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Abstract

Both surprise-minimizing and surprise-maximizing (curiosity) objectives for unsu-
pervised reinforcement learning (RL) have been shown to be effective in different
environments, depending on the environment’s level of natural entropy. However,
neither method can perform well across all entropy regimes. In an effort to find
a single surprise-based method that will encourage emergent behaviors in any
environment, we propose an agent that can adapt its objective depending on the
entropy conditions in its environment by framing the choice as a multi-armed bandit
problem. We devise a novel intrinsic feedback signal for the bandit, which captures
the agent’s ability to control the entropy in its environment. We demonstrate that
such agents can learn to control entropy and exhibit emergent behaviors in both
high- and low-entropy regimes.

1 Introduction

Unsupervised reinforcement learning (URL), or learning without access to an extrinsic reward
function, has recently gained significant attention, often as a pretraining method [8] or as a reward
bonus in sparse reward domains [16, 14, 4]. A recent focus has been on developing objectives where
the agent has no access to extrinsic rewards and instead develops emergent behaviors from an intrinsic
motivation alone [11, 3, 9]. In this context, unsupervised RL holds the promise of being able to
develop natural-like intelligence, i.e. generally-capable agents that can be deployed to solve diverse
tasks across diverse environments. However, thus far, no single intrinsic motivation function has
succeeded in capturing the complexity of motivation that gives rise to intelligent systems.

Interestingly, two seemingly opposing methods, surprise-minimization [3] and surprise-maximization
(curiosity) [14], have been proposed as intrinsic motivations, with both methods performing well
depending on the properties of the environment in which they are deployed. In general, surprise-
minimizing methods [3] perform well in environments with naturally high entropy that can be reduced
through control, while curiosity-based methods [14] are better suited to environments where explicit
exploration is necessary to encounter novel information. However, both methods are known to possess
failure modes when exposed to the opposite entropy regime [17, 19].

In this work, we propose an adaptive mechanism to select between maximizing and minimizing
surprise in a given environment, based on the agent’s ability to exert control over its entropy conditions,
which we frame as a multi-armed bandit problem. We experimentally validate our surprise-adaptive
agent by demonstrating its ability to mirror a surprise-maximizing or -minimizing agent in didactic
low- and high-entropy environments, respectively. We demonstrate more diverse emergent behaviors,
as measured by the performance on extrinsic reward, than observed from the single-objective agents.
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2 Related work

There is a rich body of work in the field of unsupervised RL and intrinsic motivation, upon which
our method builds. The most widely explored class of intrinsic objectives is related to improving
exploration by encouraging novelty-seeking behaviors, otherwise known as "curiosity" methods [4,
14, 16]. Naive implementations of novelty-seeking agents, however, can be susceptible to random
noise [17]. Alternatively, intrinsic objectives which seek to minimize surprise in order to exert control
over the environment [6], have shown success in high-dimensional and high-entropy environments [3,
15]. Surprise-minimizing agents, however, can fall victim to the "dark room problem" [19], where
the agent cannot learn in areas of the state space without any natural entropy.

Two recent works make efforts towards combining surprise-minimization and maximization objectives
to avoid the degenerate cases of prior methods, either using a complex multi-agent paradigm [5] or
learned skills [21]. However, neither method uses an adaptive mechanism to control the objective,
instead using fixed-length windows to alternate between objectives. In contrast, our proposed method
can adapt to entropy conditions online.

Prior works have explored adaptivity in RL and found that it can be beneficial for learning [1, 13].
Similar to our work, Moskovitz et al. [13] uses a multi-armed bandit to control a learning hyper-
parameter. However, their method relies on extrinsic rewards for providing feedback to the bandit,
while our method relies only on intrinsic signals.

3 Background

Reinforcement learning. RL is a learning paradigm for sequential decision-making problems. In
RL, an agent acts in an environment from which it receives observations and rewards. Formally, this
process can be modelled as a Markov Decision Process (MDP) consisting of the tuple (S,A, T ,R, γ)
where S is the state space, A is the action space, T : S ×A× S → [0, 1] is the transition function,
R : S ×A → R is the reward function, and γ is the discount factor. The goal of the RL agent is to
find a policy πϕ that produces actions that maximize the expected sum of discounted future rewards.

πϕ(at|st) = argmaxϕEp(τ |ϕ)

[
T∑

t=0

γtr(st, at)

]
(1)

In our experiments, we use the value-based method DQN [12] to solve Equation 1.

Entropy and surprise. The notion of surprise derives from the optimization of the entropy of the
state marginal distribution under the policy πϕ(a|s), which we denote dπϕ(st). Given an estimate of
this state marginal distribution, pθt−1

(st), we can express an estimate of the sum of the entropies of
the state distribution across a trajectory (see Appendix A of [3] for a full derivation):

T∑
t=0

H(st) =
T∑

t=0

−Est∼dπϕ (st) [log d
πϕ(st)] ≤

T∑
t=0

Est∼dπϕ (st)

[
− log pθt−1(st)

]
(2)

Recalling Equation 1, we can see that minimizing the sum of the state entropy over a trajectory
(Equation 2) corresponds to an RL agent with a reward function given by:

rs-min(st, at) = log pθt(st+1) (3)

and maximizing this objective corresponds to an RL agent with a reward function given by:

rs-max(st, at) = − log pθt(st+1) (4)

Conceptually, this means that the agent is punished (or rewarded) if the observed state st is "surpris-
ing", that is, if it has high negative log-likelihood under the state marginal distribution estimated so
far. Hence, we refer to Equation 3 as surprise-minimization and Equation 4 as surprise-maximization.

4 Surprise-adaptive bandit

We propose a multi-armed bandit approach for selecting between minimizing or maximizing surprise.
Precisely, at the start of each episode, we select an arm from the bandit according to the UCB
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Algorithm 1 Surprise-adaptive agent

1: Initialize network parameters ϕ, replay buffer β, bandit parameters µ(0), and α(0) ∼ Bern(0.5)
2: Compute H(pθrand) by rolling out a random trajectory
3: for episode m = 0, 1 . . . ,M do
4: so ∼ p(s0), reset θ0, s̄0 = (s0, θ0, 0, α

(m)) ▷ construct initial augmented state
5: Set r(st, at) = (−1)α(m) − log pθt(st) ▷ set reward function
6: for t = 0, . . . , T do
7: Collect experience and update policy ϕ← RL(ϕ, β) ▷ See Berseth et al. [3]
8: end for
9: µ

(m+1)
i ← µ

(m)
i + 1

N(i) (fm − µ
(m)
i ) if α(m) = i else µ

(m)
i

10: α(m+1) ← UCB(µ(m+1)) ▷ Choose new α(m+1) based on UCB algorithm [10]
11: end for

algorithm [10], which determines if the agent will receive rewards according to Equation 3 or
Equation 4 during the upcoming episode. The bandit receives feedback fm on its selection at the end
of each episode. Algorithm 1 shows the full training procedure.

The key question is how to provide feedback to the bandit, given access only to intrinsic rewards. We
propose a feedback mechanism grounded in the observation that the general goal in both surprise
minimization and surprise maximization is for the agent to be able to affect a change in the level of
surprise it experiences. In a low-entropy environment, the agent can best affect change by increasing
entropy, and vice versa. Hence, the bandit should receive feedback that reflects this agency. We
propose using the absolute percent difference between the entropy of the state marginal distribution
at the end of the mth episode (p(m)

θT
) and that of a random agent in the same environment (pθrand ).

fm =

∣∣∣∣∣H(p
(m)
θT

)−H(pθrand)

H(pθrand)

∣∣∣∣∣ (5)

To instantiate the surprise-adaptive agent, we construct an augmented MDP out of the original Markov
process. Following Berseth et al. [3], this augmented MDP has a state space that includes the original
state st, as well as the sufficient statistics of the state marginal distribution θt. We additionally include
α(m) as defined above, which ensures the reward function remains Markovian.

5 Experiments and analysis

Experiments are conducted to validate the surprise-adaptive agent in both low- and high-entropy
environments. First, this analysis is performed over two didactic environments, each a minimal
version of its respective entropy regime. For the high-entropy environment, we select the Tetris
environment used in Berseth et al. [3] while for the low-entropy environment, we construct a maze
environment (Maze), in which the agent navigates to a goal. Next, we apply our agent to the MinAtar
[20] suite of tasks. Our method (S-Adapt) is compared against exclusively surprise-minimizing
(S-Min) and exclusively surprise-maximizing (S-Max) agents. All agents were trained using DQN
[12]. More details on environments and training can be found in Appendix A.

5.1 Adaptive entropy control

First, we consider how well our agents are able to control entropy across the two didactic environments.
As expected, the S-Min agent achieves the lowest entropy in both environments, while the S-Max
agent achieves the highest entropy in both environments ( Figures 1a and 1b). Neither of these agents
displays any adaptive behaviors. On the other hand, the S-Adapt agent can successfully replicate the
behavior of the single-objective agents in each of the environments in which they excel.

Next, we investigate controlling entropy across the MinAtar benchmarks shown in Figure 1(c-g).
Notably, these environments were not constructed with any particular entropy regime in mind. Even
so, in several environments, there appears to be a wide entropy landscape for optimization. In most
cases, the S-Adapt agent selects the correct objective for entropy control, i.e. that in which the
single-objective agent has the greatest effect on entropy as training iterations increase.
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Figure 1: Entropy of the state marginal distribution versus environment interactions (average over 3
seeds, with shaded 95% CI). The S-Adapt agent can successfully recreate the performance of the
S-Min agent and the S-Max agent in their respective didactic environments. Across the MinAtar
suite, the S-Adapt agent generally converges to the single-objective agent with the larger change in
entropy during training, i.e. learning the policy that can exert the most control over the environment.

The dynamics of the bandit are further illustrated in Figure 2, showing the average α parameter
throughout training. In most environments, the bandit converges towards a single objective within the
first half of the training period. In some environments, however, such as Space Invaders and Asterix,
a more complex interplay between the two objectives appears to be taking place, which could lead to
interesting and emergent behaviors not exhibited in either single-objective agent.
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Figure 2: Rolling average of α(m) (α(m) = 0/1 for max/min, respectively) during training (average
over 3 seeds, with shaded 95% CI). In Tetris and Breakout the bandit converges towards entropy
minimization, and in Maze, Seaquest and Freeway towards entropy maximization. In Asterix and
Space Invaders, the bandit appears to be oscillating between objectives.

5.2 Entropy control and emergent behaviors

Previous work [3] has argued that controlling entropy can lead to emergent behavior. The metric for
emergent behavior that we consider here is the average total extrinsic reward received throughout
evaluation episodes. Since we use soft resets (see [3]), in the case of the MinAtar environments where
deaths do not incur a reward penalty, we also normalize by the average number of deaths during the
episode. For comparison, we include an oracle agent Extrinsic, which is a DQN agent trained with
the extrinsic rewards, and an RND agent which is trained with RND rewards [4], a state-of-the-art
intrinsic exploration bonus1. For consistency, both agents are trained with soft resets.2

1Note that we use the CleanRL [7] implementation of RND which uses PPO [18] as the RL algorithm
2In the MinAtar environments, soft resets may lead to a lower level of maximum performance than typically

expected because the agent does not receive any signal upon reaching a terminal state.
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(d) Space Invaders
Figure 3: Performance on extrinsic rewards versus environment interactions in select environments
(average over 3 seeds, with shaded 95% CIs). The S-Adapt agent successfully inherits the emergent
behaviors of the S-Min and S-Max agents and even out-performs both agents in Space Invaders on
some seeds. This outperformance indicates that some emergent abilities can manifest with the dual
objectives, though the high variance across seeds indicates that these emergent behaviors are not
guaranteed. The RND agent performs slightly better than S-Adapt in Space Invaders but worse in the
other environments, demonstrating the benefit of the S-Adapt method vs. exploration-based rewards.

There is a distinct improvement in extrinsic rewards during training for the single-objective agents in
their respective didactic environments (Figure 3a, 3b). The S-Adapt agent successfully reproduces
these behaviors. Additionally, we observe emergent behaviors in some MinAtar environments, which
were not selected with entropy control in mind. In Breakout, both the S-Min agent and the S-Adapt
agent are able to meaningfully increase returns and in Space Invaders, the S-Adapt agent achieves
higher rewards compared to single objective agents. The S-Adapt agent matches or outperforms the
RND agent in the majority of environments. Extended results are available in Appendix B.

The ability for S-Adapt to achieve higher reward indicates that combinations of entropy control can
lead to stronger results than either single objective alone. As an example of the unique emergent
behavior that the S-Adapt agent can exhibit, we consider the example provided in Figure 4. Here, the
S-Adapt agent is able to clear more blocks than either the S-Min or S-Max agent alone.

(a) S-Min (b) S-Max (c) S-Adapt

Figure 4: Screenshots of exemplary trained agents immediately prior to death in the Space Invaders
environment. In this environment, the agent’s goal is to use bullets to clear a block of aliens, which
gradually moves toward the agent. Death occurs when an alien bullet strikes the agent or the agent
contacts the block of aliens. Generally, the S-Min agent does not move and quickly dies from an
enemy bullet. The S-Max agent learns to avoid enemy bullets but does not shoot at the block and
hence dies when the block reaches the agent. The S-Adapt agent learns to shoot at the block and
avoid enemy bullets long enough to clear a substantial number of aliens.

6 Conclusion

Our experiments demonstrate encouraging results for a surprise-adaptive agent. The S-Adapt agent
can select the objective with the more controllable landscape across both didactic environments and
most MinAtar environments. Moreover, the S-Adapt agent inherits the emergent behaviors of the
single-objective agents and even shows some unique emergent behaviors in certain instances due to
the complex and adaptive combination of entropy objectives. Further work is needed to understand
exactly under what conditions such emergent behaviors can manifest, and how to elicit them more
reliably. Moreover, an interesting extension to this work would be to apply an adaptive agent in the
continual learning setting, where adaptation can occur at any time, not only at episode end.
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A Environment and Training Details

All agents, except RND, were trained using DQN [12]. For all agents, we use soft resets as described
in [3] which allow the agent to continue interacting in the environment after early termination, up to
a static episode length, by resetting to an initial state. For the S-Adapt agent, we use the original
UCB1 algorithm (i.e. with exploration coefficient

√
2). In all environments, RND was trained using

the default hyperparameters and implementation from CleanRL [7].

A.1 Tetris

We take the Tetris environment directly from the implementation provided by the authors of [3]. In
this environment, the agent receives 0 at all steps, except for a losing step which results in a -100
reward. We use an episode length of 500 for soft resets.

Following [3], we train all agents with a learning rate of 0.0003, a discount rate of 0.99, and a batch
size of 256. Environment observations are flattened before being fed into a three-layer MLP with
hidden dimensions 128, 64, and 32. We use a replay buffer size of 1M. We trained the agents for 7M
environment interactions.

The state marginal distribution is modeled as a collection of independent Bernoulli distributions.

A.2 Maze

We constructed a custom maze environment using the Griddly platform [2]. A pixel-rendering of the
environment used in our experiments can be found in Figure 5. The actual state provided to the agent
is a 16x14 entity map, where each type of cell in the grid (i.e. Wall, Agent, etc) is assigned a unique
numeric value. For task rewards shown in 3b, the agent receives 0 at all steps, except for when it
reaches the goal, where it receives a +1 reward. We use an episode length of 250 for soft resets.

Figure 5: Pixel-rendering of the Maze environment

Following [3], we train all agents in Maze with a learning rate of 0.0003, a discount rate of 0.99, and
a batch size of 256. Environment observations are flattened before being fed into a three-layer MLP
with hidden dimensions 128, 64, and 32. We use a replay buffer size of 100k. We trained the agents
for 5M environment interactions.

The state marginal distribution is modeled as an isotropic Gaussian distribution.

A.3 MinAtar

In the MinAtar environments, we select the same hyperparameters and architecture used in [20],
except that we perform only 1 training update per 10 environment interactions. We use an episode
length of 500 for soft resets.

The state marginal distribution is modeled as a collection of independent Bernoulli distributions.
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B Additional Results

B.1 MinAtar

In this section, we provide the performance for all MinAtar environments in terms of total extrinsic
rewards (normalized by number of deaths).
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Figure 6: Performance versus environment interactions for all tasks in the MinAtar suite. Some
environments do not have a strong entropy landscape for the surprise-based agents to optimize
(i.e. Seaquest and Asterix). RND performs well in some MinAtar environments where maximizing
entropy is correlated with higher rewards (i.e. Freeway), but performs poorly in environments where
minimizing entropy is correlated with higher rewards (i.e. Breakout).
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