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ABSTRACT

Semi-supervised underwater object detection aims to improve the performance
of detectors on unlabeled underwater images by leveraging knowledge from la-
beled ones. However, existing methods often overlook the distribution differences
between labeled and unlabeled underwater images. In this paper, we propose
a novel underwater image enhancement method guided by attribute-based data
distribution (UIEG+), which focuses on reducing the discrepancies between en-
hanced and original unlabeled images across different attributes, thereby effec-
tively addressing the challenges in semi-supervised underwater object detection.
Specifically, we explore an underwater image enhancement strategy based on two
attributes: color and scale distributions. For the color attribute, we construct
a 3-dimensional grid memory, where each grid cell represents a color subspace
and records the number of samples in that subspace. Similarly, for the scale at-
tribute, we design a 1-dimensional vector memory that dynamically stores the
number of samples in each scale subspace. Subsequently, we propose an effective
sampling method to derive parameters for color and scale transformations based
on the aforementioned distribution analysis, increasing the likelihood of trans-
formations in low-distribution regions. To evaluate its effetiveness and superior-
ity, massive semi-superivised underwater object deteciton experiments in multiple
datasets have been conduted by integrating UIEG+ into existing semi-supervised
object detection frameworks. The code will be released.

1 INTRODUCTION

With the development of deep learning, object detection models have also experienced unprece-
dented growth, and many outstanding detection models have been proposed (Ren et al., 2017; Tian
et al., 2019; Carion et al., 2020). However, when dealing with underwater scenes and objects, these
detectors still face challenges related to complexity and diversity. To address these issues, a simple
solution is to gather a more extensive dataset that encompasses a wide range of scenes and object
styles. Nevertheless, this is an extremely challenging task that requires significant resources and
makes it difficult to cover all possible scenarios.

In recent years, semi-supervised object detection based on image enhancement has also emerged
as a pivotal solution, which primarily emphasizes the generation of high-quality enhanced images
accompanied by labels or pseudo-labels. Existing image enhancement methodologies for semi-
supervised underwater object detection (SSUOD) can be broadly classified into two categories. The
former encompasses traditional image enhancement techniques (Zhang et al., 2022; Peng et al.,
2018; Liu et al., 2023b), which employ physics-based operations to manipulate various attributes
such as color, scale, and contrast, often through random transformations, as illustrated in Fig. 1
(a). Despite their widespread application in semi-supervised object detection frameworks, such as
the teacher-student model with weak and strong augmentations (Zhang et al., 2023b), these meth-
ods exhibit certain limitations: firstly, they fail to account for the distribution of unlabeled images
across different attribute spaces, potentially resulting in the generation of unrealistic enhanced im-
ages that could detrimentally affect model training; secondly, they overlook the adverse effects of
the imbalanced distribution of unlabeled images within these attribute spaces. The latter involves
the construction of learnable networks (Jiang et al., 2022; Cong et al., 2023; Zhang et al., 2024) to
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Figure 1: Comparison between the proposed UIEG+ and other methods. (a) Traditional image
enhancement; (b) Image enhancement with learnable network; (c) Our UIEG+ method. The check
mark and cross in the rectangular boxes indicate whether the unlabeled image is used or not.

achieve style transfer between labeled and unlabeled images. The works (Peng et al., 2023; Zhang
et al., 2024) focus on designing end-to-end networks that directly facilitate style transfer across
different domains. In contrast, other studies (Deng et al., 2022; Wang et al., 2023b) extract style
information and utilize it to guide the content image through style transformation. However, these
approaches also present limitations when applied to semi-supervised underwater detection: firstly,
they are constrained to enhancing images within the three-dimensional color space, neglecting po-
tential transformations in other attribute spaces, such as scale space; secondly, these methods are
similarly challenged by the issue of imbalanced distribution previously mentioned.

Contribution Different from the aforementioned methodologies, this paper considers the actual
distribution of unlabeled underwater images, which aims to mitigate the distributional discrepancies
between enhanced and unlabeled underwater images. To be specific, we address the distribution
of unlabeled underwater images in terms of color and scale attributes. For the color attribute, we
develop a three-dimensional color memory, wherein each cell represents a three-dimensional color
subspace within a defined range and records the number of unlabeled images in that subspace. Anal-
ogously, for the scale attribute, we construct a one-dimensional memory that records the number of
unlabeled images in each cell. The color and scale subspaces of the images are determined using
the mean values of each color channel and the average scale of all objects within the image. Sub-
sequently, based on these distributional insights, we propose a sampling strategy to derive color
and scale transformation parameters, thereby guiding image enhancement. This sampling method
effectively balances enhanced images across different subspaces of color and scale. Ultimately, we
integrate the proposed UIEG+ into existing SSOD frameworks to address semi-supervised under-
water object detection, as shown in Fig. 1.

In summary, our contributions can be outlined as follows:

• We propose a novel underwater image enhancement method guided by attribute-based data
distribution (UIEG+), which aims to reduce distributional differences between enhanced and
unlabeled underwater images by analyzing the distribution of unlabeled images in terms of
color and scale attributes.

• We incorporate the proposed UIEG+ into existing SSOD frameworks, thereby effectively ad-
dressing the challenges of semi-supervised underwater object detection.

• Our method achieves state-of-the-art performance on multiple semi-supervised underwater
detection (SSUD) datasets and demonstrates significant improvements across various SSOD
methods.

2 RELATED WORK

2.1 OBJECT DETECTION

Deep learning detectors have made significant advancements over the past few years. Currently,
existing detection models are generally classified into two categories, ı.e one- and two-stage de-
tectors. One-stage detectors (e.g.FCOS (Tian et al., 2019), Yolo (Redmon & Farhadi, 2018), and
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DETR (Carion et al., 2020)) directly predict the classes and rectangular boxes of objects on fea-
ture maps without medium proposals. Different from one-stage detectors, two-stage detectors (Ren
et al., 2017; Cai & Vasconcelos, 2018) design the region proposal network (RPN) to obtain more
accurate proposals and further conduct the classification and regression of these proposals. In this
work, we explain the principles of our method based on the PseCo framework (Li et al., 2022) with
Faster-RCNN (Ren et al., 2017) detector and demonstrate its effectiveness and generalizability when
applied to different detectors (Tian et al., 2019) in our experiments.

2.2 SEMI-SUPERVISED DETECTION

Semi-supervised detection seeks to improve the performance of detectors on unlabeled images by
exploring the training strategies on labeled and unlabeled images. One branch (Zhou et al., 2022;
Liu et al., 2023a; Shehzadi et al., 2024) performs self-training on labeled and unlabeled images. The
core idea is to acquire high-quality pseudo-labels or samples. Some works (Wang et al., 2021; Li
et al., 2023) pay attention to uncertain regions or class imbalance problems. Despite their effective-
ness, these methods are limited by the noise in predicted pseudo-labels or samples, which primarily
arises from differences between labeled and unlabeled images and the selection of hyperparameters.
Moreover, another popular trend (Jeong et al., 2019; Li et al., 2022; Wang et al., 2023a) is to employ
consistency analysis of internal features or external predictions from the detection network to learn
more robust feature representations or outputs. However, achieving more effective consistency guid-
ance is challenging, particularly when it comes to the feature representation of foreground objects
affected by various disturbances. In this work, we utilize our UIEG+ method instead of the strong
augmentation found in previous teacher-student frameworks (Zhou et al., 2022; Li et al., 2022; Liu
et al., 2023a), resulting in enhanced images that match the data distribution of the unlabeled images.

2.3 SEMI-SUPERVISED UNDERWATER DETECTION

Semi-supervised underwater detection aims at improving the adaptation of detectors to various un-
derwater scenes by leveraging both labeled and unlabeled images in the training process. Exist-
ing works (Sharma et al., 2024; Noman et al., 2021) mainly address this issue by using current
semi-supervised detection strategies. Different from these works, we propose an underwater image
enhancement guided by attribute-based data distribution to reduce the distribution discrepancies be-
tween enhanced images and the original unlabeled images in different attributes, effectively handling
semi-supervised underwater object detection.

2.4 IMAGE EHANCEMENT

Image enhancement is an effective method to handle semi-supervised underwater detection. The
previous works can be grouped into traditional underwater image enhancement (Zhang et al., 2022;
Peng et al., 2018; Liu et al., 2023b) and learning-based underwater image enhancement (Jiang et al.,
2022; Cong et al., 2023; Zhang et al., 2024). Traditional underwater image enhancement relies on
physics-based operations that are manually defined for different attributes, i.e.color (Ancuti et al.,
2012; Wang et al., 2018), contrast (Zhang et al., 2022), and scale. These works use random sampling
to enhance images but do not account for the distribution of unlabeled images across different at-
tributes in semi-supervised underwater detection. As a result, some unreasonable enhanced images
can negatively impact the model’s training. In contrast, learning-based underwater image enhance-
ment achieves the style transfer between different domain images by constructing the learnable
network. While this approach can reduce style differences between enhanced and unlabeled images,
it fails to address issues related to imbalanced style distribution in the unlabeled underwater images
and differences in the distribution of other attributes (e.g., scale).

2.5 DIFFERENCES FROM OTHER WORKS

In this work, we propose an underwater image enhancement method guided by attribute-based data
distribution and integrate it into existing semi-supervised detection frameworks. Compared to the
above image enhancement methods, our approach has the following differences. First, we consider
the distribution of unlabeled underwater images in terms of color and scale attributes, and mitigate
the impact of imbalanced distributions on enhanced images through a distribution-based sampling
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Figure 2: The framework of UIEG+-based semi-supervised underwater object detection, which is
built upon the PseCo (Li et al., 2022) with Faster-RCNN (Ren et al., 2017) detector. Compared to
the original PseCo, we replace the strong augmentation with our UIEG+ method.

method. Second, our method effectively enhances both labeled and unlabeled images without re-
quiring additional training. In summary, our UIEG+ is a simple yet effective approach that boosts
the performance of existing semi-supervised detection frameworks for underwater detection.

3 METHODOLOGY

3.1 OVERALL SSUOD FRAMEWORK

Fig. 2illustrates the framework of semi-supervised underwater object detection with UIEG+, which
is constructed based on the PseCo (Li et al., 2022) with Faster-RCNN (Ren et al., 2017) detector
and the proposed UIEG+. Given the labeled image (xl, yl) and the unlabeled image xu, we first
perform weak augmentation on the unlabeled underwater image and generate its pseudo-labels ŷu
using the teacher detector. Then, we update the 3-D color and 1-D scale memories with the unlabeled
underwater image and its pseudo-labels. Following this, we sample transformation parameters for
color and scale from these memories and apply them to both labeled and unlabeled underwater
images, producing enhanced images with corresponding labels and pseudo-labels, ı.e, (xie

l , y
ie
l )

and (xie
u , ŷ

ie
u ). Finally, the student detector is trained using these labeled, unlabeled and enhanced

images. Therefore, the unified optimization loss is mathematically described as follows:

Ltotal = Ldet(xl, yl) + γie
l Ldet(x

ie
l ), y

ie
l )

+ γie
u Ldet(x

ie
u ), ŷ

ie
u )

(1)

where γie
l and γie

u are weight coefficients used to balance three loss terms, and Ldet denotes the
detection loss of the base student detector Faster-RCNN (Ren et al., 2017).

Notably, our UIEG+ can be applied to various semi-supervised object detection frameworks (e.g.,
DenseTeacher (Zhou et al., 2022) and ARSL (Liu et al., 2023a)). In this work, we take PseCo (Li
et al., 2022) with Faster-RCNN as an example to illustrate the principles of UIEG+ and explain how
to integrate it into PseCo. In addition, we demonstrate the generality of our UIEG+ by applying it
to various SSOD frameworks in the experiments.

3.2 UNDERWATER IMAGE ENHANCEMENT GUIDED BY ATTRIBUTE-BASED DATA
DISTRIBUTION

In this section, we propose an underwater image enhancement method guided by attribute-based data
distribution to minimize the distribution differences between enhanced and unlabeled underwater
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Figure 3: (a) 3-D color memory; (b) 1-D scale memory; (c) The Process of storing scale information;
(d) The process of image enhancement in scale space.

images. This approach effectively improves the relevance and diversity of the enhanced images. As
shown in Fig. 2, to end this, we first create an attribute memory pool consisting of the 3-D color
memory and 1-D scale memory. Subsequently, we analyze unlabeled images with pseudo-labels in
color and scale spaces separately, updating the corresponding memory cells by assigning them to
different subspaces. Following this, we proceed to enhance the images based on the distribution of
the unlabeled images within these memory pools.

Color and Scale Memories Color and scale memories are used to record the number of unlabeled
underwater images in different subspaces. Specifically, we divide the 3-dimensional color space,
with each dimension ranging from 0 to 1, into (⌊1/drgb⌋+1)3 subspaces using the interval step drgb
in each dimension. Here, ⌊·⌋ is the floor operation, and (⌊1/drgb⌋+1) is labeled as Nrbg. Following
this, we construct a 3-D color memory Mrgb ∈ RNrgb×Nrgb×Nrgb , where each cell corresponds to
a subspace with the size of drgb × drgb × drgb. Similarly, we divide the scale space, ranging from
0 to ∞, into ⌊1/dscale⌋+ 1 subspaces using the interval step dscale. Meanwhile, the scale memory
is constructed, where each cell corresponds to a subspace with the size of dscale. The structure of
color and scale memories is shown in Fig. 3 (a) and (b).

Sample Distribution Following the establishment of the color and scale memories, we analyze the
distribution of unlabeled underwater images. Given unlabeled image xu ∈ R3×H×W , we normalize
it to the range of [0, 1] and then compute the mean value of xu for each dimension, denoted as
urgb ∈ R3.

uk
rgb =

1

HW

H,W∑
i,j

xk,i,j
u (2)

where H and W are the height and width of the unlabeled underwater image. k is the number of
dimensions of the image. Then, we further allocate the image xu into the color memory space using
urgb ∈ R3 to determine the corresponding position index ergb ∈ Z3. By utilizing the index ergb,
the color memory Mrgb is updated as follows.

ekrgb = ⌊uk
rgb/drgb⌋ (3)

Mrgb(ergb) = Mrgb(ergb) + 1 (4)

Similarly, the scale memory is updated by determining the location index of the unlabeled underwa-
ter image in it, which can be formulated as:

uscale =
1

Nbox

Nbox∑
i

√
(Bi,2 −Bi,0) · (Bi,3 −Bi,1) (5)

Mscale(escale) = Mscale(escale) + 1, escale = ⌊uscale/dscale⌋ (6)

where B ∈ RNbox×4 represents the bounding boxes of all objects in the unlabeled underwater image,
obtained by the teacher detector. The process of analyzing the distribution of unlabeled underwater
images in the scale space is illustrated in Fig 3 (c).
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Image Enhancement To reduce the distribution differences between enhanced and unlabeled im-
ages, in this section, we explore the image enhancement method based on the distributions of unla-
beled underwater images in color and scale space. In detail, we first perform the color transformation
for input images. As shown in Fig. 2, we utilize the distribution information in the color memory to
determine the sampling probability of each cell within it, which can be formulated as

Prgb = (1− Mrgb

max(Mrgb)
) · U3d · Irgb (7)

Irgb =

{
1.0,Mrgb > 0

0.0, otherwise
(8)

where U3d is a 3-dimensional matrix obtained by randomly sampling from a uniform distribution
in the range [0, 1], which has the same size as M . The color transformation parameter is then
determined based on the sampling probability, which can be formulated as

e∗rgb = argmax(Prgb) (9)

Vrgb = (e∗rgb + σrgb) · drgb (10)

where σrgb is a contrast bias less than 1. argmax(·) is the function that finds the index of the
maximum value. Vrbg is the final parameter of the color transformation. By employing the parameter
Vrbg, we perform the color transformation for input images, which can be formulated as

xie = x+ ηrgb · (Vrbg − ux
rgb) (11)

where ηrgb is a constant and ux
rgb is the mean value of x in each dimension. Following this, we

further derive the scale transformation parameter using a process similar to that used for the color
transformation, which can be formulated as

Pscale = (1− Mscale

max(Mscale)
) · U1d · Iscale, Iscale =

{
1.0,Mscale > 0

0.0, otherwise
(12)

Vscale =
(e∗scale + σscale) · dscale

ux
scale

, e∗scale = argmax(Pscale) (13)

where U1d is a 1-dimensional matrix and σscale is a contrast bias less than 1. ux
scale is the mean

scale value of all objects in the image x. Vscale is the scale rate of the image x. By applying Vscale

to the interpolate operation (Jaderberg et al., 2015), we achieve the scale transformation of x. Fig. 3
(d) shows the process of enhancing the image in terms of scale.

Finally, in this work, we enhance the images of both unlabeled and labeled datasets using the pro-
posed UIEG+ to increase the rationality and diversity of the enhanced images, effectively addressing
the problem of semi-supervised underwater object detection with Eq. 1.

3.3 OPTIMIZATION

The training process of our UIEG+-based SSU detection framework is meticulously structured into
two distinct stages to ensure optimal performance. In Stage 1, we concentrate exclusively on training
the teacher detector using only the labeled images. In Stage 2, we focus on optimizing the student
detector training on both labeled and unlabeled images. The objective here is to leverage the vast
amount of unlabeled data to enhance the model’s generalization capabilities. With the loss function
in Eq. 1 to guide the learning process of the student detector, we can continuously update the teacher
detector using the exponential moving average (EMA) strategy to ensure that it evolves alongside
the student detector, which can be expressed as:

θt = δ · θt + (1− δ) · θs (14)

where θt and θs indicate the parameters of the teacher and student detectors. δ represents the EMA
rate.
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Table 1: Results of our approach and comparison to state-of-the-arts on DUO. The best two results
are shown in red and blue fonts, respectively.

Method Detector Holothurian Echinus Scallop Starfish mAP50 mAP
Labeled Only FCOS 66.8 86.5 21.0 83.6 64.5 39.2

DenseTeacher (Zhou et al., 2022) FCOS 77.7 88.7 35.2 87.9 72.4 48.9

ARSL (Liu et al., 2023a) FCOS 78.1 85.2 42.9 88.5 73.7 35.4

Unbiased-Teacherv2 (Liu et al., 2022) FCOS 82.4 86.8 50.7 88.8 77.2 56.8

Consistent-Teacher (Wang et al., 2023a) FRCNN 84.1 87.6 52.3 86.8 77.7 60.0

Labeled Only FRCNN 66.1 85.6 16.8 84.3 63.2 40.4

Soft Teacher (Xu et al., 2021) FRCNN 84.9 88.2 44.3 89.2 76.6 53.9

PseCo (Li et al., 2022) FRCNN 85.7 88.5 48.7 89.3 78.0 56.8

MixTeacher (Liu et al., 2023c) FRCNN 85.4 88.9 46.6 89.6 77.6 56.3

Ours (DenseTeacher) FCOS 79.1 88.4 41.1 87.3 74.0 50.9

Ours (ARSL) FCOS 78.8 85.5 45.4 88.5 74.6 36.1

Ours (PseCo) FRCNN 85.9 89.4 54.3 90.3 80.0 57.2

oracle FCOS 80.9 89.3 40.7 88.1 74.8 53.6

oracle FRCNN 87.0 90.7 61.9 91.3 82.7 62.6

4 EXPERIMENTS

4.1 IMPLEMENTATION

Our framework is implemented based on the PseCo framework (Li et al., 2022) in PyTorch (Paszke
et al., 2019). Similarly, we use Faster-RCNN (Ren et al., 2017) with ResNet-50 (He et al., 2016)
pre-trained on ImageNet (Krizhevsky et al., 2012) as teacher and student detectors. The model is
trained with a learning rate of 1e-3, momentum of 0.9, and weight decay of 1e-4. γie

l and γie
u are

set to 1.0 and 0.1 in Eq. 1, respectively. drgb and dscale are set to 0.05 and 64, respectively. ηrgb
is 0.3 in Eq. 11. To evaluate the effectiveness and generalizability of our UIEG+, we integrate it
into two additional SSOD frameworks, i.e.ARSL (Liu et al., 2023a) and DenseTeacher (Zhou et al.,
2022), utilizing both FCOS (Tian et al., 2019) as the base detectors. Specifically, in both ARSL
and DenseTeacher, we substitute only the strong augmentation with our UIEG+, keeping all other
components unchanged.

4.2 DATASETS

In this work, we conducted experiments on two underwater datasets to verify the effectiveness and
superiority of the proposed UIEG+. For all experiments, we take the standard mean average pre-
cision (mAP) at differrent IoU thresholds (e.g., AP50:95 denoted as mAP, AP50) as our evaluation
metrics.

• DUO The DUO (Liu et al., 2021) dataset has 6671 images for training and 1111 images for
evaluation with shared four classes, ı.e, Holothurian, Echinus, Scallop, and Starfish. Following
works (Li et al., 2022; Hua et al., 2023), we randomly sample 10% of the training images as
labeled data, while the remaining images are used as unlabeled data. The testing images are
used for evaluation.

• URPC The URPC dataset, collected from the Underwater Robot Picking Contest, includes
16247 training images and 4062 testing images, with four classes ı.e, Holothurian, Echinus,
Scallop, and Starfish. Similarly, we randomly sample 10% of the training images as labeled
data, leaving the remaining images as unlabeled data. Additionally, the testing images are used
for evaluation.

4.3 RESULT ANALYSIS

In this section, we present the evaluation results of current state-of-the-art SSOD methods and
demonstrate the effectiveness of our UIEG+ by applying it to other SSOD frameworks on three
sets of experiments built on two underwater datasets, e.g.DUO and URPC. The “Labeled Only”
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Table 2: Results of our approach and comparison to state-of-the-arts on URPC. The best two results
are shown in red and blue fonts, respectively.

Method Detector Holothurian Echinus Scallop Starfish AP50 mAP
Labeled Only FCOS 64.6 74.1 66.8 70.2 68.9 30.2

DenseTeacher (Zhou et al., 2022) FCOS 74.5 89.6 73.2 81.3 79.7 41.9

ARSL (Liu et al., 2023a) FCOS 75.0 88.0 73.8 80.8 79.4 34.3

Unbiased-Teacherv2 (Liu et al., 2022) FCOS 70.8 80.6 63.9 75.7 72.8 38.9

Consistent-Teacher (Wang et al., 2023a) FCOS 79.2 84.2 72.3 78.9 78.7 43.3

Labeled Only FRCNN 69.5 87.6 70.9 79.5 76.9 39.3

Soft Teacher (Xu et al., 2021) FRCNN 78.3 88.2 72.3 79.4 79.5 43.2

PseCo (Li et al., 2022) FRCNN 80.6 87.3 74.7 79.9 80.6 44.3

MixTeacher (Liu et al., 2023c) FRCNN 79.5 87.9 73.9 79.1 80.1 43.8

Ours (DenseTeacher) FCOS 77.4 89.5 74.8 82.4 81.0 43.9

Ours (ARSL) FCOS 76.3 88.7 74.3 81.3 80.2 34.7

Ours (PseCo) FRCNN 80.6 89.8 76.2 81.8 82.1 44.8

oracle FCOS 86.2 92.3 80.5 86.4 86.3 50.0

oracle FRCNN 88.0 92.6 82.3 86.6 87.4 51.7

Table 3: Results of our approach and comparison to state-of-the-arts on DUO and URPC. The best
two results are shown in red and blue fonts, respectively.

Method Detector Holothurian Echinus Scallop Starfish AP50 mAP
Unbiased-Teacherv2 (Liu et al., 2022) FCOS 62.8 78.2 48.0 74.2 65.8 33.4

ARSL (Liu et al., 2023a) FCOS 66.0 83.2 56.6 80.1 71.5 29.8

PseCo (Li et al., 2022) FRCNN 72.5 85.0 51.1 79.6 72.0 35.0

MixTeacher (Liu et al., 2023c) FRCNN 68.4 85.2 47.0 79.8 70.1 34.2

Ours (ARSL) FCOS 66.6 84.6 63.5 79.3 73.5 30.5

Ours (PseCo) FRCNN 71.5 83.7 63.9 73.7 73.2 35.5

results indicate that the model is trained only on labeled images and then evaluated on testing im-
ages. The “oracle” results indicate the model is trained on all training images (including labeled and
unlabeled images) and evaluated on testing images.

DUO Tab. 1 exhibits the evaluation results on DUO dataset. As shown in Tab. 1, when the proposed
UIEG+ is applied to DenseTeacher, ARSL, and PseCo, our approach improves AP50 from 72.4%,
73.7% and 78.0% to 74.0%, 74.6% and 80.0%, resulting in gains of 1.6%, 0.9% and 2.0%. Addi-
tionally, our method achieves mAP improvements of 2.0%, 0.7% and 0.4%, respectively. Compared
to the baseline (Labeled only) on Faster R-CNN and FCOS detectors, our UIEG+ demonstrates a
significant improvement, further proving the effectiveness of our approach.

URPC We display the comparison results on URPC in Tab. 2. As shown in Tab. 2, when strong
augmentation in DenseTeacher , ARSL and PseCo is replaced by our UIEG+, they obtain AP50

scores of 81.0%, 80.2%, and 82.1%, respectively, achieving clear improvement with 1.3%, 0.8%
and 1.5% gains. Meanwhile, our method also acquire mAP gains of 2.0%, 0.4% and 0.5% over
DenseTeacher, ARSL, and PseCo, respectively. Additionally, compared to the baseline (Labeled
Only), we achieve AP50 gains of 12.1% (81.0% vs. 68.9%) on the FCOS detector, and AP50 gains
of 5.2% (82.1% vs. 76.9%) on the Faster R-CNN detector, showing the effectiveness of our UIEG+.

DUO-to-URPC To further evaluate our UIEG+ method, we report the comparison results on DUO
and URPC in Tab. 3. In this experiment, we use 10% of the training images from DUO as labeled
data and 90% of the training images from URPC as unlabeled data. Additionally, the testing images
from URPC are utilized for evaluation. As shown in Tab. 3, when our UIEG+ is employed to SSOD
frameworks of ARSL and PseCo, these frameworks obtain AP50 gains of 2.0% ( 71.5% vs 73.5%)
and 1.2% ( 72.0% vs 73.2%), respectively. Moreover, our method also acquire mAP gains of 0.7%,
and 0.5% on ARSL and PseCo, verifying the effectiveness of our method.
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Strong SMDR UIEG+ 0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84

m
A

P 0.78 0.773

0.8

Figure 4: Comparison between image enhance-
ment methods.

Table 4: Effectiveness of important components
on URPC.

CTransfor STransfor AP50

73.1
✓ 77.6
✓ ✓ 80.0

4.4 ABLATION STUDY

To study the effectiveness of different components and analyze important weights in our UIEG+, we
conduct an ablation study based on PseCo framework on DUO dataset.

Effectiveness of different components To analyze the effectiveness of image transformations
with different attributes (e.g., color and scale) in our UIEG+, we report comparison results of
our UIEG+ with various attributes, as shown in Tab. 4. Here, ”CTransfor” and ”STransfor”
represent color and scale transformations, respectively. From Tab. 4, we find that UIEG+
with color transformation significantly improves the performance of PseCo from 73.1% AP50

to 77.6% AP50. When employing UIEG+ with all two transformations, we obtain the best
AP50 of 80.0%, evidencing the effectiveness of color and scale transformations in UIEG+.

Table 5: Comparison of different sampling
methods of transformation parameters.

Random Ours
mAP 78.7 80.0

Comparison of sampling methods As shown in
Tab. 5, we compare the proposed distribution-
based sampling and random sampling for color
and scale transformation parameters in UIEG+.
Random sampling omits the front part of U · I
in Eq. 7 and 12 . From Tab .5, we find that
our distribution-based sampling achieves a sig-
nificant gain of 1.3% compared to random sampling, demonstrating the superiority of our approach.

Comparison of image enhancement methods To verify the superiority of our UIEG+ than other
image enhancement methods, e.g., randomly strong augmentation and SMDR (Zhang et al., 2023a)
that is an image enhancement network, we show comparison results in Fig .4. From Fig .4, we
observe that our UIEG+ achieves AP50 gains of 2.0% and about 2.3% compared to randomly applied
strong augmentation and SMDR.

0.01 0.05 0.10 0.15 0.20
0.75

0.76

0.77
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0.79

0.80

0.81

A
P 5

0

0.785

0.8

0.79
0.784 0.783

(a)

16 32 64 128 256
0.75

0.76

0.77

0.78
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0.80

0.81

A
P 5

0 0.784

0.792

0.8

0.78
0.786

(b)
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0.75

0.76

0.77

0.78

0.79
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P 5

0

0.789

0.8

0.787 0.786
0.781

(c)

Figure 5: Weight analysis. (a) represents analysis results of drgb; (b) represents analysis results of
dscale; (c) represents analysis results of ηrgb.

Analysis on hyperparameter To explore the effects of weights drgb in Eq. 3, dscale in Eq. 6 and
ηrgb in Eq. 11, we conduct ablations in Tab .5a, 5b and 5c. As shown in Tab .5a and 5b, both
drgb = 0.05 and dscale = 64 achieve the best AP50 score of 80.0%, respectively. Larger and smaller
values of drgb and dscale can reduce the effectiveness of our UIEG+. In addition, from Tab. 5c, we
observe that ηrgb = 0.3 obtains the best AP50 score.
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(a)  Input (b)  Strong Aug (e)  UIEG+(c)   SMDR

20240930

Figure 6: Visual comparisons of our image enhancement method with other methods. The first row
of images is from DUO, and the last row is from URPC.

(a)  GT (b)  Labeled Only (d)  Ours(c)  PseCo

Figure 7: Visual results of PseCo trained with different underwater image enhancement methods
on DUO and URPC. (a) shows the ground truth; (b) displays the visual results from the detector
trained exclusively on labeled images; (c) presents the results obtained through the PseCo method;
(d) illustrates the visual results using our UIEG+. The first row of images is from DUO, and the last
row is from URPC.

4.5 VISUAL ANALYSIS

To provide a clearer understanding of the effectiveness of our image enhancement method and its
effect on improving SSOD framework performance, we show some visualization samples in Fig. 6
and 7.

Visual comparisons of image enhancement methods Fig. 6 shows visual comparisons of our
image enhancement method with other methods (e.g., strong augmentation and SMDR). From Fig.
6, we can see that strong augmentation can generate unrealistic enhanced images in contrast to the
original unlabeled images, negatively impacting detector performance during training. However,
our UIEG+ method produces more realistic enhanced images by aligning with the distribution of
unlabeled underwater images in terms of color and scale attributes.

Visual detection results Fig. 7 provide some visual results of PseCo trained using different image
enhancement methods on DUO and URPC datasets. It demonstrates that our UIEG+ can signifi-
cantly enhance the performance of PseCo for semi-supervised underwater object detection.

5 CONCLUSIONS

In this paper, we propose a novel underwater image enhancement method guided by attribute-based
data distribution (UIEG+) from a novel perspective, which reduces the differences in color and
scale spaces between enhanced and unlabeled images. More importantly, UIEG+ can be flexibly
integrated into various SSOD frameworks with different detectors, such as DenseTeacher, ARSL,
PseCo, etc. Extensive experimental reuslt can validate the effectiveness and generality of the pro-
posed UIEG+ across multiple benchmarks.
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Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (eds.), Computer Vision –
ECCV 2022, pp. 457–472, Cham, 2022. Springer Nature Switzerland.

Jiaming Li, Xiangru Lin, Wei Zhang, Xiao Tan, Yingying Li, Junyu Han, Errui Ding, Jingdong
Wang, and Guanbin Li. Gradient-based sampling for class imbalanced semi-supervised object
detection. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 16344–
16354, 2023.

Chang Liu, Weiming Zhang, Xiangru Lin, Wei Zhang, Xiao Tan, Junyu Han, Xiaomao Li, Errui
Ding, and Jingdong Wang. Ambiguity-resistant semi-supervised learning for dense object detec-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 15579–15588, June 2023a.

Chongwei Liu, Haojie Li, Shuchang Wang, Ming Zhu, Dong Wang, Xin Fan, and Zhihui Wang. A
dataset and benchmark of underwater object detection for robot picking. In 2021 IEEE Interna-
tional Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6, 2021.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liang Liu, Boshen Zhang, Jiangning Zhang, Wuhao Zhang, Zhenye Gan, Guanzhong Tian, Wenbing
Zhu, Yabiao Wang, and Chengjie Wang. Mixteacher: Mining promising labels with mixed scale
teacher for semi-supervised object detection. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7370–7379, 2023b.

Liang Liu, Boshen Zhang, Jiangning Zhang, Wuhao Zhang, Zhenye Gan, Guanzhong Tian, Wenbing
Zhu, Yabiao Wang, and Chengjie Wang. Mixteacher: Mining promising labels with mixed scale
teacher for semi-supervised object detection. In 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7370–7379, 2023c.

Yen-Cheng Liu, Chih-Yao Ma, and Zsolt Kira. Unbiased teacher v2: Semi-supervised object de-
tection for anchor-free and anchor-based detectors. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 9809–9818, 2022.

Md Kislu Noman, Syed Mohammed Shamsul Islam, Jumana Abu-Khalaf, and Paul Lavery. Multi-
species seagrass detection using semi-supervised learning. In 2021 36th International Conference
on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. NeurIPS, 2019.

Lintao Peng, Chunli Zhu, and Liheng Bian. U-shape transformer for underwater image enhance-
ment. IEEE Transactions on Image Processing, 32:3066–3079, 2023.

Yan-Tsung Peng, Keming Cao, and Pamela C. Cosman. Generalization of the dark channel prior for
single image restoration. IEEE Transactions on Image Processing, 27(6):2856–2868, 2018.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv, 2018.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time
object detection with region proposal networks. TPAMI, 39(6):1137–1149, 2017.

Tarun Sharma, Danelle E. Cline, and Duane Edgington. Making use of unlabeled data: Compar-
ing strategies for marine animal detection in long-tailed datasets using self-supervised and semi-
supervised pre-training. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, pp. 1224–1233, June 2024.

Tahira Shehzadi, Khurram Azeem Hashmi, Didier Stricker, and Muhammad Zeshan Afzal. Sparse
semi-detr: Sparse learnable queries for semi-supervised object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5840–5850,
June 2024.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: fully convolutional one-stage object
detection. In ICCV, 2019.

Xinjiang Wang, Xingyi Yang, Shilong Zhang, Yijiang Li, Litong Feng, Shijie Fang, Chengqi Lyu,
Kai Chen, and Wayne Zhang. Consistent-teacher: Towards reducing inconsistent pseudo-targets
in semi-supervised object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3240–3249, June 2023a.

Yi Wang, Hui Liu, and Lap-Pui Chau. Single underwater image restoration using adaptive
attenuation-curve prior. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(3):
992–1002, 2018.

Zhenyu Wang, Ya-Li Li, Ye Guo, and Shengjin Wang. Combating noise: Semi-supervised learning
by region uncertainty quantification. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp.
9534–9545. Curran Associates, Inc., 2021.

Zhizhong Wang, Lei Zhao, and Wei Xing. Stylediffusion: Controllable disentangled style transfer
via diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 7677–7689, October 2023b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mengde Xu, Zheng Zhang, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai, and
Zicheng Liu. End-to-end semi-supervised object detection with soft teacher. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 3040–3049, 2021.

Dehuan Zhang, Jingchun Zhou, Weishi Zhang, ChunLe Guo, and Chongyi Li. Synergistic multiscale
detail refinement via intrinsic supervision for underwater image enhancement. arXiv preprint
arXiv:2308.11932, 2023a.

Dehuan Zhang, Jingchun Zhou, Chunle Guo, Weishi Zhang, and Chongyi Li. Synergistic multiscale
detail refinement via intrinsic supervision for underwater image enhancement. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(7):7033–7041, Mar. 2024.

Jiacheng Zhang, Xiangru Lin, Wei Zhang, Kuo Wang, Xiao Tan, Junyu Han, Errui Ding, Jingdong
Wang, and Guanbin Li. Semi-detr: Semi-supervised object detection with detection transformers.
In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23809–
23818, 2023b.

Weidong Zhang, Peixian Zhuang, Hai-Han Sun, Guohou Li, Sam Kwong, and Chongyi Li. Un-
derwater image enhancement via minimal color loss and locally adaptive contrast enhancement.
IEEE Transactions on Image Processing, 31:3997–4010, 2022.

Hongyu Zhou, Zheng Ge, Songtao Liu, Weixin Mao, Zeming Li, Haiyan Yu, and Jian Sun. Dense
teacher: Dense pseudo-labels for semi-supervised object detection. In Shai Avidan, Gabriel Bros-
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