Abstract

Reconstructing visual stimuli from non-invasive Elec-
troencephalography (EEG) is an interesting but chal-
lenging task in brain decoding that involves translat-
ing noisy neural signals into images via fine-grained
generative control. In this work, we introduce a
novel and efficient framework that guides a visual
token generator by conditioning the generation pro-
cess on a high-level semantic understanding of the
EEG signal. Our method leverages a pre-trained
LaBraM-based architecture to derive a robust class
prediction from the neural data.

In comparison to recent works that involve dif-
fusion models, which require high computational
resources and long inference times, our approach
utilizes a lightweight and efficient token generator
by building upon the bidirectional, parallel decoding
capabilities of MaskGIT. This choice of components
avoids the high computational requirements typical
of large-scale diffusion processes. This focus on effi-
ciency makes our approach not only easier to train
but also more viable for potential real-time BCI
applications where real-time feedback is crucial.

The core of our method is a straightforward yet
powerful two-stage process. First, the EEG classifier
distills the complex input signal into a class label.
In the second stage, this label serves as a direct
condition for the pre-trained token generator. The
generator, guided by this class information, then
produces a sequence of discrete latent codes that
are semantically consistent with the original stimu-
lus. This neurally-guided token sequence is finally
rendered into a high-fidelity image by a pretrained
decoder, completing an efficient pathway from brain
activity to visual representation.

1 Introduction

The pursuit to understand the human brain’s sen-
sory experiences, and as a special case, the decoding
of visual imagery from neural activities generated
when one is presented with a stimulus, poses a signif-
icant challenges in both neuroscience and artificial
intelligence. This endeavor has long been a corner-
stone of brain-computer interface (BCI) research
and has been significantly advanced by the develop-
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ment of neuroimaging techniques such as functional
Magnetic Resonance Imaging (fMRI) and Electroen-
cephalography (EEG). Notwithstanding the high
spatial resolution of functional magnetic resonance
imaging (fMRI), its expensive operation and tech-
nical complexity limit its utilization in widespread
applications. In contrast, electroencephalography
(EEG) is coupled with convenience in access, reduced
costs, and mobility, along with better temporal res-
olution, thus making it highly suitable for real-time
brain-computer interface applications. The transla-
tion of EEG data into a high-fidelity visual image
presents big challenges due to the inherent noisy
nature of EEG.

For simplicity, to understand the challenges in
EEG to Image Reconstruction task, we can break
it down into two steps. First, aligning features in
the latent space is a critical task, with the primary
focus on learning a latent space that captures the
joint representation of EEG and images[1] which
align with the image generation task.

However many features alignment method, lack
robust EEG latent features representation which
is essential for image reconstruction task. Recent
developments in foundation model LaBraM [2] pro-
vide a direction to solve this problem. A foundation
model trained on large corpus datasets has capac-
ity to extract rich features which are independent
of any specific task and can be leveraged for other
downstream task. The EADI3] architecture build
upon the foundation of LaBraM[2] demonstrates this
capacity and shows the state of art results in EEG
image classification task.

Secondly, the selection of generative framework is
quite crucial for Image Reconstruction task. This
choice can affect training and inference load. For
instance, training a diffusion [1, 4, 5] model requires
a hugh amount of data and training them on new
dataset is not computationally efficient. In cases
where data is availability is low and computation
resources are constrained this make diffusion model
approach more tedious. Current EEG-to-image dif-
fusion methods often rely on computationally expen-
sive alignment losses, large pretrained encoders, and
extensive, domain specific preprocessing to bridge
the semantic gap between the EEG signals and Im-
age data. This complexity motivates the discovery
of more direct and low resource approach to fill the

gap.
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In this regard, the VQ-VAE[6] generative frame-
work has very small numbers of parameters compare
to diffusion model which makes it useful for the
scenario where available data is less and low a in-
ference time is required. In the VQ-VAE[6] model
a learnable codebook of discrete embedding vectors
is constructed and one performs nearest-neighbor
assignment to map continuous latent features to
their corresponding discrete representations. This
discretizations framework facilitates the application
of sequence based generative modelling in second
stage of framework.

Availability of pretrained VQ-VAE[6] on Imagenet
datasets make it perfect to use with the EEG clas-
sifer, as both are trained on same class labels. By
leveraging a EEG classifier and establishing a map-
ping between these models. we can generate image
directly through EEG.

Our approach takes advantage of such mapping.
We use the shared semantic space of class labels as
a bridge rather than trying a difficult, direct align-
ment of high-dimensional feature vectors. The main
realization is that the pretrained VQ-VAE[6] model
does not require extensive fine-tuning or retraining.
Since the 40 classes in our EEG dataset are a di-
rect subset of the 1000 ImageNet classes, its prior
knowledge of these classes is adequate for our task.

This makes possible a simple but effective condi-
tioning mechanism. In VQ-VAE, a sequence model
can easily generate the corresponding code index
without any additional training because it has al-
ready been trained on the Imagenet class dataset. As
a result, the alignment turns into a straightforward
mapping between a predicted class in the neural
domain and an existing class in the known semantic
space of the visual generator. In this paper, we
present a novel framework that uses EEG signals to
condition a pretrained model based on VQ-VAE[6].
Our method bridges the gap between the EEG and
image domains using a simple yet efficient two-stage
procedure. The our primary contributions are:

1. A novel framework for conditioning a pretrained
masked image transformer using a classification-
based approach

2. An effective method for leveraging pretrained
EEG Classifier and VQ-VAE framework

3. A demonstration of a system capable of gen-
erating high-fidelity images directly guided by
EEG.

2 Related Work

Reconstruction of visual stimuli from brain activ-
ity is the ultimate goal of guided image generation,
wherein the subject’s perception is the prompt. The

early attempts were with the application of fMRI
signals to enable the generation of visual patterns,
leveraging the higher spatial resolution of fMRI ma-
chines. The limitations of fMRI have prompted the
use of EEG. Despite its limitations, the high tem-
poral resolution and the easy portability of EEG
makes it the best modality for the construction of
practical systems that enable a user’s brain activ-
ity to actively and immediately drive a generative
process in real-time.

Initial attempts to guide generative models with
EEG often involved coarse methods of control. Re-
searchers would typically start with a pre-trained
Generative Adversarial Network (GAN)[7] and at-
tempt to guide what it generated by projecting EEG
features onto its latent space. This can be viewed
as an early prototype of guided generation in which
the EEG signal serves as a high-level vector to guide
the GAN’s latent walk. Although these attempts
were a good starting point, they did not provide
much control and generated low-quality images or
class-averaging since the guidance signal was not
rich enough to be targeted at the particular tokens
or features of the generated image. The shift from
continouse pixel space to discrete space changes the
guiding mechanism of generative models. Models
like VQ-VAE[6] introduced the notion of a visual
vocabulary, tokenizing vision into a sequence of dis-
crete codes. This was a significant step because
it built a set of explicit levers that can be manipu-
lated. Instead of trying to nudge a high-dimensional,
multimodal pixel distribution, the problem became
controlling the selection of tokens from a limited
codebook. This constrained the problem of guided
generation in a way that was tractable for powerful
sequence models like the Transformer.

The effectiveness of any guidance signal is related
to the complexity of the system it is trying to con-
trol. While standard tokenizers were a major step
forward, the resulting token sequences were often
long and spatially redundant. TiTok [8] addresses
this by using a Transformer to compress the visual
information into a radically smaller set of tokens
(e.g., 32). This extreme compactness makes the
guidance problem significantly more manageable. A
noisy, high-level signal like EEG becomes far more
potent when it only needs to influence the selec-
tion of a few dozen semantically-rich tokens, rather
than hundreds of low-level ones. TiTok[8] thus offers
the perfect target space for the advanced guidance
signal.

Concurrently, the arrival of foundation models
such as BERT and GPT brought about a new
paradigm for building effective guidance signals.
They are pre-trained from humongous datasets and
acquire rich contextualized representations that are
presently utilized to guide virtually all state-of-the-
art text-to-image systems. The text prompt is en-



Figure 1. Samples of the EEG ImageNet Dataset

coded by a model like CLIP[9], and this embedding
provides a robust, semantic vector that guides the
entire diffusion or autoregressive generation process.
This establishes a powerful template: a large, pre-
trained model can serve as the ideal source for a
guidance signal.

Following this template, the LaBraM [2] archi-
tecture was developed as a foundational model for
EEG, designed specifically to learn a features that
can serve as a guidance signal. By using a masked
prediction objective on massive, heterogeneous EEG
datasets, LaBraM|[2] learns a universal, robust fea-
ture representation. It is, in essence, a model
trained to understand the structure and semantics
of brain activity. This positions it perfectly to be
the source of a neural guidance signal, analogous
to how CLIP provides the semantic guidance in
text-to-image models. While the field has produced
an advanced generative mechanism (TiTok-based
MaskGIT) and a powerful source for a neural guid-
ance signal (LaBraM), a critical gap remains in
connecting them. The core challenge, which our
work addresses, is one of translation and alignment:
how can the hierarchical representations learned by
LaBraM be used to directly inform the probabilistic
selection of visual tokens in MaskGIT? This requires
a dedicated mechanism to map the "language” of
the EEG model to the ”language” of the visual tok-
enizer. Our work proposes a novel alignment module
to bridge this gap, enabling for the first time a fine-
grained, neurally-guided token generation process.

3 Dataset

For our work, we use the EEG-ImageNet[10, 11]
dataset, a benchmark resource for multi-class visual
classification tasks that was updated and released
in 2020. This dataset is particularly suitable for our
work as it provides high-quality EEG recordings that

are directly linked to visual stimuli from the widely
recognized ImageNet database[12]. The experimen-
tal setup consisted of six healthy participants. Each
participant was presented with visual stimuli from
40 ImageNet object classes, with 50 images in each
class, to present an exhaustive collection of 2,000
distinct visual stimuli. The image presentation time
was fixed at 0.5 seconds per image. To minimize cog-
nitive overlap between categories, a 10-second black
screen was shown between the blocks of different
classes.

EEG data was acquired using a 128-channel sys-
tem at a high sampling rate of 1 kHz. This process
yielded a total of 11,964 high-quality EEG segments
corresponding to individual image presentations; 36
segments were excluded from the original 12,000 due
to recording artifacts or subject inattention, as veri-
fied by eye-tracking data. To standardize the data
for analysis, each segment underwent a preprocess-
ing pipeline. The initial 20 milliseconds (20 samples)
of every trial were discarded in order to prevent any
potential effect of the previous stimulus. All the seg-
ments were afterwards normalized to a fixed length
of 440 samples, thus uniforming the dataset. A 50
Hz notch filter was also employed to eliminate power
line interference from the recordings.

4 Methodology

Our proposed EEG-guided visual token selection
framework is designed for efficient reconstruction of
high-fidelity images from neural activity, with a par-
ticular emphasis utilizing pretrained models. The
pipeline employs a modular, two-stage procedure,
maximizing the utility of state-of-the-art pretrained
models while computational efficiency essential for
practical brain-computer interface applications. Fig-
ure 2 illustrates the overall end-to-end pipeline of
our approach.
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Figure 2. Image Generation pipeline, (a) EAD classifier based on LaBram, (b) Generation of code indices and
selection of codewords (c) Image Generation using selected codewords

4.1 Stage 1:
from EEG

Given a EEG X,, the first stage use the EAD clas-
sifier, a LaBraM-based model trained for robust
multi-class prediction from heterogeneous EEG data
[2, 3]. The classifier processes EEG and generates
a class label § corresponding to the visual stimulus
perceived by the subject. This step establishes a
mapping between and noisy neural input into a con-
cise categorical representation, which then acts as
the direct condition for image reconstruction.

We leverage foundation models for EEG classifica-
tion in this stage, as their broad training and masked
objective confer robustness to noise and subject vari-
ability. The model operates without retraining and
generalizes well to unseen data.

Semantic Distillation

4.2 Stage 2: Guided Token Genera-
tion

Upon obtaining the EEG-derived category label, the
pipeline advances to visual token generation using
a pretrained MaskGIT-based sequence model and
VQ generative architecture [6, 13]. The conditional
label serves as a semantic prompt to the sequence
model, which generates discrete code indices repre-
senting the latent structure of the target image. This
process takes place within an established semantic
space, facilitating targeted and context-consistent
reconstruction.

The sequence model predicts code indices corre-
sponding to entries in a compact codebook optimized
for discrete visual representation. The selected code-
words, augmented with learnable mask tokens, are
then concatenated and decoded by a pretrained de-

coder to yield the final image output I. The decoder
ensures that image synthesis is coherent and ac-
curate, corresponding closely to the neural intent
captured by the EEG signals.

Formally, the generative process can be summa-
rized as:

1. The classifier receives the EEG signal and pre-
dicts the class label: § = C(X.).

2. The sequence model generates the code indices
C, conditioned on g.

3. The corresponding codewords are selected, con-
catenated with mask tokens M, and decoded
as follows:

I =Dec(C® M)

The two-stage pipeline offers several advantages.
By decoupling recognition and generation, each mod-
ule can operate with optimal accuracy and reduced
computational cost. Pretrained components are used
without further fine-tuning, allowing rapid experi-
mentation and robust transfer across varied EEG
datasets and visual domains. Conditioning the gen-
eration process directly on semantic class labels elim-
inates the need for complex latent alignments or loss
functions.

5 Experiments

For our experiments, we use the EEG-ImageNet[10,
11] dataset, a benchmark dataset consisting of high-
quality EEG recordings from six subjects viewing 40
distinct ImageNet classes. To generate class labels



Figure 3. Generated Samples

from EEG we use EAD[3] classifier which has 99.3%
accuracy on this dataset

We use Inception Score (IS) and accuracy to evalu-
ate our model’s performance. We use N-way classifi-
cation accuracy to quantify the semantic correctness
of the generated images. Additionally, we utilize
the Inception Score (IS) to assess the quality and
diversity of the generated samples, where a higher
score indicates that images are both individually
recognizable and collectively varied.

On the EEG-ImageNet[10, 11] dataset, we eval-
uated the model. The quantitative and qualitative
results, reported in Table 1 and Figure 3 respectively,
show that this method achieves performance in both
generation quality and semantic correctness.

Table 1. Generation Quality and Semantic Correctness
of Models

Model ISt FID], ACC %
Brain2ImageGAN [4] 5.07 - -
NeuroVision [5] 5.15 - -
Improved-SNGAN [14] 5.53 - -
DCLS-GAN [15] 5.64 - -
Neurolmagen [16] 33.50 - 0.85
EEGStyleGAN-ADA [17]  10.82  109.49 -
GWIT [18] 33.87 7811 091
EEG-GTS (Ours) 39.60 81.6 0.71

Table 1 compares the quality of generation In-
ception Score (IS) and semantic accuracy (ACC)
for state-of-the-art brain-to-image generating mod-
els. The initial GAN-based models like NeuroVision,
Improved-SNGAN, Brain2ImageGAN and DCLS-
GAN have low IS values ranging from 5.07 to 5.64
with no reported semantic accuracy. Advanced archi-
tectures, Neurolmagen and GWIT, are far superior
to previous models, having an IS score of more than
33 and semantic accuracies of 0.85 and 0.91, respec-
tively.

Our suggested EEG-GuidedToken-Selection tech-
nique achieves an IS of 39.60 and a accuracy of 0.71,
which is competitive semantic alignment with opti-
mization for EEG-GTS (guided image generation).
This shows that even though large-scale pre-trained
models like GWIT deliver the highest accuracy, our
technique offers a competitive EEG-specific solution
with greater semantic relevance.

6 Conclusion and Future Work

In this work, we show leveraging a series of pre-
trained models, our method successfully bridges the
gap between the neural and visual domains without
requiring the design of a new, complex architecture.
We demonstrated that a fine-tuned, LaBraM-based
classifier can effectively distill noisy EEG signals into
a high-level semantic class label. This label serves
as a powerful and direct condition for a pre-trained
VQ Model, enabling it to produce images that are
semantically consistent with the user’s perceived
visual stimulus. Our approach, which prioritizes
computational efficiency and modularity, establishes
a robust and accessible pathway for neurally-guided
image synthesis, proving that the strategic combina-
tion of existing foundational models can yield good
results.

This could involve two key areas of investigation.
First, aligning EEG features with the initial VQ
encoding stage to influence how an image is funda-
mentally tokenized based on EEG. Second, and more
critically, developing cross-attention mechanisms to
directly inject multi-level EEG features into the to-
ken generation process . Such an approach would
allow the model to move beyond a single class la-
bel and leverage the full spectrum of information
present in the EEG signal—from low-level patterns
to high-level cognitive information—to guide image
synthesis with more nuance and control.
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