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ABSTRACT

The reliability of medical LLM evaluation is critically undermined by data contami-
nation and knowledge obsolescence, leading to inflated scores on static benchmarks.
To address these challenges, we introduce LiveClin, a live benchmark designed for
the faithful replication of clinical practice. Built from contemporary, peer-reviewed
case reports and updated biannually, LiveClin ensures clinical currency and resists
data contamination. Using a verified AI-human workflow involving 239 physicians,
we transform authentic patient cases into complex, multimodal evaluation scenarios
that span the entire clinical pathway. The benchmark currently comprises 1,407
case reports and 6,605 questions. Our evaluation of 26 models on LiveClin re-
veals the profound difficulty of these real-world scenarios, with the top-performing
model achieving a Case Accuracy of just 35.7%. We find that the era of "free
lunch" improvements from simple model scaling is over, as newer models do not
consistently outperform their predecessors. Furthermore, our analysis uncovers
distinct reasoning weaknesses across model classes. LiveClin thus provides a
continuously evolving, clinically-grounded framework to steer the development of
medical LLMs towards greater reliability and real-world utility.

1 INTRODUCTION

Large language models (LLMs) hold immense promise for transforming healthcare, from aiding in
complex diagnostics to personalizing patient care. However, the safe and effective integration of
these powerful tools into clinical practice is entirely dependent on our ability to rigorously evaluate
their true capabilities. As the gap between general knowledge and expert-level clinical reasoning
widens, the development of sophisticated, clinically-grounded benchmarks becomes not just a matter
of academic progress, but a prerequisite for building trustworthy medical AI.

However, the prevailing evaluation landscape fails to mirror clinical practice, suffering from two
limitations. First, the static design of benchmarks like MedQA (Jin et al., 2020) not only makes them
inherently vulnerable to data contamination and knowledge obsolescence (Oren et al., 2024; White
et al., 2025) but also risks creating an illusion of capability through inflated scores. Second, their
single-turn assessments are misaligned with the longitudinal nature of patient care. By evaluating
reasoning in isolated, synthetic snapshots, even advanced systems like MedXpertQA (Zuo et al., 2025)
and AgentClinic (Schmidgall et al., 2025) reduce patient management to a series of disconnected
tasks. This approach fails to assess the integrated reasoning required to navigate a patient’s entire
clinical pathway, from initial presentation to long-term management.

To overcome these limitations, we introduce a clinically aligned benchmark named LiveClin, which
is biannually updated and contains 1,407 clinical cases and 6,605 questions to date. Concretely, the
benchmark is sourced from contemporary, peer-reviewed case reports from PubMed Central (PMC)
Open Access subset to mitigate both data contamination and knowledge obsolescence. As illustrated
in Figure 1, to simulate the entire clinical pathway, each case is transformed into a multi-stage exam to
assess whether a model can sequentially integrate diverse modalities that reflect the patient’s evolving
condition. The ablation study also indicates that the overall AI-human construction workflow is
superior to physician-only curation for generating challenging and high-quality content. To verify
the rigor of the benchmark, we implemented a 239-physician screening pipeline, guided by the
conservative principle of rejecting any potentially flawed question.
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Figure 1: An example from LiveClin simulating the entire clinical pathway. The case progresses
from initial assessment to long-term management, with new clinical information and diverse imaging
modalities (e.g., X-ray, MRI, pathology, CT) progressively introduced at each key decision point to
challenge the model’s reasoning in an evolving scenario.

Our evaluation of 26 models on LiveClin yields several key insights into the current state of medical
AI. We find that the benchmark is exceptionally challenging, with even top proprietary models like o3
achieving a Case Accuracy of only 35.7%. Our analysis reveals that the era of "free lunch" improve-
ments from simple model scaling is over, as newer models do not guarantee better performance on
these expert-level tasks. Furthermore, our in-depth analysis uncovers that different classes of models
exhibit distinct reasoning weaknesses. We observe that top proprietary models often falter when
integrating complex diagnostic data, while open-source medical models struggle with long-context
retention over the full patient journey.

Contributions The main contributions of this work are threefold: (1) LiveClin, a novel, dynamic, and
multimodal benchmark that evaluates the full clinical pathway, designed to be contamination-resistant
and continuously updated; (2) A scalable and verified AI-human workflow for generating and
maintaining high-quality evaluations that mirror the clinical practice, proven to be more cost-effective
and to produce more challenging questions than human-only authoring; and (3) A comprehensive
evaluation of 26 leading LLMs, providing a new baseline for state-of-the-art clinical reasoning and
uncovering critical, distinct failure modes that inform future model development.

2 MOTIVATION

Data contamination poses a fundamental threat to medical LLM evaluation by eroding benchmark
reliability. As models are trained on ever-expanding, web-scale corpora, the questions and answers
from popular static benchmarks are inevitably absorbed into their training sets (Deng et al., 2024).
This widespread contamination means that models are increasingly being tested on data they have
already seen, leading to inflated performance scores (Balunović et al., 2025). This is not a minor
flaw but a fundamental threat to evaluation integrity, as it erodes community’s ability to distinguish
genuine progress from mere benchmark hacking.

While common, decontamination efforts are merely reactive and often incomplete (Zhu et al., 2024).
A truly robust solution must be proactive, designed with inherent resistance to contamination. This
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Figure 3: Overview of the LiveClin Construction Pipeline. Our three-stage pipeline creates a
dynamic and clinically authentic benchmark. (1) Case Construction: We source and sample recent,
peer-reviewed case reports to build a contemporary data foundation. (2) Exam Generation: An
iterative Generator-Critic architecture transforms static reports into sequential reasoning problems.
(3) Quality Check: A synergistic AI-human workflow, featuring AI pre-screening and multi-physician
verification, ensures factual and logical integrity.

challenge is compounded by a second, related issue: knowledge obsolescence. Since clinical medicine
evolves constantly (Cullen et al., 2019; Mitchell et al., 2023), any static test not only becomes a
predictable target for contamination but also inevitably loses its clinical relevance over time.

Figure 2: LLM Case Accuracy across datasets with
different publication dates. Shaded regions indicate the
knowledge cutoff for different models

Pilot Study: Quantifying the Impact of
Data Recency. To empirically quantify
the dual impacts of data contamination and
knowledge obsolescence, we conducted a
longitudinal pilot study using our main
pipeline, with full methodological details
available in Sections 3,4 and Appendix C.
As shown in Figure 2, the results demon-
strate a significant performance gap be-
tween a model’s performance on older, po-
tentially contaminated data versus novel,
contemporary data. This is starkly illus-
trated by GPT-5, which scores as high as
45.0% on data within its knowledge base
but drops by nearly 10 percentage points
on cases published after its cutoff. This pattern, consistent across models, quantifies the distorting
effects of data contamination, which inflates scores on seen data, and knowledge obsolescence, which
causes failures on unseen, newer knowledge. These findings suggest that static benchmarks are an
unreliable proxy for true clinical reasoning, highlighting the necessity of a live evaluation paradigm.

3 LIVECLIN

To address the critical need for a dynamic, contamination-resistant benchmark established in Section 2,
we developed LiveClin through a rigorous methodology, overviewed in Figure 3. This section first
introduces the Taxonomy (§3.1) we designed to structure the benchmark for fine-grained analysis. We
then detail the three core pipeline stages: (1) Case Construction (§3.2), a process of case curation and
sampling to establish a contemporary data foundation; (2) Exam Generation (§3.3), which transforms
static reports into multi-step problems simulating the entire clinical pathway; and (3) Quality Check
(§3.4), a rigorous, multi-layered assurance process that guarantees the benchmark’s medical validity.
Finally, we present the Benchmark Statistics and Composition (§3.5).
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3.1 CLINICAL TAXONOMY

LiveClin’s Taxonomy is a foundational framework for multi-resolution performance analysis, de-
signed to overcome the single-score, narrow-scope limitations of existing benchmarks. It features
a three-level hierarchy that evaluates model capabilities across a spectrum of granularity. The full
taxonomy is detailed in Appendix D, and the analytical purpose of each level is outlined below:

• Level 1: ICD-10 Chapters. The highest level of our taxonomy is adapted from the authoritative
ICD-10 framework to ensure its clinical and scientific validity. It consists of 16 clinically coherent
chapters designed to provide a macro-level view of model capabilities across major medical
specialties. To enhance focus and relevance, we merge closely related domains (e.g., Pregnancy and
Perinatal Conditions) and excluded non-specific chapters (e.g., "Symptoms & Laboratory Signs")
whose cases are more appropriately classified under a primary disease.

• Level 2: Disease Clusters. This intermediate level is adapted from the authoritative China
National Healthcare Security Administration (NHSA) standard1 to ensure a scientifically grounded
framework for sub-specialty analysis. It defines 72 distinct disease clusters, balancing the need
for specificity with statistical reliability. To resolve significant data sparsity encountered with the
original standard, this final number was reached through an expert-guided consolidation process:
merging analogous sparse groups while retaining medically unique ones to preserve specificity.

• Level 3: ICD-10 Codes. This most granular tier, defined by individual ICD-10 codes, enables
fine-grained, diagnostic-level assessment. It is critical for identifying a model’s specific strengths
and weaknesses across numerous conditions. This level of detail, obscured in broader categories,
gives developers the specific feedback required to improve their models and datasets.

3.2 STAGE 1: CASE CONSTRUCTION

With the taxonomic framework established, the first stage of our pipeline focuses on building a
high-quality, structured corpus of contemporary clinical cases. This stage directly counters the
challenges of knowledge obsolescence and narrow disease scope identified in existing benchmarks.

Case Curation The process begins by programmatically retrieving all XML-formatted case reports
published in the first half of 2025 from the PubMed Central (PMC) Open Access Subset. A custom-
built pipeline then parses each file, extracting key metadata before analyzing the article’s structure.
Sections describing the patient’s journey (e.g., Case Presentation) are aggregated to form the core
case narrative, while sections containing author analysis (e.g., Discussion) are consolidated into the
case discussion. To enable multimodal proficiency assessment, this process also converts all tabular
data into Markdown and extracts persistent URLs for all associated figures with their captions.

Sampling To construct a balanced and representative corpus, we first classify each case report
against all three tiers of our taxonomy using gpt-4.1-2025-04-14, with detailed methodology
and validation presented in Appendix E. With cases fully classified, we then implement a stratified
sampling protocol guided by the 72 Level-2 disease clusters. Our protocol aims to sample 30 unique
cases per cluster, while prioritizing the diversity of unique Level-3 diseases within each sample to
mitigate the overrepresentation of common conditions. This rigorous procedure yielded a final corpus
of 2,150 high-quality case reports, which served as the foundation for the subsequent stages.

3.3 STAGE 2: EXAM GENERATION

With the curated cases as our foundation, this stage focuses on generating questions that mirror the
entire clinical pathway, moving beyond static, single-point assessments. While the challenge is
achieving this at scale without sacrificing clinical nuance, we resolve the tension between manual
quality and automated scalability by employing a Generator-Critic architecture, whose effectiveness
is validated in Section 5. This o3-powered, two-agent system is guided by distinct prompts detailed
in Appendix F and transforms each case report into a high-quality simulation of the patient journey.

Scenario Generation This process is initiated by the Generator Agent, which reframes each case
into a progressive clinical challenge. It begins by crafting a concise initial clinical scenario capturing
only the information available upon patient arrival. Building on this, the agent generates a sequence

1https://code.nhsa.gov.cn/search.html?sysflag=8
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Figure 4: Distribution of the physician reviewers involved in the quality assurance process. The
charts detail the team’s composition by clinical specialty and professional rank (Chief Physician,
Associate Chief Physician, and Attending Physician) for both the Annotation and Inspection stages.

of 3–6 progressive, 10-option MCQs. To make the clinical progression explicit, the agent dynamically
assigns each question a clinical stage label (e.g., "Initial Assessment"), ensuring a logical flow from
diagnosis to long-term management. Each question’s context strategically introduces new clinical
details at the appropriate workflow step, probing the model’s ability to integrate evolving information.

Iterative Refinement The centerpiece of our methodology is the closed-loop quality control or-
chestrated by the Critic Agent. Once the Generator produces a question set, it enters an automated
"peer-review" cycle where the Critic evaluates it on two key dimensions: Clinical Accuracy and
Cognitive Complexity. If a question is flagged, the Critic provides actionable feedback, prompting the
Generator to revise the set. This refinement loop persists until the question set achieves two criteria:
100% Clinical Accuracy, ensuring all content is factually correct, and high Cognitive Complexity
for over 60% of its questions. To ensure efficiency, any set failing to converge within 10 cycles is
discarded. Applying this process to the 2,150 curated cases yielded 2,092 high-quality question sets.

3.4 STAGE 3: QUALITY CHECK

Following AI-powered generation, we implement a multi-layered quality assurance protocol engi-
neered to meet the uncompromising standards of medicine. This stage is governed by a principle
of conservatism: any question with a potential flaw is rejected. The protocol combines AI pre-
screening with multi-tiered physician verification. All evaluators apply two strict criteria: Factual
Validation, ensuring perfect alignment with the source case, and Logical Solvability, confirming the
answer is deducible from the available information. The specific prompts are detailed in Appendix G.

AI-Powered Pre-Screening Each generated question set first undergoes adjudication by a Judge
Agent, implemented using o3, which acts as a highly conservative pre-filter. Systematically applying
both checks by differentiating privileged from test-taker-visible information, its primary objective is
to autonomously reject fundamentally flawed questions. As validated in Section 5, this AI-provided
audit also serves to elevate the rigor of the subsequent physician review. This process streamlines the
expert review, ultimately narrowing the pool from 2,092 to 1,869 high-potential candidates.

Physician Screening The centerpiece of our quality assurance is a rigorous, two-phase verification
process conducted by 239 licensed physicians. Question sets that pass AI pre-screening first enter the
Annotation phase, where attending physicians from top-tier hospitals evaluate each question against
the aforementioned criteria. Subsequently, in the Inspection phase, more senior physicians conduct a
full review of these annotations. Any identified discrepancy triggers a revision loop with the original
annotator until consensus is reached, ensuring exceptional quality.

As detailed in Figure 4, the physician team is structured to ensure both broad specialty coverage
and deep expertise, with senior experts (Chief and Associate Chief Physicians) constituting 26.3%
of the Annotation team and 38.2% of the Inspection team. This process requires all materials to be
translated for native-chinese experts experts via o3, whose accuracy is validated in Appendix H. The
entire effort amounted to 1,772.18 person-hours at a cost of $24 per hour, for a total expenditure
of $42,304.39. This final layer of scrutiny yielded 1,822 definitively validated question sets. From
this pool, we constructed our final benchmark of 1,407 sets through a stratified sampling protocol,
selecting 20 cases per Level-2 cluster while prioritizing Level-3 disease diversity.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 5: Overview of LiveClin’s composition and statistics. The top-left panel details the case
attrition funnel from construction pipeline and presents summary statistics of the final benchmark.
Figure A shows the distribution of question focus across the entire clinical pathway. Figure B
displays the distribution by ICD-10 chapters. Figures C and D detail the distribution of image and
table modalities, respectively, highlighting the benchmark’s multimodal nature.

3.5 BENCHMARK STATISTICS AND COMPOSITION

The final LiveClin benchmark comprises 6,605 questions from 1,407 unique clinical cases, averaging
4.69 questions per case to form a coherent narrative. This section provides a statistical overview of
the benchmark’s key properties, summarized in Figure 5,

Distribution by Clinical Pathway A key feature of LiveClin is its simulation of the entire clinical
pathway. As illustrated in Figure 5A, the question focus dynamically shifts as a case progresses to
test a model’s ability to handle the entire patient journey. Questions begin overwhelmingly centered
on Presentation & Assessment (96.2% in the first quintile of a case). As more information becomes
available, the focus transitions to Diagnosis & Interpretation and Therapeutic Strategy in the mid-
stages. Towards the conclusion, questions concerning Follow-up and Complication Management
become prominent, completing the simulation of a realistic clinical pathway.

Distribution by Chapters and Multimodality LiveClin provides extensive coverage across spe-
cialties and data modalities. The benchmark spans 16 distinct ICD-10 chapters (Figure 5B), led by
complex areas like Neoplasms (19.8%) and other major specialties such as the Nervous System (9.9%)
and Digestive System (9.3%). The benchmark also heavily emphasizes multimodal proficiency, with
41.9% of all questions requiring direct data interpretation. The dataset incorporates 3,757 images and
634 tables. As shown in Figures 5C and 5D, this includes a diverse array of medical images (e.g., CT,
X-ray, MRI) and structured tabular data (e.g., Lab result, Monitoring, Demographics).

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of leading large language models (LLMs) on
the LiveClin benchmark to assess their clinical reasoning capabilities. We first detail the Experimental
Setup (§4.1), including the models tested and our evaluation protocol. We then report the Overall
Performance Evaluation (§4.2), providing a high-level comparison of model capabilities. Following
this, an In-depth Analysis (§4.3) explores model performance across different clinical domains and
modalities, leveraging the fine-grained structure of LiveClin.
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Figure 6: Overall Case Accuracy on the LiveClin benchmark, with models grouped by family and
sorted in reverse chronological order (most recent to the left). The bar texture encodes the model
type: diagonal hashing for proprietary models, solid colors for general open-source models, and
cross-hatching for open-source medical models.

4.1 EXPERIMENTAL SETUP

Evaluated Models We conduct evaluation on a comprehensive set of 26 models. Our selection spans
three key categories: proprietary models like GPT-5 (OpenAI et al., 2024), powerful open-source
general LLMs like Qwen2.5-VL (Bai et al., 2025), and medical-specific LLMs like MedGemma (Sell-
ergren et al., 2025). The complete list of all model versions is available in Appendix K.

Evaluation Protocol and Metrics To faithfully simulate sequential clinical encounters, we employed
a conversational, zero-shot evaluation protocol. The full conversation history is maintained as
context for each subsequent question, forcing the model to continuously integrate new information.
For reproducibility, we set temperature to 0 for most models, adopting official recommended
configurations for those with specific reasoning modes. Our primary metric is Case Accuracy, a
stringent measure where a case is deemed correct only if all of its sequential questions are answered
correctly. Further details on our prompting strategy are provided in Appendix K.

4.2 OVERALL PERFORMANCE EVALUATION

As presented in Figure 6, the overall Case Accuracy of a diverse suite of leading LLMs provides
key insights into the current landscape of clinical AI. These results highlight both state-of-the-art
capabilities and emerging challenges in model development.

Present Hierarchy: A Gap Between Giants and Rising Stars. The results show a clear performance
hierarchy. Proprietary models currently lead the field, with o3 (35.7%) and GPT-5 (35.5%) setting
the top scores. However, the benchmark’s profound difficulty is evident, as even the best models
fail on nearly two-thirds of cases, and a significant performance gap remains between the top tier
and smaller models like GPT-4o-mini (14.8%). Meanwhile, open-source models are rapidly closing
this gap. The large-scale InternVL-3.5-241B (34.4%) achieves near-parity with the top commercial
models, while more efficient models like GLM-4V-9B (18.8%) demonstrate striking performance for
their size, significantly outperforming weaker proprietary offerings like GPT-4o (14.7%).

Future Trajectory: An End to the "Free Lunch" Scaling. Our findings challenge the assumption
that simple model scaling or releasing a newer version guarantees better performance on specialized
clinical reasoning. For instance, Claude 3.5 Sonnet (27.3%) clearly outperforms its successor, Claude
3.7 Sonnet (25.6%). This trend is also visible within the Gemini family, where the older Gemini
2.0 Flash (21.4%) surpasses the newer Gemini 2.5 Flash (19.0%). This signals an end to the "free
lunch" era of general upgrades, highlighting the need for targeted, domain-specific optimizations.
This is particularly evident in the medical-specific models. While recent entries like Lingshu-32B
(20.1%) show notable progress, they still trail far behind top generalist models, with a performance
gap of over 14%. This underscores the need for the medical AI community to build future specialized
models on more capable foundations to truly advance clinical reasoning capabilities.
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Figure 7: Fine-grained Performance Analysis of Representative Models. Figure A shows Case
accuracy (%) across 16 major ICD-10 chapters. Figure B details Distribution of error proportion (%)
across case progression. Figure C displays Question accuracy (%) across five clinical stages.

Figure 8: Performance Analysis across Multimodal Sub-types. Question accuracy (%) on distinct
image and table modalities. Modality sub-types are sorted by the average accuracy across all models.

4.3 IN-DEPTH ANALYSIS

To dissect model capabilities beyond aggregate scores, we conducted a fine-grained analysis of eight
representative models across clinical domains, the cilinical pathway, and data modalities. This reveals
not just what models get wrong, but how and when their reasoning fails.

Errors in Motion: Failure Modes Along the Pathway. An analysis of error patterns across the
clinical pathway reveals distinct failure modes characteristic of different model classes (Figure 7B-C).
Top proprietary models like o3 tend to fail mid-pathway, with errors peaking during the cognitively
demanding Diagnosis & Interpretation phase. In contrast, open-source medical models exhibit the
late-stage failure pattern, where errors cluster in the final quartile during the less complex Follow-up
stage, suggesting a critical breakdown in long-context retention. Finally, general-purpose models such
as GLM-4V-9B exhibit a front-loaded error profile, stumbling early in the process. This highlights an
urgent need to improve their ability to reason effectively from the initial clinical presentation.

Errors in Place: Strengths and Weaknesses in Domains. Our analysis of ICD-10 chapters reveals
that model performance is highly variable, uncovering distinct specializations alongside universal
weaknesses (Figure 7A). For instance, models excel in areas governed by clear systemic logic, such as
Endocrine Diseases, yet falter universally in domains that demand nuanced synthesis, like Neoplasms.
Interestingly, this specialization transcends scale: both the top-tier o3 (68.4%) and the compact
GLM-4V-9B (63.2%) achieve exceptional accuracy in Mental & Behavioural Disorders.
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Method Accuracy (%) Trivial Ratio (%) Time (hrs)† Costa ($)
Physicians 92.5 38.5 188.9 4534.30
Generator 84.5 16.5 0.13 35.34
Generator-Critic 93.0 5.5 0.45 221.69
Generator-Critic-Judge 89.5* 5.5 0.55 244.19

Table 1: Ablation study of exam generation methods. Accuracy is the physician-validated pass rate.
Costs are normalized per 100 case reports. †Time denotes person-hours for humans vs. API run-time
for AI. *The accuracy on the Judge-approved subset is 98.4%.

This pattern of domain-specific proficiency extends to multimodal reasoning, where a critical gap
separates simple data extraction from complex inference (Figure 8). Models confidently interpret
structured data like Diagrams (75.1%) but struggle when expert-level reasoning is required, evidenced
by poor performance on modalities such as Pathology (59.6%) and Biosignals (53.6%). Although
specialized training shows promise, with MedGemma-27B displaying a surprising aptitude for
Biosignals (71.4%), foundational robustness remains a key challenge. Even the most capable models
can falter on seemingly simple inputs like Demographics tables, underscoring this core issue.

5 ABLATION STUDY OF THE AGENT WORKFLOW

To validate the contribution of each component in our agent-based pipeline, we conducted an ablation
study on randomly sampled 200 case reports. We benchmarked our full Generator-Critic-Judge
pipeline against three alternatives: a physician-authored baseline, a Generator-only model, and a
Generator-Critic pipeline. Each configuration was evaluated for accuracy, cost, and complexity. We
quantified complexity as the proportion of ’trivial’ questions, which are defined as questions correctly
solved by all three baseline models (gpt-4o-mini, claude-3-5-haiku, and gemini-1.5-pro). The detailed
comparison across all evaluation metrics is presented in Table 1.

Automated Exam Creation: Scaling with Generator and Critic. The results first demonstrate
the profound impact of LLM on achieving scalability and complexity. The baseline Generator
agent, operating alone, reduces both time and financial costs by nearly two orders of magnitude
compared to human authoring, making a continuously updated benchmark feasible. It also produces
inherently more challenging questions, more than halving the trivial question ratio from 38.5% to
16.5%. The introduction of the Critic agent is then indispensable for ensuring factual integrity. This
Generator-Critic workflow boosts physician-validated accuracy from 84.5% to 93.0%, surpassing
the human-authored baseline while further shrinking the trivial ratio to just 5.5%. This iterative
refinement loop is thus essential for producing reliable and challenging content at scale.

Augmented Quality Check: Enhancing Verification with Judge. The final Judge agent functions
not merely as a filter but as a crucial enhancement to the human review process. Although its inclusion
nominally lowers the pass rate to 89.5%, this decrease signifies a positive outcome: a more rigorous
quality standard. By providing physicians with a structured audit trail and direct evidence from the
source case, the Judge enables them to identify subtle flaws that might otherwise be overlooked. By
providing a structured audit trail and highlighting potential issues, Judge empowers physicians to
conduct their validation with efficiency and rigor.

6 CONCLUSION

To combat the threats of data contamination and knowledge obsolescence in medical LLM evaluation,
we introduced LiveClin, a dynamic benchmark built from a constantly refreshed stream of contempo-
rary, peer-reviewed case reports. Our AI-powered workflow transforms these cases into multimodal
challenges that span the entire clinical pathway. Evaluation on LiveClin reveals a stark performance
gap, with a top Case Accuracy of just 35.7%, and uncovers distinct failure modes across the clinical
journey, such as mid-case synthesis struggles in top models and late-stage context loss in specialized
ones. LiveClin marks a paradigm shift from static knowledge testing to the dynamic assessment of
applied clinical reasoning. By providing a continuously evolving and clinically-grounded challenge,
we aim to guide the development of medical LLMs towards greater real-world reliability and safety.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

To ensure the linguistic accuracy and fluency of this manuscript, a Large Language Model (LLM)
was employed as a writing-enhancement tool. The use of the LLM was primarily focused on two
areas:

• Grammar and Spell Checking: Identifying and correcting grammatical errors, typos, and
punctuation mistakes.

• Wording and Phrasing Refinement: Optimizing word choice and sentence structure to
enhance clarity, flow, and academic tone.

• Data Construction: Constructing Benchmark as Agent.

It is important to state that the LLM was used solely for improving the language and presentation.
All the core ideas and conclusions presented in this paper are the original work of the author.

B RELATED WORK

Medical Datasets The evaluation of medical LLMs has rapidly evolved to address the complexi-
ties of clinical practice. Initial efforts focused on static, text-only question-answering datasets like
MedQA (Jin et al., 2020), MedMCQA (Pal et al., 2022), and medical subsets of MMLU (Hendrycks
et al., 2021). While foundational, these benchmarks primarily test static knowledge recall. To incor-
porate visual data, multimodal benchmarks such as VQA-RAD (Lau et al., 2018) and PathVQA (He
et al., 2020) were developed, with recent efforts like MedXpertQA (Zuo et al., 2025) significantly rais-
ing the bar by introducing expert-level difficulty and rich clinical context. However, these approaches
largely retain a single-turn, static format. A parallel line of work has explored multi-step evaluation.
Agent-based benchmarks like AgentClinic (Schmidgall et al., 2025) and MedAgentBench (Jiang
et al., 2025) simulate clinical workflows, though often with synthetic scenarios. A distinct approach is
presented by HealthBench (Arora et al., 2025), which evaluates open-ended, multi-turn conversations
using thousands of physician-designed rubric criteria to assess not just accuracy but also safety and
communication quality. Finally, benchmarks like CMB (Wang et al., 2024) have highlighted the
importance of localization. LiveClin complements these diverse efforts by tackling two critical, unad-
dressed dimensions: the temporal decay of medical knowledge, which makes static benchmarks
quickly obsolete, and the evaluation of sequential reasoning, grounded in authentic, contemporary
patient cases with explicit long-tail disease coverage.

Data Contamination and Live Benchmarks The vulnerability of static benchmarks to data
contamination is a well-documented problem, as models can achieve inflated scores by memorizing
test items seen during pretraining rather than demonstrating true reasoning capabilities (Oren et al.,
2024; Zhou et al., 2023). This risk is particularly acute in high-stakes medical contexts, where
the leakage of data from sources like licensing exams can create a false sense of security about
a model’s real-world clinical utility (Kung et al., 2023; Zhang et al., 2024). To address these
challenges, dynamic or "live" evaluation paradigms have emerged as a robust solution, designed to
counter contamination by continuously introducing unseen, time-stamped data. This approach has
been successfully implemented across diverse domains. LiveBench (White et al., 2025) established
a foundational model by automatically sourcing new questions from recent public data, which
was extended to specialized fields with LiveCodeBench (Jain et al., 2024) using challenges from
recent coding contests. Pushing the paradigm further, FutureX (Zeng et al., 2025) introduced a live
benchmark for agent-based future prediction, a task requiring real-time information retrieval. While
these pioneering efforts effectively mitigate data leakage, they remain primarily text-centric and do
not address the tripartite challenge of clinical evaluation: the need to integrate diverse multimodal
data, assess complex sequential reasoning in realistic patient workflows, and ensure comprehensive
disease coverage. LiveClin bridges this critical gap. It adapts the live paradigm to the clinical domain
by grounding evaluation in a constantly refreshed corpus of authentic, peer-reviewed patient cases,
and uniquely embeds temporally-staged multimodal evidence within a structured workflow to enable
a dynamic assessment of clinical reasoning that spans the full ICD-10 taxonomy.
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C PILOT STUDY METHODOLOGY

This appendix provides the detailed methodology for the longitudinal pilot study presented in
Section 2. The following sections detail the dataset construction and evaluation protocol, highlighting
key distinctions from the main LiveClin pipeline that were made to specifically isolate the impact of
data recency in a cost-effective manner.

Dataset Construction The construction process began with the random sampling of an initial pool of
case reports from the PubMed Central (PMC) Open Access Subset for five distinct biannual periods
(2023-S1 to 2025-S1). This initial sampling strategy differs from the stratified approach used for
the main benchmark, as the goal here was to capture a typical temporal cross-section rather than a
taxonomically balanced one.

These cases were then processed through the AI-powered generation and refinement pipeline described
in Section 3, utilizing both the Generator-Critic architecture for question creation and the
Judge Agent for automated quality screening. In a key departure from our main pipeline and to
ensure cost-efficiency for this preliminary study, the multi-tiered physician verification phase was
omitted. This AI-only pipeline resulted in a variable number of successfully generated question sets
for each temporal slice. To ensure a fair and balanced comparison across periods, we performed a
final random sampling step to create five standardized test sets, each containing 200 question sets.

Model Evaluation Protocol For the evaluation phase of the pilot study, we selected a representative
set of leading proprietary models, as these are often the subject of contamination discussions and
their performance provides a meaningful signal of the state-of-the-art. The evaluation itself was
conducted under conditions identical to our main experiments to ensure the comparability of our
findings. We employed the exact same sequential, zero-shot evaluation protocol detailed in Section 4
and Appendix K. This consistency in the testing framework ensures that any observed performance
differences can be confidently attributed to the changing temporality of the data, not variations in the
evaluation method.

D LIVECLIN CLINICAL TAXONOMY

This appendix provides the complete details of the three-level clinical taxonomy introduced in
Section 3.1. This hierarchical framework is a foundational component of LiveClin, designed to
enable a multi-resolution performance analysis that moves beyond the single-score, narrow-scope
evaluations of traditional benchmarks.

Table 2 details the full structure, mapping the 16 Level-1 Clinical Chapters to their constituent 72
Level-2 Disease Clusters. Level 3, the most granular tier, corresponds to the specific ICD-10 codes
used for fine-grained analysis of individual conditions. The design of this taxonomy, particularly
the expert-guided consolidation at Level 2, was crucial for balancing analytical specificity with the
statistical reliability needed for robust model evaluation.

E DETAILS FOR CASE REPORT CLASSIFICATION

To automatically classify each case report into our three-level taxonomy, we employed
gpt-4.1-2025-04-14. We designed a hierarchical, two-stage classification pipeline to enhance
accuracy and consistency by breaking down the complex task into simpler, sequential steps. The
process first identifies the broad clinical chapter (Level 1) and then, based on that result, determines
the more specific disease cluster (Level 2) and ICD-10 code (Level 3).

Stage 1: Level-1 Chapter Classification In the first stage, the model is provided with the case
report’s title and abstract, along with the complete list of 16 Level-1 chapters. Its task is to select the
single most relevant chapter for the case. The prompt used for this stage is summarized in Figure 9.

Stage 2: Level-2 Cluster and Level-3 ICD-10 Classification Once the Level-1 chapter is determined,
the pipeline proceeds to the second stage. The model is again given the case’s title and abstract, but
this time it is provided with a constrained list of options containing only the Level-2 disease clusters
and Level-3 ICD-10 codes that fall under the previously identified chapter. This significantly reduces
the search space and improves precision. The model’s task is to select the most fitting Level-2 cluster
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ICD-10 Chapters (Level 1) Disease Clusters (Level 2)

§1: Infectious & Parasitic Intestinal Inf. & Tuberculosis (A00-19); Zoonotic bacterial (A20-28); Bacterial, Spirochetal, Chlamydial Inf., etc. (A30-79);
Viral Inf. (CNS, HIV, etc.) (A80-B34); Fungal & Protozoal Inf. (B35-64); Parasitic & Helminthic (B65-98)

§2: Neoplasms

Malignant Neoplasms of Lip, Oral, Pharynx (C00-14); Digestive Organs (C15-26); Respiratory & Intrathoracic (C30-39);
Bone & Cartilage (C40-41); Skin (C43-44); Mesothelial & Soft Tissue (C45-49); Breast (C50); Female Genital Organs
(C51-58); Male Genital Organs (C60-63); Urinary Tract (C64-68); Eye, Brain & CNS (C69-72); Thyroid & Endocrine
(C73-75); Lymphoid Tissues (C76-96); Benign, In Situ. (C97, D00-48)

§3: Blood, Blood-forming Organs
& Immune Mechanism

Nutr, Hemol& Aplast Anemias (D50-64); Coagulation Defects, Purpura & Hemorrhagic Cond. (D65-69); Blood-Forming
Organ (D70-77); Immune Mechanism Disord. (D80-89)

§4: Endocrine, Nutritional &
Metabolic

Thyroid Disorders. (E00-07); Diabetes mellitus (E10-14); Endocrine, Glucose Reg. & Nutritional Deficiencies (E15-64);
Obesity & Metabolic Disorders (E65-90)

§5: Mental & Behavioural
Disord. Comprehensive Mental & Behavioural Disord. (F00-98)

§6: Nervous System
Inflammatory & systemic atrophic of CNS (G00-14); Extrapyramidal, Movement, & Degen. Disord. (G20-32);
Demyelinating of CNS (G35-37); Episodic & paroxysmal disord. (G40-47); Nerve root & plexus disord. (G50-59);
Polyneuropathies & other PNS disord. (G60-64); Muscle, Myoneural, & Paralytic Disord. (G70-99)

§7: Eye & Adnexa Disord. of eyelid, lacrimal system, orbit, conjunctiva, sclera, etc. (H00-22); Disord. of Lens, Retina, Glaucoma, Globe,
vitreous body, optic nerve, visual pathways, etc. (H25-59)

§8: Ear & Mastoid Process Comprehensive Ear & Mastoid Disord. (H60-95)

§9: Circulatory System Rheumatic, Hypertensive, & Ischemic Heart (I00-25); Pulmonary heart & circulation (I26-28); Other forms of
heart (I30-52); Cerebrovascular (I60-69); Arteries, arterioles & capillaries (I70-79); Venous, Lymphatic (I80-99)

§10: Respiratory System Acute & Chronic Respiratory Infections and Disorders (J00-39); Chronic, Environmental & Pleural (J40-94); Other diseases
of the respiratory system (J95-99)

§11: Digestive System Oral Cav, Saliv Glands & Jaws (K00-14); Esoph, Stomach, Appendix (K20-38); Liver (K70-77); Gallbldr, Biliary Tract,
Pancreas (K80-93); Hernia (K40-46); Noninfective enteritis & colitis (K50-52); Intestinal & Peritoneal Disorders (K55-67)

§12: Skin & Subcutaneous Tissue Infectious, Bullous & Eczematous Skin. (L00-30); Papulosquamous, Urticarial, Radiation & Miscellaneous Skin. (L40-99)

§13: Musculoskeletal &
Connective Tissue

Arthropathies (M00-25); Systemic connective tissue disord. (M30-36); Dorsopathies (M40-54); Soft tissue disord.
(M60-79); Osteopathies, Chondropathies, etc. (M80-99)

§14: Genitourinary System Glomerular, Tubulo-Interstitial & Renal Failure Disord. (N00-19); Urolithiasis and Other Kidney & Ureter Disord.
(N20-29); Urinary System & Male Genital Organ Disord. (N30-51); Breast & Female Reproductive System. (N60-99)

§15: Pregnancy, Childbirth &
Perinatal Period

Pregnancy with Abortive Outcome & Maternal Disord. (O00-48); Labor, Delivery & Puerperal Complications (O60-92);
Fetus Affected by Maternal, Perinatal Factors (P00-83)

§19: Injury, Poisoning & External
Causes

Injuries & Foreign Bodies by Body Region (S00-T19); Burns, Frostbite, & Drug Poisoning (T20-50); Toxic Effects of
Substances Chiefly Nonmedicinal as to Source (T51-65)

Total 72

Table 2: Hierarchical Taxonomy of the LiveClin Benchmark. The table displays the first two levels of
the taxonomy. Level 3, the most granular tier, corresponds to the specific ICD-10 codes.

Prompt for Level-1 Classification

Based on the following medical case report title and abstract, please identify the most relevant chapter
from the medical classification system provided below.
[List of all 16 Level-1 Chapters is inserted here]
Case Report Title: "title" Case Report Abstract: "abstract"
Instructions: Provide your classification after a ’—’ separator line. Format the response exactly as
follows:
Level1: Chapter [Number]: [Chapter Name]

Figure 9: The prompt designed to classify a case report into one of the 16 high-level clinical chapters.

and the most specific Level-3 ICD-10 code from these filtered lists. The core structure of this prompt
is shown in Figure 10.

Validation To validate the reliability of this automated pipeline, we randomly sampled 200 case
reports from our corpus. We then invited clinical experts to manually assign the appropriate Level-1,
Level-2, and Level-3 labels to these cases. The model’s classifications were compared against these
expert annotations, achieving accuracies of 98.5% for Level-1 Chapters, 97.5% for Level-2 Disease
Clusters, and 97.0% for Level-3 ICD-10 codes. These high accuracy rates confirmed the method’s
suitability for constructing our benchmark.

F PROMPTS FOR Generator AND Critic AGENT

As described in Section 3.3, our iterative refinement pipeline is powered by a Generator-Critic
architecture. Both agents are instances of the o3 large language model, guided by distinct, highly-
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Prompt for Level-2 and Level-3 Classification

Based on the medical case report, which belongs to [Pre-identified Level-1 Chapter], please provide:
The most specific sub-category (Level 2) from the list below.
The most specific ICD-10 code WITH its disease name that matches this case.
Available Level-2 categories for this chapter (YOU MUST CHOOSE ONE FROM THIS LIST):
[List of relevant Level-2 Disease Clusters is inserted here]
Allowed ICD-10 codes in this chapter (you MUST copy exactly one line from below):
[List of relevant Level-3 ICD-10 Codes is inserted here]
Case Report Title: "title" Case Report Abstract: "abstract"
Instructions: Provide your classifications after a ’—’ separator line. Format EXACTLY as follows:
Level2: [Sub-category Name] ([Code Range]) ICD-10: [Code] [Disease Name]

Figure 10: The prompt for the second classification stage. It uses the Level-1 result to provide a
constrained set of options for Level-2 and Level-3 classification.

Prompt for Generator Agent

Goal: Generate an initial clinical scenario and 3-6 progressive MCQs (10 options each) based only on
the provided case report sections.
CRITICAL CONSTRAINTS:
• FORBIDDEN CONTENT REFERENCES: NEVER mention "case report," "case description," or

"discussion." Test-takers only see the scenario, progressive question info, and Figures/Tables.

• MULTIMODAL ASSESSMENT: NEVER describe image findings in the question text. Only state
the figure number and modality (e.g., "Figure 1 shows an ultrasound..."). Questions MUST test image
interpretation ability.

• DISTRACTOR QUALITY: ALL 9 incorrect options MUST be clinically plausible distractors
representing realistic differential diagnoses. They must require clinical reasoning to eliminate.

Instructions:
1. Create an Initial Scenario: Describe only the patient’s initial presentation.

2. Generate 3-6 Progressive MCQs:
• Frame questions as queries a clinician might ask an AI assistant.
• Arrange questions along a logical clinical timeline (e.g., assessment -> diagnosis -> treat-

ment).
• Incrementally introduce new clinical findings from the case report within each question’s

stem.

3. Output Format: MUST output ONLY a valid JSON object containing the scenario and a list
of MCQs.

Figure 11: The prompt for the Generator agent, which initiates the creation of the clinical
examination by converting a case report into a progressive set of MCQs.

structured prompts to fulfill their specific roles. This section details the core instructions provided to
each agent.

Generator Agent The Generator’s primary role is to transform a static, unstructured case report
into a dynamic, multi-step clinical reasoning challenge. It receives the full case report text, including
figure/table captions and the discussion section, as its ground-truth context. Its prompt instructs it
to synthesize this information into a progressive series of Multiple-Choice Questions (MCQs) that
simulate a clinical workflow. Key constraints emphasize creating plausible distractors, ensuring
questions test image interpretation rather than caption recall, and strictly forbidding any reference to
the source "case report," which is invisible to the test-taker. The core of this initial generation prompt
is outlined in Figure 11.

Critic Agent The Critic agent orchestrates the quality control loop. After the Generator
produces an initial set of MCQs, the Critic receives both this generated set and the original
ground-truth case report. Its prompt (Figure 12) instructs it to perform a meticulous "peer review" of
each MCQ. The evaluation is structured around two key dimensions: Clinical Accuracy (verifying
factual correctness against the source report and ensuring sufficient information is present to answer)
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Prompt for Critic Agent

Your Task: You are an expert medical exam question critic. Evaluate each of the MCQs provided
below. For each one, consider the initial scenario, all information revealed in preceding MCQs, and the
ground-truth Case Report Context.
Evaluation Criteria for EACH MCQ:

1. Correctness & Clarity:
• Information Sufficiency: Based strictly on the information available to the test-taker at

this stage, is there enough detail to unambiguously arrive at the correct answer?
• Reference Violations: Does the question improperly reference invisible content like the

"case description"?
• Distractor Logic: Can each incorrect option be eliminated with clear clinical reasoning

based on the available information?

2. Difficulty & Cognitive Level:
• Challenge Level: Is the question challenging enough for a clinician-level AI assistant?
• Distractor Quality: Are the incorrect options strong enough to require complex reasoning

to eliminate?

Output Format: For each MCQ, provide a JSON object containing two evaluations: correct-
ness_evaluation and difficulty_evaluation. Each must include a boolean flag (is_correct_and_clear,
is_sufficiently_difficult) and a detailed text field for critique_and_suggestions.

Figure 12: The prompt for the Critic agent, designed to systematically evaluate the generated MCQs
for clinical accuracy and cognitive complexity.

Prompt for ReGenerator Phase

Goal: Revise and improve a set of medical exam questions based on critiques.
Context:

1. Original Patient Case Report: [Full text of the source case report]

2. Previously Generated Exam Content: [The full scenario and list of MCQs from the previous
attempt]

3. Critique and Suggestions for Improvement: [The structured feedback from the Critic agent]

Your Task: Based on all the information above, regenerate the entire exam content (initial scenario
and all MCQs), addressing ALL feedback provided in the "Critique and Suggestions." Your primary
focus is to fix the identified issues.

Figure 13: The prompt used during the iterative refinement loop. It provides the Generator with the
Critic’s feedback to guide the revision process.

and Cognitive Complexity (assessing whether questions demand high-level reasoning and feature
challenging distractors). The agent must output its structured feedback in a JSON format, providing
specific critiques and a binary judgment for each dimension.

ReGenerator Phase If the Critic flags any issues, the process enters a revision phase. The Generator
agent is invoked again, but with an expanded prompt. This "ReGenerator" prompt (Figure 13) includes
the original case report, the previously generated (flawed) MCQs, and, crucially, the structured
feedback from the Critic. The agent’s task is to regenerate the entire examination set, specifically
addressing every point of critique to improve the quality of the questions. This loop continues until
the Critic’s criteria are fully met.

G PROMPTS FOR Judge AGENT AND DOCTORS

The multi-layered quality assurance protocol described in Section 3.4 is guided by a unified set of
evaluation criteria applied to both AI and human reviewers. The core of this protocol is a prompt
designed to enforce a strict, two-part validation for every question. This ensures that each question
is not only factually correct according to the source material but also logically solvable from the
perspective of an examinee who lacks access to that privileged information.
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Prompt for Quality Assurance Judge Agent

Your Task: You are a QA Verifier for Medical Case Simulations. Perform a rigorous, two-part validation
on the provided question set by adopting two distinct personas.
Core Directive: Information Segregation
• Privileged Information (For Factual Validation Only): The "Source Case Report" and "Image

Captions". This is 100% invisible to the test-taker.

• Test-Taker Visible Information (For Logical Solvability Only): The initial scenario, question stems,
images (without captions), and answers from previous steps.

Your Two-Part Validation Task for Each Question:
1. Factual Validation (as a "Backend Auditor"):
• Using the Privileged Information, is the question’s premise, data, and correct answer factually correct

and perfectly consistent with the source case?

2. Logical Solvability (as an "Examinee"):
• Using ONLY the Test-Taker Visible Information, is there a clear, logical path to the single correct

answer? Erase all memory of the privileged information for this check.

Output Format Requirement: You MUST output your assessment as a JSON object. For each MCQ,
provide a "factual_validation" and a "logical_solvability" block, each containing a boolean verdict
("is_factually_correct" / "is_logically_solvable") and a detailed "explanation".

Figure 14: The prompt for the Judge agent, which enforces a strict two-part validation focused on
factual correctness and logical solvability.

Judge Agent Prompt For the AI pre-screening step, a Judge agent (an instance of o3) is provided
with the full context: the ground-truth case report and the finalized set of questions. The agent’s
prompt, summarized in Figure 14, explicitly instructs it to adopt two distinct personas for evaluation.
First, as a "backend auditor," it performs Factual Validation by comparing the question against the
source case. Second, as an "examinee," it performs Logical Solvability by assessing if the answer can
be deduced using only the information presented up to that point. The agent must output its findings
in a structured JSON format, giving a clear verdict for each criterion.

Instructions for Physician Reviewers Questions that pass the AI pre-screening are then subjected
to final verification by human clinical experts. The physicians are provided with the same materials
and instructed to follow the exact same two-part validation protocol as the Judge agent. They first act
as auditors, using the source case to perform Factual Validation. Then, they switch to an examinee’s
perspective to confirm Logical Solvability. This parallel process ensures our principle of conservatism
is upheld: any question identified with a potential flaw by either the AI or the human experts is
rigorously scrutinized and ultimately rejected if the issue cannot be resolved.

H TRANSLATION QUALITY VALIDATION

To facilitate the rigorous expert review process with our native Chinese-speaking physicians, all
English-language question sets were systematically translated. Ensuring the fidelity of this translation
was paramount. To this end, we conducted a comparative validation study to quantify the consistency
between translations generated by our o3-powered API and those produced by professional human
translators.

Validation Methodology and Results We randomly sampled 100 complete question sets for this
study. For each set, we generated two parallel Chinese versions: the first was produced by our o3-
powered API, while the second, serving as a gold-standard reference, was created by two professional
biomedical translators. These two translated versions were then presented side-by-side to a panel of
three native Chinese-speaking physicians for a comparative review.

Crucially, the physicians did not see the original English text. Their task was to determine if the two
Chinese versions were clinically and semantically identical. A pair was marked ’consistent’ only if
the o3 translation conveyed the exact same medical facts, nuances, and logical relationships as the
expert human translation. The final inter-translation consistency rate was 99.2%, confirming that the
API-powered translation is a highly reliable substitute for manual expert translation for this task.
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Prompt for Comparative Translation Validation

Goal: Your task is to determine if two Chinese translations of the same medical content are clinically
and semantically identical.
Context: You will be presented with pairs of text segments (e.g., a question stem, an option, or a
scenario).

• Translation A: The text produced by our AI system.

• Translation B: The text produced by a professional human medical translator (this is your reference).

CRITICAL: You will NOT see the original English source. Your judgment must be based solely on
comparing Translation A and Translation B.
Core Evaluation Question: Would a medical professional reading either translation arrive at the exact
same clinical understanding? Consider all aspects:

1. Factual Equivalence: Are all medical facts, numbers, units, and terminologies identical?

2. Nuance Equivalence: Is the degree of certainty, tone, and clinical implication the same in
both versions (e.g., "可能" vs. "确诊")?

3. Logical Equivalence: Does the logic of the question and the relationship between premise
and conclusion remain unchanged?

Your Task: Provide a Verdict for Each Pair For each pair of translations, please provide one of the
following two verdicts:

Verdict: Consistent Choose this if Translation A is clinically and semantically identical to the reference
Translation B. A medical professional would interpret both in exactly the same way.

Verdict: Inconsistent Choose this if there is any meaningful difference between the two translations
that could potentially alter clinical understanding, even if it’s a subtle change in nuance or
terminology.

Final Output: For each pair, provide your verdict ("Consistent" or "Inconsistent"). If you choose
"Inconsistent," please briefly describe the discrepancy.

Figure 15: The prompt provided to native Chinese-speaking physicians to validate the consistency
between AI-generated and human-expert translations.

Instructions for Comparative Review To standardize the assessment, each physician reviewer
was guided by the prompt detailed in Figure 15. The prompt instructed them to perform a direct
comparison and provide a binary judgment on the semantic equivalence of the two translations.

I ANNOTATION OF CLINICAL STAGES

To analyze the sequential nature of clinical reasoning, we categorized each question into one of five
primary workflow stages. This was achieved through a detailed, two-step clustering process designed
to systematically organize the diverse stage labels produced by the AI into a consistent, analyzable
framework.

Initial AI Labeling During the examination generation stage (Stage 2), our Generator agent assigned
a descriptive, free-text "stage" label to each question. This initial step resulted in hundreds of unique,
granular labels that captured the specific context of each question, such as "Post-operative follow-up,"
"Initial diagnostic imaging," or "Surgical Intervention planning."

Expert-Guided Clustering While granular, these free-text labels were too diverse for a high-level
statistical analysis. We, therefore, implemented a two-level clustering protocol under physician
supervision. First, we programmatically grouped the AI-generated labels into 8 intermediate clinical
categories based on a set of keywords (e.g., all labels containing "therapy" or "surgical" were
grouped together). Following this, our physician team reviewed and further consolidated these
intermediate groups into the five final, clinically coherent workflow phases shown in Figure 5A. For
example, the intermediate categories for "Therapeutic Planning" and "Surgical Intervention" were
both mapped to the final Therapeutic Strategy stage. This expert-guided logic, which underpins the
entire categorization, is summarized in Figure 16.
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Clustering Logic for Clinical Stages

Principle: Map granular, AI-generated stage labels to broader categories based on clinical keywords.
Example Mappings:
• Keywords like "initial", "presentation", "assessment" → Presentation & Assessment
• Keywords like "imaging", "diagnostic", "pathology", "histology" → Diagnosis & Interpretation
• Keywords like "management", "therapy", "surgical", "planning" → Therapeutic Strategy
• Keywords like "complication", "deterioration", "adverse" → Complication Management
• Keywords like "follow-up", "surveillance", "post-operative" → Follow-up

Figure 16: The expert-defined logic used to cluster granular, AI-generated stage labels into the five
primary clinical workflow categories.

Prompt for Initial Modality Classification

Your Task: You are a medical data specialist. Your task is to classify the given item (image or table)
into its most specific and accurate type.
Input: You will be given the item’s original caption and its content (for tables) or the image itself.
Instruction: Provide a concise, specific label describing the item.

• For Images: e.g., "CT Scan of the Abdomen," "Chest X-ray (PA view)," "H&E Stained Pathological
Slide."

• For Tables: e.g., "Table of Baseline Patient Demographics," "Table of Serial Blood Test Results."

Figure 17: The prompt used to instruct the o3 model to perform initial classification of images and
tables.

J ANNOTATION OF MULTIMODAL CONTENT

The classification of all images and tables into standardized types followed a three-step, AI-human
hybrid protocol. This approach was designed to leverage the scalability of AI while ensuring the
uncompromising accuracy required for a medical benchmark.

1. AI Classification: We first employed the o3 model to perform an initial classification of
all 3,757 images and 634 tables. Guided by the prompt in Figure 17, the model assigned
a specific, descriptive label (e.g., "CT Scan of the Abdomen," "Table of Baseline Patient
Demographics") to each item based on its content and original caption.

2. Physician Validation: The complete set of AI-generated labels was then meticulously
reviewed by our physician team. This crucial step served as a 100% audit of the AI’s
output. The experts verified the correctness of the AI’s classification with 100% accuracy,
confirming its reliability for this task.

3. Expert-Guided Clustering: Finally, to create clear, high-level categories for analysis,
these specific and now-validated labels were grouped based on expert-defined rules, as
summarized in Figure 18. This consolidation, conducted under physician supervision,
allowed us to analyze broad trends. For example, validated labels like "CT Angiography"
and "Helical Tomography" were grouped into the "CT Scans" category.

K EVALUATION PROTOCOL DETAILS

This section provides a detailed description of the models, parameters, and procedures used in our
evaluation.

Model Suite and Parameters We evaluated a comprehensive suite of 24 models, which can be
grouped into three main categories:

• Proprietary Models (13): Leading closed-source models from major AI labs.
The models tested were: o3, gpt-5, gemini-2.5-pro, gpt-4.1, claude-3-5-sonnet-20241022, claude-3-
7-sonnet-20250219-thinking, gemini-1.5-pro, claude-3-5-haiku-20241022, and their high-efficiency
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Clustering Logic for Modalities

Principle: Map specific, validated labels into broader analytical categories based on expert-defined
rules.
Image Clustering Examples:
• Labels like "CT Angiography", "Helical Tomography" → CT Scans
• Labels like "Radiography", "Fluoroscopy" → Radiography & X-ray
• Labels like "Fundus Photograph", "Dermoscopy" → Clinical & Surface Photography
Table Clustering Examples:
• Labels like "Blood Test Results", "Biochemistry Panel" → Lab Results
• Labels like "Patient Demographics", "Vital Signs Table" → Patient Demographics & Characteristics
• Labels like "Longitudinal Treatment Response" → Treatment Outcomes & Monitoring

Figure 18: The expert-defined logic used to group specific, validated modality labels into the broader
categories shown in the final statistics.

Prompt for Evaluation

Scenario:
Initial clinical scenario text, along with any associated figures and tables.
Previous Q&A Turns:
Full text of previous questions, options, and the model’s prior answers are inserted here for context.
Current Question:
Text of the current question.
Options:
A. Option A text B. Option B text ... J. Option J text
Please provide the letter of the correct option, formatted as \boxed{LETTER} (e.g., \boxed{A}).

Figure 19: The conversational prompt structure used for evaluation. Context from previous turns is
cumulatively added for subsequent questions within the same case.

variants: gpt-4.1-mini-2025-04-14, gemini-2.5-flash, gemini-2.0-flash, gpt-4o-2024-11-20, and
gpt-4o-mini-2024-07-18.

• Open-Source General-Purpose VLMs (7): Powerful, publicly available Vision-Language Models.
The models tested were: Qwen2.5-VL-72B-Instruct, Qwen2.5-VL-32B, Qwen2.5-VL-7B-
Instruct (Bai et al., 2025), InternVL3.5-38B, InternVL3.5-241B-A28B, InternVL3.5-8B (Wang
et al., 2025), GLM-4.1V-9B (Team et al., 2025c), and MiMo-VL-7B-RL-2508 (Team et al., 2025a).

• Open-Source Medical-Specific VLMs (4): Models specifically fine-tuned on medical data.
The models tested were: medgemma-27b-it, medgemma-4b-it (Sellergren et al., 2025), HuatuoGPT-
Vision-7B (Chen et al., 2024), LingShu-7B and LingShu-32B (Team et al., 2025b).

To balance reproducibility with optimal performance, temperature was set to 0 for most models.
For those featuring specific reasoning modes (e.g., "thinking" variants), we adopted their official
recommended inference configurations. If an API call failed due to transient errors like rate limits or
timeouts, it was automatically retried up to two times with a brief delay.

Prompting Strategy Our protocol maintains a continuous conversation history for each case. The
prompt for each question is structured to build upon all previous turns. Figure 19 illustrates the
general format. For the first question in a case, only the Scenario and Current Question blocks are
used. For subsequent questions, the Previous Q&A Turns block is populated with the full history of
preceding questions and the model’s own answers. This conversational context is critical for testing
sequential reasoning.

Answer Parsing To robustly extract the model’s final choice, we implemented a hierarchical parsing
strategy. The system prioritizes answers enclosed in a \boxed{} command (e.g., \boxed{A}). If this is
not found, it searches for explicit keywords (e.g., "The correct answer is: A"). As a final fallback,
it looks for single-letter answers at the end of the response. This multi-layered approach ensures
high-fidelity extraction of the model’s intended answer.
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