits for common datasets employed in fairness tasks which present significant domain shift between the source419

and target. We show that as the distribution of data changes between the two domains, existing state-of-the-art fairness-420

preserving algorithms cannot match the performance they have on random data splits, where the source and target421

features are sampled from the same distribution. This observation demonstrates that model fairness is not naturally422

preserved under domain shift. Second, we present a novel algorithm that addresses domain shift when a fair outcome423

is of concern by combining fair model training via adversarial learning and and producing a shared domain-agnostic424

latent feature space for the source and target domains by minimizing the distance between the source and target425

embedding distributions. Through empirical evaluation, we show that combining our algorithms maintains fairness426

effectively under domain shift and also mitigates the effect of domain shift on the performance accuracy. Future427

extensions of this work includes considering scenarios where in addition to maintaining fairness under domain shift,428

the target domain maybe encountered sequentially, necessitating source-free model updating.429
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A Appendix532

Split Source Target
Size Y=0 A=0|Y=0 A=0|Y=1 Size Y=0 A=0|Y=0 A=0|Y=1

A 34120 0.76 0.39 0.15 14722 0.76 0.39 0.15
A1 12024 0.53 0.41 0.16 5393 0.91 0.49 0.18
A2 29466 0.66 0.34 0.14 2219 0.97 0.48 0.30
A3 11887 0.52 0.42 0.16 778 0.89 0.39 0.17
C 3701 0.52 0.77 0.86 1577 0.54 0.76 0.84
C1 2886 0.58 0.74 0.82 1096 0.67 0.78 0.86
C2 903 0.47 0.80 0.80 96 0.74 0.70 0.92
C3 2031 0.45 0.80 0.85 162 0.58 0.60 0.79
G 697 0.70 0.28 0.37 303 0.70 0.30 0.34
G1 573 0.66 0.34 0.45 427 0.76 0.23 0.20
G2 388 0.61 0.36 0.49 196 0.84 0.20 0.16
G3 439 0.62 0.35 0.45 159 0.87 0.21 0.19

Table 8: Data split statistics. A,C,G correspond to the Adult, COMPAS and German dataset respectively. The rows with no number
i.e. A,C,G correspond to random data splits. The numbered rows e.g. A1,A2,A3 correspond to statistics for specific splits. The
columns represent the probabilities of specific outcomes for specific splits e.g. P (Y = 0). Results when using sex as sensitive
attribute.

A.1 Data splits533

The data splits employed in our approach are as follows:534

Adult Dataset. We will use age, education and race to generate source and target domains. This can be a natural535

occurrence in practice, as gathered census information may differ along these axes geographically. For example,536

urban population is on average more educate than rural population 6, and more ethnically diverse 7. Thus, a fair model537

trained on one of the two populations will need to overcome distribution shift when evaluated on the other population.538

Besides differences in the feature distributions, we also note the Adult dataset is both imbalanced in terms of outcome,539

P (Y = 1) = 0.34, and sensitive attribute of positive outcome, P (A = 1|Y = 1) = 0.85, i.e. only a fraction of540

participants are earning more than 50k/year, and 85% of them are male.541

The source/target splits we consider are as follows:542

1. Source data: White, More than 12 education years. Target data: Non-white, Less than 12 education years.543

2. Source data: White, Older than 30. Target data: Non-white, younger than 40.544

3. Source data: Younger than 70, More than 12 education years. Target data: Older than 70, less than 12 years545

of education.546

In Table 8 we analyze the label and sensitive attribute conditional distributions for the above data splits. For the547

random split (A), the training and test label and conditional sensitive attribute distributions are identical, which is to548

be expected. For the three custom splits we observe all three distributions: P (Y ), P (A|Y = 0), P (A|Y = 1) differ549

between training and test. We also note the label distribution becomes more skewed towards Y = 0.550

COMPAS Dataset Compared to the Adult dataset, the COMPAS dataset is balanced in terms of label distribution,551

however is imbalanced in terms of the conditional distribution of the sensitive attribute. We will split the dataset along552

age, number of priors, and charge degree, i.e. whether the person committed a felony or misdemeanor. Considered553

splits are as follows:554

1. Source data: Younger than 45, Less than 3 prior convictions. Test data: Older than 45, more than 3 prior555

convictions.556

6https://www.ers.usda.gov/topics/rural-economy-population/employment-education/rural-education/
7https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=99538
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2. Source data: Younger than 45, White, At least one prior conviction. Target data: Older than 45, Non-white, 557

No prior conviction. 558

3. Source data: Older than 25, At least one prior conviction, Convicted for a felony. Target data: Younger than 559

25, No priors, Convicted for a misdemeanor. 560

The first split tests whether a young population with limited number of convictions can be leveraged to fairly predict 561

outcomes for an older population with more convictions. The second split introduces racial bias in the sampling 562

process. In the third split we additionally consider the type of felony committed when splitting the dataset. For all 563

splits, the test datasets become more imbalanced compared to the random split. 564

German Credit Dataset The dataset is smallest out of the three considered. For splitting we consider credit history 565

and employment history. Similar to the Adult dataset, the label distribution is skewed towards increased risk i.e. 566

P (Y = 0) = 0.7, and individuals of low risk are also skewed towards being part of the privileged group i.e. P (A = 567

1|Y = 1) = 0.63. We consider the following splits: 568

1. Source data: Employed up to 4 years. Test data: Employed long term (4+ years). 569

2. Source data: Up to date credit history, Employed less than 4 years. Target data: un-paid credit, Long term 570

employed. 571

3. Source data: Delayed or paid credit, Employed up to 4 years. Target data: Critical account condition, Long 572

term employment. 573

Compared to random data splits, the custom splits reduce label and sensitive attribute imbalance in the source domain, 574

and increase these in the target domain. 575

A.2 Parameter tuning and implementation 576

A.2.1 Training and model selection 577

Implementation of our approach is done using the PyTorch Paszke et al. (2019) deep learning library. We model our 578

encoder eu as a one layer neural network with output space z ∈ R20. Classifiers g and h are also one layer networks 579

with output space ∈ R2. We train our model for 45, 000 iterations, where the first 30, 000 iterations only involve source 580

training. For the first 15, 000 we only perform minimization of the binary cross entropy loss Lbce. We introduce source 581

fairness training at iteration 15, 000, and train the fair model, i.e. with respect to both Lbce and Lfair, for 15, 000 582

more iterations. In the last 15, 000 iterations we perform adaptation, where we optimize Lbce, Lfair on the source 583

domain, Lfair on the target domain, and Lswd between the source and target embeddings eu((xs, as)), eu((xt, at)) 584

respectively. We use a learning rate for Lbce, Lfair of 1e − 4, and learning rate for Lswd of 1e − 5. Model selection 585

is done by considering the difference between accuracy on the validation set, and demographic parity on the test set. 586

Given equalized odds and averaged opportunity require access to the underlying labels on the test set we cannot use 587

these metrics for model selection. Additionally, models corresponding to degenerate predictions i.e. test set predicted 588

labels being either all 0s or all 1s are not included in result reporting. 589

A.3 Empirical Results about Dynamics of Learning 590

We performed another analytic experiment to study the effect of model training on the important loss terms and 591

metric. In Figure 3, we analyze the effect of the adaptation process on target domain accuracy, validation accuracy, 592

demographic parity on the source domain, and demographic parity on the target domain for the Adult dataset. We 593

compare two scenarios: (1) running the algorithm when Lswd is not enforced (bottom), and (2) running the algorithm 594

using both fairness and domain alignment (top). For the first 30, 000 iterations, we only perform source-training, 595

where the first half of iterations is spent optimizing Lbce, and the second half is spent jointly optimizing Lbce and the 596

source fairness objective. We note once optimization with respect to Lfair starts, demographic parity decreases until 597

adaptation start, i.e., iterations 15, 000 to 30, 000. The validation accuracy in this interval also slightly decreases, as 598

improving fairness may affect accuracy performance. During adaptation, i.e., after iteration 30, 000, we observe that 599
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in the scenario where we use Lswd, the target domain accuracy increases, while demographic parity on both the source600

and target domains remains relatively unchanged. In the scenario where no optimization of Lswd is performed, there601

is still improvement with respect to target accuracy. However, target domain demographic parity becomes on average602

larger. These observations imply that the distributional alignment at the output of the encoder has beneficial effects603

both for the classification as well as the fairness objective and our algorithm gradually leads to the desired effects.

Figure 3: Learning behavior during training when using both Lfair and Lswd (top) verus when only using Lfair (bottom)

604

We further investigate the different components present in our algorithm. In Figure 3 we analyze the training and605

adaptation process with respect to target accuracy, validation accuracy, demographic parity on the source domain, and606

demographic parity on the target domain. Performance plots are reported for the Adult dataset. We compare two607

scenarios: running the algorithm when Lswd is not enforced (bottom), and running the algorithm using both fairness608

and domain alignment (top). For the first 30, 000 iterations we only perform source training, where the first half609

of iterations is spent optimizing Lbce, and the second half is spent jointly optimizing Lbce and the source fairness610

objective. We note once optimization with respect to Lfair starts, demographic parity decreases until adaptation611

start, i.e. between iterations 15, 000 − 30, 000. The validation accuracy in this interval also slightly decreases, as612

improving fairness may affect accuracy performance. During adaptation, i.e. after iteration 30, 000, we observe that613

in the scenario where we use Lswd, the target accuracy increases, while demographic parity on both source and target614

domains remains relatively unchanged. In the scenario where no optimization of Lswd is performed, there is still615

improvement with respect to target accuracy, however target demographic parity becomes on average larger. This616

implies that the distributional alignment loss done at the output of the encoder has beneficial effects both for the617

classification as well as the fairness objective.618
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