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ABSTRACT

Large reasoning models (LRMs) have achieved remarkable progress on com-
plex tasks by generating extended chains of thought (CoT). However, their un-
controlled output lengths pose significant challenges for real-world deployment,
where inference-time budgets on tokens, latency, or compute are strictly con-
strained. We propose Elastic Reasoning, a novel framework for scalable chain
of thoughts that explicitly separates reasoning into two phases—thinking and so-
lution—with independently allocated budgets. At test time, Elastic Reasoning pri-
oritizes the completeness of solution segments, significantly improving reliability
under tight resource constraints. To train models that are robust to truncated think-
ing, we introduce a lightweight budget-constrained rollout strategy, integrated
into GRPO, which teaches the model to reason adaptively when the thinking pro-
cess is cut short and generalizes effectively to unseen budget constraints without
additional training. Empirical results on mathematical (AIME, MATH500) and
programming (LiveCodeBench, Codeforces) benchmarks demonstrate that Elastic
Reasoning performs robustly under strict budget constraints, while incurring sig-
nificantly lower training cost than baseline methods. Remarkably, our approach
also produces more concise and efficient reasoning even in unconstrained settings.
Elastic Reasoning offers a principled and practical solution to the pressing chal-
lenge of controllable reasoning at scale.

1 INTRODUCTION

Large reasoning models (LRMs) (DeepSeek-Al et al.,|2025;|OpenAl et al., 2024) have demonstrated
remarkable performance on complex reasoning tasks by producing extended Chain-of-Thought
(CoT) outputs, which facilitate effective problem-solving in domains such as mathematics and pro-
gramming. Reinforcement learning (RL) techniques (Schulman et al.l 2017} |Zelikman et al.| 2022
Rafailov et al.,2023;[Dong et al.|[2023};|Shao et al.| 2024)), have been employed to optimize these rea-
soning trajectories, enabling LRMs to generate longer, more informative chains. These RL-driven
methods scale effectively across diverse benchmarks (Zhang et al., 2024; |Dong et al.l 2024} |Luo
et al.l 2025¢} [Xiong et al., |2025b; [Luo et al., [2025b)), yielding substantial gains in both solution
accuracy and robustness; while they often incur significantly longer inference chains (DeepSeek-
Al et al.| 2025; Du et al., 2025} |Yu et al., [2024; [Qin et al.l 2024; Xiong et al.| [2025a). Notably,
the length of the reasoning trajectory remains uncontrolled, making it difficult to allocate a fixed
compute budget at inference time while maintaining a desired performance level.

Two primary lines of research have been proposed to address this challenge. The first, known as
Long2Short (Team et al. 2025; Kang et al., [2024), seeks to reduce reasoning length through rein-
forcement learning with trajectory penalties or compression-aware fine-tuning, where the model is
trained on shortened trajectories to preserve performance while minimizing inference cost. The sec-
ond line of work focuses on length control (Muennighoff et al.| 2025 |Aggarwal & Welleckl 2025
Yuan et al., 2024). S1 (Muennighoff et al., 2025) introduces a simple mechanism that prompts the
model to emit special tokens (e.g., “Wait”, “Final Answer”) to regulate reasoning length. However,
this approach significantly degrades performance, as it overlooks the critical role of the solution seg-
ment. L1 (Aggarwal & Welleckl 2025) proposes a reinforcement learning framework that enforces

!Code is available in the supplementary material.
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explicit length constraints over the entire trajectory. While more flexible, this method demands sub-
stantial training resources and still results in noticeable performance degradation compared to the
original model.

We propose Elastic Reasoning, a simple yet effective method that enables large reasoning models to
achieve scalable and adaptive length control. As illustrated in Figure[T] the S1 approach—generating
the answer by emitting a special token such as “Final Answer”—performs better than directly trun-
cating the full reasoning trajectory, underscoring the importance of preserving the solution segment.
Motivated by this, we propose separate budgeting which explicitly divides the total token budget ¢
into two parts: ¢ tokens for the thinking phase and s tokens for the solution phase, where ¢ = t + s.
Once the model consumes ¢ tokens in the thinking phase, we forcibly terminate it by appending the
special token </think> and transition to solution generation. Separate budgeting outperforms S1
under varying generation budgets.
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We evaluate Elastic Reasoning on both mathe- Figure 1: Separating thinking and solution phases
matical and programming reasoning tasks, in- enables better length control.

troducing two models: E1-Math-1.5B and E1-Code-14B. (1) E1-Math-1.5B outperforms both L1-
Exact and S1, and achieves performance comparable to L1-Max, while requiring significantly fewer
training steps. For instance, on the AIME2024 dataset, our method achieves 35.0% accuracy, com-
pared to 27.1% for L1-Max, 24.2% for L1-Exact, and 41.0% for the original model. (2) E1-Code-
14B demonstrates strong scaling with varying inference budgets, achieving a Codeforces rating of
1987 and placing in the 96.0 percentile—comparable to O1-2024-12-17 (Low), which scores 1991
and ranks in the 96.1 percentile. (3) A surprising observation is that, after training, the trajecto-
ries generated by our models are significantly shorter than those from the original DeepScaleR and
DeepCoder models across both math and code tasks. This suggests that budget-constrained roll-
out not only improves length control but also encourages the model to reason more concisely and
generate more efficient solutions.

2 RELATED WORKS

2.1 TEST-TIME SCALING IN LARGE LANGUAGE MODELS

Increasing computation during inference, often referred to as test-time scaling (TTS), has been
shown to improve the reasoning capabilities of LLMs (Wei et al.| [2023; Wang et al.l 2023} [Snell
et al., [2024; |DeepSeek-Al et al.| 2025; [Team et al., [2025; Muennighoff et al., 2025). Early works,
such as chain-of-thought prompting (Wei et al.| 2023)), show that producing a series of intermediate
reasoning steps significantly improves LLMs’ performance on complex reasoning tasks. Building
on this, self-consistency (Wang et al.l [2023) further boosts performance by sampling a diverse set
of reasoning paths and selecting the most consistent answer. Recent studies have formalized these
findings into test-time inference scaling laws (Snell et al.l 2024 |Wu et al.,[2024). Wu et al.|(2024)
explore the trade-offs between model size and inference-time computation. [Snell et al.[(2024) inves-
tigated how fixed but non-trivial inference-time budgets can significantly boost LLM performance.
The remarkable successes of advanced reasoning models, such as ol (OpenAl et al., 2024) and
R1 (DeepSeek-Al et al.| [2025)), have further amplified interest in leveraging TTS techniques. While
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much of the existing works primarily focuses on improving performance by increasing inference-
time computation, our work takes a different perspective: How can we enable LLMs to perform
effective long reasoning under strict output length constraints?

2.2 LENGTH CONTROL IN LARGE LANGUAGE MODELS

Controlling the generation length of an LLM directly affects both latency and monetary cost at infer-
ence time. Earlier approaches to length control are designed mainly for general text generation (Jie
et al., 2023} |Yuan et al., [2024)). Typical methods include (i) manipulating positional encodings to
achieve exact sequence lengths (Butcher et al., 2024), (ii) modifying training objectives to penal-
ize deviations from length targets (Jie et al. 2023} |Singhal et al., [2024), and (iii) fine-tuning on
instructions that explicitly state the desired output length (Yuan et al., [2024). Although effective
for tasks such as summarization or constrained writing, these techniques generally aim to verbosity
or enforce maximum-length limits, and overlook the intricate, step-by-step reasoning processes re-
quired for many reasoning tasks. Recent works have begun to explore efficiency in reasoning by
encouraging shorter chains (Kang et al., 2024; Arora & Zanette, 2025); however, they typically lack
mechanisms for precise, user-defined length targets that align with explicit compute budgets. One
notable attempt, budget forcing (Muennighoff et al., [2025)), enforces strict token caps by truncating
or padding with special tokens. This can yield incomplete reasoning or unnatural, forced outputs, ul-
timately harming both accuracy and interpretability. Additionally, L1 (Aggarwal & Welleck, [2025))
uses reinforcement learning to let models dynamically allocate inference compute based on con-
straints provided in the prompt. Our approach does not need to include length instructions in the
prompt. Instead, we truncate reasoning trajectories to meet a given budget and train the model under
these constraints via reinforcement learning.

2.3 EFFICIENT REASONING IN LARGE LANGUAGE MODELS

Making complex reasoning in LLMs more efficient, particularly by shortening the reasoning pro-
cess, is crucial to reducing computational costs and making these models practical for real-world
deployment. This has become a vibrant research area with several promising directions to encour-
age more concise and effective reasoning strategies (Kang et al., [2024; Xu et al., 2024; |[Hao et al.,
2024; |Liao et al., 2025} [Luo et al.l [2025a). One common strategy involves incorporating explicit
rewards into RL to encourage the model to find shorter reasoning paths (Team et al.| 2025} [Luo
et al., [2025a). Some focus on creating datasets with examples of concise reasoning paths and then
using SFT teach models how to generate compact and knowledgeable reasoning steps (Kang et al.,
2024; [Yu et al.| [2024). Instead of relying solely on explicit textual reasoning, methods exploring
latent reasoning aim to compress these intermediate steps into more compact, internal representa-
tions (Hao et al.| [2024; |Shen et al., 2025}, [Saunshi et al.| [2025). Efficiency can also be improved
during inference, without needing to retrain the model. These training-free techniques dynamically
adapt the reasoning strategy based on the specific input or task demands (Liao et al.,[2025} |[Fu et al.,
2025). In this work, we introduce a training approach using reinforcement learning under strict
budget constraints to encourage the model to balance reasoning quality with cost efficiency.

3 METHODOLOGY

3.1 PRELIMINARIES: REASONING LANGUAGE MODELS

We consider reasoning-augmented language models that generate outputs consisting of two distinct
segments: a thinking part and a solution part. Following prior work, we denote the reasoning phase
using special tokens such as <think> and </think> to explicitly mark the model’s intermediate
thoughts.

think solution)
K

Formally, given an input prompt x, the model generates an output sequence y = (y Y
where ™" contains the intermediate reasoning steps (enclosed between <think> and
</think>) and y*°""" contains the final solution. Typically, 3" accounts for most of the total
tokens, while y*°'"°" provides a concise summary and final answer. The overall generation structure
is:

[l

y = (<think> intermediate reasoning </think>, solution)
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Figure 2: The framework of Elastic Reasoning. Elastic Reasoning comprises two key components:
(1) GRPO training with budget-constrained rollout, and (2) separate budgeting for inference. Left:
During training, the model is optimized using GRPO under a fixed token budget (¢*, s*). Right: At
inference time, the trained E1 model can generalize to arbitrary token budgets ¢; = t; + s*, enabling
flexible and efficient reasoning.

3.2 ELASTIC REASONING
3.2.1 BUDGET-CONSTRAINED INFERENCE

In many real-world applications, inference cost must be carefully controlled due to constraints on
latency, computation, or memory. A common approach is to truncate generation after a fixed number
of tokens c, enforcing:

ly| <e

where |y| denotes the number of generated tokens. However, naively truncating the output often
results in incomplete or missing 3*°"", leading to invalid or unusable predictions.

3.2.2 SEPARATE BUDGETING FOR THINKING AND SOLUTION

To address this limitation, we propose Separate Budgeting, a method that explicitly allocates inde-
pendent budgets for the reasoning and solution phases. A key observation is that even when the
reasoning phase is forcibly terminated (e.g., by inserting </think>), the model is still capable of
producing a coherent—and often correct—solution.

Given a total generation budget ¢, we divide it into two components: a budget ¢ for the thinking
phase and a budget s for the solution phase, such that ¢ = t + s.

During inference:

* The model begins generating within a <think> block.

¢ If the model emits </think> before reaching the budget ¢, we transition immediately to
the solution phase.

If the budget ¢ is exhausted before </think> is emitted, we forcibly terminate the rea-
soning by appending </think>.

* The model then continues generating the solution segment, up to a maximum of s tokens.

This approach ensures that both the reasoning and solution components are explicitly accommo-
dated within the total budget c, thereby avoiding unintended truncation of the solution segment. The
thinking budget ¢ can be flexibly adjusted at inference time to match different application scenarios,
while the solution phase always retains a guaranteed allocation. As shown in Figure [T} Separate
Budgeting outperforms both vanilla budgeting (naive truncation) and S1 (budget forcing). By ded-
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Figure 3: Validation accuracy and reward curves of E1-Math-1.5B over training steps.

icating a fixed token budget for solution generation, Separate Budgeting significantly improves the
reliability and quality of model outputs under tight inference-time constraints.

3.2.3 BUDGET-CONSTRAINED ROLLOUT

While Separate Budgeting ensures dedicated budgets for both reasoning and solution phases, we
observe that naively truncating the thinking part—especially on complex tasks such as code gen-
eration—can lead to significant performance degradation. To mitigate this issue, we propose a
reinforcement learning (RL) fine-tuning procedure that explicitly trains the model under reason-
ing budget constraints, allowing it to produce more effective and concise reasoning within limited
budgets.

We adopt GRPO as our RL algorithm. Let 7y denote the policy of a language model parameterized
by 6, which generates a response y = (yMink ysolution) for a given input 2, subject to a total budget
constraint t* 4+ s* = ¢*. During training, we simulate the Separate Budgeting procedure used at
inference time: the policy rolls out a reasoning segment 3™ up to a maximum of ¢* tokens. If the
model emits the </think> token before reaching this limit, it proceeds to generate the solution
segment as usual. Otherwise, we forcibly append </think> once the budget t* is reached. The
model then generates the solution segment *°'"°" using the remaining s* tokens.

Let r(y) denote a task-specific reward function. The training objective is to maximize the expected
reward:

‘](0) = EIND, y~mo(|x; t*,5%) [T(y)]
We optimize J(6) using GRPO with the following gradient estimator:

T(y) - ]Ey/Nﬂ'g(".’E; t*,s*) [T(y/)]
Vy'~ﬂ9(~\x)[r(y/)]

Vo J(0) = Bay [A(z,y)Vologmo(y | z; t*,5%)],  Alx,y) =

In our training setup, we fix the budget pair to (¢t*,s*) = (1K, 1K) for simplicity and efficiency.
Surprisingly, we find that the learned policy generalizes well to a wide range of unseen budget
configurations at test time, without requiring any additional fine-tuning. As shown in Figure[I] the
E1-Math-1.5B model achieves substantial improvements while generalizing robustly across various
generation budgets. This indicates that Elastic Reasoning encourages the model to internalize a
flexible reasoning strategy that adapts to different resource constraints. This RL-based adaptation
helps the model prioritize informative reasoning content earlier in the generation process, thereby
improving both robustness and solution quality under test-time truncation.

4 EXPERIMENT RESULTS

4.1 MODELS AND DATASETS

Our base models are DeepScaleR-1.5B-Preview (Luo et al., 2025c¢) and DeepCoder-14B-
Preview (Luo et al., 2025b), which are fine-tuned from DeepSeekR1-Distill-Qwen-1.5B and
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Figure 4: Comparison of E1-Math-1.5B with L1 and S1 baselines under varying generation budgets.
24K / 64K settings correspond to the maximum token lengths permitted during inference, with no
explicit budget constraints imposed.

14B (DeepSeek-Al et al.l 2025) through iterative context lengthening. For training data, we fol-
low the same datasets used in (Luo et all [2025cib). In the math domain, the training set con-
sists of AIME (1984-2023), AMC, Omni-Math (Gao et al.| 2024), and STILL (Min et al., [2024).
For code training, we use TACO (Li et al 2023), SYNTHETIC-1 (Mattern et al., 2025), and
LiveCodeBench (2023/05/01-2024/07/31) (Jain et al.| |2024). For evaluation, we use AIME 2024,
MATHS500 (Hendrycks et al. 2021), AMC, Olympiad-Bench (Gao et al.l 2024), and Minerva
Math (Lewkowycz et al [2022) for mathematical reasoning. For code-related tasks, we evaluate
on LiveCodeBench (2024/08/01-2025/02/01) (Jain et al., [2024)), Codeforces, and HumanEval+ (Liu
et al., [2023). For mathematical reasoning tasks, we report averages over 16 runs, whereas for code-
related tasks the results are averaged over 8 runs. 24K / 64K settings correspond to the maximum
token lengths permitted during inference, with no explicit budget constraints imposed. More training
details are in Appendix

4.2 MATHEMATICAL REASONING RSULTS

We visualize the reward and validation Pass@1 performance on AIME2024 every 10 steps during
training in Figure 3] It can be observed that the reward steadily increases during the initial train-
ing phase and begins to converge after approximately the 150" step. Meanwhile, the validation
accuracy (Pass@1) improves rapidly, rising from around 0.07 to 0.20 over the course of training.
This demonstrates that, through budget-constrained rollout, the model can quickly learn to reason
effectively when the thinking phase is incomplete.

We report Pass@1 accuracy versus the number of tokens used across five math benchmarks AIME,
AMC, Olympiad-Bench, MATH500, and Minerva Math in Figure @] Our proposed method, E1-
Math-1.5B, under both budget-constrained and 24K-token settings (red stars), consistently outper-
forms S1 (Budget Forcing) and L1-Exact, and performs competitively with L1-Max, while requir-
ing significantly fewer training steps. On MATHS500, E1-Math-1.5B achieves a Pass@1 accuracy
of 83.6% using only 1619 tokens per question, whereas L1-Exact and L1-Max yield lower or
comparable performance with more tokens (L1-Exact: 79.9% with 1959 tokens; L1-Max: 83.6%
with 1796 tokens). Notably, when evaluated without inference-time budget constraints, E1-Math-
1.5B achieves higher accuracy than all baseline methods across all benchmarks. For example, on
AIME2024, E1-Math-1.5B exhibits a performance degradation of only 6.0% relative to the original
model, compared to 12.9% for L1-Max and 16.8% for L1-Exact. These results demonstrate that
our method is not only effective in enforcing inference-time budget constraints but also preserves
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Table 1: Comparison of models across LiveCodeBench, Codeforces, HumanEval+, and AIME
benchmarks. El-code-14B variants trained exclusively on code data; their AIME scores, obtained
on math problems unseen during training, demonstrate that E1-code-14B retains strong math per-
formance.

Model \ LiveCodeBench  Codeforces Rating  Codeforces Percentile =~ HumanEval+ \ AIME
01-2024-12-17 (Low) 59.5 1991 96.1 90.8 74.4
03-Mini-2025-1-31 (Low) 60.9 1918 94.9 92.6 60.0
O1-Preview 42.7 1658 88.5 89.0 40.0
DeepSeek-R1 62.8 1948 95.4 92.6 79.8
DeepSeek-R1-Distill-Qwen-14B 53.0 1791 92.7 92.0 69.7
DeepCoder- 14B—Previe 58.1 1945 95.4 90.8 71.7
El-code-14B (t = 1k, a = 1k) 37.3 1457 78.1 88.3 17.9
El-code-14B (t = 2k, a = 1k) 41.6 1604 85.4 89.6 28.5
El-code-14B (t = 3k,a = 1k) 44.1 1711 90.6 90.8 35.4
El-code-14B (t = 4k,a = 1k) 47.0 1771 92.3 92.0 419
El-code-14B 58.4+0.3 1987+42 96.0+0,6 91-4+0.6 70.6

most of the original model’s performance. When compared with the original DeepScaleR-1.5B, E1-
Math-1.5B reduces the average number of tokens used across datasets by more than 30%, including
a 32.1% reduction on AIME2024 (see further analysis in Appendix [C).

Furthermore, similar to L1, S1, and O1, we observe a clear log-linear scaling pattern in E1: per-
formance improves approximately linearly with respect to the logarithm of the number of generated
reasoning tokens.

4.3 CODE REASONING RESULTS

As shown in Figure[5] we visualize the Pass@1
accuracy on LiveCodeBench under varying
generation budgets, comparing our method to

a simple separate budgeting strategy for think- 0% Pt ke
ing and solution. We observe that the orig- **

inal DeepCoder-14B-Preview fails to gener- 0% kT

ate correct outputs when reasoning is incom- )
plete, consistently achieving less than 10% ac-
curacy when inference budget is less than 4K
even using separate budgeting. In contrast, our 20%
E1-Code-14B model demonstrates impressive o
scalability: its performance improves steadily 10% {
as the inference budget increases, highlighting .

the effectiveness of our training strategy in en- 0% . . . .
abling the model to reason adaptively under * 4KToke,,s Used 5 16K
constrained thinking. Notably, E1-Code-14B
also achieves a performance improvement of
0.3% on LiveCodeBench even in the uncon-
strained setting, while simultaneously reducing
the average number of generated tokens by 37.4% —from 17,815 to 11,145 tokens. This indicates
that our method not only scales well with inference budgets but also promotes more concise and
efficient reasoning.

LiveCodeBench
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El-Code-14B <

60%
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%

Pass@1
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Figure 5: Pass@1 accuracy on LiveCodeBench
under varying reasoning budgets. Both of the
models inference with separate budgeting.

In TableE], we report the results of E1-Code-14B on four benchmarks: LiveCodeBench, Codeforces,
HumanEval Plus, and AIME2024. We observe consistent test-time scaling behavior across all
benchmarks under constrained inference budgets. Beyond scalability, our model also demonstrates
strong performance in the unconstrained setting. Specifically, we observe performance improve-
ments on LiveCodeBench, Codeforces, and HumanEval Plus, and only a slight performance drop
on AIME2024. On Codeforces, E1-Code-14B achieves a 42-point improvement in rating and a 0.6
percentile gain, outperforming O3-Mini-2025-1-31 (Low) and performing comparably to O1-2024-

?Results are reproduced using the authors’ official code and model with the same evaluation protocol.
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Figure 6: Ablation study on training reasoning budget ¢t*. We compare four settings: t* €
{0.5K, 1K, 2K, 3K}, while keeping the solution budget fixed at a* = 1K.

12-17 (Low). These results highlight that our method not only enables efficient, budget-constrained
reasoning but also enhances overall reasoning capability, even in unconstrained scenarios.

4.4 ANALYSIS AND DISCUSSIONS

4.4.1 WHICH PART IS ENHANCED AFTER TRAINING?

Table 2: Ablation of enhanced thinking and solution on DeepScaleR-1.5B-Preview and E1-Math-
1.5. Budget is in format ‘thinking+solution® (in thousands of tokens).

DeepScaleR-1.5B E1-Math-1.5B Pass@1 (%)
Thinking Solution Thinking Solution | 0.5K+1K 1K+1K 2K+1K 3K+1K
v v 2.10 4.80 12.5 20.0
v v 350414 7.9043.1 20.648.1 24.044.0
v v 10.848.7 142494 21.949.4 26.446.4
v v 13.5+11‘4 17.5+12‘7 24.84,_12‘3 27.94,_7,9

To better understand which components of the reasoning process are enhanced through train-
ing, we conduct ablation experiments on DeepScaleR-1.5B-Preview and E1-Math-1.5B using the
AIME2024 benchmark. Specifically, we separately generate the thinking and solution segments us-
ing both models under varying generation budgets. For example, we use DeepScaleR-1.5B-Preview
to generate the thinking part, and then use E1-Math-1.5B to generate the corresponding solution
based on that reasoning. This setup allows us to isolate the contributions of each model to the
reasoning pipeline and assess how training improves each component.

As shown in Table [2| we observe that both the thinking and solution are enhanced after training.
Notably, the improvement in the solution component is more substantial, particularly under con-
strained thinking budgets. For instance, using the E1 model to generate only the solution segment
yields an 8.7% gain in accuracy compared to using the original DeepScaleR model, under a genera-
tion budget of (0.5K + 1K) tokens. This highlights the effectiveness of budget-constrained rollout in
strengthening the model’s ability to produce high-quality solutions based on incomplete reasoning.

This observation also helps explain why training with a fixed budget constraint (e.g., (1K, 1K))
enables the model to generalize effectively to a wide range of budget configurations. We hypothesize
that the improvement in solution generation plays a central role in this generalization, allowing the
model to adapt even when the available thinking tokens are reduced.



Under review as a conference paper at ICLR 2026

AIME LiveCodeBench
20000 A
120001 =1 Thinking [ Thinking
I Solution rotan: 10050 17500 1 EEE Solution l"ls
otal:
10000 A T ET
%) »n 15000 1 37.4%
g 1 32.1% g ’
A4 8000 - ~4 12500
<] o
= Total: 6825! = Total: 1114
G 44 P 44
S 60001 © 10000
2 2
] £ 7500
E 40007 Total: 3377 2
Total: 2650 5000 - Total: 4378
2000 4 Total: 1790 (LSS Total: 2691 T l
RSN SR S S N GO A0 a0 a0 O
O w0 @ O e SOFT O @ as e
» o0 e < WS ged 3¢ 3¢ 3¢ e <o o
e W AW W oY 9 co o o o < e
< | RS RS e iy Y E% XY €

Figure 7: Distribution of tokens for thinking and solution across different generation budgets.

4.4.2 ABLATION OF TRAINING BUDGET t*

To further investigate the role of the thinking budget ¢* in our proposed budget-constrained roll-
out, we conduct experiments to evaluate the model’s performance under four settings: t* €
{0.5K, 1K, 2K, 3K}, while keeping the solution budget fixed at a* = 1K. We evaluate on five
math benchmarks: AIME, AMC, Olympiad-Bench, MATHS500, and Minerva Math (Figure @)

Across all configurations, the model demonstrates strong generalization to varying inference budgets
on all benchmarks. Among the tested values, t* = 1K consistently achieves the best performance,
while also maintaining a low maximum generation length of 2K tokens, making it a highly efficient
and effective setting. Based on the trade-off between performance and computational cost, we adopt
(t* = 1K, s* = 1K) as our default configuration (Appendix [H).

4.4.3 TOKEN ALLOCATION BETWEEN THINKING AND SOLUTION

Figure [/| visualizes the distribution of thinking and solution tokens within generated trajectories
under different generation budget constraints. We select AIME2024 for the math task and Live-
CodeBench for the coding task.

For AIME2024, as the inference budget decreases, the number of tokens used in the thinking seg-
ment decreases accordingly, while the number of tokens in the solution segment slightly increases.
A similar trend is observed on LiveCodeBench, where the thinking tokens decrease with tighter
budgets, while the number of solution tokens remains relatively stable.

Notably, even when evaluated without budget constraints, our trained E1 models demonstrate sub-
stantial token efficiency: they reduce total token usage by 32.1% on AIME2024 and 37.4% on Live-
CodeBench, while maintaining strong performance (even slightly better than the baseline model).
This suggests that the model has learned to reason more concisely and generate efficient solutions
post training. Qualitative analysis is provided in Appendix [G]

5 CONCLUSION

We introduce Elastic Reasoning, a unified framework for enabling large reasoning models to gen-
erate accurate and efficient chain-of-thought outputs under strict inference-time constraints. By
explicitly separating the reasoning process into thinking and solution phases, and training with a
novel budget-constrained rollout strategy, our approach ensures robustness to truncated reasoning
while preserving or even improving overall performance. Elastic Reasoning significantly reduces
token usage during inference, generalizes across unseen budget configurations, and outperforms
prior length control baselines in both mathematical and programming domains. Our findings offer a
scalable and principled solution for real-world deployment of reasoning LLMs where computation
budgets are limited. We believe this framework opens new directions for budget-aware reasoning.
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6 ETHICS STATEMENT

Our study focuses on improving the efficiency and scalability of reasoning in large language mod-
els by introducing budget-constrained training and inference. All experiments were conducted on
publicly available datasets in mathematics (e.g., AIME, AMC, MATH500, Minerva Math) and pro-
gramming (e.g., LiveCodeBench, Codeforces, HumanEval+), without the use of private or sensitive
user data. No personally identifiable information (PII) or human subject data was collected, and
therefore IRB approval was not required.

We acknowledge the broader ethical considerations surrounding large language models, including
potential risks of misuse, fairness, and environmental impact. Our method, Elastic Reasoning, is
designed to reduce inference costs by making models more token-efficient. This can mitigate envi-
ronmental impact by lowering computational and energy requirements.

7 REPRODUCIBILITY STATEMENT

We have taken several steps to facilitate reproducibility of our work. An anonymous implementation
of our proposed Elastic Reasoning framework is included in the supplementary materials. The
main text and Appendix [B] describe the methodology and training procedure in detail, including
the budget-constrained rollout strategy and evaluation protocol. We provide complete information
about the datasets used in both the math and code domains (Section[d.T)). Hyperparameters, training
configurations, and additional ablation studies are documented in the Appendix to enable faithful
reproduction of our results. Together, these resources ensure that both the reported results and future
extensions of this work can be reproduced by the community.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) solely as a writing assist tool to improve grammar, clarity,
and style. The research ideas, methodology, experiments, analysis, and conclusions were developed
entirely by the authors without reliance on LLMs. No part of the scientific contribution, experimental
design, or result interpretation involved LLM usage.

B TRAINING DETAILS

For GRPO training, we adopt the same hyperparameters as those used in DeepScaleR-1.5B-Preview
and DeepCode-14B-Preview. For E1-Math-1.5B, we use a learning rate of 1 x 1075 and a batch size
of 128. The maximum context length is set to 1K tokens for the thinking segment and 1K tokens
for the solution segment. Training is performed for 200 steps using the VeRL (Sheng et al. [2024)
framework. For E1-Code-14B, we use the same learning rate and batch size. The context length
configuration mirrors that of the math model: 1K tokens for thinking and 1K tokens for solution.
Training is conducted for only 30 steps.

C COMPARISON UNDER 24K-TOKEN UNCONSTRAINED INFERENCE

To highlight the effectiveness of our method, we compare E1-Math-1.5B with L1-Exact, L1-Max,
and the vanilla DeepScaleR-1.5B under the 24K-token unconstrained inference setting across five
math benchmarks (Table . Note that E1-Math-1.5B, L1-Exact, and L1-Max are all fine-tuned
from DeepScaleR-1.5B.

Compared to L1-Exact and L1-Max, our method achieves the best overall trade-off between perfor-
mance and length control. For example, on Minerva Math, E1-Math-1.5B uses only 2,631 tokens on
average (vs. 3,440 for L1-Max and 4,221 for L1-Exact), while achieving 30.17% accuracy—1.36%
higher than L1-Max and 1.01% higher than L1-Exact.

Relative to the vanilla DeepScaleR-1.5B, our accuracy remains comparable while requiring substan-
tially fewer tokens. For instance, on AMC, E1-Math-1.5B achieves 71.23% accuracy with 3,653 to-
kens, whereas DeepScaleR-1.5B requires 5,571 tokens to reach 72.06%. These results demonstrate
that our approach preserves accuracy while significantly improving length efficiency.
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Model AMC Olympiad-Bench MATHS00  Minerva Math
DeepScaleR-1.5B-24K  72.06 (5571) 49.59 (5956) 87.63 (3124) 30.56 (4881)
L1-Exact-24K 66.42 (4024) 45.41 (4111) 83.45 (3937) 29.16 (4221)
L1-Max-24K 67.70 (3615) 45.69 (3547) 83.66 (3375) 28.81 (3440)

E1-Math-1.5B-24K 71.23 (3653) 46.50 (3865) 85.05 (2011) 30.17 (2631)

Table C.1: Pass@1 accuracy (%) under 24K-token unconstrained inference across math benchmarks.
Numbers in parentheses indicate average tokens used.

D REASONING COMPLETENESS RATIO

We measure the reasoning completeness ratio—the fraction of cases where the full reasoning fits
within the thinking budget—and the corresponding Pass@1 accuracy under different budget settings
on AIME, averaged over 16 runs.

Inference Budget 0.5K+1K 1K+1K 2K+1K 3K+1K
Complete Ratio (vanilla) 0.0% 0.0% 2.3% 5.4%
Accuracy (vanilla) 5.2% 9.6% 15.8% 22.7%
Complete Ratio (E1) 0.0% 1.3% 7.5% 9.2%
Accuracy (E1) 13.5% 17.5% 24.8% 27.9%

Table D.1: Reasoning completeness ratio and Pass@ 1 accuracy on AIME.

At low budgets (0.5K+1K and 1K+1K), the completeness ratio remains near zero, even after train-
ing. Nevertheless, E1 achieves substantially higher accuracy, indicating that it learns to be robust
to truncated reasoning. E1 becomes more token-efficient over time, which slightly increases the
completeness ratio as a byproduct—but this is not the main source of its gains.

Additional evidence comes from Table 2} when comparing the first and third rows, the thinking
segment is held fixed, so the completeness ratio remains the same. Yet, E1 significantly outperforms
the vanilla model in accuracy. This confirms that E1’s improvements arise not from completing
reasoning more often, but from better use of limited budgets.

E ITERATIVE TRAINING

Table E.1: Pass@1(%) on AIME 2024 across different budget configurations in two iterations.

Iteration | 0.5K+1K 1K+1K 2K+1K 3K+1K

1 (1IK+1K) 13.5 17.5 24.8 27.9
2" (3K+1K) 11.5 17.1 229 26.7
1% (3K+1K) 9.2 14.8 21.7 252
2" (1K+1K) 11.7 15.0 229 25.5

We investigate whether the model benefits from iterative training, i.e., performing a second round
of training with a different compute budget. Concretely, we consider two schedules: (i) train with
a budget of (t* = 1K, a* = 1K) and continue from the checkpoint with (¢* = 3K, a* = 1K);
and (ii) the reverse order. Results on AIME2024 (Table [E.I)) show no noticeable improvement from
the second round. This suggests that once the model has learned to reason effectively under a given
budget, further training with a different budget provides little additional benefit.
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F MMLU RESULTS

To further assess generalization, we evaluate both models on MMLU (Hendrycks et all [2020).
We adopt the same budget-constrained settings and additionally report results under unconstrained
inference (24K). All results are averaged over 16 runs:

Inference Budget 0.5K+1K 1K+1K 2K+1K 3K+1K 24K

Base Model - - - - 48.3%
1st Tteration (1K+1K) 47.4% 47.7% 48.1% 48.6%  48.4%
2nd Iteration (3K+1K) 47.4% 47.6% 47.9% 48.2%  48.2%

Table F.1: Performance on MMLU under different inference budgets, averaged over 16 runs.

The second-iteration model exhibits no degradation in general capability. This demonstrates that E1
retains its broad reasoning ability even after adapting to a larger budget, confirming that it learns
budget handling as a transferable skill without forgetting prior competencies.

G QUALITATIVE ANALYSIS

To examine how reasoning adapts under budget constraints, we compare outputs from the original
model and our E1 model (trained with a 0.5K thinking + 1K solution budget) on an AIME2024
example.

Original model (1537 tokens). The reasoning path is verbose, with many tokens consumed within
individual steps.

E1 model (1091 tokens). After training with a constrained budget, the reasoning steps become
denser and more structured, reflecting more purposeful use of limited space. The model transi-
tions more smoothly and directly into the solution, while maintaining accuracy. The final answer is
reached correctly and with fewer tokens.

<think>
Okay, so I have this problem about Aya’s walk. Let me try to understand
— what it’s asking.

Aya walks 9 kilometers every morning. When she walks at a speed of s

— kilometers per hour, it takes her 4 hours, including t minutes
spent in the coffee shop. Then, when she increases her speed to s+2
km/h, the total time becomes 2 hours and 24 minutes, including the
same t minutes in the coffee shop. Now, we need to find the time
it takes if she walks at s + 1/2 km/h, again including t minutes in
~— the coffee shop.

(%
s
(%
s

Alright, let’s break this down step by step.

First, when she walks at speed s km/h, the total time including the
— coffee shop is 4 hours. That total time includes both walking and
— the time in the coffee shop. Similarly, when her speed increases to
<~ s+2 km/h, the total time becomes 2 hours and 24 minutes, which is
— 2 + 24/60 = 2 + 0.4 = 2.4 hours.

So, let’s denote:

— Let t be the time spent in the coffee shop in minutes.

- Let d be the distance she walks before entering the coffee shop. Wait,
— but actually, the total distance is 9 km. So, perhaps it’s better

<~ to consider the walking time and the coffee shop time separately.

Wait, perhaps another approach: the total time is walking time plus
— coffee shop time. So, when she walks at s km/h, the total time is 4
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<~ hours, which is walking time + t minutes. But t is in minutes, so
— perhaps we need to convert everything to hours or minutes.

Let me clarify the units.

The walking speed is in km/h, so the walking time would be distance/speed
< . The coffee shop time is in minutes, so we need to convert it to
— hours or keep it as minutes. It’s probably easier to convert
— everything to hours.

So, let’s define:

- When she walks at speed s km/h, total time is 4 hours, which includes t
< minutes in the coffee shop. So, the walking time is 4 - (t/60)
— hours.

Similarly, when she walks at s+2 km/h, the total time is 2 hours and 24
< minutes, which is 2 + 24/60 = 2 + 0.4 = 2.4 hours</think>

Let’s denote:

- \( s \) as her walking speed in km/h.

- \( t \) as the time spent in the coffee shop in minutes.

- The total time when walking at \( s \) km/h is 4 hours, including \( t
<~ \) minutes in the coffee shop.

Therefore, the walking time is \( 4 - \frac{t}{60} \) hours.

Since she walks 9 km, the walking time can also be expressed as \( \frac
— {9}{s} \) hours.

So, we have:
\[ \frac{9}{s} = 4 — \frac{t} {60} \quad \text{ (1)} \]

Similarly, when she walks at \( s + 2 \) km/h, the total time is 2 hours
< and 24 minutes, which is \( 2 + \frac{24}{60} = 2.4 \) hours.

Again, the walking time is \( 2.4 — \frac{t}{60} \) hours.

Expressing walking time as \( \frac{9}{s + 2} \) hours, we get:
N[ \frac{9}{s + 2} = 2.4 - \frac{t}{60} \quad \text{(2)} \]

Now, we have two equations:
1. \( \frac{9}{s} = 4 - \frac{t} {60} \)
2. \( \frac{9}{s + 2} = 2.4 — \frac{t}{60} \)

Let me denote \( \frac{t}{60} \) as \( x \) for simplicity. Then,
— equation (1) becomes:
\[ \frac{9}{s} = 4 - x \quad \text{(la)} \]

Equation (2) becomes:
\[ \frac{9}{s + 2} = 2.4 - x \quad \text{(2a)} \]

From equation (la), we can express \( x \) as:
\[ x = 4 - \frac{9}{s} \quad \text{ (lb)} \]

Substitute equation (1lb) into equation (2a):

\[ \frac{9}{s + 2} = 2.4 - \left(4 - \frac{9}{s}\right) \]
Simplify:

\[ \frac{9}{s + 2} = 2.4 - 4 + \frac{9}{s} \]

\[ \frac{9}{s + 2} = -1.6 + \frac{9}{s} \]

Bring all terms to one side:

\[ \frac{9}{s + 2} - \frac{9}{s} = -1.6 \]

Factor out 9:

\[ 9\left ( \frac{l}{s + 2} — \frac{l}{s} \right) = -1.6 \]
Simplify the expression inside the parentheses:
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\[ \frac{l}{s + 2} - \frac{l}{s} = \frac{s - (s + 2)}{s(s + 2)} = \frac
— {-2}{s(s + 2)} \]

Thus:

\[ 9 \times \left( \frac{-2}{s(s + 2)} \right) = -1.6 \]

Simplify:

\[ \frac{-18}{s(s + 2)} = -1.6 \]

Multiply both sides by -1:

\[ \frac{1l8}{s(s + 2)} = 1.6 \]
Solve for \( s(s + 2) \):
\[ s(s + 2) = \frac{18}{1.6} = \frac{180}{16} = \frac{45}{4} = 11.25 \]

So:

\[ s"2 + 2s - 11.25 = 0 \]

Solve this quadratic equation:

Using quadratic formula:

\[ s = \frac{ -2 \pm \sgrt{4 + 45} }{2} = \frac{ -2 \pm \sqgrt{49} }{2} =
— \frac{ -2 \pm 7 }{2} \]

We discard the negative solution since speed can’t be negative:

\[ s = \frac{5}{2} = 2.5 \text{ km/h} \]

Now, substitute \( s = 2.5 \) back into equation (la):
\[ \frac{9}{2.5} = 4 - x \]

\[ 3.6 =4 - x \]

Thus:

\[ x = 4 - 3.

Listing 1: Response from original model with 1537 tokens.

<think>
Alright, so I’ve got this problem about Aya’s walk and coffee shop time.
— Let me try to break it down step by step.

First, the problem says Aya walks 9 kilometers every morning. When she
walks at a speed of s km/h, the total time taken, including the
coffee shop time, is 4 hours. Then, when her speed increases to s+2
km/h, the total time becomes 2 hours and 24 minutes. In both cases
, the time spent in the coffee shop is the same, denoted as t
minutes.

USRI

The question is asking, if Aya walks at s + 0.5 km/h, how many minutes
— will her total walk time be, including the coffee shop time.

Okay, let’s parse this information.

First scenario:

- Speed: s km/h

— Distance: 9 km

— Total time including coffee: 4 hours

— Therefore, time spent walking + time in coffee = 4 hours

Second scenario:

- Speed: s + 2 km/h

— Distance: 9 km

- Total time including coffee: 2 hours 24 minutes, which is 2 + 24/60 = 2
— + 0.4 = 2.4 hours

Third scenario:

- Speed: s + 0.5 km/h

— Distance: 9 km

— Total time: let’s denote as T hours, which includes t minutes in the
— coffee shop.

We need to find T in hours, then convert it to minutes.

Let’s start by setting up equations.
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In the first case, the time spent walking is distance divided by speed,
<~ so 9/s hours. Then, the time in the coffee shop is t minutes, which
— 1s t/60 hours. Therefore, total time is 9/s + t/60 = 4 hours.

In the second case, speed is s + 2, so time walking is 9/(s + 2) hours.
< Total time is 9/(s + 2) + t/60 = 2.4 hours.

So, we have two equations:

1) 9/s + t/60 = 4

2) 9/(s + 2) + t/60 = 2.4

We can subtract the second equation from the first to eliminate t/60.
So, (9/s + t/60) - (9/(s + </think>

Now, let’s solve these equations step by step.

From equation 1:
9/s + t/60 = 4 ——> t/60 = 4 - 9/s ——> t = 60x(4 - 9/s) = 240 - 540/s.

From equation 2:
9/(s + 2) + t/60 = 2.4 ——> t/60 = 2.4 - 9/(s + 2) ——> t = 60%x(2.4 - 9/ (s
— + 2)) = 144 - 540/ (s + 2).

Now, set the two expressions for t equal:
240 - 540/s = 144 - 540/ (s + 2).

Simplify:
240 - 144 = 540/s - 540/ (s + 2)
96 = 540x(1/s - 1/(s + 2)).

Simplify the right side:

1/s = 1/(s + 2) = (s + 2 - s)/(s(s + 2)) = 2/(s(s + 2)).
Thus:
96 = 540 (2)/(s(s + 2)) ——> 96 = 1080/ (s (s + 2)).

Multiply both sides by s(s + 2):
96xs (s + 2) = 1080.

Divide both sides by 24:
4xs(s + 2) = 45 ——> $4s7°2$ + 8s - 45 = 0.

Solve the quadratic equation:

s = [-8 $\pm$ sqgrt (64 + 720)]1/(2%4) = [-8 $\pm$ sqgrt(784)]/8 = [-8 $\pm$
— 28]/8.

Since speed can’t be negative, s = (20)/8 = 2.5 km/h.

Now, find t from equation 1:
t = 240 - 540/2.5 = 240 - 216 = 24 minutes.

Now, for the third scenario, speed is s + 0.5 = 3 km/h.
Time walking: 9/3 = 3 hours.

Total time including coffee: 3 + t/60 = 3 + 24/60 = 3 + 0.4 = 3.4 hours =
— 3 hours 24 minutes.

Thus, the total time is 3 hours 24 minutes.

The answer is \boxed{204} minutes.
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Listing 2: Response from E1 model with 1091 tokens.

H CHOICE OF TRAINING BUDGETS

We fix the solution budget to 1K tokens because, in practice, we observe that when the </think>
token is manually inserted, the model naturally transitions to concise solutions that typically require
fewer than 1K tokens, even for complex problems. For the thinking budget, we consider four settings
t* € {0.5K, 1K, 2K, 3K}. Among these, t* = 1K achieves the lowest training cost while yielding
validation loss comparable to that of larger budgets (2K and 3K).

The ablation study in Section 4.4.2] further supports this choice: the 1K + 1K configuration con-
sistently provides the best trade-off between performance and training efficiency. Based on this
one-time selection, we adopt t* = 1K and s* = 1K as the default setting across all math and code
experiments.
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