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ABSTRACT

Human personality-enabled AI has Prevailed in various areas, such as complex
card games. In these complex multi-agent interaction scenarios, players’ deci-
sions are often significantly affected by personality and strategy style, making it
difficult for traditional deep Monte Carlo methods to meet practical needs. In this
paper, we propose a multi-personality guided deep Monte Carlo search frame-
work, in which three rule-based personalities are incorporated as priors to bias the
policy search. Experimental results show that the framework performs well in the
Guandan game, which can quickly adapt to the rule prior and gradually discover
better strategies through training. This study provides an effective solution for per-
sonalized decision-making in complex card games and multi-agent systems, and
opens up a new direction for incorporating human style into deep reinforcement
learning.

1 INTRODUCTION

Monte Carlo (MC) methods have long been employed in complex decision-making
tasksKemmerling et al. (2024), utilizing large-scale sampling to evaluate action sequences and iden-
tify those with the highest estimated expected returns. When combined with deep neural networks
for state representation and policy/value estimation, this approach evolves into DMC, which has
achieved superhuman performance in perfect information games such as Go Silver et al. (2016;
2017), Chess Silver et al. (2018), and Shogi Schrittwieser et al. (2020).

Despite these successes, DMC methods are often computationally intensive due to their reliance
on extensive simulations. Furthermore, their statistically driven decision-making process lacks the
capacity to capture the underlying intent or stylistic diversity of human actions, limiting their expres-
siveness in domains where personalized behavior and interpretability are critical, such as imperfect
information games and multi-agent systems.

Guandan, a popular multiplayer card game in China, exemplifies the challenges of imperfect infor-
mation games due to its large branching factor, team-based coordination, and intricate rule system.
As shown in Figure 1, Guandan features larger state and action spaces compared to other representa-
tive card games, posing additional difficulties for conventional MCTS-based approaches Shen et al.
(2020) and deep reinforcement learning methods Pan et al. (2022); Yanggong et al. (2024). In addi-
tion to its structural complexity, the game also involves rich strategic diversity: Human players often
demonstrate distinct play styles, which may be aggressive, conservative, or balanced. However,
existing DMC-based models are generally incapable of capturing such personalized behavioral pat-
terns, thereby limiting their applicability in realistic, human-aligned gameplay settings. The detailed
rules of Guandan are provided in Appendix A.

To address these challenges, we propose a multi-personality guided deep Monte Carlo tree search
framework. Our approach integrates human-like play styles by combining rule-based priors for
exploration with a dual-head network architecture: a Personality-head that generates action proba-
bilities for state-action pairs based on different personalities, and a Q-head that estimates the value
of state-action pairs during exploitation through DMC.

The main contributions of this work are:
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Figure 1: The space of action and state in several representative card games, including Heads-Up
Limit Texas Hold’em (HULH), Heads-Up No-Limit Texas Hold’em(HUNL), Omaha Poker, Five-
Card Draw, 1v1 Mahjong, 4-Player Mahjong, DouDizhu , and GuanDan.

• Multi-personality guided DMC framework: We introduce a novel framework that lever-
ages rule-based priors for guided exploration, improving decision-making and strategy
adaptation in complex environments.

• Controllable action style during deployment: The proposed framework supports dy-
namic adjustment between personality-driven and value-maximizing behaviors during ac-
tion selection, enhancing strategy flexibility and interpretability.

• Exploration of personality-guided decision-making: We investigate the influence of
personality-driven strategies on gameplay in Guandan, providing valuable insights into the
integration of human-like decision-making in AI systems for strategic games.

As far as we know, we are the first to introduce a player AI method that incorporates personality-
driven decision-making into a DMC system, enabling it to learn and simulate different styles of
game strategies.

2 RELATED WORK

2.1 RL AND MCTS IN GAME AI

Reinforcement learning (RL) has made significant progress in game AIPinto & Coutinho (2018);
Silva et al. (2018); Perez-Liebana et al. (2019). But Imperfect-information games introduce hid-
den information and randomness, posing greater challenges. Traditional approaches such as Coun-
terfactual Regret Minimization (CFR)Neller & Lanctot (2013) and abstraction techniquesBowling
et al. (2017); Brown et al. (2019) have been widely used in poker. Advanced systems like Deep-
StackMoravčı́k et al. (2017) and LibratusBrown & Sandholm (2019) improve strategic optimization
and hidden information modelingHeinrich & Silver (2016); Brown & Sandholm (2018), while Deep
Q-Networks (DQN)Mnih et al. (2015) have extended RL success to domains like StarCraftVinyals
et al. (2019), DOTABerner et al. (2019), HanabiLerer et al. (2020), Honor of KingsYe et al. (2020),
and No-Press DiplomacyGray et al. (2020).

In multiplayer card games, RL has been applied to Mahjong, Texas Hold’em, and DoudizhuYou
et al. (2020); Zhang et al. (2021); Luo & Tan (2023). Frameworks like DouZeroZha et al. (2021)
and DanZeroLu et al. (2023) address large state-action spaces without handcrafted abstractions.
DouZero+Zhao et al. (2022) enhances opponent modeling and strategy learning, while Delta-
DouJiang et al. (2019) achieves expert-level play via self-play and strategic reasoning. Despite
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Figure 2: Personality-guided Deep Monte Carlo Search Process

these advancements, limitations remain in pre-trained model dependenciesZhao et al. (2024) and
the absence of personalized behavior modeling, highlighting opportunities for further improvement.

2.2 IMITATION LEARNING

Inverse Reinforcement Learning (IRL) Ng et al. (2000); Abbeel & Ng (2004); Ziebart et al. (2008)
infers reward functions from expert demonstrations, while Generative Adversarial Imitation Learn-
ing (GAIL) Ho & Ermon (2016) aligns agent behavior with expert trajectories through adversarial
training. Behavioral Cloning from Observation (BCO) Torabi et al. (2018) further expands IL by
enabling imitation from state-only demonstrations.

In contrast, we incorporate personality priors into the DMC framework. Rather than relying on
demonstrations, our method uses high-level personality traits to guide exploration and elicit diverse,
interpretable play styles.

3 METHOD

In this section, we detail the overall structure of the proposed Personality-aware Dual-Head Q-
Network (PDHQN) from four aspects: feature extraction, personality simulation, model structure,
exploration and utilization. The general process is illustrated in the Figure 2.

3.1 FEATURE EXTRACTION

In the design of this method, PDHQN needs to intake state-action pairs to generate corresponding
Q values and personality distributions. Therefore, how to extract relevant information becomes a
crucial issue.

For action features, we construct an action as a 54-dimensional vector, where each dimension rep-
resents the suit and points corresponding to the poker card. Since Guandan uses two sets of poker
cards, each dimension may take values of 0, 1, and 2. A specific encoding example is shown ❶ in
Figure 2.

For state features, shown by ❷ in Figure 2, we encode all the observable information of the current
player, including several 54-dimensional vectors to represent the current hand, remaining hand (after
excluding played cards), the last card played, and teammate’s last card. We also use three 28-
dimensional one-hot vectors to encode the number of remaining cards of each opponent, three 54-
dimensional vectors to track cards played by each of the other players, three 13-dimensional vectors
to encode the current level, opponent’s level, and our level, and a 12-dimensional vector to indicate
the presence of wild cards.

3
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Algorithm 1 Personality-Guided Rule-Based Action Selection
Input: Current hand H , legal actions A, personality type P
Output: Selected action a∗

1: Adjust the card-type value function VP based on personality P
2: Segment hand H into candidate combinations C = {C1, C2, ..., Cn} that approximately maxi-

mize hand value under VP

3: for each Ci ∈ C do
4: Compute vi = VP (Ci)
5: end for
6: Select C∗ = argmaxCi∈C vi
7: Derive corresponding action a∗ from C∗

8: return a∗

3.2 PERSONALITY SIMULATION

The ❸ of Figure 2 illustrates the personality simulation module, which guides action selection using
heuristic priors based on predefined rules to emulate distinct human-like play styles. This design
is intended to support training stability, enhance the interpretability of agent behavior, and guide
exploration with minimal overhead. It is based on an improved version of a framework from the
award-winning solution in the First China AI Competition.

We define three personality types: Aggressive, Conservative, and Balanced, each influencing deci-
sions through customized card value functions. As shown in Algorithm 1, the agent:

• Aggressive: Prioritizes strong combinations like bombs and straights.

• Conservative: Emphasizes safer types such as singles and small pairs.

• Balanced: Retains default values without adjustment.

For a comprehensive description of the personality-driven rule-based card-playing algorithm, in-
cluding detailed parameter settings and value adjustments, please refer to Appendix B.

3.3 MODEL STRUCTURE

We adopt a Personality-aware Dual-Head Q-Network (PDHQN) architecture, which consists of a
shared feature encoder, a Q-value estimation head, and a personality classification head, as shown
in Figure 3. The shared encoder takes a concatenated state-action pair as input and processes it
through three fully connected layers with 512 hidden units and tanh activations. It extracts a
joint representation that is fed into both the Q-value head and the personality classification head for
subsequent prediction tasks.

For Q-value prediction, the encoded features are passed through two additional fully connected
layers (512 units, tanh) followed by a single linear output node, which estimates the expected
return of the given state-action pair. In parallel, the personality classification head processes the same
shared features via two hidden layers (1024 and 512 units, using ReLU activations), and outputs a
four-dimensional sigmoid vector. Each dimension corresponds to a probability score for a predefined
personality label: aggressive, conservative, balanced, or exploration.

3.4 EXPLORATION WITH PERSONALITY-GUIDED ACTION SELECTION

In the personality-guided deep Monte Carlo tree search, exploration serves as a critical component
of the decision-making process. At each decision point, an action is stochastically selected from two
sources: the personality algorithm, which generates candidate actions based on predefined behav-
ioral styles, and the PDHQN model, which predicts Q-values and samples actions using a softmax
policy. This design enables the simulation to integrate both heuristic-driven personalization and
value-based optimization. The overall process is illustrated in Figure 2.

In each round of the game, the state feature s and all legal action features A(s) are extracted, as
shown in ❶ and ❷. These features are concatenated and passed to the PDHQN model in ❹ to com-
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Figure 3: Personality-aware Dual-Head Q-Network

pute Q-values Q(s, a) for all legal actions. An action is then selected according to the probability
distribution defined by the softmax equation below and submitted to the action selector in ❺:

P (a|s) =
exp

(
Q(s, a)−maxa′∈A(s) Q(s, a′)

)∑
a′∈A(s) exp

(
Q(s, a′)−maxa′′∈A(s) Q(s, a′′)

) (1)

This softmax-based distribution over Q-values retains a preference for high-value actions while in-
troducing stochasticity. Compared to uniform random exploration, it maintains directional guidance
toward promising actions, allowing the agent to discover potentially superior strategies beyond the
limitations of rule-based heuristics.

The exploration process in ❻ continues until a full round is completed, after which rewards are
assigned based on team performance. If the team finishes first, it receives a base reward. Additional
points (+3, +2, +1) are given if teammates place second, third, and fourth, respectively. Penalties
(-1, -2, -3) apply if teammates rank lower. This reward design promotes teamwork while introducing
competitive pressure to enhance multi-agent dynamics.

3.5 TRAINING PHASE

During training, we employ a distributed actor-learner framework where multiple actors perform
self-play simulations in parallel and a central learner updates the PDHQN model. Each actor runs
the Guandan game independently, playing against copies of itself, and transmits gameplay data
including state, action, reward, and the personality label of the selected action to the learner after
each round.

The personality label is represented as a 4-dimensional one-hot vector: the first three dimensions
correspond to the predefined personality heuristics, while the fourth denotes actions chosen through
PDHQN-based exploration. These labels serve as the supervision signal for the personality classifi-
cation head.

The learner updates the PDHQN parameters using the collected samples and periodically synchro-
nizes the updated weights to all actors.

PDHQN features two output heads, each optimized with a distinct loss function. The personality
classification head is trained using sigmoid cross-entropy loss:

Lpersonality = − 1

N

N∑
i=1

[yi log(σ(zi)) + (1− yi) log(1− σ(zi))] , (2)

where yi is the ground-truth personality label, zi is the logit output, and σ(zi) is the sigmoid activa-
tion:

σ(z) =
1

1 + exp(−z)
.
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The Q-value head is trained using mean squared error (MSE) between predicted and target Q-values.

3.6 PERSONALITY ACTION SELECTION

To effectively utilize the trained PDHQN model during the deployment phase, we design a compos-
ite action selection algorithm that balances value-based optimization with personality-driven behav-
ior.

Assume there are n legal actions and m personality types. For each action, the algorithm computes a
combined score by integrating the Q-value and personality classification outputs from the two heads
of the PDHQN model. The full process is shown in Algorithm 2.

Algorithm 2 Action Selection with Q-Values and Personality Probabilities
Input: Q-values q ∈ Rn, personality matrix p ∈ Rn×m, blending weight α, temperatures τ1, τ2
Output: Action indices aidx ∈ Rm for each personality type

1: Normalize Q-values: qnorm ← q/(
∑n

i=1 qi + ϵ)
2: for i = 1 to n do
3: prow[i, :]← Softmax(p[i, :]/τ1)
4: end for
5: for j = 1 to m do
6: pnorm[:, j]← Softmax(prow[:, j]/τ2)
7: end for
8: for i = 1 to n do
9: for j = 1 to m do

10: si,j ← α · qnorm,i + (1− α) · pnorm,i,j

11: end for
12: end for
13: for j = 1 to m do
14: aidx,j ← argmaxi si,j
15: end for
16: return aidx

We first normalize q so that its values sum to 1. Then, we apply a two-stage normalization to p: a
row-wise softmax with temperature τ1 (where 0 < τ1 < 1) is used to amplify the differences in
personality classification across actions under the same state, followed by a column-wise softmax
with temperature τ2 (where τ2 > 1) to smooth the overall distribution and mitigate bias caused by
uneven visitation of state-action pairs during training.

The final score matrix is computed by blending the two components with a weight α:

s = α · qnorm + (1− α) · pnorm.

For each personality type, the action with the highest score is selected:

aidx = argmax(s, axis = 0).

Here, each index in aidx corresponds to the selected action under a specific personality type, where
the index ranges from 0 to m−1, representing the influence of different personalities on the final
action choice. This process enables the agent to exhibit distinct personality traits while still pursuing
high-reward actions.

4 EXPERIMENTS

Our model training is performed on a computer equipped with an AMD Ryzen 7 5800x 8-core CPU
@ 3.80GHz and a GeForce RTX 3090 GPU. The specific training hyperparameters are shown in the
Table 1.

All experiments are conducted based on the official open-source Guandan environment released by
the First China AI Guandan Competition. This environment provides a standardized simulation
platform with well-defined rules and supports reproducible evaluation of agent performance. In

6
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Table 1: Training Hyperparameters

Hyper-parameters Meaning Value

q lr Q Value Learning Rate 0.00025
personality lr Personality Classification Learning Rate 0.0005
q optimizer Q Value Optimizer Adam
personality optimizer Personality Classification Optimizer Adam
actor num Number of actors 8
lamda Range of clip Q 0.65
pool size Memory pool size in learner 65536
batch size The batch size for training 8192
training freq How many receptions of data between each training 200

order to ensure the reliability and stability of the results, 10 complete games were arranged for each
test. Each game will have an average of about 100 rounds, resulting in thousands of card actions.
Therefore, we believe that the experimental scale is sufficient to accurately evaluate the accuracy of
model actions and reasonably reflect the winning rate of the model under different game conditions.

4.1 BASELINE SELECTION

We design two categories of experiments: performance evaluation and personality-conditioned ac-
tion consistency accuracy evaluation, each with distinct baseline settings.

For performance evaluation, we adopt the state-of-the-art Danzero architecture Lu et al. (2023) as
the baseline. In addition to the original ϵ-greedy exploration strategy, we also test a softmax action
selection variant to compare different exploration mechanisms under the same DMC framework.

For personality-conditioned evaluation, we use a random policy agent as the baseline, which uni-
formly samples legal actions. This simple baseline helps isolate the behavioral effects of personality
guidance in PDHQN and, by generating diverse scenarios, enables a more robust assessment of
personality-aligned action consistency.

4.2 PERFORMANCE EVALUATION

In this experiment, we analyze the learning efficiency of Q-value estimation by fixing the
personality-weighting factor α = 1, thereby isolating the Q-value head and excluding the effects
of personality-guided decision-making.

To benchmark performance, we quantify the win rates of PDHQN against two baseline agents con-
structed on the Danzero architecture: one employing ϵ-greedy exploration with ϵ = 0.01, and the
other utilizing a softmax action selection strategy. Both baseline agents are trained for 7,500 iter-
ations to ensure stable and competitive performance, and serve as fixed opponents throughout the
evaluation.

Table 2 reports the win rates of PDHQN against two fixed Danzero-based baselines and a random
action opponent at various training iterations, illustrating that PDHQN achieves competitive perfor-
mance under limited training.

Table 2: Win rates (%) at different training stages against baseline opponents (each trained for 7,500
iterations) and a random action opponent.

Training Iterations 10 50 100 200 400

Ours vs. ϵ-greedy 31.78 48.67 66.15 44.83 59.48
Ours vs. softmax 45.35 53.38 62.99 53.38 53.26
Ours vs. random 62.96 74.77 69.81 92.65 98.21

Table 3 presents the winning rates between different rule-based strategies. The results indicate a
clear strength hierarchy: Balanced ¿ Aggressive ¿ Conservative. Specifically, the balanced strategy

7
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Table 3: Rule-based algorithm battle winning rate. The win rate of each row is achieved by test in
the first column against other.

Aggressive Conservative

Balanced 96.77% 77.33%
Conservative 44.76% -
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Figure 4: Action type accuracies under different epochs when playing against the random card-
playing algorithm.

demonstrates a significantly higher winning rate against both aggressive (96.77%) and conservative
(77.33%).

4.3 ACCURACY EVALUATION

We evaluate the model’s performance using action type accuracy, which measures whether the type
of action selected by the model aligns with that produced by a rule-based algorithm. Note that the
same semantic action (e.g., bomb, straight, or pair) may correspond to different action indices due
to suit variations. Therefore, we compare action types rather than raw action indices.

The action type accuracy is defined as:

Aaccuracy =
1

N

N∑
i=1

I(Ai
m = Ai

r)

Where N is the total number of actions, Ai
m is the action type selected by the model for the i-th

action, Ai
r is the action type derived by the rule-based algorithm for the i-th action, and I(Ai

m = Ai
r)

is 1 if the actions match, and 0 otherwise.

We compare the effect of different α values on action type accuracy in Figure 4. When α = 0
(a), the policy relies solely on the personality head, without incorporating Q-value information. In
this case, the accuracy consistently improves over training iterations and reflects the strength of the
personality prior: stronger rule-driven personalities yield higher accuracy. When α = 1 (b), the
policy depends solely on the Q-value head, where accuracy initially rises but drops sharply after 400
iterations, indicating a shift from personality priors to alternative high-return strategies.

In Table 4, we report action type accuracy at 400 and 800 iterations under different α values and
personalities against a random baseline. At 400 iterations, rule-based priors yield higher accuracy,
while by 800 iterations the model increasingly departs from these priors to explore new strategies.

4.4 RESULTS ANALYSIS

Rule strength and learning deviation: When a personality rule does not consistently lead to opti-
mal outcomes, the Q-value head tends to explore alternative strategies as training progresses. This

8
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Table 4: Action type accuracy results under different α and personalities with random card-playing
algorithm for 400 and 800 iterations

400 Iterations 800 Iterations

α Aggressive Conservative Balanced Aggressive Conservative Balanced

0 66.82% 62.93% 77.04% 72.72% 63.35% 76.60%
0.1 66.12% 60.51% 75.91% 68.37% 59.38% 60.96%
0.2 67.91% 54.68% 76.08% 69.92% 56.21% 59.02%
0.3 67.90% 60.97% 76.26% 66.10% 59.00% 59.88%
0.4 66.29% 63.28% 74.57% 63.29% 56.37% 57.21%
0.5 68.05% 51.54% 75.39% 67.90% 51.27% 58.82%
0.6 69.38% 64.53% 75.32% 66.06% 56.44% 57.67%
0.7 70.71% 61.33% 69.29% 64.41% 59.31% 55.69%
0.8 70.51% 64.69% 71.07% 67.04% 57.59% 59.83%
0.9 67.51% 61.69% 69.83% 64.51% 56.05% 55.14%
1 54.04% 41.85% 60.76% 1.68% 55.87% 14.82%

results in a noticeable decline in action type accuracy, especially under the Aggressive and Balanced
personalities, indicating a shift away from rule-based behavior.

Personality head learning stability: The personality head maintains a steady upward trend in
learning performance, suggesting that it successfully captures and preserves personality-aligned ac-
tion preferences. This separation ensures that the model retains distinct behavioral traits even when
Q-value strategies diverge from the initial rules.

Effect of priors in early training: Personality-driven priors provide valuable guidance in the early
training phase, helping to stabilize learning. However, as training progresses, the model increasingly
prioritizes strategies that outperform the initial rules, reflecting a natural transition from imitation to
optimization.

5 CONCLUSION

In this study, we proposed a personality-guided deep Monte Carlo Tree Search framework that incor-
porates human-like play styles by combining rule-based priors. The network architecture decouples
value estimation and personality alignment through two separate output heads: a Q-value head for
reward prediction and a personality head for capturing stylistic preferences.

Experimental results demonstrate that personality priors improve exploration efficiency. As training
progresses, the model gradually transitions from rule-based behavior to discovering novel strategies
beyond the initial personality priors. The α-weighted decision mechanism enhances both inter-
pretability and adaptability of agent behavior.

Generalizability The proposed framework is generalizable and can be extended to other multi-
agent, imperfect-information environments such as various card games, by modifying the feature
extraction process to fit the domain.

Limitation Due to computational constraints, the number of training actors and iterations was
limited, restricting full exploration of the state space. More extensive training resources could unlock
richer personality dynamics and more refined strategic behaviors.

Future Work Future directions include incorporating opponent and teammate modeling to im-
prove coordination in multi-agent settings. Such enhancements would strengthen the agent’s adapt-
ability, strategic flexibility, and social reasoning, extending the impact of personality-aware decision-
making in complex environments.
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A RULE OF GUANDAN

Guandan uses two decks of cards (108 cards, including Jokers). Four players form two teams, with
teammates seated opposite each other. Each player is dealt 27 cards, referred to as a ”hand.” The
game proceeds in a counterclockwise order. The first player in each round leads the trick and can
play any valid card combination. Other players must either follow with a higher card combination
of the same type, play a Bomb, or pass. A trick ends when three players pass consecutively, and the
last player to play cards leads the next trick.

A round ends when all players except one have emptied their hands, or both players of the same
camp finish their hands. Players are ranked based on the order in which they finish, as Banker (1st),
Follower (2nd), Third (3rd), and Dweller (4th).

A.1 CARD COMBINATIONS

In Guandan, card combinations include standard and special types. Standard combinations consist
of Solo (a single card), Pair (two cards of the same rank), Triple, Tube (three consecutive Pairs),
Plate (two consecutive Triples), Full House (a Triple combined with a Pair), and Straight (five or
more consecutive cards, where Aces can serve as 1). Special combinations include Bombs (four
or more cards of the same rank), Flush Straights (five cards of the same suit in consecutive rank,
capable of beating Bombs with fewer than six cards), and Joker Bombs (two Red Jokers and two
Black Jokers, which can beat any other card type). Bombs can beat any standard combination, with
their strength determined first by the number of cards and then by their rank. Flush Straights can
beat smaller Bombs, while Joker Bombs override all other combinations.

A.2 TRIBUTE AND LEVEL CARDS

From the second round onward, the Dweller of the previous round must tribute their highest single
card (excluding wild cards) to the Banker. The Banker must return a card with a rank no higher
than 10. If there are Double-Dwellers, each must tribute their highest card, and the Banker accepts
the higher-ranked tribute. If the tribute-paying player possesses two Red Jokers, the tribute phase is
skipped, and the Banker leads the first trick. Cards matching the current level are known as Level
Cards, which rank just below Jokers when played singly but can function at their natural rank when
forming combinations. Level Cards in the Hearts suit act as wild cards, substituting for any needed
card in combinations, except Jokers.

The objective of Guandan is to level up from 2 to A, with teams advancing based on their rankings
at the end of a round. If the Banker and the Follower belong to the same team, the team advances
three levels. If the Banker and the Third belong to the same team, the team advances two levels. If
the Banker and the Dweller belong to the same team, the team advances one level. Opponents of a
Double-Dweller automatically advance their level by three. When the level reaches Q or K and the
winning team is eligible to advance by two or three levels, Level A cannot be skipped. At Level A,
a team can only win if the Banker’s partner finishes as either the Follower or the Third.

A.3 WINNING CONDITIONS

A Guandan game consists of multiple rounds. The first team to surpass Level A wins the game. If
the game has a fixed number of rounds, the team at the highest level when the rounds conclude is
declared the winner. In the event of a tie, an additional round is played to determine the victor. If
a team at Level A fails to win three consecutive rounds, they are demoted back to Level 2. This
ensures a competitive balance and adds strategic depth to the gameplay.

B PERSONALITY-DRIVEN RULE-BASED CARD-PLAYING ALGORITHM

We propose a simple yet effective rule-based algorithm that adapts card-playing strategies according
to the player’s hand, personality, and game situation to select the most appropriate action.
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Table 5: Action Value Scores Based on Type and Rank

Type / Rank 2-7 8 9 T J Q K A curRank B R

Single -1.0 -0.5 0 0.5
Pair -1.0 -0.5 0 0 0.5 1.0
Trips / ThreeWithTwo -1.0 -0.5 -0.5 -0.5 0 0 0.5 0.5 1.0
TwoTrips / ThreePair -0.5
Straight -1.0 -0.5 -0.5 -0.5 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Bomb 1.0
StraightFlush 1.0

Table 6: Action Value Adjustments by Personality Type

Action Type Free Action RV Adjustment Restricted Action RV Adjustment
Card Type Aggressive Conservative Aggressive Conservative

Single -1.0 +1.0 - -
Pair -1.0 +1.0 - -
Trips -1.0 +0.5 - -
ThreeWithTwo - +0.5 - -
ThreePair +1.0 -1.0 - -
TwoTrips +1.0 - - -
Straight +1.0 -0.5 - -
Bomb +1.5 -1.0 +1.5 -1.5
StraightFlush +1.0 -1.0 +1.0 -1.0

B.1 EXPLANATION OF THE ALGORITHM

The pseudocode describes a personality-guided decision-making process for selecting optimal ac-
tions in card play. The key steps are:

• Initialization: The game state is initialized via SetBeginning, setting the player’s po-
sition, card counts, and resetting all strategy-related variables.

• Action Generation and Evaluation: The algorithm first partitions the hand into possible
actions by maximizing intrinsic card values (see Table 5), then applies personality-based
adjustments to these candidate actions to compute their final scores.

• Personality-Driven Strategy Adjustment: makeReviseValues adjusts revised values
(freeActionRV, restrictedActionRV) based on personality:

– Aggressive: Prioritizes high-impact actions such as Bomb or Straight.
– Conservative: Favors safe actions like Single or Pair.
– Balanced: Leaves revised values unchanged, acting as a neutral policy.

Adjustment weights are detailed in Table 6.
• Dynamic Updates: UpdateRV functions adjust revised values based on game context.

For example, when a partner has only one card left, the value of Single increases to support
coordination; conversely, when an opponent has one card, Single is penalized to avoid
enabling their win.

• Optimal Action Selection: The action with the highest combined value (base + adjusted)
is selected as the optimal move.

B.2 EXAMPLE SCENARIO

Given the hand [’S7’, ’H7’, ’C7’, ’D7’, ’CA’, ’CA’, ’S5’, ’D5’], the system
first partitions the hand by maximizing the cumulative base action value, without applying any
personality-related adjustments. The partition that maximizes the base score yields a total value
of 0, with the following candidate actions:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

- Bomb: [’S7’, ’H7’, ’C7’, ’D7’] (base value = 1)

- Pair: [’CA’, ’CA’] (base value = 0)

- Pair: [’S5’, ’D5’] (base value = -1)

Personality-Specific Decisions:

Personality-driven adjustments (see Table 6) are then applied to compute the final adjusted value for
each action. The system selects the action with the highest adjusted score under each personality
profile:

• Aggressive:
– Bomb: 1 + 1.5 = 2.5

– Pair (A): 0− 1.0 = −1.0
– Pair (5): −1− 1.0 = −2.0

The highest adjusted value is 2.5 for Bomb, so the system selects the Bomb [’S7’,
’H7’, ’C7’, ’D7’].

• Conservative:
– Bomb: 1− 1.0 = 0.0

– Pair (A): 0 + 1.0 = 1.0

– Pair (5): −1 + 1.0 = 0.0

The highest adjusted value is 1.0 for Pair (A), so the system selects the Pair [’CA’,
’CA’].

• Balanced:
– No adjustments applied; base values are used directly.

The highest value is 1.0 for Bomb, so the system selects the Bomb [’S7’, ’H7’,
’C7’, ’D7’].
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