
RLC 2025 Workshop

Off by a Beat:
Temporal Misalignment in Offline RL for Healthcare

Shengpu Tang1, Jiayu Yao2, Jenna Wiens3, Sonali Parbhoo4

shengpu.tang@emory.edu, jy3491@columbia.edu, wiensj@umich.edu, s.parbhoo@imperial.ac.uk

1Emory University 2Columbia University 3University of Michigan 4Imperial College London

Abstract
Reinforcement learning (RL) is typically applied to environments with well-defined dis-
crete timesteps. However, real-world domains like healthcare often involve irregularly
sampled time-series data that require preprocessing. After aggregating the data into
fixed-length time windows, it is common practice to align each state with the action
that occurred within the same window. We argue that this temporal alignment strategy
is problematic, as it effectively allows a policy to rely on future information. Using a toy
control task, we demonstrate that the default alignment can result in an incorrect transi-
tion function and a learned policy that systematically recommends wrong actions. More
worrisome, in a case study of RL for sepsis management on the MIMIC-III dataset, we
found that different alignment strategies can produce deceptively similar performance
for common global metrics but result in different treatment recommendations in nearly
half of the patient states. Our findings highlight an underappreciated, yet critical issue
when applying RL to these domains. We advocate for a straightforward fix to prevent
temporal information leakage by aligning each state with the action in the next window.
Given the prevalence of the temporal misalignment issue in existing literature, we urge
the community to carefully reconsider the temporal alignment step, especially when
working on RL for high-stakes domains like healthcare.

1 Introduction

Research in reinforcement learning (RL) usually deals with idealized dynamical systems that evolve
at discrete timesteps (Sutton & Barto, 2018). The specification of these systems is typically given
in the format of an interaction protocol with respect to some environment. For example, domains
in the Gymnasium package (Brockman et al., 2016; Towers et al., 2024) (including classic control
problems such as LunarLander and MountainCar) implement an env.step(action) function that
advances the environment by a single timestep. Turn-based games often happen in discrete rounds
(Silver et al., 2016; 2017), e.g., in chess, the agent makes a move, and then the opponent makes a
move. In these environments, there is no ambiguity in what a “timestep” means.

Yet we do not always have this level of clarity when applying RL in real-world settings, especially
when the Markov decision process (MDP) needs to be defined by the practitioner. For instance,
when modeling decision making tasks in healthcare, we have access to irregular time series from
the electronic health record (EHR). To make such data “RL-ready”, it is common to aggregate the
time series at regular time windows. In the widely used sepsis management domain (Raghu et al.,
2017; Komorowski et al., 2018; Jeter et al., 2019; Killian et al., 2020; Tang et al., 2020; Satija et al.,
2021; Tang et al., 2022; Liang et al., 2023; Choudhary et al., 2024; Tu et al., 2025), patient data
are aggregated into 4-hour windows. A state is derived in part from physiological measurements
obtained during a 4-hour window, and the corresponding action is the set of treatments administered
during the same 4-hour window. After preprocessing raw data into trajectories of state-action pairs,
standard offline RL approaches are applied to optimize and evaluate treatment policies.

1

Off by a Beat

However, there is a subtle issue in the default temporal alignment strategy. In RL, a state-action pair
typically assumes that the state temporally precedes the action, i.e., the agent observes the state and
then selects an action in response. Aligning a state with the action occurring within the same window
implicitly assumes that the action occurs at the end of the window (i.e., after the state has been fully
observed). Yet in real-world settings, this is not guaranteed: the action may occur at the beginning
or middle of the window, possibly before all components of the state are realized. Deriving the state
and action from data within the same time window “collapses” the interval to an instant, introducing
potential “temporal leakage” as effectively, the policy would be using future information to predict
an action that has already occurred.

While the choice of temporal alignment might be dismissed as an innocuous design choice or a small
implementation detail, we demonstrate that it has significant downstream consequences. First, on a
toy continuous-time control task, we show that the default alignment leads to an incorrect estimate
of the transition function, resulting in a learned policy that systematically recommends the wrong
actions. Second, in the sepsis management domain, we find that such issues are not easily detectable
when following standard offline RL pipelines of learning and evaluation. In particular, different
alignment strategies can yield deceptively similar performance under commonly used evaluation
methods, including quantitative off-policy evaluation (OPE) metrics and global qualitative trends,
and yet make drastically different treatment recommendations. Our findings highlight temporal
aggregation and alignment as a key preprocessing step that shapes what a policy will learn. As RL
is increasingly used in high-stakes domains like healthcare, we call the community’s attention to
how trajectories are constructed from logged data, recognizing that correct temporal alignment and
thoughtful evaluation is essential for the responsible application of RL in the real world.

2 Problem Formulation & Notation

Consider a time-series dataset D that has been aggregated at a prespecified temporal granularity,
where samples are indexed by i ranging from 1 to N and timesteps are indexed by t ranging from
1 to T (without loss of generality, we assume each trajectory has the same length). Let D =

{{x(i)
t , z

(i)
t }Tt=1}Ni=1 where the superscript (i) denotes the sample index (omitted when referring to

a generic sample), xt ∈ Rdx denotes the observations recorded at step t, zt ∈ Rdz denotes the
interventions recorded at step t, which are dx- and dz-dimensional vectors. Each pair of xt, zt
can be seen as occurring contemporaneously since we lose all temporal information within a time
window after temporal data aggregation. We intentionally use terminologies of “observations” and
“interventions” as this paper focuses on the alignment of observation-intervention pairs as state-
action pairs. We consider the following alignment strategies, summarized in Table 1.

Table 1: Temporal alignment of observation-intervention pairs as state-action pairs.

Alignment States Actions

Original st = xt , t ∈ 1 . . . T at = zt , t ∈ 1 . . . T − 1
Shifted st = xt , t ∈ 1 . . . T at = zt+1 , t ∈ 1 . . . T − 1

• Original. This approach defines the state-action pair at step t to be the observations and interven-
tions recorded at step t. Since we need to form transition tuples of (state,action,next-state), the
total number of steps is T − 1, starting at (x1, z1, x2) and ending at (xT−1, zT−1, xT). Note that
the intervention zT at step T is not used since no data is observed after step T .

• Shifted. Here, the state-action pair at step t consists of the observations recorded at step t and
interventions recorded at step t+1. The total number of steps is also T −1, starting at (x1, z2, x2)
and ending at (xT−1, zT , xT). For clarity of comparison, we do not use the intervention z1 at
step 1; in practice, one may choose to aggregate it with x1 and view it as part of the state s1.

The two alignment strategies represent different interpretations of how the causal relationships of an
MDP manifest in the data (Figure 6). In an MDP, state st causally influences action at according
to the logging policy π(a|s), and (st, at) causally influences st+1 according to the transition model
p(s′|s, a). The Original alignment assumes that each action takes place at the end of the window

2

RLC 2025 Workshop

(i.e., observation st temporally precedes intervention zt). Thus, st = xt is aligned with at = zt,
with xt → zt. In contrast, the Shifted alignment assumes that an action can take place anywhere in
the window, which is more realistic, and aligns st = xt with at = zt+1 so that xt → zt+1.

3 An Illustrative Example
To illustrate the difference between the two alignment strategies, consider the following continuous-
time control problem, inspired by physiological regulation tasks such as hypotension management.
The system involves a one-dimensional signal y(τ) ∈ R which the agent modulates via a binary
control input u(τ) ∈ {0, 1} (“off” and “on”), with τ denoting the (continuous) time. The system
dynamics are such that the signal y increases when the control input u is 1, and decreases when the
control input is 0. In other words, the time-derivative y′(τ) > 0 when u(τ) = 1, and y′(τ) < 0
when u(τ) = 0. As a concrete example, blood pressure rises with intravenous vasopressors, and the
effect onset is nearly instantaneous (Drugs.com, 2024; 2025).

Suppose we collected data using a controller that oscillates between on and off at fixed time intervals,
producing a periodic signal (Figure 1). We assume that the time series data of control inputs and sig-
nal values are aggregated at the same frequency of the controller, resulting in T = 4 timesteps. For
simplicity, we use a binary space of observations that captures whether the signal value is decreasing
or increasing (x = 0: y′ < 0; x = 1: y′ > 0), and a binary space of interventions equivalent to the
space of control inputs. After mapping the time series data to trajectories under the two alignment
strategies, we estimate the transition probabilities p(s′|s, a) from the resulting dataset (Figure 2) (we
do not consider the reward function in this example). Under Original, the learned transition function
incorrectly implies that “taking action 0 (controller off) in state 0 (signal decreasing) leads to state
1 (signal increasing)”. This contradicts the system’s true dynamics, where turning the controller off
should maintain or continue the decreasing trend in the signal. Consequently, optimizing a policy
using this transition function will systematically recommend the wrong action (e.g., recommend-
ing withholding vasopressors when blood pressure is low). In contrast, Shifted learns the correct
transition function and does not suffer from this issue.

0

1

Si
gn

al
y(
τ)

t= 1 t= 2 t= 3 t= 4

0 1 2 3 4
Time τ

0

1

Co
nt

ro
l u

(τ
)

Time Series Dataset
t Observation xt Intervention zt

1 x1 = 1, increasing z1 = 1, on
2 x2 = 0, decreasing z2 = 0, off
3 x3 = 1, increasing z3 = 1, on
4 x4 = 0, decreasing z4 = 0, off

Figure 1: A dataset collected on the toy control problem.

Alignment Strategy Trajectory Learned Transition Probabilities

Original
s1 a1 s2 a2 s3 a3 s4
x1 z1 x2 z2 x3 z3 x4

1 1 0 0 1 1 0

(s, a) (0, 0) (0, 1) (1, 0) (1, 1)
s′ = 0 0.0 NA NA 1.0
s′ = 1 1.0 NA NA 0.0

Shifted
s1 a1 s2 a2 s3 a3 s4
x1 z2 x2 z3 x3 z4 x4

1 0 0 1 1 0 0

(s, a) (0, 0) (0, 1) (1, 0) (1, 1)
s′ = 0 NA 0.0 1.0 NA
s′ = 1 NA 1.0 0.0 NA

Figure 2: Trajectories and learned transition probabilities under the two alignment strategies.

4 Evidence from Empirical Experiments
To understand the effect of different temporal alignment strategies on policy optimization, we con-
ducted experiments in two domains. First, we extended the toy control problem with a stochastic
transition function and analyze how temporal alignment influences the learned transition dynamics
and reward function, as well as the learned policy. Then, we investigate a full offline RL pipeline
applied to the MIMIC-III sepsis management task. In both settings, we compare the final learned
policies by commonly reported performance metrics, as well as intermediate modeling artifacts,
such as estimated transition functions, value functions, and action distributions.

3

Off by a Beat

4.1 Synthetic Domain

Rationale. Building upon the toy problem discussed in Section 3, here, we simulate the scenario
where we apply model-based RL to a dataset collected from this synthetic control task.

Setup. We use the same definitions as above for observations, interventions, states, and actions, and
modified the environment to include rewards, discounting, and stochastic transitions. An immediate
reward is given at every step, +1 if signal is increasing, and 0 if signal is decreasing. The discount
factor is set to γ = 0.9. To introduce stochasticity to the system, we assume the controller input
is ineffective with probability pslip = 0.2 such that the previous observation persists; for example,
in Figure 1 when the control input is set to “off” (z2 = 0), there is a 20% chance that the signal
will continue increasing (x2 = x1 = 1). Based on the system specification, the optimal policy is to
always keep the controller input as “on” regardless of the state.

Learning Procedure. For each run of the experiment, we collected a dataset following a randomly
generated behavior policy, which assigns randomized probabilities to the binary controller inputs.
The dataset for each run contained 100 trajectories truncated at 100 steps. Given the dataset, we
applied a model-based RL pipeline by first estimating the transition function p̂(s′|s, a) and reward
function r̂(s, a) from data, and then using value iteration with p̂ and r̂ to learn the optimal value
function V ∗ and Q∗ and optimal policy π∗. We applied the same procedure to the dataset prepro-
cessed with each alignment strategy, and compared the resulting estimated transition and reward
functions, value functions, and learned policies. We present results averaged over 100 runs.

Results. As shown in Figure 3, the two alignment strategies led to markedly different results.
For Original, the learned transition and reward functions are nearly independent of actions, e.g.,
p̂(0|0, 0) = 0.61, p̂(0|0, 1) = 0.64, and r̂(0, 0) = 0.39, r̂(0, 1) = 0.36. As a result, the learned
Q∗ values are also nearly independent of actions, and on average, the learned optimal policy rec-
ommends taking action 0 “off” more than 50% of the time on average (94% for state “decreasing”
and 17% for state “increasing”). In contrast, for Shifted we learn the correct transition and reward
functions that depend on the action, e.g., p̂(0|0, 0) = 1.00, p̂(0|0, 1) = 0.20, and r̂(0, 0) = 0.00,
r̂(0, 1) = 0.80, leading to more sensible value functions and the correct optimal policy that al-
ways recommends action 1 “on”. Applied to the ground-truth environment, the policy learned under
Original achieves an average return of 3.34, substantially underperforming the policy learned under
Shifted which achieves an average return of 9.88.

Takeaways. The Original alignment strategy learns incorrect transition and reward functions, which
leads to a learned policy that systematically recommends the wrong action with high probability,
whereas Shifted does not suffer from this issue.

Alignment Transition p̂(s′|s, a) Reward r̂(s, a) V ∗(s) Q∗(s, a) π∗(a|s)

Original

(s, a)

s ′
0.61 0.64 0.42 0.40

0.39 0.36 0.58 0.60

a

s

0.39 0.36

0.58 0.60

s

4.72

5.23

a

s

4.72 4.68

5.21 5.23

a

s

0.94 0.06

0.17 0.83

Shifted

(s, a)

s ′
1.00 0.20 0.81 0.00

0.00 0.80 0.19 1.00

a

s

0.00 0.80

0.19 1.00

s

9.75

10.00

a

s

8.78 9.75

9.01 10.00

a

s

0.00 1.00

0.00 1.00

Figure 3: Comparison of transition functions, reward functions, value functions, and learned policies
on the toy control problem under the two temporal alignment strategies. Rows and columns are [0,1]
by default, and the columns for the transition matrix are state-action pairs [0,0; 0,1; 1,0; 1,1].

4.2 Real-World Clinical Domain

Rationale. The synthetic domain serves as an extreme example, where we assumed full knowledge
of the underlying system to facilitate our understanding of what can go wrong under temporal mis-
alignment. We now turn to a more realistic scenario that mirrors what practitioners might face. Our
focus here is understanding, without access to the true environment, whether we can diagnose such
failure modes using the information available in an offline RL setting.

4

RLC 2025 Workshop

Setup. We study the task of learning policies for sepsis treatment using the MIMIC-III EHR
database (Johnson et al., 2016), following the cohort selection criteria of Komorowski et al. (2018),
Killian et al. (2020), and Tang et al. (2022). This yielded 19,287 patients (9.6% mortality), which
were split 70/15/15 for training, validation, and testing. For each patient, we extracted a time series
from 24h pre- to 48h post-sepsis onset, aggregated at 4h intervals, with each interval containing both
observations and interventions. Observations are 38-dimensional vectors comprising demographic,
physiological, and lab features (carry-forward imputed as needed), discretized into 750 states via
k-means clustering. Each intervention pertains to treatments recorded within the 4h window, repre-
senting total volume of intravenous (IV) fluids and amount of vasopressors administered, the dosages
of which are discretized to form an action space of size 25 (Figure 7) (Tang et al., 2020). A terminal
reward of +1 (survival) or −1 (death within 48h of ICU discharge) is assigned, with terminal states
added for both outcomes; intermediate rewards are set to 0.

Learning Procedure. We constructed two dataset versions using either the Original or Shifted
alignment between observations and interventions to form state-action pairs, keeping the same state
space and action space, and applied a consistent model-based offline RL pipeline. Similar to the
synthetic domain, the transition probabilities were learned via maximum likelihood estimation. The
reward function (based on terminal outcomes) was assumed known. The optimal policy was then
learned using a modified value iteration algorithm that, for each state, excluded actions that occurred
fewer than five times in the training data. If the set of allowed actions is empty, the most frequent
action was used. We evaluated the learned policy via off-policy evaluation (OPE) on the test set
using doubly-robust estimators (DR and WDR) (Jiang & Li, 2016), leveraging a clinician policy
estimated via behavior cloning. We used γ = 0.99 for learning and γ = 1 for evaluation. In
addition to quantitative metrics, we qualitatively analyzed the treatment recommendations of the
clinician policy πb and the RL policy π∗ by visualizing action frequencies across the test set.

Results. The two alignment strategies led to very similar results in terms of OPE performance
metrics and the action frequency heatmaps (Figure 4). In both cases, the learned optimal policy
achieves an estimated value ranging between 0.86 and 0.93, outperforming the behavior policy
which has a value of around 0.78. The heatmaps of the observed clinician policies and the learned
RL policies under different alignment strategies are nearly indistinguishable, with total variation
distances (TVD) of less than 0.01 and 0.19 (in the action frequency distributions), respectively.
However, since we do not have access to the true environment, both policies may appear equally
reasonable to practitioners without a deeper understanding of the recommended treatments. We also
monitored the algorithm performance during training: although the algorithm converged at different
rates under the two alignment strategies, the distributions of the value functions look very similar
throughout all iterations (Figure 8).

Upon Closer Inspection... In addition to the evaluation metrics above, we compared intermediate
modeling artifacts under the two alignment strategies (as we did for the synthetic domain). While
the histograms of transition probabilities look nearly identical (Figure 9), the two transition models
differ substantially. Among all 18750 = 750 × 25 state-action pairs, 10783 (57.5%) have a next
state distribution, p̂(·|s, a), for which the TVD is > 0.10 under the two alignment strategies. Finally,
we compared the two learned policies across individual states rather than globally by measuring
the consistency in their optimal actions. Specifically, we identified states for which the optimal
action differ between the policies learned under Original and Shifted alignment strategies, and
categorized them into four “quadrants” (Figure 5-top right). Overall, the two policies recommended
different optimal actions in 336 (44.8%) out of all 750 states (heatmap in Figure 5-left). In the
orange quadrant (311 states in the bottom left cell), both Original and Shifted recommend action 0
(“no treatment”), which is consistent with the frequency of this action seen in past literature (Tang
et al., 2020). However, in the red quadrant (171 states in the leftmost column), Shifted recommends
“no treatment” whereas Original recommends some form of treatment (fluids, vasopressors or both
with action index > 0). Conversely, in the pink quadrant (57 states in the bottom row), Original
recommends “no treatment” whereas Shifted recommends some form of treatment. In the purple
quadrant (the remaining 212 states), both policies recommend some form of treatment.

5

Off by a Beat

Alignment OPE Metrics Clinician Policy RL Policy

Original

Policy Value Estimate

πb 0.782± 0.010
π∗ (DR) 0.864± 0.006
π∗ (WDR) 0.908± 0.003

Vasopressor dose

IV
 fl

ui
d

do
se

8945 121 70 73 68

16236 819 802 736 504

3128 188 190 253 240

1431 112 164 233 225

380 55 74 137 204

0

5000

10000

15000

20000

25000

Vasopressor dose

IV
 fl

ui
d

do
se

17777 49 0 0 0

3396 1436 1288 1596 776

5191 0 154 292 227

2150 0 173 293 320

105 0 0 131 34

0

5000

10000

15000

20000

25000

Shifted

Policy Value Estimate

πb 0.777± 0.011
π∗ (DR) 0.870± 0.007
π∗ (WDR) 0.929± 0.003

Vasopressor dose

IV
 fl

ui
d

do
se

8706 121 65 73 65

16506 829 809 766 510

3108 186 190 257 243

1382 109 166 235 230

366 54 71 134 207

0

5000

10000

15000

20000

25000

Vasopressor dose

IV
 fl

ui
d

do
se

23995 0 0 53 0

1562 909 892 1356 290

3740 286 162 194 179

1311 0 0 42 123

143 0 0 18 133

0

5000

10000

15000

20000

25000

Figure 4: Quantitative OPE performance on the test set, ± standard errors from 1000 bootstraps,
as well as heatmap visualizations of action frequencies under clinician policy and RL policy for
qualitative comparisons. Action space is defined in Figure 7.

Shifted
no treatment some treatment

Original

no treatment

some treatment

5 10 15
GCS score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
ati

ve
 d

en
sit

y

Figure 5: Top right - categorization of states based on how the two learned policies differ. Left
- comparison of optimal actions of policies learned under the two temporal alignment strategies.
If the two policies are consistent, the heatmap would have counts concentrated on the diagonal.
Each colored box corresponds to a quadrant defined in the top right table. Bottom right - empirical
cumulative distribution functions of GCS scores for patients in each quadrant.

To better understand factors associated with divergent recommendations, we characterized patients
in each “quadrant” by their GCS scores (ranging 3 to 15; lower is sicker and higher is healthier)
(Teasdale & Jennett, 1974) and compared the GCS score distributions using Mann-Whitney U tests
with a Bonferroni correction (Figure 5-bottom right). On average, patients in the test set have a
mean GCS of 12.62. Patients in the pink quadrant, where Original recommends no treatment but
Shifted recommends some treatment, are significantly sicker than average (mean GCS of 10.95
with p < 0.001). They are even sicker than the patients in the purple quadrant, where both policies
recommend some treatment (mean GCS of 12.19 with p < 0.001). In contrast, patients in the red
quadrant, where Shifted recommends no treatment but Original recommends some treatment, are
significantly healthier than average (mean GCS of 12.98 with p < 0.001), and they are comparable
to patients in the orange quadrant (mean GCS of 12.93 with p ≥ 0.05). Overall, the Original policy
tends to recommend more aggressive treatments for healthier patients while withholding treatments

6

RLC 2025 Workshop

for sicker patients, which is counterintuitive. Analysis using SOFA scores (Moreno et al., 2023) led
to a similar conclusion (see Figure 10 in appendix). We believe this may be an indication of the
same phenomenon we saw in the synthetic domain, where Original results in a learned policy that
systematically recommends the wrong actions.

Takeaways. Following a standard offline RL pipeline of policy learning and evaluation, we found
that the global trends in quantitative and qualitative evaluation results failed to reveal the issue
of incorrect temporal alignment. Our follow-up analysis revealed large differences in the learned
policies resulting from the two alignment strategies, with the policy learned under the Original
alignment likely recommending incorrect actions.

5 Discussion & Conclusion
In this work, we identify a widespread but commonly overlooked issue when applying RL to time-
series datasets, where the observation and the intervention recorded within the same time window are
aligned to form a state-action pair. On a synthetic control domain and a case study using real-world
clinical data, we demonstrate that this default alignment strategy can lead to an incorrect transition
model, and subsequently, a policy that recommends harmful actions. To the best of our knowledge,
for healthcare RL domains, this issue has only been mentioned in anecdotal conversations (e.g., Tang
(2024); in a GitHub issue https://github.com/microsoft/mimic_sepsis/issues/12 that had suggested
an incorrect fix), and the majority of the literature still builds upon a flawed problem formulation
(Table 2), including some of the authors’ prior work. This may be largely due to the fact that the
performance metrics will appear reasonable even under an incorrect temporal alignment (as seen
in our experiments), since this issue is replicated across training and evaluation. While we only
considered a simple model-based offline RL approach, it is concerning to see the big difference
caused by temporal misalignment in this simple setting, when more complex RL algorithms used in
practice may further obfuscate the issue.

From a causal perspective, the difference between the two alignment strategies lies their underlying
assumption regarding the causal relationship between the observations xt and the interventions zt
(Figure 6): Original assumes xt causally influences zt, whereas Shifted assumes xt causally influ-
ences zt+1. In practice, the observation xt is usually constructed using all data available within the
window and thus only available at the end of the window. However, the intervention zt could occur
anywhere within the window and needs to be determined in advance. Thus, the causal assumption
of Original violates the temporal ordering of events, wherein xt does not necessarily precedes zt
temporally. While we advocate for using the Shifted alignment in favor of Original, we caution that
this is likely an artifact of multiple design choices, including the selection of temporal granularity
(Schulam & Saria, 2018; Adams et al., 2020), the timing of observations and interventions within
a time window, and the definition of state and action spaces. We urge the community to recognize
temporal alignment as a crucial aspect of problem formulation, alongside other more commonly
discussed elements of RL such as state, action, and reward designs (Killian et al., 2020; Tang et al.,
2022), especially as RL gains attention in high-stakes domains such as healthcare.

Table 2: The temporal alignment strategy used in prior work that studied the MIMIC-III sepsis
management domain, based on authors’ review of publicly available code bases. Example code
snippets for both Original and Shifted alignment are provided in Appendix C.

Reference Code Repository Original? Shifted?

Raghu et al. (2017) https://github.com/aniruddhraghu/sepsisrl ✓
Komorowski et al. (2018) https://github.com/matthieukomorowski/AI_Clinician ✓
Jeter et al. (2019) https://github.com/point85AI/Policy-Iteration-AI-Clinician ✓
Killian et al. (2020) https://github.com/MLforHealth/rl_representations ✓
Tang et al. (2020) https://github.com/MLD3/RL-Set-Valued-Policy ✓
Fatemi et al. (2021) https://github.com/microsoft/med-deadend ✓
unpublished (2021) https://github.com/microsoft/mimic_sepsis ✓
Ji et al. (2021) https://github.com/clinicalml/trajectory-inspection ✓
Satija et al. (2021) https://github.com/hercky/mo-spibb-codebase ✓
Tang et al. (2022) https://github.com/MLD3/OfflineRL_FactoredActions ✓
unpublished (2022) https://github.com/cmudig/AI-Clinician-MIMICIV ✓
Liang et al. (2023) https://github.com/DMU-XMU/Episodic-Memory-assisted-Approach-for-Sepsis-Treatment ✓
Choudhary et al. (2024) https://github.com/icu-sepsis/icu-sepsis ✓
Tu et al. (2025) https://github.com/OOPSDINOSAUR/RL_safety_model ✓

7

https://github.com/microsoft/mimic_sepsis/issues/12
https://github.com/aniruddhraghu/sepsisrl
https://github.com/matthieukomorowski/AI_Clinician
https://github.com/point85AI/Policy-Iteration-AI-Clinician
https://github.com/MLforHealth/rl_representations
https://github.com/MLD3/RL-Set-Valued-Policy
https://github.com/microsoft/med-deadend
https://github.com/microsoft/mimic_sepsis
https://github.com/clinicalml/trajectory-inspection
https://github.com/hercky/mo-spibb-codebase
https://github.com/MLD3/OfflineRL_FactoredActions
https://github.com/cmudig/AI-Clinician-MIMICIV
https://github.com/DMU-XMU/Episodic-Memory-assisted-Approach-for-Sepsis-Treatment
https://github.com/icu-sepsis/icu-sepsis
https://github.com/OOPSDINOSAUR/RL_safety_model

Off by a Beat

Data and Code Availability
Our code is available at https://github.com/shengpu-tang/RL-Off-by-a-Beat.

Acknowledgments
The authors would like thank Michael Sjoding and Jung Min Lee for helpful discussions regarding
this work. This work was supported in part by the National Library of Medicine of the National
Institutes of Health (grant R01LM013325 to JW). The views and conclusions in this document are
those of the authors and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the National Institutes of Health.

References
Roy Adams, Suchi Saria, and Michael Rosenblum. The impact of time series length and discretiza-

tion on longitudinal causal estimation methods. arXiv preprint arXiv:2011.15099, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Kartik Choudhary, Dhawal Gupta, and Philip S. Thomas. ICU-sepsis: A benchmark MDP built
from real medical data. In Reinforcement Learning Conference, 2024. URL https://openreview.
net/forum?id=hAb2LdotMQ.

Drugs.com. Phenylephrine hydrochloride monograph for professionals, 2024. Available: https:
//www.drugs.com/monograph/phenylephrine-hydrochloride.html. Last accessed on 2025-05-22.

Drugs.com. Norepinephrine bitartrate monograph for professionals, 2025. Available: https://www.
drugs.com/monograph/norepinephrine-bitartrate.html. Last accessed on 2025-05-22.

Mehdi Fatemi, Taylor W. Killian, Jayakumar Subramanian, and Marzyeh Ghassemi. Medical dead-
ends and learning to identify high-risk states and treatments. In Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=4CRpaV4pYp.

Russell Jeter, Christopher Josef, Supreeth Shashikumar, and Shamim Nemati. Does the “Artificial
Intelligence Clinician” learn optimal treatment strategies for sepsis in intensive care? arXiv
preprint arXiv:1902.03271, 2019. URL https://arxiv.org/abs/1902.03271.

Christina X Ji, Michael Oberst, Sanjat Kanjilal, and David Sontag. Trajectory inspection: A method
for iterative clinician-driven design of reinforcement learning studies. AMIA Summits on Trans-
lational Science Proceedings, 2021:305, 2021.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
In International Conference on Machine Learning, pp. 652–661. PMLR, 2016. URL https://
proceedings.mlr.press/v48/jiang16.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. MIMIC-III,
a freely accessible critical care database. Scientific Data, 3(1):1–9, 2016. URL https://doi.org/10.
1038/sdata.2016.35.

Taylor W Killian, Haoran Zhang, Jayakumar Subramanian, Mehdi Fatemi, and Marzyeh Ghassemi.
An empirical study of representation learning for reinforcement learning in healthcare. In Pro-
ceedings of the Machine Learning for Health NeurIPS Workshop, pp. 139–160. PMLR, 2020.
URL https://proceedings.mlr.press/v136/killian20a.

Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo Faisal. The
Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care.
Nature Medicine, 24(11):1716–1720, 2018. URL https://doi.org/10.1038/s41591-018-0213-5.

8

https://github.com/shengpu-tang/RL-Off-by-a-Beat
https://openreview.net/forum?id=hAb2LdotMQ
https://openreview.net/forum?id=hAb2LdotMQ
https://www.drugs.com/monograph/phenylephrine-hydrochloride.html
https://www.drugs.com/monograph/phenylephrine-hydrochloride.html
https://www.drugs.com/monograph/norepinephrine-bitartrate.html
https://www.drugs.com/monograph/norepinephrine-bitartrate.html
https://openreview.net/forum?id=4CRpaV4pYp
https://arxiv.org/abs/1902.03271
https://proceedings.mlr.press/v48/jiang16
https://proceedings.mlr.press/v48/jiang16
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35
https://proceedings.mlr.press/v136/killian20a
https://doi.org/10.1038/s41591-018-0213-5

RLC 2025 Workshop

Dayang Liang, Huiyi Deng, and Yunlong Liu. The treatment of sepsis: an episodic memory-assisted
deep reinforcement learning approach. Applied Intelligence, 53(9):11034–11044, 2023.

Rui Moreno, Andrew Rhodes, Lise Piquilloud, Glenn Hernandez, Jukka Takala, Hayley B Ger-
shengorn, Miguel Tavares, Craig M Coopersmith, Sheila N Myatra, Mervyn Singer, et al. The
sequential organ failure assessment (SOFA) score: has the time come for an update? Critical
care, 27(1):15, 2023.

Aniruddh Raghu, Matthieu Komorowski, Leo Anthony Celi, Peter Szolovits, and Marzyeh Ghas-
semi. Continuous state-space models for optimal sepsis treatment: a deep reinforcement learning
approach. In Proceedings of the 2nd Machine Learning for Healthcare Conference, volume 68,
pp. 147–163. PMLR, 2017. URL https://proceedings.mlr.press/v68/raghu17a.

Harsh Satija, Philip S Thomas, Joelle Pineau, and Romain Laroche. Multi-objective SPIBB: Sel-
donian offline policy improvement with safety constraints in finite MDPs. Advances in Neural
Information Processing Systems, 34:2004–2017, 2021.

Peter Schulam and Suchi Saria. Discretizing logged interaction data biases learning for decision-
making. arXiv preprint arXiv:1810.03025, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.
URL https://doi.org/10.1038/nature16961.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of Go
without human knowledge. Nature, 550(7676):354–359, 2017. URL https://doi.org/10.1038/
nature24270.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press, 2018.

Shengpu Tang. Reinforcement learning for healthcare decision making: The perils and promises. In-
vited talk at the "I Can’t Believe It’s Not Better!" workshop, Reinforcement Learning Conference
(RLC), 2024. Amherst, MA, USA. Available at https://sites.google.com/view/rlc2024-icbinb.

Shengpu Tang, Aditya Modi, Michael Sjoding, and Jenna Wiens. Clinician-in-the-loop decision
making: Reinforcement learning with near-optimal set-valued policies. In International Confer-
ence on Machine Learning, pp. 9387–9396. PMLR, 2020. URL https://proceedings.mlr.press/
v119/tang20c.

Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Lever-
aging factored action spaces for efficient offline reinforcement learning in healthcare. In Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
Jd70afzIvJ4.

Graham Teasdale and Bryan Jennett. Assessment of coma and impaired consciousness: a practical
scale. The Lancet, 304(7872):81–84, 1974.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Rui Tu, Zhipeng Luo, Chuanliang Pan, Zhong Wang, Jie Su, Yu Zhang, and Yifan Wang. Offline
safe reinforcement learning for sepsis treatment: Tackling variable-length episodes with sparse
rewards. Human-Centric Intelligent Systems, 5(1):63–76, 2025.

Kristine Zhang, Henry Wang, Jianzhun Du, Brian Chu, Aldo Robles Arévalo, Ryan Kindle, Leo An-
thony Celi, and Finale Doshi-Velez. An interpretable RL framework for pre-deployment mod-
eling in ICU hypotension management. npj Digital Medicine, 5(1):173, 2022. URL https:
//doi.org/10.1038/s41746-022-00708-4.

9

https://proceedings.mlr.press/v68/raghu17a
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://sites.google.com/view/rlc2024-icbinb
https://proceedings.mlr.press/v119/tang20c
https://proceedings.mlr.press/v119/tang20c
https://openreview.net/forum?id=Jd70afzIvJ4
https://openreview.net/forum?id=Jd70afzIvJ4
https://doi.org/10.1038/s41746-022-00708-4
https://doi.org/10.1038/s41746-022-00708-4

Off by a Beat

A Additional Discussion

Original ShiftedMDP

Figure 6: Causal DAGs of an MDP (left) and as implied by Original (middle) and Shifted (right).

B Additional Experimental Results

B.1 MIMIC Experiments

0 1 2 3 4
Vasopressor dose (µg/kg/min)

0
1

2
3

4
IV

 fl
ui

d
do

se
 (m

L/
4h

)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 0.001-0.08 0.08-0.2 0.2-0.45 >0.45

0
1-

50
0

50
0m

L-
1L

1L
-2

L
>2

L

Figure 7: The action space used in the MIMIC sepsis environment. The cells are labeled with the
action index ranging from 0 to 24.

1 0 1
0

200

400

600

k=1

1 0 1

k=2

1 0 1

k=3

1 0 1

k=4

1 0 1

k=5

1 0 1

k=6

1 0 1

k=7

1 0 1

k=8

1 0 1

k=9

1 0 1

k=10

1 0 1
0

200

400

600

k=118

1 0 1

k=119

1 0 1

k=120

1 0 1

k=121

1 0 1

k=122

1 0 1

k=123

1 0 1

k=124

1 0 1

k=125

1 0 1

k=126

1 0 1

k=127

1 0 1
0

200

400

600

k=1

1 0 1

k=2

1 0 1

k=3

1 0 1

k=4

1 0 1

k=5

1 0 1

k=6

1 0 1

k=7

1 0 1

k=8

1 0 1

k=9

1 0 1

k=10

1 0 1
0

200

400

600

k=132

1 0 1

k=133

1 0 1

k=134

1 0 1

k=135

1 0 1

k=136

1 0 1

k=137

1 0 1

k=138

1 0 1

k=139

1 0 1

k=140

1 0 1

k=141

Figure 8: Distributions of value functions during policy learning, for the first 10 and last 10 iterations
of the value iteration algorithm. Although Original (top two rows) and Shifted (bottom two rows)
took a different number of iterations to reach convergence (127 and 141, respectively), the overall
trends and the distributions of values appear similar.

10

RLC 2025 Workshop

0.000 0.025 0.050 0.075 0.100
p̂(s ′|s, a), Original

0

500

1000

1500

2000

Fr
eq

ue
nc

y

0.000 0.025 0.050 0.075 0.100
p̂(s ′|s, a), Shifted

0

500

1000

1500

2000

Fr
eq

ue
nc

y

0.10 0.05 0.00 0.05 0.10
difference

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

Figure 9: Comparison of the distributions of transition probabilities p̂(s′|s, a) for Original (left) and
Shifted (middle) for all (state,action,next-state) tuples, as well as histogram showing the distribution
of differences in transition probabilities for each (state,action,next-state) tuple between the two. For
clarity, the frequency for 0 on the x-axis is omitted.

Similar to the GCS scores analysis in Figure 5, we compared the distributions of SOFA scores
(ranging 0 to 24; higher is sicker, lower is healthier) for patients in each “quadrant” (Figure 10).
On average, patients in the test set have a mean SOFA of 5.86. Patients in the pink quadrant, where
Original recommends no treatment but Shifted recommends some treatment, are significantly sicker
than average (mean SOFA of 7.24 with p < 0.001). They are even sicker than the patients in
the purple quadrant, where both policies recommend some treatment (mean SOFA of 6.80 with
p < 0.001). In contrast, patients in the red quadrant, where Shifted recommends no treatment but
Original recommends some treatment, are significantly healthier than average (mean SOFA of 5.49
with p < 0.001), and they are comparable to patients in the orange quadrant (mean GCS of 5.29
with p ≥ 0.05). Overall, the Original policy tends to recommend more aggressive treatments for
healthier patients while withholding treatments for sicker patients, which is counterintuitive.

0 10 20
SOFA score

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
ati

ve
 d

en
sit

y

Figure 10: Empirical cumulative distribution functions of SOFA scores for patients in each quadrant.

11

Off by a Beat

C Example Code Snippets

To save space, some lines are omitted and some variable names have been modified.

C.1 Examples for Original

Raghu et al. (2017)
https://github.com/aniruddhraghu/sepsisrl/blob/master/continuous/q_network.ipynb

def process_train_batch(size):
...
for i in a.index:

cur_state = a.ix[i,state_features]
iv = int(a.ix[i, 'iv_input ']) ←
vaso = int(a.ix[i, 'vaso_input ']) ←
action = action_map[iv,vaso]
reward = a.ix[i,'reward ']
...

Komorowski et al. (2018)
https://github.com/matthieukomorowski/AI_Clinician/blob/master/AIClinician_core_160219.m#L190C1-L202C9

disp('#### CREATE TRANSITION MATRIX T(S'',S,A) ####')
transitionr=zeros(ncl+2,ncl+2,nact); %this is T(S',S,A)
sums0a0=zeros(ncl+2,nact);

for i=1: size(qldata3 ,1)-1
if (qldata3(i+1 ,1))~=1
% if we are not in the last state for this patient = if there is a transition to make
S0=qldata3(i,2); S1=qldata3(i+1,2); acid= qldata3(i,3); ←
transitionr(S1,S0,acid)= transitionr(S1,S0,acid)+1;
sums0a0(S0,acid)= sums0a0(S0,acid)+1;
end

end

Jeter et al. (2019)
https://github.com/point85AI/Policy-Iteration-AI-Clinician/blob/master/model_generation/generate_environment.m#L95

function [...] = generate_environment(training_set , K)

%Initialize a cell for all trajectories and clinician actions , then fill
%those cells with the appropriate values from the training set.
N = length(training_set);
trajectories_normalized = cell(N, 1);
actions = cell(N, 1);

%% Cluster the normalized patient data.
[clusters , centroids] = kmeans(trajectories_normalized , K);
...

while hour_index < num_hours
...

i = clusters(index);
j = clusters(index + 1);
action = actions(index); ←

transition_matrix(i, j, action) = transition_matrix(i, j, action) + 1;
...

end

Killian et al. (2020)
https://github.com/MLforHealth/rl_representations/blob/main/scripts/split_sepsis_cohort.py#L125C1-L139C1

for i in trajectories:
traj_i = train_data[train_data['traj'] == i]. sort_values(by='step')
traj_j = train_acuity[train_acuity['traj']==i]. sort_values(by='step')
data[i] = {}
data[i]['dem'] = torch.Tensor(traj_i[dem_cols]. values).to('cpu')
data[i]['obs'] = torch.Tensor(traj_i[obs_cols]. values).to('cpu')
data[i]['actions '] = torch.Tensor(traj_i[ac_col]. values).to('cpu').long() ←
data[i]['rewards '] = torch.Tensor(traj_i[rew_col]. values).to('cpu')
...

12

https://github.com/aniruddhraghu/sepsisrl/blob/master/continuous/q_network.ipynb
https://github.com/matthieukomorowski/AI_Clinician/blob/master/AIClinician_core_160219.m#L190C1-L202C9
https://github.com/point85AI/Policy-Iteration-AI-Clinician/blob/master/model_generation/generate_environment.m#L95
https://github.com/MLforHealth/rl_representations/blob/main/scripts/split_sepsis_cohort.py#L125C1-L139C1

RLC 2025 Workshop

Tang et al. (2020)
https://github.com/MLD3/RL-Set-Valued-Policy/blob/master/mimic-sepsis/mimic_sepsis_rl/1_preprocess/1_Z_reformat_
data.ipynb

def make_trajectories(df):
trajectories = []
for i, g in tqdm(df.groupby('icustayid ')):

...
trajectory = []
for t in range(len(g)-1):

transition = {
's': g.loc[t, state_features].values ,
'a': action_map[

int(g.loc[t, 'iv_input ']), ←
int(g.loc[t, 'vaso_input ']) ←

],
'r': g.loc[t, 'terminal_reward '],
's_': g.loc[t+1, state_features].values ,
'a_': action_map[

int(g.loc[t+1, 'iv_input ']),
int(g.loc[t+1, 'vaso_input '])

],
'done': False ,

}
trajectory.append(transition)

...

Fatemi et al. (2021)
https://github.com/microsoft/med-deadend/blob/main/utils.py#L111

class DataLoader(object):
...
def make_transition_data(self , release=False):

DataLoader: making transitions (s,a,r,s ')
...
for traj in self.encoded['traj'].keys ():

for t in range(self.encoded['traj'][traj]['actions '].shape [0] - 1):
self.transition['s'][counter] = self.encoded['traj'][traj]['s'][t, :]
self.transition['next_s '][counter] = self.encoded['traj'][traj]['s'][t+1, :]
self.transition['actions '][counter] = self.encoded['traj'][traj]['actions '][t] ←
self.transition['rewards '][counter] = self.encoded['traj'][traj]['rewards '][t]
...

Satija et al. (2021)
https://github.com/hercky/mo-spibb-codebase/blob/neurips/sepsis/1_preprocess/utils.py#L28C1-L50C1

def make_trajectories(df):
trajectories = []
for i, g in tqdm(df.groupby('icustayid ')):

try:
g = g.reset_index(drop=True)
trajectory = []
for t in range(len(g) - 1):

transition = {
's': g.loc[t, 'state '],
'a': action_map[

int(g.loc[t, 'iv_input_NEW ']), ←
int(g.loc[t, 'vaso_input_NEW ']) ←

],
'r': g.loc[t, 'reward '],
's_': g.loc[t + 1, 'state '],
'a_': action_map[

int(g.loc[t + 1, 'iv_input_NEW ']),
int(g.loc[t + 1, 'vaso_input_NEW '])

],
'done': False ,

}
trajectory.append(transition)

...

13

https://github.com/MLD3/RL-Set-Valued-Policy/blob/master/mimic-sepsis/mimic_sepsis_rl/1_preprocess/1_Z_reformat_data.ipynb
https://github.com/MLD3/RL-Set-Valued-Policy/blob/master/mimic-sepsis/mimic_sepsis_rl/1_preprocess/1_Z_reformat_data.ipynb
https://github.com/microsoft/med-deadend/blob/main/utils.py#L111
https://github.com/hercky/mo-spibb-codebase/blob/neurips/sepsis/1_preprocess/utils.py#L28C1-L50C1

Off by a Beat

Ji et al. (2021)
https://github.com/clinicalml/trajectory-inspection/blob/main/trajectoryInspection/mimic_utils.py#L257C1-L269C61

def get_traj_stats(traj , nact , ncl , death_state_idx , lives_state_idx):
########
Raw counts of transitions (Action , FromState , ToState)
########
obs_tx_cts_unadjusted = np.zeros ((nact , ncl+2, ncl +2))

for index , row in traj.iterrows ():
NOTE: Everything is 1-indexed in matlab , but 0-indexed in numpy ...
assert row['action_idx '] >= 0
obs_tx_cts_unadjusted[int(row['action_idx ']), ←

int(row['from_state_idx ']),
int(row['to_state_idx '])] += 1

...

Liang et al. (2023)
https://github.com/DMU-XMU/Episodic-Memory-assisted-Approach-for-Sepsis-Treatment/blob/main/continuous/D3QN.
py#L137

def process_train_batch(size):
...
for i in a.index:

cur_state = a.loc[i, state_features]
iv = int(a.loc[i, 'iv_input ']) ←
vaso = int(a.loc[i, 'vaso_input ']) ←
action = action_map[iv, vaso]
reward = a.loc[i, 'reward ']

...

Choudhary et al. (2024)
https://github.com/icu-sepsis/icu-sepsis/blob/main/packages/icu_sepsis_helpers/icu_sepsis_helpers/mdp_creation/create_
matrices.py#L6

def rl_table_to_unnormalized_matrices (...):
row = rl_table.iloc[0, :]
for i in trange(1, len(rl_table)):

row_next = rl_table.iloc[i, :]
b, s, a = row['bloc'], row['state '], row['action '] ←
s_, b_ = row_next['state '], row_next['bloc']
expert_policy[s, a] += 1
...
one step in the episode
if b_ == b+1:

...
tx_mat[s, a, s_] += 1

else:
...

Tu et al. (2025)
https://github.com/OOPSDINOSAUR/RL_safety_model/blob/main/utils/compute_trajectories_utils.py#L73
This repository was available at the time of writing of this paper but became unavailable when this
paper was published.
def build_trajectories(df,state_space ,action_space):

...
#iterate through rows which are sorted by charttime at the creation of episode_rows
tdiff = episode_rows.iloc [0]['charttime ']
for row in range(len(episode_rows)):

end_index = len(episode_rows) - 1

#get the action.py, state , reward , next state ,
#and whether or not the sequence is done in the current timestep
state = episode_rows[state_space].iloc[row]. values.tolist ()
action = episode_rows[action_space].iloc[row]. values.tolist () ←

...
#add the current time step info to the lists for this episode
states.append(deepcopy(state))
actions.append(deepcopy(action))
rewards.append(deepcopy(reward))
done_flags.append(deepcopy(dflag))
...

14

https://github.com/clinicalml/trajectory-inspection/blob/main/trajectoryInspection/mimic_utils.py#L257C1-L269C61
https://github.com/DMU-XMU/Episodic-Memory-assisted-Approach-for-Sepsis-Treatment/blob/main/continuous/D3QN.py#L137
https://github.com/DMU-XMU/Episodic-Memory-assisted-Approach-for-Sepsis-Treatment/blob/main/continuous/D3QN.py#L137
https://github.com/icu-sepsis/icu-sepsis/blob/main/packages/icu_sepsis_helpers/icu_sepsis_helpers/mdp_creation/create_matrices.py#L6
https://github.com/icu-sepsis/icu-sepsis/blob/main/packages/icu_sepsis_helpers/icu_sepsis_helpers/mdp_creation/create_matrices.py#L6
https://github.com/OOPSDINOSAUR/RL_safety_model/blob/main/utils/compute_trajectories_utils.py#L73

RLC 2025 Workshop

C.2 Examples for Shifted

Tang et al. (2022)
https://github.com/MLD3/OfflineRL_FactoredActions/blob/main/RL_mimic_sepsis/4_BCQ/data.py#L81

class SASRBuffer(object):
...

def load(self , filename):
data = torch.load(filename)
state , action , reward , not_done , pibs , next_state = [], [], [], [], [], []
for i in range(len(data['statevecs '])):

lng = data['lengths '][i]
state.append(data['statevecs '][i, :lng -1, :])
action.append(data['actions '][i, 1:lng]) ←
reward.append(data['rewards '][i, 1:lng])
not_done.append(data['notdones '][i, 1:lng])
pibs.append(data['pibs'][i, :lng -1, :])
next_state.append(data['statevecs '][i, 1:lng , :])

self.state = torch.cat(state)
self.action = torch.cat(action). unsqueeze (1)
self.reward = torch.cat(reward). unsqueeze (1)
self.not_done = torch.cat(not_done). unsqueeze (1)
self.pibs = torch.cat(pibs)
self.next_state = torch.cat(next_state)

Unpublished (2022)
https://github.com/cmudig/AI-Clinician-MIMICIV/blob/main/ai_clinician/modeling/models/common.py#L56C1-L65C5

def shift_actions(metadata , actions):
"""
Shifts the actions backward so that each row provides the *next* action for
the given state. Actions for the last observed state in each trajectory
are set to -1.
"""
new_actions = np.concatenate ([actions [1:], np.array ([-1])])
new_actions[np.argwhere(metadata[C_BLOC]. values == 1). flatten () - 1] = -1
return new_actions

Zhang et al. (2022)
https://github.com/dtak/Decision-Region-for-ICU-Hypotension/blob/main/src/pipeline_mimic.py
This work addresses hypotension instead of sepsis which are two different but related conditions;
we include it here for completeness since it also uses the MIMIC-III dataset.

def create_data(pid_list):
'''Create dataset based on pid input '''
orig_pid , hr, R = [], [], []
S1, S2, Y = [], [], []
#S1_mod , S2_mod = [], []
for pid in pid_list:

orig_pid = orig_pid + [pid] * (len(states[pid]) - 1)
hr.append(states[pid]. values[:-1, 0])
if include_action_states:

S1.append(np.hstack ([states[pid]. values [:-1], actions[pid]. values[:-1, 1:7]]))
S2.append(np.hstack ([states[pid]. values [1:], actions[pid]. values [1:, 1:7]]))

else:
S1.append(states[pid]. values [:-1])
S2.append(states[pid]. values [1:])

#S1_mod.append(states_mod[p]. values[:-1, :])
#S2_mod.append(states_mod[p]. values [1:, :])
Y.append(actions[pid]. values [1:, -3]) ←
R.append(rewards[pid]. values[:, 1])

return np.concatenate(S1, axis=0), np.concatenate(S2, axis=0), \
np.concatenate(Y, axis=0), np.concatenate(R, axis=0), \
np.concatenate(hr , axis=0), np.array(orig_pid)

15

https://github.com/MLD3/OfflineRL_FactoredActions/blob/main/RL_mimic_sepsis/4_BCQ/data.py#L81
https://github.com/cmudig/AI-Clinician-MIMICIV/blob/main/ai_clinician/modeling/models/common.py#L56C1-L65C5
https://github.com/dtak/Decision-Region-for-ICU-Hypotension/blob/main/src/pipeline_mimic.py

