
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE CHAIN OF THOUGHTS VIA ELASTIC REA-
SONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) have achieved remarkable progress on com-
plex tasks by generating extended chains of thought (CoT). However, their un-
controlled output lengths pose significant challenges for real-world deployment,
where inference-time budgets on tokens, latency, or compute are strictly con-
strained. We propose Elastic Reasoning, a novel framework for scalable chain
of thoughts that explicitly separates reasoning into two phases—thinking and so-
lution—with independently allocated budgets. At test time, Elastic Reasoning pri-
oritizes the completeness of solution segments, significantly improving reliability
under tight resource constraints. To train models that are robust to truncated think-
ing, we introduce a lightweight budget-constrained rollout strategy, integrated
into GRPO, which teaches the model to reason adaptively when the thinking pro-
cess is cut short and generalizes effectively to unseen budget constraints without
additional training. Empirical results on mathematical (AIME, MATH500) and
programming (LiveCodeBench, Codeforces) benchmarks demonstrate that Elastic
Reasoning performs robustly under strict budget constraints, while incurring sig-
nificantly lower training cost than baseline methods. Remarkably, our approach
also produces more concise and efficient reasoning even in unconstrained settings.
Elastic Reasoning offers a principled and practical solution to the pressing chal-
lenge of controllable reasoning at scale. 1

1 INTRODUCTION

Large reasoning models (LRMs) (DeepSeek-AI et al., 2025; OpenAI et al., 2024) have demonstrated
remarkable performance on complex reasoning tasks by producing extended Chain-of-Thought
(CoT) outputs, which facilitate effective problem-solving in domains such as mathematics and pro-
gramming. Reinforcement learning (RL) techniques (Schulman et al., 2017; Zelikman et al., 2022;
Rafailov et al., 2023; Dong et al., 2023; Shao et al., 2024), have been employed to optimize these rea-
soning trajectories, enabling LRMs to generate longer, more informative chains. These RL-driven
methods scale effectively across diverse benchmarks (Zhang et al., 2024; Dong et al., 2024; Luo
et al., 2025c; Xiong et al., 2025b; Luo et al., 2025b), yielding substantial gains in both solution
accuracy and robustness; while they often incur significantly longer inference chains (DeepSeek-
AI et al., 2025; Du et al., 2025; Yu et al., 2024; Qin et al., 2024; Xiong et al., 2025a). Notably,
the length of the reasoning trajectory remains uncontrolled, making it difficult to allocate a fixed
compute budget at inference time while maintaining a desired performance level.

Two primary lines of research have been proposed to address this challenge. The first, known as
Long2Short (Team et al., 2025; Kang et al., 2024), seeks to reduce reasoning length through rein-
forcement learning with trajectory penalties or compression-aware fine-tuning, where the model is
trained on shortened trajectories to preserve performance while minimizing inference cost. The sec-
ond line of work focuses on length control (Muennighoff et al., 2025; Aggarwal & Welleck, 2025;
Yuan et al., 2024). S1 (Muennighoff et al., 2025) introduces a simple mechanism that prompts the
model to emit special tokens (e.g., “Wait”, “Final Answer”) to regulate reasoning length. However,
this approach significantly degrades performance, as it overlooks the critical role of the solution seg-
ment. L1 (Aggarwal & Welleck, 2025) proposes a reinforcement learning framework that enforces

1Code is available in the supplementary material.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

explicit length constraints over the entire trajectory. While more flexible, this method demands sub-
stantial training resources and still results in noticeable performance degradation compared to the
original model.

We propose Elastic Reasoning, a simple yet effective method that enables large reasoning models to
achieve scalable and adaptive length control. As illustrated in Figure 1, the S1 approach—generating
the answer by emitting a special token such as “Final Answer”—performs better than directly trun-
cating the full reasoning trajectory, underscoring the importance of preserving the solution segment.
Motivated by this, we propose separate budgeting which explicitly divides the total token budget c
into two parts: t tokens for the thinking phase and s tokens for the solution phase, where c = t+ s.
Once the model consumes t tokens in the thinking phase, we forcibly terminate it by appending the
special token </think> and transition to solution generation. Separate budgeting outperforms S1
under varying generation budgets.

1K 2K 4K
Tokens Used

0%

5%

10%

15%

20%

25%

30%

35%

Pa
ss

@
1

AIME

S1 (Budget Forcing)
Separate-Budgeting
Vanilla-Budgeting
E1-Math-1.5B

Figure 1: Separating thinking and solution phases
enables better length control.

To further improve solution quality under in-
complete reasoning, we introduce a novel train-
ing strategy called budget-constrained rollout,
which teaches the model to generate high-
quality answers even with partial CoT trajec-
tories. This method is integrated into GRPO
training and is highly efficient—requiring only
200 training steps on math tasks with a max-
imum response length of 2K tokens (t∗ =
1K, s∗ = 1K), compared to 700 steps for L1-
Exact and 820 steps for L1-Max with a 4K re-
sponse length. Moreover, models trained with
Elastic Reasoning generalize effectively to ar-
bitrary reasoning budgets without the need for
further fine-tuning.

We evaluate Elastic Reasoning on both mathe-
matical and programming reasoning tasks, in-
troducing two models: E1-Math-1.5B and E1-Code-14B. (1) E1-Math-1.5B outperforms both L1-
Exact and S1, and achieves performance comparable to L1-Max, while requiring significantly fewer
training steps. For instance, on the AIME2024 dataset, our method achieves 35.0% accuracy, com-
pared to 27.1% for L1-Max, 24.2% for L1-Exact, and 41.0% for the original model. (2) E1-Code-
14B demonstrates strong scaling with varying inference budgets, achieving a Codeforces rating of
1987 and placing in the 96.0 percentile—comparable to O1-2024-12-17 (Low), which scores 1991
and ranks in the 96.1 percentile. (3) A surprising observation is that, after training, the trajecto-
ries generated by our models are significantly shorter than those from the original DeepScaleR and
DeepCoder models across both math and code tasks. This suggests that budget-constrained roll-
out not only improves length control but also encourages the model to reason more concisely and
generate more efficient solutions.

2 RELATED WORKS

2.1 TEST-TIME SCALING IN LARGE LANGUAGE MODELS

Increasing computation during inference, often referred to as test-time scaling (TTS), has been
shown to improve the reasoning capabilities of LLMs (Wei et al., 2023; Wang et al., 2023; Snell
et al., 2024; DeepSeek-AI et al., 2025; Team et al., 2025; Muennighoff et al., 2025). Early works,
such as chain-of-thought prompting (Wei et al., 2023), show that producing a series of intermediate
reasoning steps significantly improves LLMs’ performance on complex reasoning tasks. Building
on this, self-consistency (Wang et al., 2023) further boosts performance by sampling a diverse set
of reasoning paths and selecting the most consistent answer. Recent studies have formalized these
findings into test-time inference scaling laws (Snell et al., 2024; Wu et al., 2024). Wu et al. (2024)
explore the trade-offs between model size and inference-time computation. Snell et al. (2024) inves-
tigated how fixed but non-trivial inference-time budgets can significantly boost LLM performance.
The remarkable successes of advanced reasoning models, such as o1 (OpenAI et al., 2024) and
R1 (DeepSeek-AI et al., 2025), have further amplified interest in leveraging TTS techniques. While

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

much of the existing works primarily focuses on improving performance by increasing inference-
time computation, our work takes a different perspective: How can we enable LLMs to perform
effective long reasoning under strict output length constraints?

2.2 LENGTH CONTROL IN LARGE LANGUAGE MODELS

Controlling the generation length of an LLM directly affects both latency and monetary cost at infer-
ence time. Earlier approaches to length control are designed mainly for general text generation (Jie
et al., 2023; Yuan et al., 2024). Typical methods include (i) manipulating positional encodings to
achieve exact sequence lengths (Butcher et al., 2024), (ii) modifying training objectives to penal-
ize deviations from length targets (Jie et al., 2023; Singhal et al., 2024), and (iii) fine-tuning on
instructions that explicitly state the desired output length (Yuan et al., 2024). Although effective
for tasks such as summarization or constrained writing, these techniques generally aim to verbosity
or enforce maximum-length limits, and overlook the intricate, step-by-step reasoning processes re-
quired for many reasoning tasks. Recent works have begun to explore efficiency in reasoning by
encouraging shorter chains (Kang et al., 2024; Arora & Zanette, 2025); however, they typically lack
mechanisms for precise, user-defined length targets that align with explicit compute budgets. One
notable attempt, budget forcing (Muennighoff et al., 2025), enforces strict token caps by truncating
or padding with special tokens. This can yield incomplete reasoning or unnatural, forced outputs, ul-
timately harming both accuracy and interpretability. Additionally, L1 (Aggarwal & Welleck, 2025)
uses reinforcement learning to let models dynamically allocate inference compute based on con-
straints provided in the prompt. Our approach does not need to include length instructions in the
prompt. Instead, we truncate reasoning trajectories to meet a given budget and train the model under
these constraints via reinforcement learning.

2.3 EFFICIENT REASONING IN LARGE LANGUAGE MODELS

Making complex reasoning in LLMs more efficient, particularly by shortening the reasoning pro-
cess, is crucial to reducing computational costs and making these models practical for real-world
deployment. This has become a vibrant research area with several promising directions to encour-
age more concise and effective reasoning strategies (Kang et al., 2024; Xu et al., 2024; Hao et al.,
2024; Liao et al., 2025; Luo et al., 2025a). One common strategy involves incorporating explicit
rewards into RL to encourage the model to find shorter reasoning paths (Team et al., 2025; Luo
et al., 2025a). Some focus on creating datasets with examples of concise reasoning paths and then
using SFT teach models how to generate compact and knowledgeable reasoning steps (Kang et al.,
2024; Yu et al., 2024). Instead of relying solely on explicit textual reasoning, methods exploring
latent reasoning aim to compress these intermediate steps into more compact, internal representa-
tions (Hao et al., 2024; Shen et al., 2025; Saunshi et al., 2025). Efficiency can also be improved
during inference, without needing to retrain the model. These training-free techniques dynamically
adapt the reasoning strategy based on the specific input or task demands (Liao et al., 2025; Fu et al.,
2025). In this work, we introduce a training approach using reinforcement learning under strict
budget constraints to encourage the model to balance reasoning quality with cost efficiency.

3 METHODOLOGY

3.1 PRELIMINARIES: REASONING LANGUAGE MODELS

We consider reasoning-augmented language models that generate outputs consisting of two distinct
segments: a thinking part and a solution part. Following prior work, we denote the reasoning phase
using special tokens such as <think> and </think> to explicitly mark the model’s intermediate
thoughts.

Formally, given an input prompt x, the model generates an output sequence y = (ythink, ysolution),
where ythink contains the intermediate reasoning steps (enclosed between <think> and
</think>) and ysolution contains the final solution. Typically, ythink accounts for most of the total
tokens, while ysolution provides a concise summary and final answer. The overall generation structure
is:

y = (<think> intermediate reasoning </think>, solution)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Policy
Model

E1-Math/Code

Budget-Constrained Rollout

Training Inference

Separate Budgeting for Inference 

Thinking segment

Solution segment

Inference budget

Figure 2: The framework of Elastic Reasoning. Elastic Reasoning comprises two key components:
(1) GRPO training with budget-constrained rollout, and (2) separate budgeting for inference. Left:
During training, the model is optimized using GRPO under a fixed token budget (t∗, s∗). Right: At
inference time, the trained E1 model can generalize to arbitrary token budgets ci = ti+s∗, enabling
flexible and efficient reasoning.

3.2 ELASTIC REASONING

3.2.1 BUDGET-CONSTRAINED INFERENCE

In many real-world applications, inference cost must be carefully controlled due to constraints on
latency, computation, or memory. A common approach is to truncate generation after a fixed number
of tokens c, enforcing:

|y| ≤ c

where |y| denotes the number of generated tokens. However, naively truncating the output often
results in incomplete or missing ysolution, leading to invalid or unusable predictions.

3.2.2 SEPARATE BUDGETING FOR THINKING AND SOLUTION

To address this limitation, we propose Separate Budgeting, a method that explicitly allocates inde-
pendent budgets for the reasoning and solution phases. A key observation is that even when the
reasoning phase is forcibly terminated (e.g., by inserting </think>), the model is still capable of
producing a coherent—and often correct—solution.

Given a total generation budget c, we divide it into two components: a budget t for the thinking
phase and a budget s for the solution phase, such that c = t+ s.

During inference:

• The model begins generating within a <think> block.

• If the model emits </think> before reaching the budget t, we transition immediately to
the solution phase.

• If the budget t is exhausted before </think> is emitted, we forcibly terminate the rea-
soning by appending </think>.

• The model then continues generating the solution segment, up to a maximum of s tokens.

This approach ensures that both the reasoning and solution components are explicitly accommo-
dated within the total budget c, thereby avoiding unintended truncation of the solution segment. The
thinking budget t can be flexibly adjusted at inference time to match different application scenarios,
while the solution phase always retains a guaranteed allocation. As shown in Figure 1, Separate
Budgeting outperforms both vanilla budgeting (naı̈ve truncation) and S1 (budget forcing). By ded-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Steps

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Ac
cu

ra
cy

AIME accuracy during training
Pass@1

(a) Pass@1 on AIME2024 over steps

0 25 50 75 100 125 150 175 200
Steps

0.30

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e 

re
wa

rd

Average reward during training
Average reward

(b) Reward over steps

Figure 3: Validation accuracy and reward curves of E1-Math-1.5B over training steps.

icating a fixed token budget for solution generation, Separate Budgeting significantly improves the
reliability and quality of model outputs under tight inference-time constraints.

3.2.3 BUDGET-CONSTRAINED ROLLOUT

While Separate Budgeting ensures dedicated budgets for both reasoning and solution phases, we
observe that naively truncating the thinking part—especially on complex tasks such as code gen-
eration—can lead to significant performance degradation. To mitigate this issue, we propose a
reinforcement learning (RL) fine-tuning procedure that explicitly trains the model under reason-
ing budget constraints, allowing it to produce more effective and concise reasoning within limited
budgets.

We adopt GRPO as our RL algorithm. Let πθ denote the policy of a language model parameterized
by θ, which generates a response y = (ythink, ysolution) for a given input x, subject to a total budget
constraint t∗ + s∗ = c∗. During training, we simulate the Separate Budgeting procedure used at
inference time: the policy rolls out a reasoning segment ythink up to a maximum of t∗ tokens. If the
model emits the </think> token before reaching this limit, it proceeds to generate the solution
segment as usual. Otherwise, we forcibly append </think> once the budget t∗ is reached. The
model then generates the solution segment ysolution using the remaining s∗ tokens.

Let r(y) denote a task-specific reward function. The training objective is to maximize the expected
reward:

J(θ) = Ex∼D, y∼πθ(·|x; t∗,s∗) [r(y)]

We optimize J(θ) using GRPO with the following gradient estimator:

∇θJ(θ) = Ex,y [A(x, y)∇θ log πθ(y | x; t∗, s∗)] , A(x, y) =
r(y)− Ey′∼πθ(·|x; t∗,s∗)[r(y

′)]√
Vy′∼πθ(·|x)[r(y

′)]

In our training setup, we fix the budget pair to (t∗, s∗) = (1K, 1K) for simplicity and efficiency.
Surprisingly, we find that the learned policy generalizes well to a wide range of unseen budget
configurations at test time, without requiring any additional fine-tuning. As shown in Figure 1, the
E1-Math-1.5B model achieves substantial improvements while generalizing robustly across various
generation budgets. This indicates that Elastic Reasoning encourages the model to internalize a
flexible reasoning strategy that adapts to different resource constraints. This RL-based adaptation
helps the model prioritize informative reasoning content earlier in the generation process, thereby
improving both robustness and solution quality under test-time truncation.

4 EXPERIMENT RESULTS

4.1 MODELS AND DATASETS

Our base models are DeepScaleR-1.5B-Preview (Luo et al., 2025c) and DeepCoder-14B-
Preview (Luo et al., 2025b), which are fine-tuned from DeepSeekR1-Distill-Qwen-1.5B and

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

512 1K 2K 4K 8K
Tokens Used

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Pa
ss

@
1

AIME

512 1K 2K 4K
Tokens Used

10%

20%

30%

40%

50%

60%

70%

80%

Pa
ss

@
1

AMC

512 1K 2K 4K
Tokens Used

10%

20%

30%

40%

50%

Pa
ss

@
1

Olympiad-Bench

256 512 1K 2K 4K
Tokens Used

40%

50%

60%

70%

80%

90%

Pa
ss

@
1

MATH

256 512 1K 2K 4K
Tokens Used

10%

15%

20%

25%

30%

Pa
ss

@
1

Minerva

S1 (Budget Forcing)
L1-Exact
L1-Max
E1-Math-1.5B (Budget Constraint)
DeepScaleR-1.5B-24K
L1-Exact-24K
L1-Max-24K
E1-Math-1.5B-24K

Figure 4: Comparison of E1-Math-1.5B with L1 and S1 baselines under varying generation budgets.
24K / 64K settings correspond to the maximum token lengths permitted during inference, with no
explicit budget constraints imposed.

14B (DeepSeek-AI et al., 2025) through iterative context lengthening. For training data, we fol-
low the same datasets used in (Luo et al., 2025c;b). In the math domain, the training set con-
sists of AIME (1984-2023), AMC, Omni-Math (Gao et al., 2024), and STILL (Min et al., 2024).
For code training, we use TACO (Li et al., 2023), SYNTHETIC-1 (Mattern et al., 2025), and
LiveCodeBench (2023/05/01-2024/07/31) (Jain et al., 2024). For evaluation, we use AIME 2024,
MATH500 (Hendrycks et al., 2021), AMC, Olympiad-Bench (Gao et al., 2024), and Minerva
Math (Lewkowycz et al., 2022) for mathematical reasoning. For code-related tasks, we evaluate
on LiveCodeBench (2024/08/01-2025/02/01) (Jain et al., 2024), Codeforces, and HumanEval+ (Liu
et al., 2023). For mathematical reasoning tasks, we report averages over 16 runs, whereas for code-
related tasks the results are averaged over 8 runs. 24K / 64K settings correspond to the maximum
token lengths permitted during inference, with no explicit budget constraints imposed. More training
details are in Appendix B.

4.2 MATHEMATICAL REASONING RSULTS

We visualize the reward and validation Pass@1 performance on AIME2024 every 10 steps during
training in Figure 3. It can be observed that the reward steadily increases during the initial train-
ing phase and begins to converge after approximately the 150th step. Meanwhile, the validation
accuracy (Pass@1) improves rapidly, rising from around 0.07 to 0.20 over the course of training.
This demonstrates that, through budget-constrained rollout, the model can quickly learn to reason
effectively when the thinking phase is incomplete.

We report Pass@1 accuracy versus the number of tokens used across five math benchmarks AIME,
AMC, Olympiad-Bench, MATH500, and Minerva Math in Figure 4. Our proposed method, E1-
Math-1.5B, under both budget-constrained and 24K-token settings (red stars), consistently outper-
forms S1 (Budget Forcing) and L1-Exact, and performs competitively with L1-Max, while requir-
ing significantly fewer training steps. On MATH500, E1-Math-1.5B achieves a Pass@1 accuracy
of 83.6% using only 1619 tokens per question, whereas L1-Exact and L1-Max yield lower or
comparable performance with more tokens (L1-Exact: 79.9% with 1959 tokens; L1-Max: 83.6%
with 1796 tokens). Notably, when evaluated without inference-time budget constraints, E1-Math-
1.5B achieves higher accuracy than all baseline methods across all benchmarks. For example, on
AIME2024, E1-Math-1.5B exhibits a performance degradation of only 6.0% relative to the original
model, compared to 12.9% for L1-Max and 16.8% for L1-Exact. These results demonstrate that
our method is not only effective in enforcing inference-time budget constraints but also preserves

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of models across LiveCodeBench, Codeforces, HumanEval+, and AIME
benchmarks. E1-code-14B variants trained exclusively on code data; their AIME scores, obtained
on math problems unseen during training, demonstrate that E1-code-14B retains strong math per-
formance.

Model LiveCodeBench Codeforces Rating Codeforces Percentile HumanEval+ AIME

O1-2024-12-17 (Low) 59.5 1991 96.1 90.8 74.4
O3-Mini-2025-1-31 (Low) 60.9 1918 94.9 92.6 60.0
O1-Preview 42.7 1658 88.5 89.0 40.0
DeepSeek-R1 62.8 1948 95.4 92.6 79.8

DeepSeek-R1-Distill-Qwen-14B 53.0 1791 92.7 92.0 69.7
DeepCoder-14B-Preview2 58.1 1945 95.4 90.8 71.7
E1-code-14B (t = 1k, a = 1k) 37.3 1457 78.1 88.3 17.9
E1-code-14B (t = 2k, a = 1k) 41.6 1604 85.4 89.6 28.5
E1-code-14B (t = 3k, a = 1k) 44.1 1711 90.6 90.8 35.4
E1-code-14B (t = 4k, a = 1k) 47.0 1771 92.3 92.0 41.9
E1-code-14B 58.4+0.3 1987+42 96.0+0.6 91.4+0.6 70.6

most of the original model’s performance. When compared with the original DeepScaleR-1.5B, E1-
Math-1.5B reduces the average number of tokens used across datasets by more than 30%, including
a 32.1% reduction on AIME2024 (see further analysis in Appendix C).

Furthermore, similar to L1, S1, and O1, we observe a clear log-linear scaling pattern in E1: per-
formance improves approximately linearly with respect to the logarithm of the number of generated
reasoning tokens.

4.3 CODE REASONING RESULTS

2K 4K 8k 16k
Tokens Used

0%

10%

20%

30%

40%

50%

60%

Pa
ss

@
1

LiveCodeBench
DeepCoder-14B-Preview
E1-Code-14B
DeepCoder-14B-Preview-64K
E1-Code-14B-64K

Figure 5: Pass@1 accuracy on LiveCodeBench
under varying reasoning budgets. Both of the
models inference with separate budgeting.

As shown in Figure 5, we visualize the Pass@1
accuracy on LiveCodeBench under varying
generation budgets, comparing our method to
a simple separate budgeting strategy for think-
ing and solution. We observe that the orig-
inal DeepCoder-14B-Preview fails to gener-
ate correct outputs when reasoning is incom-
plete, consistently achieving less than 10% ac-
curacy when inference budget is less than 4K
even using separate budgeting. In contrast, our
E1-Code-14B model demonstrates impressive
scalability: its performance improves steadily
as the inference budget increases, highlighting
the effectiveness of our training strategy in en-
abling the model to reason adaptively under
constrained thinking. Notably, E1-Code-14B
also achieves a performance improvement of
0.3% on LiveCodeBench even in the uncon-
strained setting, while simultaneously reducing
the average number of generated tokens by 37.4%—from 17,815 to 11,145 tokens. This indicates
that our method not only scales well with inference budgets but also promotes more concise and
efficient reasoning.

In Table 1, we report the results of E1-Code-14B on four benchmarks: LiveCodeBench, Codeforces,
HumanEval Plus, and AIME2024. We observe consistent test-time scaling behavior across all
benchmarks under constrained inference budgets. Beyond scalability, our model also demonstrates
strong performance in the unconstrained setting. Specifically, we observe performance improve-
ments on LiveCodeBench, Codeforces, and HumanEval Plus, and only a slight performance drop
on AIME2024. On Codeforces, E1-Code-14B achieves a 42-point improvement in rating and a 0.6
percentile gain, outperforming O3-Mini-2025-1-31 (Low) and performing comparably to O1-2024-

2Results are reproduced using the authors’ official code and model with the same evaluation protocol.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2K 3K
Tokens Used

10%

15%

20%

25%

30%

Pa
ss

@
1

AIME

1K 2K
Tokens Used

40%

45%

50%

55%

60%

65%

70%

Pa
ss

@
1

AMC

1K 2K
Tokens Used

30%

35%

40%

45%

Pa
ss

@
1

Olympiad-Bench

1K 2K
Tokens Used

70%

75%

80%

85%

Pa
ss

@
1

MATH

1K 2K
Tokens Used

22%

24%

26%

28%

30%

Pa
ss

@
1

Minerva
E1-Math-1.5B (0.5K+1K)
E1-Math-1.5B (1K+1K)
E1-Math-1.5B (2K+1K)
E1-Math-1.5B (3K+1K)

Figure 6: Ablation study on training reasoning budget t∗. We compare four settings: t∗ ∈
{0.5K, 1K, 2K, 3K}, while keeping the solution budget fixed at a∗ = 1K.

12-17 (Low). These results highlight that our method not only enables efficient, budget-constrained
reasoning but also enhances overall reasoning capability, even in unconstrained scenarios.

4.4 ANALYSIS AND DISCUSSIONS

4.4.1 WHICH PART IS ENHANCED AFTER TRAINING?

Table 2: Ablation of enhanced thinking and solution on DeepScaleR-1.5B-Preview and E1-Math-
1.5. Budget is in format ‘thinking+solution‘ (in thousands of tokens).

DeepScaleR-1.5B E1-Math-1.5B Pass@1 (%)
Thinking Solution Thinking Solution 0.5K+1K 1K+1K 2K+1K 3K+1K

✓ ✓ 2.10 4.80 12.5 20.0
✓ ✓ 3.50+1.4 7.90+3.1 20.6+8.1 24.0+4.0

✓ ✓ 10.8+8.7 14.2+9.4 21.9+9.4 26.4+6.4

✓ ✓ 13.5+11.4 17.5+12.7 24.8+12.3 27.9+7.9

To better understand which components of the reasoning process are enhanced through train-
ing, we conduct ablation experiments on DeepScaleR-1.5B-Preview and E1-Math-1.5B using the
AIME2024 benchmark. Specifically, we separately generate the thinking and solution segments us-
ing both models under varying generation budgets. For example, we use DeepScaleR-1.5B-Preview
to generate the thinking part, and then use E1-Math-1.5B to generate the corresponding solution
based on that reasoning. This setup allows us to isolate the contributions of each model to the
reasoning pipeline and assess how training improves each component.

As shown in Table 2, we observe that both the thinking and solution are enhanced after training.
Notably, the improvement in the solution component is more substantial, particularly under con-
strained thinking budgets. For instance, using the E1 model to generate only the solution segment
yields an 8.7% gain in accuracy compared to using the original DeepScaleR model, under a genera-
tion budget of (0.5K+1K) tokens. This highlights the effectiveness of budget-constrained rollout in
strengthening the model’s ability to produce high-quality solutions based on incomplete reasoning.

This observation also helps explain why training with a fixed budget constraint (e.g., (1K, 1K))
enables the model to generalize effectively to a wide range of budget configurations. We hypothesize
that the improvement in solution generation plays a central role in this generalization, allowing the
model to adapt even when the available thinking tokens are reduced.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

E1-Math (0.5k+1K)

E1-Math (1k+1K)

E1-Math (2k+1K)

E1-Math (3k+1K)

E1-Math (24K)

DeepScalaR (24K)
0

2000

4000

6000

8000

10000

12000

N
um

be
r 

of
 T

ok
en

s

512
828

Total: 1340

1022
777

Total: 1799

1960

689
Total: 2650

2737

640
Total: 3377

6384

441
Total: 6825

9605

445
Total: 10050

 32.1%

AIME
Thinking
Solution

E1-Coder (1
k+1K)

E1-Coder (2
k+1K)

E1-Coder (3
k+1K)

E1-Coder (4
k+1K)

E1-Coder (6
4K)

DeepCoder (6
4K)

0

2500

5000

7500

10000

12500

15000

17500

20000

N
um

be
r 

of
 T

ok
en

s

1015
729

Total: 1744
1957
734

Total: 2691

2834

744
Total: 3578

3648

730
Total: 4378 10401

744
Total: 11145

17082

733
Total: 17815

 37.4%

LiveCodeBench
Thinking
Solution

Figure 7: Distribution of tokens for thinking and solution across different generation budgets.

4.4.2 ABLATION OF TRAINING BUDGET t∗

To further investigate the role of the thinking budget t∗ in our proposed budget-constrained roll-
out, we conduct experiments to evaluate the model’s performance under four settings: t∗ ∈
{0.5K, 1K, 2K, 3K}, while keeping the solution budget fixed at a∗ = 1K. We evaluate on five
math benchmarks: AIME, AMC, Olympiad-Bench, MATH500, and Minerva Math (Figure 6).

Across all configurations, the model demonstrates strong generalization to varying inference budgets
on all benchmarks. Among the tested values, t∗ = 1K consistently achieves the best performance,
while also maintaining a low maximum generation length of 2K tokens, making it a highly efficient
and effective setting. Based on the trade-off between performance and computational cost, we adopt
(t∗ = 1K, s∗ = 1K) as our default configuration (Appendix H).

4.4.3 TOKEN ALLOCATION BETWEEN THINKING AND SOLUTION

Figure 7 visualizes the distribution of thinking and solution tokens within generated trajectories
under different generation budget constraints. We select AIME2024 for the math task and Live-
CodeBench for the coding task.

For AIME2024, as the inference budget decreases, the number of tokens used in the thinking seg-
ment decreases accordingly, while the number of tokens in the solution segment slightly increases.
A similar trend is observed on LiveCodeBench, where the thinking tokens decrease with tighter
budgets, while the number of solution tokens remains relatively stable.

Notably, even when evaluated without budget constraints, our trained E1 models demonstrate sub-
stantial token efficiency: they reduce total token usage by 32.1% on AIME2024 and 37.4% on Live-
CodeBench, while maintaining strong performance (even slightly better than the baseline model).
This suggests that the model has learned to reason more concisely and generate efficient solutions
post training. Qualitative analysis is provided in Appendix G.

5 CONCLUSION

We introduce Elastic Reasoning, a unified framework for enabling large reasoning models to gen-
erate accurate and efficient chain-of-thought outputs under strict inference-time constraints. By
explicitly separating the reasoning process into thinking and solution phases, and training with a
novel budget-constrained rollout strategy, our approach ensures robustness to truncated reasoning
while preserving or even improving overall performance. Elastic Reasoning significantly reduces
token usage during inference, generalizes across unseen budget configurations, and outperforms
prior length control baselines in both mathematical and programming domains. Our findings offer a
scalable and principled solution for real-world deployment of reasoning LLMs where computation
budgets are limited. We believe this framework opens new directions for budget-aware reasoning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Our study focuses on improving the efficiency and scalability of reasoning in large language mod-
els by introducing budget-constrained training and inference. All experiments were conducted on
publicly available datasets in mathematics (e.g., AIME, AMC, MATH500, Minerva Math) and pro-
gramming (e.g., LiveCodeBench, Codeforces, HumanEval+), without the use of private or sensitive
user data. No personally identifiable information (PII) or human subject data was collected, and
therefore IRB approval was not required.

We acknowledge the broader ethical considerations surrounding large language models, including
potential risks of misuse, fairness, and environmental impact. Our method, Elastic Reasoning, is
designed to reduce inference costs by making models more token-efficient. This can mitigate envi-
ronmental impact by lowering computational and energy requirements.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility of our work. An anonymous implementation
of our proposed Elastic Reasoning framework is included in the supplementary materials. The
main text and Appendix B describe the methodology and training procedure in detail, including
the budget-constrained rollout strategy and evaluation protocol. We provide complete information
about the datasets used in both the math and code domains (Section 4.1). Hyperparameters, training
configurations, and additional ablation studies are documented in the Appendix to enable faithful
reproduction of our results. Together, these resources ensure that both the reported results and future
extensions of this work can be reproduced by the community.

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Daman Arora and Andrea Zanette. Training language models to reason efficiently, 2025. URL
https://arxiv.org/abs/2502.04463.

Bradley Butcher, Michael O’Keefe, and James Titchener. Precise length control in large language
models, 2024. URL https://arxiv.org/abs/2412.11937.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,

10

https://arxiv.org/abs/2503.04697
https://arxiv.org/abs/2502.04463
https://arxiv.org/abs/2412.11937


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Yifan Du, Zikang Liu, Yifan Li, Wayne Xin Zhao, Yuqi Huo, Bingning Wang, Weipeng Chen, Zheng
Liu, Zhongyuan Wang, and Ji-Rong Wen. Virgo: A preliminary exploration on reproducing o1-
like mllm. arXiv preprint arXiv:2501.01904, 2025.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop
on Foundation Models in the Wild, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
math: A universal olympiad level mathematic benchmark for large language models, 2024. URL
https://arxiv.org/abs/2410.07985.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space, 2024. URL https:
//arxiv.org/abs/2412.06769.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Renlong Jie, Xiaojun Meng, Lifeng Shang, Xin Jiang, and Qun Liu. Prompt-based length controlled
generation with reinforcement learning. arXiv preprint arXiv:2308.12030, 2023.

Yu Kang, Xianghui Sun, Liangyu Chen, and Wei Zou. C3ot: Generating shorter chain-of-
thought without compromising effectiveness, 2024. URL https://arxiv.org/abs/
2412.11664.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models, 2022. URL https://arxiv.org/abs/2206.
14858.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset, 2023. URL https://arxiv.
org/abs/2312.14852.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.07985
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2412.06769
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2412.11664
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2312.14852
https://arxiv.org/abs/2312.14852


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo,
and Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning, 2025. URL
https://arxiv.org/abs/2501.19324.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation, 2023.
URL https://openreview.net/forum?id=1qvx610Cu7.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
2025a. URL https://arxiv.org/abs/2501.12570.

Michael Luo, Xiaoxiang Shi Sijun Tan, Roy Huang, Rachel Xin, Colin Cai, Ameen Patel, Alpay
Ariyak, Qingyang Wu, Ce Zhang, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepcoder: A
fully open-source 14b coder at o3-mini level. , 2025b. Notion Blog.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
et al. Deepscaler: Surpassing O1-preview with a 1.5 b model by scaling reinforcement learning. ,
2025c. Notion blog post.

Justus Mattern, Sami Jaghouar, Manveer Basra, Jannik Straube, Matthew Di Ferrante, Felix
Gabriel, Jack Min Ong, Vincent Weisser, and Johannes Hagemann. Synthetic-1: Two mil-
lion collaboratively generated reasoning traces from deepseek-r1, 2025. URL https://www.
primeintellect.ai/blog/synthetic-1-release.

Yingqian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng
Wang, Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, and Ji-
Rong Wen. Imitate, explore, and self-improve: A reproduction report on slow-thinking reasoning
systems, 2024. URL https://arxiv.org/abs/2412.09413.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling, 2025. URL https://arxiv.org/abs/2501.19393.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel
Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael

12

https://arxiv.org/abs/2501.19324
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2501.12570
https://pretty-radio-b75.notion.site/DeepCoder-A-Fully-Open-Source-14B-Coder-at-O3-mini-Level-1cf81902c14680b3bee5eb349a512a51
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://www.primeintellect.ai/blog/synthetic-1-release
https://www.primeintellect.ai/blog/synthetic-1-release
https://arxiv.org/abs/2412.09413
https://arxiv.org/abs/2501.19393


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan,
Hector Liu, Yuanzhi Li, et al. O1 replication journey: A strategic progress report–part 1. arXiv
preprint arXiv:2410.18982, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

Nikunj Saunshi, Nishanth Dikkala, Zhiyuan Li, Sanjiv Kumar, and Sashank J Reddi. Reasoning
with latent thoughts: On the power of looped transformers, 2025. URL https://arxiv.
org/abs/2502.17416.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Xuan Shen, Yizhou Wang, Xiangxi Shi, Yanzhi Wang, Pu Zhao, and Jiuxiang Gu. Efficient reasoning
with hidden thinking, 2025. URL https://arxiv.org/abs/2501.19201.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework, 2024. URL
https://arxiv.org/abs/2409.19256.

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf, 2024. URL https://arxiv.org/abs/2310.03716.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Kimi Team, A Du, B Gao, B Xing, C Jiang, C Chen, C Li, C Xiao, C Du, C Liao, et al. Kimi k1.
5: Scaling reinforcement learning with llms, 2025, 2025. URL https://arxiv.org/abs/
2501.12599.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

13

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2502.17416
https://arxiv.org/abs/2501.19201
https://arxiv.org/abs/2409.19256
https://arxiv.org/abs/2310.03716
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models,
2024. URL https://arxiv.org/abs/2408.00724.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
to reinforce. arXiv preprint arXiv:2504.11343, 2025a.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding
correction for mathematical reasoning. arXiv preprint arXiv:2502.19613, 2025b.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1, 2024. URL
https://arxiv.org/abs/2407.06023.

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston, and
Jing Xu. Following length constraints in instructions, 2024. URL https://arxiv.org/
abs/2406.17744.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
o1-coder: an o1 replication for coding. arXiv preprint arXiv:2412.00154, 2024.

A USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as a writing assist tool to improve grammar, clarity,
and style. The research ideas, methodology, experiments, analysis, and conclusions were developed
entirely by the authors without reliance on LLMs. No part of the scientific contribution, experimental
design, or result interpretation involved LLM usage.

B TRAINING DETAILS

For GRPO training, we adopt the same hyperparameters as those used in DeepScaleR-1.5B-Preview
and DeepCode-14B-Preview. For E1-Math-1.5B, we use a learning rate of 1×10−6 and a batch size
of 128. The maximum context length is set to 1K tokens for the thinking segment and 1K tokens
for the solution segment. Training is performed for 200 steps using the VeRL (Sheng et al., 2024)
framework. For E1-Code-14B, we use the same learning rate and batch size. The context length
configuration mirrors that of the math model: 1K tokens for thinking and 1K tokens for solution.
Training is conducted for only 30 steps.

C COMPARISON UNDER 24K-TOKEN UNCONSTRAINED INFERENCE

To highlight the effectiveness of our method, we compare E1-Math-1.5B with L1-Exact, L1-Max,
and the vanilla DeepScaleR-1.5B under the 24K-token unconstrained inference setting across five
math benchmarks (Table C.1). Note that E1-Math-1.5B, L1-Exact, and L1-Max are all fine-tuned
from DeepScaleR-1.5B.

Compared to L1-Exact and L1-Max, our method achieves the best overall trade-off between perfor-
mance and length control. For example, on Minerva Math, E1-Math-1.5B uses only 2,631 tokens on
average (vs. 3,440 for L1-Max and 4,221 for L1-Exact), while achieving 30.17% accuracy—1.36%
higher than L1-Max and 1.01% higher than L1-Exact.

Relative to the vanilla DeepScaleR-1.5B, our accuracy remains comparable while requiring substan-
tially fewer tokens. For instance, on AMC, E1-Math-1.5B achieves 71.23% accuracy with 3,653 to-
kens, whereas DeepScaleR-1.5B requires 5,571 tokens to reach 72.06%. These results demonstrate
that our approach preserves accuracy while significantly improving length efficiency.

14

https://arxiv.org/abs/2408.00724
https://arxiv.org/abs/2407.06023
https://arxiv.org/abs/2406.17744
https://arxiv.org/abs/2406.17744


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Model AMC Olympiad-Bench MATH500 Minerva Math

DeepScaleR-1.5B-24K 72.06 (5571) 49.59 (5956) 87.63 (3124) 30.56 (4881)
L1-Exact-24K 66.42 (4024) 45.41 (4111) 83.45 (3937) 29.16 (4221)
L1-Max-24K 67.70 (3615) 45.69 (3547) 83.66 (3375) 28.81 (3440)
E1-Math-1.5B-24K 71.23 (3653) 46.50 (3865) 85.05 (2011) 30.17 (2631)

Table C.1: Pass@1 accuracy (%) under 24K-token unconstrained inference across math benchmarks.
Numbers in parentheses indicate average tokens used.

D REASONING COMPLETENESS RATIO

We measure the reasoning completeness ratio—the fraction of cases where the full reasoning fits
within the thinking budget—and the corresponding Pass@1 accuracy under different budget settings
on AIME, averaged over 16 runs.

Inference Budget 0.5K+1K 1K+1K 2K+1K 3K+1K
Complete Ratio (vanilla) 0.0% 0.0% 2.3% 5.4%
Accuracy (vanilla) 5.2% 9.6% 15.8% 22.7%
Complete Ratio (E1) 0.0% 1.3% 7.5% 9.2%
Accuracy (E1) 13.5% 17.5% 24.8% 27.9%

Table D.1: Reasoning completeness ratio and Pass@1 accuracy on AIME.

At low budgets (0.5K+1K and 1K+1K), the completeness ratio remains near zero, even after train-
ing. Nevertheless, E1 achieves substantially higher accuracy, indicating that it learns to be robust
to truncated reasoning. E1 becomes more token-efficient over time, which slightly increases the
completeness ratio as a byproduct—but this is not the main source of its gains.

Additional evidence comes from Table 2: when comparing the first and third rows, the thinking
segment is held fixed, so the completeness ratio remains the same. Yet, E1 significantly outperforms
the vanilla model in accuracy. This confirms that E1’s improvements arise not from completing
reasoning more often, but from better use of limited budgets.

E ITERATIVE TRAINING

Table E.1: Pass@1(%) on AIME 2024 across different budget configurations in two iterations.

Iteration 0.5K+1K 1K+1K 2K+1K 3K+1K

1st (1K+1K) 13.5 17.5 24.8 27.9
2nd (3K+1K) 11.5 17.1 22.9 26.7

1st (3K+1K) 9.2 14.8 21.7 25.2
2nd (1K+1K) 11.7 15.0 22.9 25.5

We investigate whether the model benefits from iterative training, i.e., performing a second round
of training with a different compute budget. Concretely, we consider two schedules: (i) train with
a budget of (t∗ = 1K, a∗ = 1K) and continue from the checkpoint with (t∗ = 3K, a∗ = 1K);
and (ii) the reverse order. Results on AIME2024 (Table E.1) show no noticeable improvement from
the second round. This suggests that once the model has learned to reason effectively under a given
budget, further training with a different budget provides little additional benefit.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F MMLU RESULTS

To further assess generalization, we evaluate both models on MMLU (Hendrycks et al., 2020).
We adopt the same budget-constrained settings and additionally report results under unconstrained
inference (24K). All results are averaged over 16 runs:

Inference Budget 0.5K+1K 1K+1K 2K+1K 3K+1K 24K
Base Model – – – – 48.3%
1st Iteration (1K+1K) 47.4% 47.7% 48.1% 48.6% 48.4%
2nd Iteration (3K+1K) 47.4% 47.6% 47.9% 48.2% 48.2%

Table F.1: Performance on MMLU under different inference budgets, averaged over 16 runs.

The second-iteration model exhibits no degradation in general capability. This demonstrates that E1
retains its broad reasoning ability even after adapting to a larger budget, confirming that it learns
budget handling as a transferable skill without forgetting prior competencies.

G QUALITATIVE ANALYSIS

To examine how reasoning adapts under budget constraints, we compare outputs from the original
model and our E1 model (trained with a 0.5K thinking + 1K solution budget) on an AIME2024
example.

Original model (1537 tokens). The reasoning path is verbose, with many tokens consumed within
individual steps.

E1 model (1091 tokens). After training with a constrained budget, the reasoning steps become
denser and more structured, reflecting more purposeful use of limited space. The model transi-
tions more smoothly and directly into the solution, while maintaining accuracy. The final answer is
reached correctly and with fewer tokens.

<think>
Okay, so I have this problem about Aya’s walk. Let me try to understand

↪→ what it’s asking.

Aya walks 9 kilometers every morning. When she walks at a speed of s
↪→ kilometers per hour, it takes her 4 hours, including t minutes
↪→ spent in the coffee shop. Then, when she increases her speed to s+2
↪→ km/h, the total time becomes 2 hours and 24 minutes, including the
↪→ same t minutes in the coffee shop. Now, we need to find the time
↪→ it takes if she walks at s + 1/2 km/h, again including t minutes in
↪→ the coffee shop.

Alright, let’s break this down step by step.

First, when she walks at speed s km/h, the total time including the
↪→ coffee shop is 4 hours. That total time includes both walking and
↪→ the time in the coffee shop. Similarly, when her speed increases to
↪→ s+2 km/h, the total time becomes 2 hours and 24 minutes, which is
↪→ 2 + 24/60 = 2 + 0.4 = 2.4 hours.

So, let’s denote:

- Let t be the time spent in the coffee shop in minutes.
- Let d be the distance she walks before entering the coffee shop. Wait,

↪→ but actually, the total distance is 9 km. So, perhaps it’s better
↪→ to consider the walking time and the coffee shop time separately.

Wait, perhaps another approach: the total time is walking time plus
↪→ coffee shop time. So, when she walks at s km/h, the total time is 4

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

↪→ hours, which is walking time + t minutes. But t is in minutes, so
↪→ perhaps we need to convert everything to hours or minutes.

Let me clarify the units.

The walking speed is in km/h, so the walking time would be distance/speed
↪→ . The coffee shop time is in minutes, so we need to convert it to
↪→ hours or keep it as minutes. It’s probably easier to convert
↪→ everything to hours.

So, let’s define:

- When she walks at speed s km/h, total time is 4 hours, which includes t
↪→ minutes in the coffee shop. So, the walking time is 4 - (t/60)
↪→ hours.

Similarly, when she walks at s+2 km/h, the total time is 2 hours and 24
↪→ minutes, which is 2 + 24/60 = 2 + 0.4 = 2.4 hours</think>

Let’s denote:
- \( s \) as her walking speed in km/h.
- \( t \) as the time spent in the coffee shop in minutes.
- The total time when walking at \( s \) km/h is 4 hours, including \( t

↪→ \) minutes in the coffee shop.

Therefore, the walking time is \( 4 - \frac{t}{60} \) hours.

Since she walks 9 km, the walking time can also be expressed as \( \frac
↪→ {9}{s} \) hours.

So, we have:
\[ \frac{9}{s} = 4 - \frac{t}{60} \quad \text{(1)} \]

Similarly, when she walks at \( s + 2 \) km/h, the total time is 2 hours
↪→ and 24 minutes, which is \( 2 + \frac{24}{60} = 2.4 \) hours.

Again, the walking time is \( 2.4 - \frac{t}{60} \) hours.

Expressing walking time as \( \frac{9}{s + 2} \) hours, we get:
\[ \frac{9}{s + 2} = 2.4 - \frac{t}{60} \quad \text{(2)} \]

Now, we have two equations:
1. \( \frac{9}{s} = 4 - \frac{t}{60} \)
2. \( \frac{9}{s + 2} = 2.4 - \frac{t}{60} \)

Let me denote \( \frac{t}{60} \) as \( x \) for simplicity. Then,
↪→ equation (1) becomes:

\[ \frac{9}{s} = 4 - x \quad \text{(1a)} \]

Equation (2) becomes:
\[ \frac{9}{s + 2} = 2.4 - x \quad \text{(2a)} \]

From equation (1a), we can express \( x \) as:
\[ x = 4 - \frac{9}{s} \quad \text{(1b)} \]

Substitute equation (1b) into equation (2a):
\[ \frac{9}{s + 2} = 2.4 - \left(4 - \frac{9}{s}\right) \]
Simplify:
\[ \frac{9}{s + 2} = 2.4 - 4 + \frac{9}{s} \]
\[ \frac{9}{s + 2} = -1.6 + \frac{9}{s} \]
Bring all terms to one side:
\[ \frac{9}{s + 2} - \frac{9}{s} = -1.6 \]
Factor out 9:
\[ 9\left( \frac{1}{s + 2} - \frac{1}{s} \right) = -1.6 \]
Simplify the expression inside the parentheses:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

\[ \frac{1}{s + 2} - \frac{1}{s} = \frac{s - (s + 2)}{s(s + 2)} = \frac
↪→ {-2}{s(s + 2)} \]

Thus:
\[ 9 \times \left( \frac{-2}{s(s + 2)} \right) = -1.6 \]
Simplify:
\[ \frac{-18}{s(s + 2)} = -1.6 \]
Multiply both sides by -1:
\[ \frac{18}{s(s + 2)} = 1.6 \]
Solve for \( s(s + 2) \):
\[ s(s + 2) = \frac{18}{1.6} = \frac{180}{16} = \frac{45}{4} = 11.25 \]
So:
\[ sˆ2 + 2s - 11.25 = 0 \]
Solve this quadratic equation:
Using quadratic formula:
\[ s = \frac{ -2 \pm \sqrt{4 + 45} }{2} = \frac{ -2 \pm \sqrt{49} }{2} =

↪→ \frac{ -2 \pm 7 }{2} \]
We discard the negative solution since speed can’t be negative:
\[ s = \frac{5}{2} = 2.5 \text{ km/h} \]

Now, substitute \( s = 2.5 \) back into equation (1a):
\[ \frac{9}{2.5} = 4 - x \]
\[ 3.6 = 4 - x \]
Thus:
\[ x = 4 - 3.

Listing 1: Response from original model with 1537 tokens.

<think>
Alright, so I’ve got this problem about Aya’s walk and coffee shop time.

↪→ Let me try to break it down step by step.

First, the problem says Aya walks 9 kilometers every morning. When she
↪→ walks at a speed of s km/h, the total time taken, including the
↪→ coffee shop time, is 4 hours. Then, when her speed increases to s+2
↪→ km/h, the total time becomes 2 hours and 24 minutes. In both cases
↪→ , the time spent in the coffee shop is the same, denoted as t
↪→ minutes.

The question is asking, if Aya walks at s + 0.5 km/h, how many minutes
↪→ will her total walk time be, including the coffee shop time.

Okay, let’s parse this information.

First scenario:
- Speed: s km/h
- Distance: 9 km
- Total time including coffee: 4 hours
- Therefore, time spent walking + time in coffee = 4 hours

Second scenario:
- Speed: s + 2 km/h
- Distance: 9 km
- Total time including coffee: 2 hours 24 minutes, which is 2 + 24/60 = 2

↪→ + 0.4 = 2.4 hours

Third scenario:
- Speed: s + 0.5 km/h
- Distance: 9 km
- Total time: let’s denote as T hours, which includes t minutes in the

↪→ coffee shop.

We need to find T in hours, then convert it to minutes.

Let’s start by setting up equations.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

In the first case, the time spent walking is distance divided by speed,
↪→ so 9/s hours. Then, the time in the coffee shop is t minutes, which
↪→ is t/60 hours. Therefore, total time is 9/s + t/60 = 4 hours.

In the second case, speed is s + 2, so time walking is 9/(s + 2) hours.
↪→ Total time is 9/(s + 2) + t/60 = 2.4 hours.

So, we have two equations:

1) 9/s + t/60 = 4

2) 9/(s + 2) + t/60 = 2.4

We can subtract the second equation from the first to eliminate t/60.

So, (9/s + t/60) - (9/(s + </think>

Now, let’s solve these equations step by step.

From equation 1:
9/s + t/60 = 4 --> t/60 = 4 - 9/s --> t = 60*(4 - 9/s) = 240 - 540/s.

From equation 2:
9/(s + 2) + t/60 = 2.4 --> t/60 = 2.4 - 9/(s + 2) --> t = 60*(2.4 - 9/(s

↪→ + 2)) = 144 - 540/(s + 2).

Now, set the two expressions for t equal:
240 - 540/s = 144 - 540/(s + 2).

Simplify:
240 - 144 = 540/s - 540/(s + 2)
96 = 540*(1/s - 1/(s + 2)).

Simplify the right side:
1/s - 1/(s + 2) = (s + 2 - s)/(s(s + 2)) = 2/(s(s + 2)).

Thus:
96 = 540*(2)/(s(s + 2)) --> 96 = 1080/(s(s + 2)).

Multiply both sides by s(s + 2):
96*s(s + 2) = 1080.

Divide both sides by 24:
4*s(s + 2) = 45 --> $4sˆ2$ + 8s - 45 = 0.

Solve the quadratic equation:
s = [-8 $\pm$ sqrt(64 + 720)]/(2*4) = [-8 $\pm$ sqrt(784)]/8 = [-8 $\pm$

↪→ 28]/8.

Since speed can’t be negative, s = (20)/8 = 2.5 km/h.

Now, find t from equation 1:
t = 240 - 540/2.5 = 240 - 216 = 24 minutes.

Now, for the third scenario, speed is s + 0.5 = 3 km/h.

Time walking: 9/3 = 3 hours.

Total time including coffee: 3 + t/60 = 3 + 24/60 = 3 + 0.4 = 3.4 hours =
↪→ 3 hours 24 minutes.

Thus, the total time is 3 hours 24 minutes.

The answer is \boxed{204} minutes.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Listing 2: Response from E1 model with 1091 tokens.

H CHOICE OF TRAINING BUDGETS

We fix the solution budget to 1K tokens because, in practice, we observe that when the </think>
token is manually inserted, the model naturally transitions to concise solutions that typically require
fewer than 1K tokens, even for complex problems. For the thinking budget, we consider four settings
t∗ ∈ {0.5K, 1K, 2K, 3K}. Among these, t∗ = 1K achieves the lowest training cost while yielding
validation loss comparable to that of larger budgets (2K and 3K).

The ablation study in Section 4.4.2 further supports this choice: the 1K + 1K configuration con-
sistently provides the best trade-off between performance and training efficiency. Based on this
one-time selection, we adopt t∗ = 1K and s∗ = 1K as the default setting across all math and code
experiments.

20


	Introduction
	Related works
	Test-time scaling in large language models
	Length control in large language models
	Efficient reasoning in large language models

	Methodology
	Preliminaries: Reasoning Language Models
	Elastic reasoning
	Budget-constrained inference
	Separate budgeting for thinking and solution
	Budget-constrained rollout


	Experiment results
	Models and datasets
	Mathematical reasoning rsults
	Code reasoning results
	Analysis and discussions
	Which part is enhanced after training?
	Ablation of training budget t*
	Token allocation between thinking and solution


	Conclusion
	Ethics statement
	Reproducibility statement
	Use of Large Language Models (LLMs)
	Training details
	Comparison under 24K-token Unconstrained Inference
	Reasoning completeness ratio
	Iterative training
	MMLU results
	Qualitative analysis
	Choice of training budgets

