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Abstract

In some causal inference scenarios, the treatment variable is measured inaccurately, for in-
stance in epidemiology or econometrics. Failure to correct for the effect of this measurement
error can lead to biased causal effect estimates. Previous research has not studied methods
that address this issue from a causal viewpoint while allowing for complex nonlinear depen-
dencies and without assuming access to side information. For such a scenario, this study
proposes a model that assumes a continuous treatment variable that is inaccurately mea-
sured. Building on existing results for measurement error models, we prove that our model’s
causal effect estimates are identifiable, even without side information and knowledge of the
measurement error variance. Our method relies on a deep latent variable model in which
Gaussian conditionals are parameterized by neural networks, and we develop an amortized
importance-weighted variational objective for training the model. Empirical results demon-
strate the method’s good performance with unknown measurement error. More broadly, our
work extends the range of applications in which reliable causal inference can be conducted.

1 Introduction

Causal inference deals with how a treatment variable X causally affects an outcome Y. This is different
from just estimating statistical dependencies from observational data, because even when we know that X
causes Y and not the other way around, the statistical relationship could be affected by confounders Z,
i.e., common causes of X and Y. Knowing the causal relationships is crucial in fields that seek to make
interventions, e.g., medicine or economics (Pearl, 2009} [Peters et al. 2017, Imbens & Rubin, [2015).

Causal inference may be complicated by variables being subject to noise, e.g., inaccurate measurement,
clerical error, or self-reporting (often called misclassification for categorical variables). If not accounted for,
it is well-known that this error can bias statistical and causal estimates in a fairly arbitrary manner, and
consequently, measurement error models have been widely studied to address this bias (Carroll et al., [2006;
Buonaccorsi, [2010; [Schennachl, 2016} [2020)).

In this paper, we assume the treatment X and outcome Y to be continuous, while the confounders Z can be
categorical, discrete or continuous. (The case of a binary or categorical X is briefly discussed in Appendix
) While measurement error may occur in any of the variables, we explicitly model it only in X. We
implicitly also include measurement error in Y, but in our model it is indistinguishable from the inherent
noise in the true value of Y. The practical impact of this is limited, since the measurement error for Y does
not bias regression due to its zero-mean additive nature that we assume. On the other hand, measurement
error in Z could be relevant (Miles et al., 2018)), but it is restricted outside the scope of this work.
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Figure 1: Causal graph for our proposed model. The observed variables X (noisy treatment), Y (ef-
fect/outcome), and Z (confounders) are shaded to distinguish them from the hidden variable X* (true
treatment).

The causal graph expressing our assumptions is depicted in Figure An example reflecting this scenario
in the context of healthcare is the effect of blood pressure on some continuous health outcome Y, such as
arterial stiffness as measured by pulse wave velocity, or kidney function as measured by glomerular filtration
rate (GFR) or by the concentration of albumin in urine. We assume X is a single measurement of blood
pressure, and thus it is highly subject to instantaneous variation, which plays the role of the measurement
error. Some additional error probably also results from measurement apparatus inaccuracy. Here, the blood
pressure that actually matters in terms of health outcomes (and whose effects we are interested in) is a longer
term sliding window average, which is unobserved and which we denote by the latent variable X*.

To enable statistical identifiability, we assume the measurement error to be additive, zero-mean and indepen-
dent from the other variables. These are a standard set of assumptions in the measurement error literature,
called strongly classical measurement error. Non-classical measurement error is also widely studied and well
documented to occur in practice (see [Schennach| (2016)) for a review), but it is restricted outside the scope of
this work. However, we believe our modeling and inference methodology is general enough that extensions
to these cases are fairly straightforward. Figure [2] presents a synthetic example of the skewing effect of
measurement error in the treatment. While it is often believed that this type of measurement error only
introduces attenuating bias to a naive estimate not accounting for the error (Yi et al., |2021)), this example
demonstrates that on the contrary, amplification is also possible. Here attenuation happens only around
X* =0, but for small and large X* the naive estimate amplifies the strength of the dependency.

The measurement error problem is often addressed by making additional measurements to enable model
identification. The information obtained in this way could be a known measurement error variance, or so-
called side information, such as repeated measurements, instrumental variables, or a gold-standard sample
of accurate measurements (Yi et all 2021)). However, we study the scenario where none of this is available,
and we must rely on assumptions that could reasonably be made a priori, such as the error being additive
and having a zero mean. Further, we study the scenario where the dependencies between the variables can
be complex and nonlinear, and an observed confounder is present. There is a gap in the literature for causal
inference when all of these challenging aspects are present.

To address this gap, our paper provides a solution by inferring a structural causal model (SCM) from ob-
servational data using deep latent variable modeling and importance weighted variational inference (Zhang
et all [2019). The inferred SCM enables the computation of any interventional and counterfactual distri-
butions on the variables in the model, but to evaluate the fit, we consider the accuracy of the estimation
of the following quantities: 1) the function uy (z,2*) = E[Y|z,do(x*)], 2) the noise variances 72 and o2,
and 3) the function p(y|do(x*)), which maps z* to the density of Y|do(z*). The combination of 1) and 2)
also evaluates the estimation accuracy of p(y|z, do(z*)), since with Z satisfying the backdoor criterion and
by assuming a conditionally Gaussian Y, we have p(y|z, do(z*)) = p(y|z,2*) = N (y|uy (z,2%),02). These
parameters/distributions were chosen because they are either model parameters, reflect probable use cases
of the model, or both. To facilitate practical computation, we assume conditionally Gaussian variables.
However, we emphasize that the purpose of this is to simplify computations, and the identification of the
model does not rely on this assumption, see Section for the details. We leave up to future work to relax
it by using flexible probability density estimators such as normalizing flows. We evaluate our algorithm on
a wide variety of synthetic datasets, as well as semi-synthetic data.
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Figure 2: Comparison of our method (CEME) against a naive method which does not account for measure-
ment error in the treatment X*. The accurate values of X* are hidden from both methods. Ground truth is
the true mean function of the data generating process. The same data are displayed both with and without
measurement error in X*. It can be seen that our method “CEME” fits the error-free data (even if they are
not seen by any method) whereas the “naive” method fits the data with error and cannot estimate the true
regression function accurately. A similar example is presented by [Zhu et al| (2022).

There is previous literature on all of the challenges tackled in this work, although not previously studied
all together. For an overview of the literature on the bias introduced by measurement error in causal
estimation, see |[Yi et al.| (2021). This literature includes qualitative analysis by encoding assumptions of
the error mechanism into a causal graph (Hernan & Robins| 2021)), and quantitative analysis of noise in
the treatment (Zhu et al., |2022)), outcome (Shu & Yi, [2019), confounders (Pearl, |2012; [Miles et al., 2018))
and mediators (Valeri & Vanderweele, |2014). However, most of this literature focuses on simple parametric
models, such as the linear model, and the identifiability of the causal effect is achieved through a fully known
error mechanism or side information, such as repeated measurements, instrumental variables, or a gold
standard sample of accurate measurements. Exceptions include [Miles et al.| (2018]) which studies confounder
measurement error with no side information and a semiparametric model, Hu et al.| (2022]) which similarly
to us uses deep latent variable models and variational inference, but assumes known measurement error
variance, and Zhu et al.| (2022)) which studies treatment measurement error with a nonparametric model
and notably even allowing for unobserved confounding, but utilizes both repeated measurements and an
instrumental variable as side information. [Schennach & Hu (2013]) use non-parametric sieve estimation with
no side information, without considering covariates Z that could increase complexity significantly. We take
them into account not only to increase the accuracy of predictions, but crucially to allow adjusting for
confounders to obtain causal effects. Concurrently to us, |Gao et al| (2024)) study a similar model to ours
and also use variational inference. However, they do not include a theoretical analysis of identifiability as
we do. See Appendix [A] for additional references to identifiability results on models related to ours.

To summarize, this work contributes to the literature by successfully inferring causal effects in a setting with
a novel combination of challenging aspects: measurement error, no side information, no knowledge of the
measurement error variance, and complex nonlinear dependencies including dependency on confounders that
must be adjusted for in order to estimate the causal effect. To show the identifiability of our model, we extend
a previous result by [Schennach & Hu| (2013) to allow for confounders/covariates, and adjust it to the specific
assumptions of our model. Finally, this work contributes by bridging different disciplines: it highlights that
measurement error models constitute SCMs and uses machine learning, specifically variational inference, as
a foundation for inferring causal effects.
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2 Methods

2.1 Models for causal estimation

For causal inference, this study uses the structural causal model (SCM) framework (Pearl, 2009). A SCM
consists of the following components: 1) A list of endogenous random variables V = (Vi,V,,..., Vy).
2) A directed acyclic graph G = (V,E) called the causal graph, whose vertices are the variables V
and whose edges F express causal effects between variables. 3) A list of exogenous random variables
U = (Uy,Us,...,Uy) that represent external noise and are mutually independent. 4) A list of deter-
ministic functions F' = (f1, fa,..., fn), called the causal mechanisms, such that for ¢ = 1,..., N we have
Vi = fi(PA;,U;), where PA,; are the random variables that are the parents of V; in G. This construct allows
not only the modeling of observational data but also the effects of interventions. An intervention on variable
V; in an SCM is defined as a replacement of the mechanism f; with another mechanism f;. The simplest
case is a hard intervention, denoted by do(V; = v;), where f; simply assigns a constant value v; to V;. When
estimating any causal quantities from data, we assume the data to be i.i.d. according to the SCM. An
intervention applied on one individual or unit (each corresponding to a data point) does not affect others.
The properties of consistency and not having multiple versions of an intervention (Hernan & Robins)| [2021])
follow trivially from the definition of an SCM.

To model measurement error, we use an SCM with the causal graph G depicted in Figure[I} Note that the
causal graph is also a Bayesian network that implies conditional independencies according to d-separation
(Bishop, [2006]). The variables in the graph are the confounders/covariates Z, the accurate treatment value
X* which is unobserved, the noisy measurement of the treatment, denoted by X, and the noisy value of the
outcome, denoted by Y. Except for X*, the other variables are observed. The SCM with independent noise
terms and no hidden confounders implies the common assumption of causal sufficiency. Therefore, when
the SCM is identified, any interventional or counterfactual distributions can be computed. These include
e.g. Y.+, which denotes the distribution of ¥ after intervening with do(X* = «*) (alternatively denoted by
Y|do(X* = z*)), or the distribution of Y+ — Y+, which compares the effects of two treatment values zj and
x5, or the distribution of Y,«|Y =y, Z = z, which denotes the outcome that would have been obtained from
intervention do(X* = z*) when in reality no intervention was made and the values Y = y and Z = z were
observed.

This paper combines themes of statistical and causal estimation, which use related but different definitions
of identifiability. However, we use everywhere the same unified definition:

Definition 1 (Identifiability of an estimand f). Let {P]g, L Yeco be a family of joint probability distributions
of the observed variables B and latent variables L, parameterized by 6. Denote by Pg, the corresponding
marginal distribution for B. Then an estimand f(0) (where f is a deterministic function) is identifiable if
for every 6,0 € © we have

PY =Py = f(0) = f(0).

Here f represents anything one is interested in estimating from data (including but not limited to causal
parameters), and as a special case when f(6) = 6, we get the definition of model identifiability. Intuitively,
these mean that knowing the distribution of the observed variables, for example by having estimated it with
an infinite amount of i.i.d. samples, the estimand f(#) (or simply 6) can be uniquely determined. In causal
inference literature based on SCMs, identifiability often means that an interventional distribution can be
computed from infinite observational data and the causal graph structure (Peters et al.,|2017). In contrast,
with our definition this computation can additionally use any assumptions made about the underlying SCM.

Because X* is hidden, the SCM or any causal queries that consider the effects of an intervention do(X™* = z*)
are not identifiable without further assumptions, as the relationship between X* and the other variables can
not be estimated. Therefore, for identification, we rely on additional assumptions on the measurement error
mechanism X = fx(X*,Ux) such that the SCM becomes statistically identifiable. In the literature, much
attention has been devoted to making the model identifiable using a known error variance or side information.
However, we instead rely on the assumptions of independence and zero-mean additive errors (Schennach &
Huj, 2013)): First, we assume that the measurement error is strongly classical, i.e., the observed treatment X
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is generated by a causal mechanism
X =X"+AX, (1)

where the measurement error AX, which acts as the exogenous variable Uy, is independent of all other
variables except X and has a zero mean. Similarly, we assume for the outcome Y that

Y = uy(Z,X*) + AY, (2)

where the noise AY is the exogenous variable Uy independent of all other variables except Y and has a zero
mean. The conditional mean of YV, uy (z,2*) = E[Y|Z = z, X* = 2*], is a deterministic, possibly nonlinear
function that is continuously differentiable everywhere with respect to z*. (Note that by uppercase letters we
denote random variables and by lowercase letters their specific realized values. Thus py (z,z*) refers to the
value of py with argument values z and z*, while py (Z, X*) denotes the random variable that is obtained
by applying py to the random variables Z and X*.) Although not necessary for identifiability (see Section
for details), we further assume Gaussian distributions to facilitate practical computations, yielding

X*|Z ~ N(ux-(2),0%-(2)) (3)
AX ~ N(0,72), (4)
AY ~ N(0,0?), (5)

We assume that X, Y, and X* are real-valued scalars, although multivariate extensions are relatively straight-
forward. The covariate Z can be a combination of categorical, discrete, or continuous variables, but the other
variables are assumed to be continuous. Consequently, the learnable parameters are the variance parameters
72 and o2 as well as the (deterministic) functions px+, ox+ and py, which are all parameterized by neural
networks to allow flexible dependencies between the variables. The zero-mean assumptions in Equations
and (j5)) are made to achieve statistical identifiability. Otherwise, for any non-zero mean pay, we could obtain
a new observationally equivalent model by using p} (z,2*) = py (z,2*) — pay. Similarly, for any non-zero
mean pax, we could obtain a new observationally equivalent model by using p'y.(z) = ux=(z) — pax and
py (2,2%) = py (2,2% + pax).

Finally, we define the following model variants that we evaluate against each other:

CEME: Causal Effect estimation with Measurement Error. This is the model defined in Equations f
(5). The mean and standard deviation functions ux«(Z2), ox+(Z) and py (Z, X*) are fully connected neural
networks.

CEME: Causal Effect estimation with Measurement Error with known noise. This is otherwise the same
as CEME, except that the variance of the measurement error 72 is assumed to be known.

Oracle: This method assumes the model in Figure where the true treatment X* is observed and is used
directly for fitting the model. Hence, this model provides a loose upper bound on the performance that
can be achieved by the models CEME and CEME™ which only observe the noisy treatment X. The model
consists of only one neural network, parametrizing uy (Z, X*).

Naive: This is the same as Oracle, except that it naively uses the observed noisy treatment X instead of
the true treatment X* when estimating the causal effect (model depicted in Figure . Hence, it provides
a baseline that corresponds to the usual approach of neglecting the measurement error in causal estimation.
The model consists of only one neural network, parametrizing py (Z, X).

To summarize the roles of the methods, CEME is our proposed method, CEME™T enables comparison with
the case of a known measurement error variance 72, Oracle is a loose upper bound for performance, and
Naive is a baseline. For inference, CEME and CEME™ use amortized variational inference to estimate the
latent variable (described in the next section). In contrast, Oracle and Naive, which do not have latent
variables, are trained using gradient descent with mean squared error (MSE) loss for predicting Y.

2.2 Inference

Amortized variational inference (AVI) (Zhang et all 2019) can be used to estimate the parameters of deep
latent variable models (LVMs). The method includes one or more latent variables (true treatment X* in our
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(a) Causal graph assumed by Oracle, which has ac- (b) Causal graph (incorrectly) assumed by the
cess to the true treatment X ™, unlike the other meth- method Naive.
ods.

model), observed variables whose distributions are modeled (X and Y in our case), and optionally observed
variables whose distributions are not modeled but on which the model is conditioned (the covariates Z in
this paper). We use this method to infer the SCM, after which causal effect estimates of interest can be
calculated from the model parameters by Monte Carlo sampling over observed covariates Z.

For the distribution p(X*, X,Y|Z), the method requires defining a generative model (also called decoder)
po(x*, z,y|z), where 6 denotes the parameters. In this paper, we use the CEME model defined in Equations
(1)-(5) with 6 consisting of the standard deviations 7 and ¢ as well as the functions px«(z), ox+(z) and
wy (z,2*), which are modeled as fully connected neural networks. (Thus in terms of the practical computa-
tions, the parameters are not the functions itself but their respective neural network weights.)

AVT also requires modeling the posterior p(X*|Z, X,Y) with a so-called encoder, for which we use
qo(x*|z, 2, y) = N(x*|pq(z, z,y;0),04(2, z,y; ¢)) , where ¢ denotes the encoder parameters, which are the
functions pq(z, z,y; @) and o4(2, x,y; @), or alternatively, the weights of the two fully connected neural net-
works that model these functions.

The parameters 6 and ¢ are optimized with stochastic gradient descent using the negative evidence lower
bound (ELBO, defined in the next section) as the loss function. This approach can be used for LVMs that
generalize the variational autoencoder (VAE) to more than just one hidden and one observed node (Kingma
& Welling, 2019) (CEME/CEMET uses the Bayesian network in Figure [1)).

2.2.1 Model training

As our objective function, we use the importance weighted ELBO L, (Burda et all [2016), which is a lower
bound for the conditional log-likelihood pg(z, y|z):

N
logPG(X,y|Z) = Zlogpg(l'“ylp’l) (6)
1=1
N K T
1 pe(l‘f '7xivyi|z’i)
=D gy, | (7)
=1 K j=1 q¢(‘ri,j|zia~riayi)_
2SR, () [log L 30 Pt vl 9
— qel--- * ] . ]
=1 K j=1 q¢(xi,j|zzaxzayz)_
= b )

where the expectations are with respect to q¢($;j|zi,xi,yi). For each data point 4, there are K i.i.d.
realizations of the latent variable x*, indexed by j. The inequality in is obtained by applying Jensen’s
inequality. The standard ELBO corresponds to K = 1. For practical optimization, the expectation in
Equation is estimated by sampling the K realizations of the latent variable z7 ; once per data point .

We use the importance weighted ELBO instead of the standard ELBO because the latter places a heavy
penalty on posterior samples not explained by the decoder, which forces a bias on the decoder to com-
pensate for a misspecified encoder (Kingma & Welling, 2019). Increasing the number of importance sam-
ples alleviates this effect, and in the limit of infinite samples, decouples the optimization of the decoder
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from that of the encoder. To calculate the gradient of the ELBO, it is standard to use the reparame-
terization trick, meaning that we sample xf,j\zi,xi,yi ~ q¢(a:;-*7j|zi,mi,yi) as xj; = €- 0q(2is @i Yi; @) +
tq(zi, i, yis @), where € follows the standard normal distribution. The importance-weighted ELBO ob-
jective is optimized using Adam gradient descent. Further training details are available in Appendix
Bl The algorithm was implemented in PyTorch, with code available for replicating the experiments at

https://github.com/antti-pollanen/ci_noisy_treatment.

2.3 Identifiability analysis

2.3.1 Identifiability of causal estimation with a noisy treatment

The identifiability proof of the CEME model builds closely on an earlier result by [Schennach & Hul (2013]),
of which we provide an overview here. It is an identifiability result on a slightly different measurement error
model, which differs from ours in that it does not include the covariate Z, but on the other hand it is more
general in that it does not assume that X*, AX and AY are (conditionally) Gaussian. The exact form of
the result is included in Appendix [C] The model includes scalar real-valued random variables Y, X*, X, AX
and AY related via

Y=¢g(X")+AY and X =X"+4+AX, (10)

where only X and Y are observed. We assume that 1) X* AX and AY are mutually independent, 2)
E[AX] = E[AY] = 0, and 3) some fairly mild regularity conditions. It is shown by |Schennach & Hu| (2013)
that this model is identifiable if the function g in Equation is not of the form

g(z*) = a+bln(e™ +d), (11)

and even if it is, nonidentifiability requires z* to have a specific distribution, e.g. a Gaussian when g is linear.
From this result, we see that the CEME model assumptions of conditionally Gaussian variables (made to
simplify computation) do not help with identification, as it brings the model towards the non-identifiable
special cases. With these preliminaries, we are now ready to prove the following proposition that establishes
the identifiability of the CEME model:

Proposition 1. The measurement error model defined in Equations 7 is model identifiable if 1) for
every z, uy(z,2*) is continuously differentiable everywhere as a function of x*, 2) for every z, the set
x = {z*: %uy(z,x*) = 0} has at most a finite number of elements, and 3) there exists z for which
wy (z,x*) is not linear in x* (i.e. of the form py (z*) = ax*™ +b).

Proof. The full proof is provided in Appendix but its outline is the following: First, we show that a
restricted version of our model where z can only take one value is identifiable as long as uy (z,2*) is not
linear in z*. This follows from the identifiability theorem by |Schennach & Hul(2013) because its assumptions
are satisfied by the restricted version of our model, together with the assumptions of Proposition

Second, we show the identifiability of our full model by looking separately at the values of z for which
py (z,2*) is or is not linear in z*. For the model conditioned on the latter type of z (nonlinear cases),
identifiability was shown in the first part of the proof. For the remaining linear cases, we use the fact that
we already identified 7 and o with the nonlinear cases, which results in a linear-Gaussian model with known
errors, which is known to be identifiable (see e.g. Equations (4.9-4.17) in|Gustafson| (2003)). Thus the entire
model is identified. O

We note that assumption 1) in Proposition [1] is satisfied by the neural networks used in this work, as
they are continuously differentiable due to them using the extended linear unit (ELU) activation function.
Assumption 2) is true in general and does not hold only in the special case where the derivative of the neural
network py (z,z*) is zero with respect to z* in infinitely many points, which is possible only if the function
is constant on an interval. Breaking assumption 3) would require the network py (z,2*) to be linear in z*
for every z. Even when this is the case, we still hypothesize that the model is identifiable as long as there are
multiple values of the linear slope for different z. This is suggested by solving a system of equations similar
to |Gustafson| (2003), which appears to have one or at most two distinct solutions. On another hand, the
proof of Proposition (1| shows that if there was no z for which py (z,z) was linear in x, we would not need
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Figure 4: Three realizations of synthetic datasets generated from a Gaussian process with 3000 data points
(black dots). The figures show the covariate Z (x-axis), the noiseless versions of the treatment X* (y-axis),
and the outcome E[Y|Z, X*| (heatmap).

to assume any restrictions on how 7 and ¢ depend on Z, and we surmise that even when there are such z,
milder restrictions than constant 7 and o would be sufficient. However, we leave a detailed investigation of
these cases for future work.

3 Experiments and results

We conducted two experiments: One with datasets drawn from Gaussian processes, where a large number of
datasets is used to establish the robustness of our results. Second, we use an augmented real-world dataset
on the relationship between years of education and wages, to study the effect of complex real-world patterns
for which the assumptions of our model do not hold exactly.

3.1 Synthetic experiment

3.1.1 Synthetic datasets from Gaussian processes

For the synthetic experiment, we generate datasets whose underlying distribution follows the CEME model
with all variables being scalars. Gaussian processes (GPs) are used, see Rasmussen & Williams| (2006) for
an introduction. In brief, a random function f(t) for ¢ € R™ is a Gaussian process if f(t1), ..., f(tx) is jointly
Gaussian for any k € N and any ¢1, ..., tx € R™. They are denoted by GP(u, K) and characterized by a mean
function p(t;) and kernel function K (¢;,t;), by which one obtains the mean vector and covariance matrix for
the jointly Gaussian f(t1), ..., f(tx) (for any k € N and any ¢y, ...,t; € R™). In this study, the mean functions
u(t) are constant. The data generation proceeds according to Algorithm For the GPs, we use the squared

Algorithm 1 Generation of synthetic datasets using GPs

1: For ¢ € {1,.., N}, sample z; from N(0, 1).

Sample px- from GP(0,K) and g~ ! o ox« from GP(1,K). Here o denotes function composition and
g(z) = log(1 + exp(%)) is used to ensure the positivity of ox=.

For i € {1,.., N}, sample z} from N(px+(2;), 0% (2:))-

Sample py from GP((0,0), K).

Set 7 = Ly/Var[(x7, ..., x% )], where Var denotes unbiased sample variance and L is a constant.

Set 0 = Ly/Var[(py (21, 27), ..., py (2n, 2))]-

For i € {1,.., N}, sample z; from N(z},7?)).

For i € {1,.., N}, sample y; from N(uy (2i,z}),0?).

b

@ NP oW

exponential kernel K (uj,us) = aexp (— |“1272‘2|2) with & = 1 and lengthscale [ = 2 and where | . | denotes

the Euclidean norm. Note that for ux«(z) and ox«(z) the corresponding GPs are over R while for py (z, 2*)
the GP is over R2. To avoid excessive computational cost, the functions pux+(2), ox«(2) and py (z,z*) are



Published in Transactions on Machine Learning Research (09/2024)

only approximations of true samples from the GPs (steps 2 and 4 in Algorithm, as described in Appendix
along with other experiment details. Three datasets generated in this manner are shown in Figure [4]

The constant L is varied to obtain datasets with different levels of noise, which are either L = 0.1 (small
noise), L = 0.2 (medium noise), or L = 0.4 (large noise). The different training dataset sizes used are 1000,
4000, and 16000 data points. The test data (used for evaluating the models) consist of 20000 data points. For
each combination of noise level and training dataset size, we generate 200 different datasets (with different
underlying distributions) using Algorithm For all of these, we fit each model (CEME, CEME™, Naive and
Oracle) 6 times, and for the results pick the run with the best score on a separate validation dataset (distinct
from the test dataset). All models use the same neural network architecture to facilitate a fair comparison,
i.e. three fully connected hidden layers with 20 nodes each and the ELU activation function.

Error in E[y|z, do(x )] estimation
B CEME @ CEME* [ Oracle [ Naive

noise level: 10% noise level: 20% noise level: 40%
¢ * s
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Figure 5: Error in E[y|z, do(z*)] estimation in the synthetic experiment. In addition to data for Naive,
missing from the figure are some outliers for CEME and CEME™ for noise level 40% and training dataset
size 1000. Key observations are that 1) the proposed CEME/CEME™ methods offer clear benefit over Naive
that does not account for measurement error, 2) CEME and CEME™ seem to converge with increasing
training set size and compare relatively well with the loose upper bound Oracle, and 3) CEME handles
unknown measurement error variance well, since CEME™ that knows it, performs only slightly better.

3.1.2 Results

The accuracy of the estimation of uy (z,2*) = E[Y|z,do(x*)] is reported in Figure [5| using the root mean
squared error

N
VMSE = ZMY& zi, 7)) — py (20, 27))?,
=1

where 6 denotes the estimate and the sum is over the N = 20000 data points in the test set. The accuracy
of the estimation of o is reported in Figure @ which uses the metric relative error (o9 — 0)/0, where oy is
the estimate and o the true value. The relative error in the estimation of the measurement error noise 7 is
reported in Figure [8|in the same way. The accuracy in the estimation of p(y|do(z*)) is presented in Figure
[ and assessed using Average Interventional Distance (AID) [Rissanen & Marttinen| (2021)):

AID = /p(ﬂc*)/ | po(yldo(x™)) — p(yldo(z”)) | dydx* (12)

Here, both the estimated pg(y|do(x*)) and the ground truth p(y|do(x*)) are obtained using the adjustment
formula p(y|do(z*)) = [ p(y|a*,z)p(z)dz as Z is assumed to satisfy the backdoor criterion m m




Published in Transactions on Machine Learning Research (09/2024)

Estimation of AY standard deviation
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Figure 6: Error in estimation of AY standard deviation in the synthetic experiment. In addition to data
for Naive, missing from the figure are 4 outliers for CEME, 1000 training data and 10% noise as well as 2
outliers for CEME, 4000 training data and 10% noise. Key observations are that 1) the estimates seem to
converge for the proposed CEME/CEME™ but not for the baseline Naive, and 2) all the methods tend to
overestimate, rather than underestimate, the standard deviation of AY.

All integrals are estimated using Monte Carlo integration, using test data as a sample for Z and X*, and
sampling Y uniformly, with the exception that for the ground truth p(y|do(z*)) we integrate over z using
the trapezoidal rule.

In these figures, the data are represented as boxplots, where the box corresponds to the interquantile range,
and the median is represented as a horizontal bar. The whiskers extend to the furthest point within their
maximum length, which is 1.5 times the interquantile range. Outliers beyond the whiskers are represented
as singular points. Each data point corresponds to a separate data-generating distribution and the best of
six runs based on validation loss.

Overall the CEME algorithms offer significant benefit over not taking measurement error into account at all
(algorithm Naive), both in terms of estimating individual causal effect (Figures [5|and @, and average causal
effect (Figure . In addition, the results suggest convergence of estimates when increasing dataset size, as
expected from the theoretical identifiability analysis. On the other hand, even with knowledge of the true
standard deviation (SD) of AX, CEME™ does not achieve performance comparable to that of Oracle. This
is to be expected as Oracle sees accurate values of X* for individual data points, which cannot be identified
even in principle from information available to CEME and CEMET.

Interestingly, the performance improvement from knowing the true SD of AX (with CEME™) over learning
it (with CEME) seems relatively modest. This suggests that identifiability is generally not an issue for
CEME, even though the data distributions could be arbitrarily close to the non-identifiable linear-Gaussian
case. We also note that all algorithms almost always overestimate the SD of AY', which could be explained
by an imperfect regression fit. Furthermore, as detailed in Section the training of CEME and CEME™*
is initialized such that they try to predict X* close to X, which could be another cause for this and also
explain why CEME tends to underestimate the SD of AX (Figure [g).

3.2 Experiment with education-wage data

We also test CEME with semisynthetic data based on a dataset curated by (1995) from data from the
National Longitudinal Survey of Young Men (NLSYM), conducted between years 1966 and 1981. The items
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Figure 7: Error in estimation of p(y|do(z*)) in the

synthetic experiment. Besides data for Naive, missing

from the figure are 3 outliers for CEME and 1 for CEME™, both for 40% noise and 1000 training data. This
figure tells a similar story to FigureEl, except that the differences between the methods are more pronounced.

in the dataset correspond to persons whose number of education years is used as treatment X*. As outcome
Y, we use the logarithm of the wage. The relationship between these is also studied in the original paper
(Card}, [1995). The dataset also contains multiple covariates, of which this experiment uses a total of 23.

To evaluate our methods, we need to know the
ground truth values of the parameters that we es-
timate. Having access to real observed data alone
does not permit this, which is why we augment the
real data with synthetic variables that mimic the
real ones. The known data generating processes of
these synthetic variables enable us to compute the
ground truth. To this end, we first train a neural
network to predict the outcome, and then modify
the dataset by replacing the outcome values with the
neural network predictions to which Gaussian noise
is added. The noisy treatment X is obtained by
adding Gaussian noise to X*. Six separate datasets
are created, each corresponding to a different level
of SD of AX. The levels are proportional to the SD
of X*, and are 0%, 20%, 40%, 60%, 80% and 100%.
The choice of education years as treatment was in
part motivated by the need to know the true treat-
ment accurately to obtain the ground truth causal
effect. The CEME/CEME™ models are misspeci-
fied for this dataset because the true treatment, the
number of education years, is ordinal, instead of con-
ditionally Gaussian, as the models assume. This
presents an opportunity to evaluate the sensitivity
cation.

Estimation of AX standard deviation

40% - training set size --- ground truth
I 1000
[ 4000 .

20% " mem 16000

-20%

relative error

—-40%

—60% " '

10% 20% 40%
noise level

Figure 8: Error in estimation of AX standard devia-
tion by CEME in the synthetic experiment. The es-

timates seem to converge with increasing training set
size.

of the CEME/CEME™" algorithms to model misspecifi-
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Figure 9: Error in causal effect estimation in the education-wage data experiment. The proposed
CEME/CEME™ methods offer improvement compared to the baseline Naive, but not as much as in the
synthetic experiment. A likely reason for this is that CEME/CEMET incorrectly assume a continuous X*,
unlike Oracle and Naive. Moreover, the difference between CEME and CEMET is larger than in the
synthetic case.

We run this experiment for the same four algorithms as in the synthetic experiment, defined in Sec-
tion 2.1 with three hidden layers of width 26 and the ELU activation function. The training proce-
dure and model structures are the same as in Section [3.1] except that now Z is multivariate and hy-
perparameters are different. Details on the experiment and how the semisynthetic datasets were cre-
ated are available in Appendix The full data of 2990 points is split into 72% of training data, 8%
of validation data (used for learning rate annealing and early stopping) and 20% of test data (used
for evaluating the models), all amounts rounded to the nearest integer. The code used for data pre-
processing and running the experiment is available at https://github.com/antti-pollanen/ci_noisy
_treatment.

3.2.1 Results

The main results of the experiment with education-wage data are presented in Figures [9a] [0b] [10a] and
[I0D] They use the same metrics as the corresponding results for the synthetic data experiment. The points
represent median values and the bands represent interquantile ranges. Each data point corresponds to one
training run of the model, and the x-axis in each figure indicates which dataset was used (they differ only
in the SD of the augmented noise AX). There is no entry for CEME™ for the 0% AX SD dataset, because
using variational inference for a model with no hidden variables is not useful and is problematic in practice
because terms in the ELBO become infinite.

We notice that while CEME and CEMET still offer a clear improvement over not accounting for measurement
at all (Naive), they seem to be further below in performance from Oracle (which acts as a benchmark for
optimal, or even beyond-optimal performance for the CEME/CEME™ algorithms). A potential reason for
this is that the CEME models, which model the true number of education years as a continuous latent
variable, are misspecified unlike Oracle and Naive, which only condition on the number of education years
but do not model it (though Naive assumes that there is no measurement error). Moreover, CEME and
CEME™ have more parameters than Oracle and Naive; therefore they could be hurt more by the limited
dataset size and high-dimensional covariate. The larger difference between CEME and CEME™ than in the
synthetic experiment might be because CEME™T avoids some of the detriment from model misspecification
by having access to the true standard deviation of AX.
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Figure 10: Error in the estimation of treatment and outcome noises in the education-wage data
experiment. On the left, only CEME is depicted because it is the only method that estimates AX standard
deviation. These figures help demonstrate that the proposed CEME/CEME™ offer clear benefit over the
baseline Naive even when they are misspecified.

4 Conclusion

In this study, we provided a model for causal effect estimation in the presence of treatment noise, with
complex nonlinear dependencies, and with no side information or knowledge of the measurement error
variance. We confirmed the model’s identifiability theoretically and evaluated it experimentally, comparing
it to a baseline that does not account for measurement error at all (Naive) and to an upper bound in
performance in the form of Oracle. A notable advantage of the model is its flexibility: It offered good
performance on a diverse set of synthetic datasets and was useful for correcting for measurement error even
on a real-world dataset for which it was clearly misspecified. Our approach is also flexible in a second
way: after using amortized variational inference to infer the SCM and the posterior of hidden variables, any
interventional or counterfactual distributions may be computed.

A limitation of the CEME/CEME™ methods is their assumption of independent additive noise for both
treatment and outcome, which might not always hold [Schennach| (2016). On the other hand, these assump-
tions were critical for attaining identifiability without side information; therefore relaxing them would likely
mean having to introduce side information to the model |Schennach|(2020)). Another limitation of our study is
the lack of comparison with other state-of-the-art methods. However, the authors are not aware of any that
exist which estimate the same quantities as our method and are designed for the setting where the treatment
is noisy, the regression function does not have any strict parametric form, the model is conditioned on a
covariate, and no side information is available. In addition, our study does not consider the robustness of
estimation when there is no access to a perfect set of covariates satisfying the backdoor criterion.

Finally, the model is limited by assuming Gaussian distributions in all conditionals. An interesting direction
for future research could be to relax this assumption by using flexible distributions, such as normalizing
flows. The identifiability result in [Schennach & Hu| (2013]) suggests a model generalized in this way would
retain its identifiability. In addition, since it is straightforward to generalize the amortized variational
approach for other related latent variable models, an interesting future direction would be to apply the
algorithm to models that relax the classical measurement error assumptions [Schennach| (2016} 2020)), for
which efficient inference methods are not yet available.
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Broader Impact Statement

Our method could be used for estimating treatment effects in applications where incorrect inferences might
in the worst case lead to severe adverse outcomes, e.g. in healthcare. For this reason it is important to
consider the validity of the assumptions of our method in any particular use case as well as to test any
implementations carefully before practical deployment.
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Appendix
A Review of literature on the identifiability of related models

CEME with categorical variables. Identifiability is proven by [Xia et al. (2020) for a model with the
same Bayesian networks as ours (Figure [1|) where the treatment X* and covariate Z are categorical. For
this result, misclassification probabilities need to have a certain upper bound to avoid the label switching
problem. It is also assumed that the conditional distribution Y'|Z, X* is either a Poisson, normal, gamma, or
binomial distribution. This scheme also allows dealing with missing treatment values by defining a missing
value as an additional category.

Measurement error models from a statistical perspective. There is a wide variety of research
on measurement error solely from a statistical (non-causal) perspective, studying assumptions under which
measurement error model parameters can be identified, and exploring different practical methods for inferring
them. These include the general method of moments (GMM) as well as kernel deconvolution and sieve
estimators (Yi et al., 2021} [Schennachl, [2020). Many of our assumptions are relaxed, such as having Gaussian
noise terms, the independence of the measurement error AX or outcome noise AY of the other variables,
and the outcome Y being non-differential, i.e. independent of AX. See|Schennach| (2016; [2020) for a review
on this kind of results.

A wide variety of literature also studies measurement error models with additional assumptions compared to
ours. These consist mainly of assuming the availability of side information such as repeated measurements
or instrumental variables (IVs), or assuming a strict parametric form (e.g. linear or polynomial) for the
regression function E[Y|Z, X*] (and E[X*|Z]). See|Yi et al| (2021) for a review. The IVs differ from our
covariate Z in that they are conditionally independent of Y given X*. On the other hand, Ben-Moshe et al.
(2017) consider a covariate Z that directly affects Y. However, they assume that the effects of Z and X* on
Y are either decoupled or E[Y|Z, X*] has a polynomial parametric form.

Related latent variable models. There are also latent variable models studied that resemble the mea-
surement error model. These include the causal effect variational autoencoder (CEVAE), where only a proxy
of the confounder is observed (Louizos et al} |2017; |Rissanen & Marttinen, 2021) and nonlinear independent
component analysis (Khemakhem et al. |2020). Also, Schennach| (2016} [2020) consider the identification of
latent variable models more generally.

B Experiment details

Amortized variational inference is prone to getting stuck at local optima, for example, in the case of the
so-called posterior collapse (Kingma & Welling},[2019). To counter this, we start training in both experiments
with an increased but gradually annealed weight for the ELBO terms log g, (7 ;[s:) and log pg (x|} ;), which
causes the model to initially predict posterior * close to x, to ensure that the posterior does not get stuck
at the prior. A related approach was taken by [Hu et al.|(2022), where the model was pre-trained assuming
no measurement error.

B.1 Synthetic experiment

In the synthetic experiment data generation, the functions px«, ox+ are only approximately sampled from
a GP to save in computation cost, as with exact values the size of the GP kernel scales proportionally to the
square of the number of data points, and the matrix operations performed with it scale even worse. Thus,
we sample only K = 1000 points from the actual Gaussian processes corresponding to each of the functions
wx+, ox= and py. These functions are then defined as the posterior mean of the corresponding GP, given
that the K points have been observed. The points are evenly spaced such that the minimum is the smallest
value in the actual generated data minus one quarter of the distance between the smallest and largest values
in the actual data. Similarly, the maximum is the largest value in the actual data plus the distance between
the smallest and largest values in the actual data. This is achieved by first generating the actual values
Zii=1..N, then sampling the K points for px-, and ox=, then generating x;_, 5 and then finally sampling
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the K points for py.) For uy, as it has two arguments, we used K = 312 = 961 points arranged in a
two-dimensional grid.

When training the model, learning rate annealing is used, which means that if there have been a set number
of epochs without improvement in the validation score, the learning rate will be multiplied by a set learning
rate reduction factor. The training is stopped when a set number of epochs has passed without the validation
score improving.

The hyperparameter values used are listed in Table They were optimized using a random parameter
search. We use 8000 data points as the validation set used for annealing learning rate and for early stopping.
Unless otherwise stated, the same hyperparameter value was used for all algorithms and datasets. From all
the 43200 runs in the synthetic experiment, only 33 runs crashed, yielding no result.

Table 1: Hyperparameter values used in the synthetic experiment.

Hyperparameter Value
Number of hidden layers in each network (fully connected) 3
Width of each hidden layer 20
Activation function ELU
Weight decay 0
Number of importance samples 32
Initial weight of log g¢(2} ;|s:) and log pg(z;|x} ;) terms (see Section 4
Number of epochs to anneal above weight to 1 10
Learning rate reducer patience 30
Learning rate reduction factor 0.1
Early stopping patience in epochs 40
Adam S 0.9
Adam £, 0.97
Batch size used for CEME/CEME™ when training dataset size is 16000 256
Batch size otherwise 64
Learning rate for CEME/CEME™ with training dataset sizes 1000 and 4000  0.003
Learning rate for CEME/CEME™ with training dataset size 16000 0.01
Learning rate for Oracle and Naive 0.001

B.2 Experiment with education-wage data

For the education-wage dataset by |Card| (1995)), the covariates used were personal identifier, whether the
person lived near a 2 year college in 1966, whether the person lived near a 4 year college in 1966, age, whether
the person lived with both parents or only mother or with step parents at the age of 14, several variables on
which region of USA the person lived in, whether the person lived in a metropolitan area (SMSA) in 1966
and/or 1967, whether the person was enrolled in a school in 1976, whether the person was married in 1976,
and whether the person had access to a library card at the age of 14.

The semi-synthetic dataset used in our experiments is obtained from the original dataset by |Card| (1995) as
follows: We exclude multiple covariates present in the original dataset that correlate heavily with the number
of education years and would thus make measurement error correction much less useful. These include the
number of schooling years of the mother and father, their intelligence quotients, Knowledge of the World of
Work (KWW) score, work experience in years, its square, work experience years divided into bins, and wage.
We also drop NLS sampling weight. Missing values are handled by dropping all data items that contain
them. This reduces the size of the dataset from 3010 to 2990.

Then, both X* (number of education years) and all covariates in Z are scaled to have a zero mean and
unit variance. The noisy treatment X is obtained by adding a normally distributed additive noise AX to
X*. Six separate datasets are created, each corresponding to a different level of SD of AX. The levels are
proportional to the SD of X*, and are 0%, 20%, 40%, 60%, 80% and 100%.

17



Published in Transactions on Machine Learning Research (09/2024)

A synthetic outcome Y is generated as follows based on the true value of the logarithm of wage: First, we
train a neural network (five hidden layers of size 30, weight decay 0.01 and ELU activation function) to
predict the logarithm of wage (scaled to have zero mean and unit variance). We then use the trained neural
network as the function uy[Z, X*] = E[Y|Z, X*]. To obtain Y, we add to this expectation a Gaussian noise
AY whose SD is set to 10% of the true SD estimated with training data for the py[Z, X*] neural network.
This neural network was trained on all the data, but was regularized so as not to overfit to a meaningful
extent. The SD is only 10% of the estimated true SD, because otherwise the predictions are so inaccurate
to begin with that better handling of measurement error has little potential to improve the results. The
synthetic Y is also used as the ground truth for E[Y|Z, X*].

The hyperparameter values used are listed in Table 2] The hyperparameters are shared by all algorithms
and were optimized using a random search. A separate search was conducted for each type of algorithm,
but the optima were close enough that for simplicity, the same values could be chosen for each algorithm.

Table 2: Hyperparameter values used in the experiment with education-wage data.

Hyperparameter Value
Number of hidden layers in each network (fully connected) 3
Width of each hidden layer 26
Activation function ELU
Batch size 32
Learning rate 0.001
Weight decay 0.001
Number of importance samples 32
Initial weight of log gs(z; ;|s;) and log py(zi|z} ;) terms (see Section 8
Number of epochs to anneal above weight to 1 5
Learning rate reducer patience 25
Learning rate reduction factor 0.1
Early stopping patience in epochs 45
Adam [ 0.9
Adam S 0.97

C Identification theorem used to prove Proposition [I]

For completeness, we include below Theorem 1 by [Schennach & Hul (2013) (repeated mostly word-for-word):

Definition 2. We say that a random variable r has an F' factor if r can be written as the sum of two
independent random variables (which may be degenerated), one of which has the distribution F'.

Model 1. Let y, x, x*, Az, Ay be scalar real-valued random variables related through

y=9(=")+ Ay (13)
="+ Az, (14)
and y are observed while all remaining variables are not and satisfy the following assumptions:

Assumption 1. The variables z*, Az, Ay, are mutually independent, E[Az] = 0, and E[Ay] = 0 (with
E[|Az|] < co and E[|Ay]|] < c0).

Assumption 2. E[e**A*] and E[e"2Y] do not vanish for any &,v € R, where i = /—1.

Assumption 3. (i) E[e’$®"] # 0 for all £ in a dense subset of R and (ii) E[e?79(*")] # 0 for all v in a dense
subset of R (which may be different than in (i)).

Assumption 4. The distribution of z* admits a uniformly bounded density f,«(z*) with respect to the
Lebesgue measure that is supported on an interval (which may be infinite).
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Assumption 5. The regression function g(z*) is continuously differentiable over the interior of the support
of z*.

Assumption 6. The set x = {a* : ¢’(¢*) = 0} has at most a finite number of elements z7,...,x%,. If x is
nonempty, f«(x*) is continuous and nonvanishing in a neighborhood of each z, k =1, ..., m.
Theorem 1. Let Assumptions 1-6 hold. Then there are three mutually exclusive cases:
1. g(x*) is not of the form
g(z*) = a+bln(e™ +d) (15)

for some constants a,b,c,d € R. Then, f.«(x*) and g(x*) (over the support of fy«(x*)) and the
distributions of Ax and Ay in Model 1 are identified.

2. g(x*) is of the form with d > 0 (A case where d < 0 can be converted into a case with d > 0
by permuting the roles of x and y). Then, neither f.«(x*) nor g(x*) in Model 1 are identified iff =*
has a density of the form

for (%) = Aexp(—Be“® + CDz*) (e + E)~F, (16)

with c € R, A,B,D,E,F € [0,00] and Ay has a Type I extreme value factor (whose density has the
form fu(u) = Ky, exp(Kq exp(Ksu) + Kqu) for some Ky, Ko, K3, K4 € R).

3. g(x*) s linear (i.e., of the form with d = 0). Then, neither f,-(x*) nor g(z*) in Model 1 are
identified iff x* is normally distributed and either Ax or Ay has a normal factor.

D Proof of Proposition [I]

Proof. First, consider the measurement error model defined in Equations 7 conditioned on a specific
value Z = z, effectively removing Z as a variable. We show that this model, called the restricted model, as
opposed to the original full model, satisfies the assumptions in Theorem [I} which thus determines when the
restricted model is identifiable. First, the restricted model satisfies Equations and . Assumption 1
follows directly from the definition of the model, as |[AX| and |AY| follow the half-normal distribution, which
has the known finite expectation ov/2/y/7. Assumption 2 is satisfied because AX and AY are Gaussian so
their characteristic functions have the known form exp(iut — 0*t2/2) and thus do not vanish for any t € R
(t is denoted by & or « in Assumption 2).

Assumption 3 of Theorem [1|is not needed because it is in its proof by [Schennach & Hul (2013]) only used to
find the distributions of the errors AX and AY given that the density f.«(2z*) and regression function g(z*)
are known. However, in our case we already know by assumption that the error distributions are Gaussian
with a zero mean, and moreover, we can find their standard deviation from

Var[Y] = Var[uy (z, X*)] + Var[AY]

and
Var[X] = Var[X*] + Var[AX],

which hold because of the independence of uy (z, X*) and AY as well as X* and AX, respectively. Assump-
tion 4 is satisfied because X*|Z = z is normally distributed and thus admits a uniformly bounded density
w.r.t. the Lebesgue measure that is supported everywhere. Assumption 5 is the same as assumption 1 of
our Proposition [1} Assumption 6 follows from assumption 2 of Proposition [1|since the density of X*|Z = 2
is continuous and nonvanishing everywhere.

With the assumptions of Theorem [If satisfied, we check what the cases 1-3 therein imply for our restricted
model. From case 1 we obtain that it is identified except when py (z,2*) as a function of z* is of the form
a+bln(e” +d).
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Case 2 considers the case when uy (z,2*) as a function of * is of the form a 4 bln(e®®” + d) with d > 0.
(Having d < 0 is impossible as we assume the function g is defined on R). In this case, our model is
identifiable, as X™* is Gaussian and thus its density is not of the form

for (2%) = Aexp(—BeC™ + CDz*) (e + E)~F (17)

with C e Rand A, B, D, E,F € [0,00). We see this by taking a logarithm of both the Gaussian density and
the density in Equation and noting that the first is a second-degree polynomial, but the latter is a sum
without a second-degree term, so they are not equal. Thus, our model is identifiable in this case.

The remaining case is for when uy (z,2*) is linear in *. In this case, the restricted model is not identified
as x* is normally distributed and both Az and Ay have normal factors as they are normal themselves.

Next, we prove the identifiability of the full model, i.e. where z may take any value in its range. We start by
assuming in accordance with Definition [I] that two conditional observed distributions from the model match
for every z:
Vz,z,y:  po(z,y|z) = po(x,y|2). (18)
Now based on assumption 3 of Proposition |1} there exists z for which py (2z,2*) is not linear in x*. From
we obtain that
Y,y pe(z,ylz) = po(z,y[2),

which in turn implies

px-(2) = px-(2) (19)
ox(Z) = 0. (%)

Vet e R:  py(z,2%) = py (2, 27)
by using Definition [I] on the restricted model, which is identified according to the first part of the proof.

Similarly, we obtain the equalities in for every z for which py (z,z*) is not linear in z*. Thus, for
the full equality of the models (i.e. for § = '), it remains to be shown that we obtain px«(z) = p'x.(2),
o'y (2) = ox+(2) and py (z,2*) = pl (z,2*) also for those z for which py (z,z*) is linear in z*. Noting that
we already know that 7 = 7/ and o = ¢’, we obtain for such z a linear-Gaussian measurement error model
with known measurement error, which is known to be identifiable (see e.g. |Gustafson| (2003)). Thus 6 = ¢’
and the proof is complete. O
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