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Abstract

Agents that understand objects and their interactions can learn policies that are
more robust and transferable. However, most object-centric RL methods factor state
by individual objects while leaving interactions implicit. We introduce the Factored
Interactive Object-Centric World Model (FIOC-WM), a unified framework that
learns structured representations of both objects and their interactions within a
world model. FIOC-WM captures environment dynamics with disentangled and
modular representations of object interactions, improving sample efficiency and
generalization for policy learning. Concretely, FIOC-WM first learns object-centric
latents and an interaction structure directly from pixels, leveraging pre-trained
vision encoders. The learned world model then decomposes tasks into composable
interaction primitives, and a hierarchical policy is trained on top: a high level selects
the type and order of interactions, while a low level executes them. On simulated
robotic and embodied-AI benchmarks, FIOC-WM improves policy-learning sample
efficiency and generalization over world-model baselines, indicating that explicit,
modular interaction learning is crucial for robust control2.

1 Introduction

World models aim to learn state abstractions and action-conditioned dynamics that capture the
evolution of high-dimensional observations, along with auxiliary information (e.g., rewards, skills), for
decision-making tasks [1–5]. Recent advances have demonstrated their effectiveness in downstream
applications, such as robotics [2, 6–10] and autonomous driving [11–14].

One of the central challenges in world model is to extract low-dimensional, structured latent repre-
sentations from high-dimensional observations, which often display high complexity and variability
across both semantic and dynamic aspects. On the dynamics side, latent spaces often contain underly-
ing structures [15, 16]. Prior work imposes structural priors to learn compact latents that encourage
disentanglement and capture relational or compositional patterns [17–23]. On the semantics side,
pre-trained visual features are leveraged to better encode rich content and improve fidelity [9, 24–31].
Collectively, these approaches learn compressed, structured representations of high-dimensional
perceptual data to support downstream decision making. However, it remains unclear to what extent
such compression and structure are necessary and sufficient for down-streaming policy learning.

In this work, we study which types and degrees of decomposition structure make latent representations
effective for efficient and generalizable policy learning. Real-world settings exhibit substantial
variability in both visual appearance and dynamic interactions, often involving multiple objects
with diverse attributes. It is therefore natural to reason in terms of objects, their interactions, and
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Figure 13: Qualitative results of successful skill chaining performance with SCaR and failed skill
chaining performance with T-STAR. More qualitative results can be found on our project website
https://sites.google.com/view/scar8297.
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Figure 1: The overall pipeline, including offline model learning (left) and online policy learning
(right) phases. The illustrative examples are from the Franka-kitchen environment [40].

the attributes that induce these interactions. To this end, we propose the Factored Interactive
Object-Centric World Model (FIOC-WM), which learns a two-level factorization: an object-level
representation with explicit interactions, and an attribute-level representation for each object. This
factorization is then exploited for down-streaming planning and control.

At the object level, we consider both the decomposition of scenes into independently evolving objects
and the modeling of their interactions. Modeling the interactions among objects is crucial for effective
policy learning as real-world dynamics are heavily influenced by rich interactions among objects, such
as collisions, containment, stacking, and physical forces like friction or gravity, which collectively
determine the evolution of the environment [32–34].

At the attribute level, each object can be further factorized into attributes based on their temporal
behavior, e.g., if they are static (e.g., color, shape) or dynamic (e.g., position, velocity) over time. This
factorization provides a principled inductive bias to reduce redundancy and highlight the minimal
sufficient components needed for planning and control. Importantly, this also supplements the
accurate object-level interaction modeling as the interaction can be further factorized: for each object,
only the dynamic part (e.g., position, velocities) will be changed during interactions with others. By
incorporating both object-level and attribute-level factorization, we can precisely model the dynamics
of all objects, including their interactions.

This structured modeling enables accurate prediction of system behavior and allows the learned
interaction models to serve as efficient surrogates for decision making. Building on recent hierarchical
RL with object-centric subgoals [35–37], we instantiate subgoals as object interactions, allowing
complex tasks to be decomposed into sequences of interaction primitives and thereby enabling more
efficient planning and control.

FIOC-WM jointly factorizes the static attributes and dynamic variables of each object in the environ-
ment, as well as their interactions with each other and the agent. After learning the FIOC-WM, we
can then leverage its interaction models to learn an interaction-centric policy. This enables efficient
solutions for long-horizon policy learning. Inspired by recent work [26, 27], we use pre-trained visual
embeddings [38, 39] as surrogates for raw high-dimensional observations, facilitating the learning of
semantically meaningful latents. FIOC-WM can recover interactions and learn the factorized states
within the latent representations derived from these visual embeddings. The learned interactions
are then used to train a policy designed to induce the desired interactions between objects. These
offline-learned policies are subsequently employed as composable modules for long-horizon tasks.
We evaluate FIOC-WM on a diverse set of robotic control and embodied AI benchmarks, demonstrat-
ing enhanced world model capability and more efficient downstream policy learning by employing
the appropriate factorization and leveraging it as sub-tasks.

2 Factored Interactive Object-centric POMDP

We focus on a Partially Observable Markov Decision Process (POMDP) [41] and consider an
environment in which objects interact with each other, and in which there are global latent factors that
can affect or modulate these interactions. We denote the state at timestep t as st and assume it can be
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factored across N objects. Moreover, we assume that the state of each object i can be represented as
sit = {dit, ci}, where dit represents the dynamic, time-varying variables (e.g., position, velocity) and
ci represents the constant, time-invariant properties such as color, mass, and friction, some of which
can affect the dynamics of the object.
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Figure 2: An example of a FIOC-
POMDP, where we only show the reward
for t+ 2 for clarity. Gray nodes are ob-
served variables, while white nodes are
latent variables. Each orange box repre-
sents the state of an object (in this case,
objects i and j). Red solid edges are the
state transition per object, and dashed
edges are the interactions among objects.

We represent interactions between objects with a sequence
of time-varying graphs G = {G1, . . . , GT }, where each
edge in a graph Gt captures an interaction between two
objects at time t. This models that at each timestep, dif-
ferent objects might interact. We also assume that these
graphs are sparse, meaning that at each timestep there are
only a subset of objects interacting.

For each object, we define a self-transition function fself,
which represents the evolution of the object dynamics with-
out interactions. In the self-transition function the constant
properties influence the evolution of its dynamic variables
over time, but not viceversa. When two objects i and j
interact, an object can only affect the dynamic variables of
the other object through the interaction transition function
finter. More formally, we model that the state transition for
object i follows the form:

dit+1 = fself(d
i
t, c

i,at, ϵt) +
∑

j∈Nt(i)

finter(d
i
t,d

j
t , c

j , δt),

where Nt(i) denotes the set of objects interacting with
object i at time t, and ϵt and δt indicate the latent noise
variables that model the stochasticity of the system.

We assume that also the observations ot are factored across
the N objects and that the generating process for obser-
vation of object i at time t is oit = g(sit, ϵ

i
t), where ϵit is a

latent i.i.d. random noise that represents the stochasticity
in the observations. Finally, as in standard settings, the
reward function is a function of the global state st and the
action, i.e., rt = h(st,at).

We call a model that satisfies all of these assumptions a Factored Interactive Object-centric POMDP
(FIOC-POMDP). Fig. 2 depicts an example of a FIOC-POMDP.

3 Learning the FIOC World Models

The overall framework (Fig. 1) consists of two stages: (1) offline model learning (Fig. 3) and (2)
hierarchical policy learning. In offline model learning, we learn a world model for a FIOC-POMDP as
two-level factorization of the latent space, at the object and attribute levels, and model latent dynamics
based on object interactions. Leveraging the learned interactions, we train an inverse dynamics model
to map the states of two separate objects to the states where they interact effectively, which we use as
an interaction policy. In hierarchical policy learning, a hierarchical policy is trained. The high-level
policy selects a sequence of target interaction graphs, while the low-level interaction policy trained in
the first stage executes them by inducing the corresponding interaction graph in the environment.

3.1 Stage 1: Offline Model Learning

We encode the observations using object-centric representation learning built on top of pre-trained
models such as DINO-v2 [38] and R3M [39], which have been empirically shown to provide
high-quality image understanding capabilities [42–44, 27, 45] and facilitate robotic manipulation
tasks [25, 26, 31]. Building on the empirical and theoretical work regarding the recoverability of latent
features from supervised pre-trained models [46], we assume that these embeddings provide sufficient
features and information for world models. This includes supporting the dynamics and reward
models, as well as capturing action-related features effectively. Then, similarly to Zadaianchuk
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Figure 3: The pipeline of Offline Model Learning (Stage 1) jointly learns the observation function,
state factorization, dynamics model, and reward model. Although Fig. 2 includes low-level policy
learning as part of Stage 1, for clarity, we defer the discussion of low-level policy learning to Stage 2.

et al. [47], we use slot attention [48] to cluster the object-centric representation on top of the
embeddings. The slot attention outputs a set of slot representations, which we use as the factored
observation {ô1, ô2, . . . , ôN} corresponding to the factored raw observation {o1,o2, . . . ,oN}. To
map these factored observations to factored states {s1, s2, . . . , sN}, we train a variational auto-
encoder (VAE) [49] with the encoder qϕ(si|ôi) and the decoder pψ(ôi|si), where si is the latent state
corresponding to the observation ôi, and the shared parameters are used across all slots.

To encourage structured representations, we learn to factorize the latent state into static and dynamic
components, denoted by c and d, respectively. Two separate encoders, fc(s) and fd(s), are used to
extract static and dynamic features from observations. We assume that static features remain invariant
over time, while dynamic features evolve. To enforce this, we regularize the output of fc(s) to remain
temporally consistent for each of the N object slots:

Lstatic =

T−1∑
t=1

N∑
i=1

∣∣fc(sit+1)− fc(s
i
t)
∣∣2 , (1)

where T is the number of time steps. To ensure that different objects encode distinct static attributes,
we use a contrastive loss [50] that separates static features across slots:

Lcon = −
T−1∑
t=1

N∑
i=1

log
g
(
fc(s

i
t), fc(s

i
t′)

)
g
(
fc(sit), fc(s

i
t′)

)
+

∑
j∈N g

(
fc(sit), fc(s

j
t′)

) , (2)

where t′ is a different time step and N denotes a set of negative slots j ̸= i from the same scene. g is
the distance measurement of the representation, we use cosine similarity here.

For the dynamic features, we leverage their temporal evolution to model latent state transitions, as
only d varies over time. We adopt the variational inference framework [49] to learn the encoder
fd(s), parameterized by a GRU [51], which captures the dynamics of each object slot. The prior over
the dynamic state dt is factorized across the N object slots as: ps(dt | dt−1,at−1) =

∏N
i=1 ps(d

i
t |

dt−1,at−1, Gt), where Gt denotes the interaction graph representing the relational structure among
objects at time t. In other words, Gt captures the pairwise interactions between objects at time step t,
where each edge indicates whether an interaction exists between a pair of objects. Concretely, this is
represented as a binary adjacency matrix of size N ×N , where N is the number of objects.

The posterior over st is conditioned on the current the visual embeddings ôt and the hidden state
ht = GRU(st−1,ht−1), as: qϕ(st | ôt,ht). Then we use an observation decoder to reconstruct
observations: pσ(ôt | st), with the reconstruction loss:

Lrecon =

T∑
t=1

∥∥ôt − ôdecoded
t

∥∥2 , (3)
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where ôdecoded
t is sampled from pσ(· | st). To capture temporal consistency, we also predict the

next-step observation:

Lpred =

T∑
t=1

∥∥ôt+1 − ôdecoded
t+1

∥∥2 . (4)

We encourage alignment between the posterior and the prior using KL divergence:

LKL =

T∑
t=1

KL
(
qϕ(st | ôt,ht) ∥ ps(st | sst−1,at−1, Gt)

)
. (5)

Similarly, we apply a reward decoder pr(rt | st,at) based on the learned latent states and actions.
The reward loss is as follows:

Lrew =

T∑
t=1

∥r̂t − rt∥2 . (6)

To learn the interaction graph Gt, we use the current estimated latent states st as input. We introduce
a surrogate latent variable ut that parameterizes the distribution over interaction graphs. This captures
the underlying interactions that may vary over time.

Specifically, for each object pair (i, j) at time t, we encode their latent states sit and sjt using a GRU
encoder to obtain a pairwise embedding:

uijt = fenc,ϕu
(sit, s

j
t ) (7)

The transition of ut is modeled as: pu(ut | st) = fu(st), where fu is a parameterized function
that captures the dependencies among the current latent states st. We consider two approaches for
learning the state transition distribution ps: (i) learning variational masks, following [52, 53]; and (ii)
applying conditional independence testing, following [54]. The detailed loss functions are provided
in Appendix C.2.

3.2 Stage 2: Online Hierarchical Policy Learning

In this section, we describe how we use the learned interactive world model for object-centric RL,
particularly for long-horizon task learning. Our framework is built on the recent work that models the
object interactions as skills [37]. The key intuition is that long-horizon tasks can be decomposed into
a sequence of interactions.

Our approach first focuses on learning a low-level policy capable of invoking the desired interactions.
Based on the learned interactive world model, we can accurately predict the dynamics of interactions
and the regimes governing these interactions. This enables the agent to learn the policy by leveraging
the predicted interactions to learn the inverse mapping from interactions to actions. We learn the
low-level policy πl by employing model predictive control (MPC) [55, 56, 5] or proximal policy
optimization (PPO) [57], where the initial and target interaction of two objects are provided. At time
step t, we are given the target interaction graph at future steps from high-level policy, denoted as Gg

t ,
and the low-level policy is πl(at | st, Gg

t ). Given the learned transition models ps and pu, we use
si and ug to infer the target states sig and sjg. Using these inferred target states, we apply MPC or
PPO to generate a sequence of actions that transitions the system from t to t+ k while minimizing
the discrepancy between the predicted and target states. We learn the low-level policy during world
model learning (Stage 1), and then fine-tune it with online data during Stage 2, where the policy is
updated each time new interaction data becomes available.

We then learn a schedule of interactions for the model to handle long-horizon tasks by optimizing the
task reward. We learn the chain-of-interactions for the high-level policy πh : S → G, which selects
the interaction graph G based on the input state S . This implies that the action space corresponds to
graph selection, but this space can grow exponentially with the number of objects. To address this,
following previous works on skill discovery with object interaction [58, 37], we impose constraints
by limiting the number of objects considered at each time step. Following the graph selection
policy introduced in [37], at any given time, we focus on a fixed subset of objects (smaller than 2),
leveraging a diversity reward rdiv as a surrogate to make the selection process diverse. We define
rdiv = 1/

√
|Gvisited|, where |Gvisited| is the number of graphs that have been visited in the past

transitions. Then the high-level policy πh(Gg
t | st) is updated with both the task reward rtask and

this diversity reward rdiv.
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3.2.1 Practical Implementation

We assume that each state st is associated with an interaction graph Gt, and the final task corresponds
to reaching a desired target graph Gg. The high-level policy πh selects a sequence of intermediate
subgoal graphs that gradually transform Gt into Gg, where each subgoal graph differs from the
previous one in only a single interaction. For example, in a task such as moving a kettle from the
counter to the stove, the graph transitions involve first enabling an interaction between the arm and
the kettle, followed by an interaction between the kettle and the stovetop.

To make the subgoal selection both tractable and structured, we do not sample directly from the full
space of possible object interactions. Instead, at each decision point, we first identify a small subset
of objects (typically one or two objects) as primary candidates for initiating interaction changes.
These candidates define the anchor object(s) i, and we then select a target object j conditioned on i to
form the proposed subgoal interaction (i, j). This scheme reduces the combinatorial action space
and leads to more localized graph transitions. Note that the selected subset does not constrain the
interaction to only occur between these objects; rather, it defines a focused region of the graph for
subgoal exploration.

4 Related Work

Our framework aims to uncover interactive and factored object-based representations of environments,
so it is closely related to factored RL, particularly object-centric RL. Factored RL models the envi-
ronment in terms of Factored Markov Decision Process [59], where the state of the Markov decision
process is factored in state components and sparse relationships exist among state components,
actions, and rewards. This factorization enables efficient policy solutions [60, 61]. A specific type
of factorization, which we also adopt, is object-centric reinforcement learning [62], where states or
observations are grouped into object-centric clusters. In object-centric RL, actions typically target
only a subset of objects, and rewards are often associated with the states of specific objects or object
subsets. This facilitates more structured and efficient decision-making.

Recent works on object-centric RL can be broadly categorized into two major directions: (i) learning
object-centric representation and (ii) modeling the object relations and policy architectures for
compositional generalization. For the first line of research, approaches focus on using object-centric
representation learning techniques [48, 63–65] to extract meaningful object-level features from
raw observations. These methods then learn object-centric policies directly from object-centric
representations [66, 67, 62]. The second line of work develops object-centric policies by modeling
object relations and policy structures, incorporating inductive biases in the state transition and policy
networks. Methods include the use of graph neural networks [68], linear relational networks [69],
self-attention, and deep sets [70]. The learned object-centric states and relational structures are then
used to achieve compositional generalization in reinforcement learning [71, 18, 33, 72, 22, 73]. Our
work combines ideas from both directions, especially related to the series of works [33, 71, 22, 67],
which learn factored state attributes, providing a more fine-grained representation than object-centric
factorizations, and also model the interactions among objects to achieve compositional generalization.
However, we go beyond object-centric policies by learning an interaction-centric policy.

Our framework, which uses low-level and high-level policy for decomposing complex tasks into
interaction learning, is similar to hierarchical reinforcement learning (HRL). HRL typically consists
of a high-level policy (often referred to as an option [74], sub-skills, or sub-goals in the literature) and
a low-level policy, enabling the efficient learning of complex RL tasks [75]. Within the scope of HRL,
the most close to our work is the line of research that focuses on learning goal-conditioned hierarchical
policies or hierarchical skill discovery. Zadaianchuk et al. [66] propose the goal-conditioned hierar-
chical policies with learning object-based hierarchical goals. Hierarchical skill discovery focuses on
decomposing complex tasks into object-wise or object-interaction-based components. For instance,
Wang et al. [37] use conditional independence testing to identify sub-goals, while Chuck et al. [35, 73]
and Hu et al. [76] use Granger causality or counterfactual reasoning to uncover hierarchical structures.
Our work is also built upon those works in using interactions as sub-skills [36, 37], but we learn
interaction models jointly with observations and dynamics within the world model directly from
high-dimensional inputs.
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Figure 4: Visualization of evaluated benchmarks: (a). Sprites-World; (b). OpenAI-Gym Fetch; (c).
Franka Kitchen; (d). i-Gibson; and (e). Libero. A larger version is in Table A4.

5 Experiments

To evaluate the effectiveness of our proposed interactive world model and policy learning framework,
we aim to address the following questions: (i) How accurately does the model learns the state
disentanglement and interaction models? (ii) How well does it perform in long-horizon task learning?
and (iii) How well does the framework achieve compositional generalization?

To answer these questions, we evaluate our method on a range of simulated control, robotic ma-
nipulation, and embodied AI benchmarks, including SpritesWorld [77], OpenAI-Gym Fetch [78],
iGibson [79], and Libero [80]. We consider both reinforcement learning and imitation learning tasks.

Baselines. For online RL or imitation learning, we compare against established baselines including
DreamerV3 [4], TD-MPC2 [81] and the object-centric model-free method EIT [67]. For offline RL,
we compare with DINO-WM [27], which also leverages DINO-based pretraining for downstream
planning.

Benchmarks. We consider long-horizon tasks that require completing several sub-skills to achieve
the overall objective. OpenAI Gym Fetch [78] is a simulated environment featuring a Fetch robotic
arm capable of manipulating cubes and switches. The tasks involve completing sub-tasks that require
pushing or switching a varying number of objects. Franka-kitchen [40] is an environment where
the 7-DoF Franka Emika Panda arm performs tasks in a kitchen. We consider several sequential
sub-tasks, such as turning on the microwave, moving the kettle, turning on the stove, and turning
on the light. i-Gibson [82] is a simulated environment with a Fetch robot operating in everyday
household tasks with rich objects and interactions. Similarly to [37], we consider the tasks with
the peach object. Libero [80] is a benchmark for lifelong robot learning and imitation learning in
household and tabletop environments. We focus on randomly selected tasks within libero-goal.

5.1 Evaluation Metrics.

In addition to evaluating policy learning and planning performance, we assess the effectiveness of
world model learning by examining three key aspects: observation and dynamics modeling, interaction
learning, and disentanglement quality. Specifically, for all methods (excluding those evaluated under
nSHD), we adopt variational masks to infer the interaction structures. For downstream control, we
apply MPC for Gym-Fetch and Franka-Kitchen, and use PPO for LIBERO and iGibson.

Observation and Dynamics Modeling We measure the predictive quality of future observations
using the Learned Perceptual Image Patch Similarity (LPIPS) metric [83], which evaluates perceptual
similarity between predicted and ground-truth image patches.

Interaction Learning We evaluate the ability of our model to learn interactions through two
approaches: (i) Variational mask learning, where the state encodes adjacency matrices as latent
variables. Each edge is sampled from either a differentiable approximation of a categorical distri-
bution [84, 85, 52] or a discrete codebook [53]. (ii) Conditional independence testing, where we
test for the existence of interaction using parametric models to predict dynamics [54]. We com-
pare our approach with baselines that do not explicitly model dynamic structure, but instead rely
on post hoc analysis based on attention weights to infer interactions, as in local causal discovery
methods [86, 87]. We use normalized Structured Hamming Distance (nSHD). Further details are
provided in Appendix C.2.
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Environment Dreamer-V3 TD-MPC2 EIT DINO-WM FIOC

Fetch 0.042 0.039 0.026 0.009 0.007
Kitchen 0.102 0.123 0.096 0.035 0.038
Libero 0.089 0.061 0.040 0.035 0.027

Table 1: Comparison of world models on LPIPS metrics on Fetch, Kitchen, and Libero.
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Figure 5: (a) Evaluation of state factorization in Sprites-world. We report MSE from linear probing
to assess the quality of the learned representations against ground-truth attributes.(b) Offline RL
performance (success rate) comparison with DINO-WM, including FIOC-DINO and FIOC-R3M.

Disentanglement Quality In SpritesWorld [77], we perform a linear probing analysis by training a
linear regression layer on top of the learned representations to predict ground-truth static and dynamic
factors. Static factors include object color and shape (encoded as one-hot vectors), while dynamic
factors consist of object positions and velocities.

Policy Learning We consider both the policy performance on single-task and the generalization
task. For generalization tasks, we consider three types of generalization: (1) Attribute Generalization:
we evaluate for zero-shot generalization on new composition of object attributes; (2) Object Attribute
Composition: we train models on domains with specific combinations of object attributes (e.g.,
color, shape, or material) and test them on domains with unseen attribute combinations; and Skill
Composition Generalization: we train models on tasks with simple combinations of skills and test
them on tasks requiring new combinations of skills. For all tasks, we use the average success rate as
the evaluation metric.

5.2 Results on Learning World Models.

As evaluation of the learned dynamics and observations, Table 1 reports the LPIPS metric (Full Results
are in Table A3). Compared to the baselines, our method achieves comparable or better reconstruction
performance, particularly on the Fetch and Libero environments, where object interactions and
dynamics are complex. Full results are in Appendix D.1.

We report also results on the accuracy of the learned interactions, quantified by the normalized
Structured Hamming Distance (SHD) between the inferred interaction structures Ĝ = {Ĝ1, . . . , ĜT }
and the ground truth structures. Fig. 6(a) presents the results on attribute and compositional general-
ization. For each bar, the shaded areas represent the performance of single-task learning with the same
number of objects. The gap between the top of each bar and the top of the corresponding shaded area
quantifies the performance drop when generalizing to novel scenarios (i.e., empirical generalization
gap). These results demonstrate that FIOC consistently outperforms attention-based methods across
all cases, verifying the importance of explicitly modeling the interaction structures and their changes
using regime variables. And importantly, FIOC demonstrates superior generalization compared to
attention-based methods, as shown by the smaller empirical generalization gap. Among the three
versions of FIOC, all achieve strong attribute-level and compositional generalization. Notably, the
variational masks with categorical distributions perform best, particularly in scenarios with a large
number of objects. Full results are in Appendix D.1.
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(a) (b) 

Figure 6: (a) Evaluation of learned interaction graphs with Normalized SHD for attribute and
compositional generalization on Sprites-World with multiple objects. The shaded areas show results
with the same number of objects for single-task learning. Lower values mean better performance. (b)
Learning curves of single-task learning for i-Gibson (left) and Libero (right).

Fig. 5(a) reports the linear probing MSE of the learned static and dynamic representations, c and d,
against ground-truth attributes in the Sprites-world environment. We evaluate both the DINO-v2 raw
input features and the object-centric DINO features (obtained from our first-stage learning without
disentanglement). Our method achieves the best factorization of attributes: c and d effectively capture
useful representations for dynamic features (i.e., position & velocity) and static features (i.e., color
& shape), respectively. Notably, the object-centric DINO generally outperforms vanilla DINO on
dynamic features. However, object-centric clustering tends to degrade static attribute representations
such as color and shape. Our disentanglement module addresses this limitation by improving the
representation of static attributes within each object.

Envs FIOC Dreamer-V3 EIT TD-MPC2

Attri. Gen.
Push & Switch 0.91± 0.05 0.90± 0.07 0.92± 0.04 0.95± 0.02

i-Gibson 0.79± 0.13 0.62± 0.16 0.70± 0.14 0.65± 0.15
Libero 0.76± 0.14 0.59± 0.18 0.73± 0.12 0.69± 0.18

Comp. Gen.
Push & Switch 0.86± 0.10 0.81± 0.12 0.83± 0.02 0.79± 0.08

Libero 0.70± 0.09 0.58± 0.12 0.65± 0.08 0.63± 0.14

Skill Gen.
Push & Switch 0.81± 0.06 0.66± 0.10 0.73± 0.08 0.65± 0.13
Franka Kitchen 0.73± 0.06 0.59± 0.09 0.65± 0.18 0.62± 0.08

Table 2: Policy learning (success rate) of world model in Gym Fetch, Franka Kitchen, i-Gibson, and
Libero tasks.

5.3 Results on Policy Learning.

Fig. 6(b) presents the learning curves (sampled every 100 time steps) on the i-Gibson and Libero
tasks. The results indicate that world models incorporating object interactions, such as FIOC and EIT,
achieve faster convergence compared to state-of-the-art methods like Dreamer-V3 and TD-MPC2.
FIOC not only converges faster than EIT but also achieves a higher final success rate on Libero.

Fig.5(b) presents the offline RL results, comparing our method with DINO-WM [27], along with
two variants of FIOC that use DINO-v2 [38] and R3M [39] as pre-trained visual embeddings. The
results demonstrate that our approach achieves superior performance in both single-task learning
and generalization, highlighting the advantages of the proposed two-level factorization on top of
pre-trained visual features and the use of a hierarchical policy.

Table 2 presents the results of policy learning on single tasks, as well as those in the context of
attribute, compositional, and skill generalization. The results indicate that FIOC performs comparably
or better than other baselines in single-task learning scenarios and consistently outperforms them
in all generalization tasks. Among the baselines, EIT achieves the second-best performance across
generalization tasks. Detailed task settings are provided in Appendix F. The full results are in
Table A2 and Fig. A3 in the appendix.
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5.4 Ablation Studies

Success Rate
Ablations Single Task Comp. Gen.
FIOC 0.81 0.70

w/o Factorization 0.77(↓ 0.04) 0.64(↓ 0.06)
w/o Interaction 0.63(↓ 0.18) 0.52(↓ 0.18)
w/ random actions 0.64(↓ 0.17) 0.48(↓ 0.22)
w/o hierarchical policy 0.58(↓ 0.23) 0.42(↓ 0.28)
w/o pre-trained πl 0.69(↓ 0.12) 0.59(↓ 0.11)
w/o diversity 0.62(↓ 0.19) 0.50(↓ 0.20)

Table 3: Ablation studies on Libero, evaluating the impact
of removing specific components from the world model and
policy learning. The bold entries indicate the ones with
the largest performance drop. Light yellow and green areas
represent the world model and policy learning components.

To evaluate the effectiveness of dif-
ferent components in both offline
world model learning and online pol-
icy learning, we conduct a series of ab-
lation studies on the following aspects.
For the world model part, we con-
sider cases: Without state factoriza-
tion: The state s is not factorized into
static and dynamic components. In-
stead, the state transition Ps is learned
directly on the original s obtained
from the DINO embeddings. With-
out interaction modeling: Instead of
modeling dynamic interactions, we as-
sume a fully connected graph for all
time steps and learn the dynamics us-
ing this dense graph; and Using ran-
dom actions in offline learning: In-
stead of using pre-trained policies, we
train the model with random actions
in the offline learning phase. For the policy learning stage, we consider the cases: Without hierar-
chical policy: Policy learning is performed directly on low-level actions without a high-level policy
governing the sequence of interactions. Without pre-trained low-level policy: The low-level policy πl

is not trained during the offline phase but learned from scratch in the online phase. Without diversity
term: The diversity term in high-level policy learning is disabled.

The results in Table 3 show that for world models, interaction modeling and using the pre-trained
policies in offline learning are the most critical components, as their removals lead to the most
significant drop in policy learning performance. For policy learning, the hierarchical policy plays the
most essential role. Other components, such as state factorization, utilizing pre-trained policies instead
of random actions in the offline learning phase, pre-training the low-level policy, and incorporating
diversity, also contribute to improving the policy learning performance.

6 Conclusions and Discussion

We study which types and degrees of decomposition make latent representations effective for efficient
and generalizable policy learning. To this end, we introduce the Factored Interactive Object-Centric
World Model (FIOC-WM), which learns a two-level factorization: an object-level representation with
explicit interactions and an attribute-level representation for each object. FIOC-WM learns these
decomposed structures directly from observations and leverages the resulting composable interaction
primitives to enhance planning and policy learning via a hierarchical RL approach. The framework
exhibits strong compositional generalization across attributes, objects, and skills, demonstrating that
explicit, object-centric interaction decomposition is a key inductive bias for robust control.

Limitations and Future Works FIOC-WM still relies on a pretrained object-centric model for
object discovery, and its interaction models primarily generalize to seen object categories. Addressing
these limitations and extending the framework to real-world robotic settings is part of the future work,
potentially leveraging recent advances in robot-learning foundation models [88–97].
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• The answer NA means that the paper does not include experiments.
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either be a way to access this model for reproducing the results or a way to reproduce
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code and data will be publicly available after acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we provide all details in the appendix, including the simulation setup,
hyperparameters, and architecture design.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification:All runs are with either 5 or 10 random seeds (with error bars shown in the
learning curve figures).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

We provide the compute details in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification:This paper presents work at reinforcement learning and world models. While
our research has potential societal implications, such as applications in robotics that could
be misused, we do not identify any specific risks directly arising from our work that require
explicit highlighting.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There are no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Original methods are properly cited, and used environments, simulators, and
tool are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Overview

In this appendix, we provide supplementary details, extended discussions, and full results for FIOC-
WM. Specifically, Section B presents an in-depth discussion of related work, including factored and
object-centric reinforcement learning, hierarchical RL, and causality-inspired RL, all of which are
relevant to our approach. Section C offers a detailed analysis of world model learning, focusing
on the two-level factorization of state transitions (Section C.1), interaction modeling (Section C.2),
and policy learning (Section C.3). Sections D, E, and F cover the experimental results, network
architectures, and task specifications.

B Extended Related Works

B.1 Factored and Object-centric Reinforcement Learning

Our paper takes inspiration from multiple factorization frameworks in RL. Factored RL is based on
the model of a Factored Markov Decision Process (MDP) [59], where structural relationships exist
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among states, actions, and rewards. This factorization enables efficient policy solutions by leveraging
these structural relationships [60, 61].

A specific type of factorization, which we also adopt, is object-based, referred to as object-centric
reinforcement learning (object-centric RL) [62], where states or observations are grouped into object-
centric clusters. In object-centric RL, actions typically target only a subset of objects, and rewards are
often associated with the states of specific objects or object subsets. This object-wise factorization
facilitates more structured and efficient decision-making.

Recent works on object-centric RL can be broadly categorized into two major directions: (i) learning
object-centric representation and (ii) modeling the object relations and policy architectures for com-
positional generalization. For the first line, approaches focus on using object-centric representation
learning techniques [48, 63–65] to extract meaningful object-level features from raw observations.
These methods, based on object-centric representations, focus on policy learning that leverages the
object-centric encodings to learn object-centric policies either directly from object-centric repre-
sentations [66, 98, 22, 99]. Haramati et al. [67] further Consider the object interactions and learn
the policy that has compositional generalization with the model-free framework, learning directly
from images. The second line of work develops object-centric policies modeling object relations and
policy structures, incorporating inductive biases in the state transition and policy networks. Methods
include the use of graph neural networks [68], linear relational networks [69], self-attention, and
deep sets [70], and then they leverage the modeled object-centric states and relational structures to
achieve compositional generalization in reinforcement learning [71, 18, 33, 22, 73, 22]. Haramati
et al. [67] further leverages object interactions to learn a policy with compositional generalization,
using a model-free framework that learns directly from images. Our work combines ideas from both
directions, which learn state factorization from the object-centric level (object-based factorization)
and state level (dynamics and static factorization), and model the interactions among objects to
achieve compositional generalization. Different from [22, 100], which explores a more fine-grained
object-centric and attribute-level factorization, our approach demonstrates that a simpler dynamic-
static factorization of objects is already sufficient for effective world model and policy learning,
striking a balance between minimality and expressiveness. Additionally, we go beyond object-centric
policies by learning an interaction-centric policy that leverages the learned interaction model to
facilitate long-horizon task learning.

B.2 Hierarchical Reinforcement Learning

Our work, using low-level and high-level policy for decomposing complex tasks into interaction
learning, is relevant to hierarchical reinforcement learning (HRL). HRL typically consists of a high-
level policy (often referred to as the option framework [74], sub-skills, or sub-goals in the literature)
and a low-level policy, enabling the efficient learning of complex RL tasks (see a recent survey [75]).

Within the scope of HRL, the most relevant to our work is the line of research that focuses on learning
goal-conditioned hierarchical policies or hierarchical skill discovery. Within the scope of HRL, the
closest to our work is the line of research that focuses on learning goal-conditioned hierarchical
policies or hierarchical skill discovery. Zadaianchuk et al. [66] proposes the goal-conditioned
hierarchical policies with learning object-based hierarchical goals. Hierarchical skill discovery
focuses on decomposing complex tasks into object-wise or object-interaction-based components. For
instance, Wang et al. [37] use conditional independence testing to identify sub-goals, while Chuck
et al. [35] and [76] use Granger causality and causal models to uncover hierarchical structures. Our
work shares similarities with [35, 37], particularly in using interactions as sub-skills. However, our
work is on learning interaction models jointly with observations and dynamics within the world
model directly from high-dimensional inputs, providing a more general and unified framework.

B.2.1 Causality-inspired Reinforcement Learning

Closely related to factored RL, causality-based RL aims to learn and leverage causal structures in
Markov Decision Processes (MDPs) [101]. Building causal structures within MDPs or world models
can enable more efficient exploitation[102–105] or policy learning [54, 106]. Additionally, learned
causal structures can facilitate counterfactual reasoning, providing benefits such as counterfactual data
augmentation to improve RL efficiency [86, 87, 107, 108]. Similarly, our work builds an interactive
world model that aligns with this line of research, utilizing factored and causal structures in dynamic
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Figure A1: The pipeline of Offline Model Learning (Stage 1) jointly learns the observation function,
state factorization, dynamics model, and reward model. Although Fig. 2 includes low-level policy
learning as part of Stage 1, for clarity, we defer the discussion of low-level policy learning to Stage 2.

models to enhance generalization. Specifically, we focus on achieving compositional generalization
at the levels of objects and their attributes.

The most relevant work to ours is SKILD [37], which also employs interaction-based hierarchical
policies. However, there are several key differences. First, we aim to develop a general framework that
incorporates state factorization, latent interaction-relevant states, and multiple approaches for learning
interactions, including directly from pixel observations. In contrast, SKILD primarily focuses on
state-based settings and learns interactions using conditional independence testing. Second, while
SKILD is designed for unsupervised RL and skill discovery, our work focuses on general RL settings,
although we consider extending it to unsupervised RL in future work. Despite these differences in
scope and objectives, we acknowledge the contributions of SKILD, particularly in policy learning,
and directly adopt certain components such as diversity measurement parameters and settings.

C Overall Framework

Fig. A1 illustrates the overall framework for learning FIOC-WN. In this section, we provide more
supplementary details on this two-level factorization and interaction learning.

C.1 Graphical Representation of State Transitions

Fig.A2 provides an illustrative example that complements the graphical model in Fig.2 of the main
paper, showing state transitions under dynamic graph structures (dashed red edges). We learn a
two-level factorization of object-level and attribute-level representations, as detailed in Section 3.1.
Here, we further motivate the choice of this two-level structure. First, decomposing a scene into
individual objects reduces model complexity, as many objects move independently in most scenarios.
By factoring dynamics and static attributes, the model can focus on learning the evolution of dynamic
properties (e.g., position, velocity), while separately accounting for how static attributes (e.g., shape,
mass) influence those dynamics. Second, to model interactions precisely and compactly, we focus on
dynamic features being influenced by the attributes of interacting objects. For example, when two
balls collide, it is primarily their dynamic attributes (e.g., velocity) that change, influenced by the full
set of features (e.g., mass, shape, velocity) of the other object. This targeted interaction modeling
allows the world model to be more precise and interpretable.

As a result, the learned world model benefits from this minimal yet sufficient factorization, which
also enables more effective policy learning. The effectiveness of this design is further supported by
ablation results shown in Table 3 in the main paper.
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Figure A2: The detailed structure (example) of the state transitions with dynamic graph structure.

C.2 Learning the Interaction Models

C.2.1 Learning with Variational Masks

We consider two cases, where the masks are sampled from the approximated categorical distribution
or from a codebook. In both cases, we have the ELBO 3:

Lmask = Eqϕu (G|s) [log pθu(s | G)]−KL [qϕu
(G | s)∥p(G)] (A1)

The encoders are parameterized by graph neural networks, following the settings in neural relational
inference [84, 85] and amortized causal discovery frameworks [52]. P (G) is the prior distribution
of the graph structures. Specifically, for the encoder fenc, ϕu, for each pair of nodes i and j, we
compute:

uij = fenc,ϕu
(si, sj). (A2)

For the categorical distribution one, we have:

Gi,j ∼ Softmax (uij + g/τ) , (A3)

where τ is the temperature parameter and g is Gumbel-distributed noise [109].

For the latent codebook, we consider u as the learned latent embedding, while maintaining a codebook
prototype vector set e = {e1, . . . , ek}, where k represents the number of different graph types (which
can be interpreted as interaction patterns). Following [53], we apply a quantization step to discretize
u:

e = ez, where z = argmin
j∈[k]

∥u− ej∥2 . (A4)

After quantization, we retrieve the corresponding interaction graph by decoding the selected codebook
entry into an adjacency matrix G:

G ∼ gdec(ez). (A5)

All additional constraints and optimization techniques are directly adopted from [53].

3For clarity, in this section, we omit state factorization indices, as well as object and time indices, whenever
they are not essential for computation or when they generally apply to factored variables across all objects and
time steps.
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C.2.2 Learning with Conditional Independence Testing

Following [54], we use conditional independence testing to identify object interactions. Specifically,
for each pair of objects i and j, we compute the conditional mutual information (CMI) of the
parameterized dynamics at each time step t:

CMIi,j = E
st,at,s

j
t+1

log ps

(
sjt+1 | at, st

)
ps

(
sjt+1 |

{
at, st\sit

})


where ps represents the state transition dynamics used in our framework. During testing, we use the
same parameterized transition model. Instead, after computing CMI, G is encoded as the adjacent
matrix in RN×N , directly determining the interaction structure G. Since we employ an object-wise
factorization, the number of required CMI tests remains manageable.

C.3 Online Policy Learning

In policy learning tasks, we only use the variational masks for learning the regime variables.

Low-level Policy For the low-level policy that invokes interactions, we consider two approaches:
model predictive control (MPC) and RL policies.

At time step t, we are given the target interaction graph at t + k, denoted as Gk
t = G∗. Given the

learned transition model Pu, we use si and ug to infer the target states sig and sjg . Using these inferred
target states, we apply MPC to generate a sequence of actions that transitions the system from t to
t+ k while minimizing the discrepancy between the predicted and target states.

Following Bharadhwaj et al. [110], Zhou et al. [27], we employ the cross-entropy method (CEM)
for optimization. Specifically, we minimize the mean squared error (MSE) between the predicted
state ŝt+k and the target state sg , given an action sequence at, . . . ,at+k−1 and the learned transition
dynamics ps:

LMPC = ∥st+k − sg∥22 . (A6)

At each iteration, we sample a population of action sequences from a Gaussian distribution and use
the MSE loss to update the mean and covariance of the distribution via stochastic gradient descent.

For RL policies, we train the policy πl(at | st, sg,ug) using PPO [57], similarly to the setting in [37].

High-level Policy For high-level policy, we use the diversity measurement, for each object i, we
have this intrinsic motivation to sample the j that has not been interacted. Hence, for an object set
S = {s1, s2, . . . , sN}, at each time step t, we fix one object si and sample a subset St ⊆ S based on
the diversity reward rdiv introduced that prioritizes diversity and avoids already-interacted objects.
We learn this policy via PPO, using the same way as those in SKILD [106] but with the additional
task reward.

D Full Results

D.1 Full Results on World Modeling

Interaction Learning Table A1 gives the full results on the interaction learning. We use Structural
Hamming Distance (SHD) to verify the effectiveness of capturing interactions. SHD is a standard
metric widely adopted in the relational inference and causal discovery literature [111, 112, 53].
Results show that the variational method with a categorical distribution as the prior achieves the
best performance, while the variational approach with codebook latents performs second-best across
domains. Conditional independence testing (CIT) also yields comparable results to these two methods.
In contrast, relying solely on attention-based mechanisms is not robust across all settings, indicating
that directly inferring interactions from the attention matrix is insufficient. For precise interaction
modeling, the relational inference modules are necessary.

6



Algorithm 1 FIOC-WM: Offline World Model and Online Policy Learning (Simplified)
Require: Offline dataset D = {(ot, at, rt)}; pre-trained visual encoder ppre; inference model qϕ;

transition model ps; reward model pr; interaction model pu; high-level policy πh; interaction
(low-level) policy πℓ

Ensure: Policies πh, πℓ and world model components

1: Stage 1: Offline World-Model Learning
2: for all (ot, at, rt) ∈ D do
3: ôt ← ppre(ot) ▷ Encode observation with pre-trained vision model
4: sit ← qϕ(s

i
t | ôt) ▷ Infer object-centric latent state

5: Factorize sit into sit =
(
dit, c

i
)

▷ dynamics- and attribute-level factors
6: Learn reward pr(rt | st, at)
7: Learn transition ps(st+1 | st, at, Gt)
8: Infer interaction graphs Gt ∼ pu(Gt | st)
9: Train interaction policy πℓ(at | st, Gg

t )
10: end for

11: Stage 2: Online Policy Learning
12: repeat ▷ For each environment rollout episode
13: Observe environment steps; encode current state st using world model
14: Gg

t ∼ πh(Gg
t | st) ▷ Select goal/target interaction graph (object-centric subgoal)

15: at ∼ πℓ(at | st, Gg
t ) ▷ Sample low-level action conditioned on interaction

16: Execute at; observe rt, ot+1; update st+1

17: Update policies πh, πℓ with collected data
18: until episode terminates

Envs Variational (Cat.) Variational (Code.) CIT Attention-based

Single-Task
3 objects 0.09±0.04 0.08±0.03 0.06±0.02 0.12±0.04

5 objects 0.12±0.07 0.15±0.09 0.13±0.06 0.20±0.07

7 objects 0.16±0.10 0.19±0.08 0.21±0.07 0.29±0.12

9 objects 0.27±0.10 0.31±0.09 0.35±0.15 0.41±0.14

Attri. Gen.
3 objects 0.08±0.02 0.11±0.05 0.08±0.03 0.15±0.02

5 objects 0.14±0.06 0.17±0.11 0.13±0.04 0.22±0.11

7 objects 0.17±0.12 0.22±0.13 0.25±0.06 0.34±0.15

9 objects 0.30±0.10 0.36±0.14 0.35±0.19 0.50±0.18

Comp. Gen.
4 objects 0.12±0.06 0.13±0.04 0.09±0.03 0.15±0.06

6 objects 0.19±0.09 0.20±0.10 0.19±0.07 0.29±0.11

8 objects 0.23±0.13 0.28±0.12 0.5±0.09 0.35±0.14

10 objects 0.32±0.14 0.37±0.12 0.39±0.13 0.48±0.16

Table A1: Full results on the normalized SHD of FIOC with different interaction learning models in
predicting the ground truth interactions in Sprites World Environment. The bold values indicate the
best-performing method, and the underlined ones are the second-best.

Reconstruction Table A3 presents the complete LPIPS results across domains. LPIPS [83] (lower
is better) evaluates the comparison between the generated frames with ground-truth observations at
both the pixel and perceptual levels. Our FIOC model achieves the best performance in most cases,
particularly in environments with rich interactions such as Sprites, Fetch, and Libero. In other cases
where DINO-WM performs best, our model remains competitive, with LPIPS scores within 0.05 of
DINO-WM.

D.2 Policy Learning

Table A2 gives the full results on single-task learning, attribute generalization, compositional general-
ization, and skill generalization in policy learning tasks. The learning curves of single task learning
are given in Fig. A3. For some simpler tasks in these single-task learning scenarios, existing baselines,
particularly EIT and TD-MPC2, can achieve strong performance, for example, on Fetch. However,
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Figure A3: The policy learning curves of single task learning scenarios, (a). Gym Fetch Task 1; (b)
Gym Fetch Task 2; (c) Franka Kitchen Task 1; (d) Franka Kitchen Task 2; (e). i-Gibson Task 1; (f).
i-Gibson Task 2; (g). Libero Task 1; (h). Libero Task 2.

our method achieves the best performance in 5 out of 8 tasks, second-best in 1 task, and comparable
performance (all > 90% success rate) on the remaining 2 tasks, which are relatively simple.

D.3 Full Ablations

Online World Model Fine-tuning For computational efficiency and because our experiments
indicate that an offline-trained world model is already robust given high-quality offline data, we do
not update the world model during the online stage by default. This is an empirical choice rather than
a limitation; online updates are feasible. To assess the impact, we perform an ablation comparing
performance with and without online world-model updates. Results are shown in Table A4.
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Envs FIOC Dreamer-V3 EIT TD-MPC2

Single-Task
Gym Fetch (Task 1) 0.95±0.03 0.98±0.02 0.93±0.05 0.97±0.02

Gym Fetch (Task 2) 0.98±0.01 0.97±0.02 0.95±0.02 0.96±0.02

Franka Kitchen (Task 1) 0.82±0.04 0.75±0.06 0.69±0.07 0.83±0.03

Franka Kitchen (Task 2) 0.79±0.06 0.68±0.09 0.75±0.08 0.73±0.04

i-Gibson (Task 1) 0.76±0.12 0.69±0.19 0.74±0.14 0.72±0.12

i-Gibson (Task 2) 0.72±0.10 0.68±0.19 0.74±0.14 0.72±0.12

Libero (Task 1) 0.81±0.11 0.65±0.14 0.78±0.09 0.76±0.14

Libero (Task 2) 0.74±0.09 0.58±0.16 0.69±0.07 0.65±0.12

Attri. Gen.
Push & Switch 0.91±0.05 0.90±0.07 0.92±0.04 0.95±0.02

i-Gibson 0.79±0.13 0.62±0.16 0.70±0.14 0.65±0.15

Libero 0.76±0.14 0.59±0.18 0.73±0.12 0.69±0.18

Comp. Gen.
Push & Switch 0.86±0.10 0.81±0.12 0.83±0.02 0.79±0.08

Libero 0.70±0.09 0.58±0.12 0.65±0.08 0.63±0.14

Skill Gen.
Push & Switch 0.81±0.06 0.66±0.10 0.73±0.08 0.65±0.13

Franka Kitchen 0.73±0.06 0.59±0.09 0.65±0.18 0.62±0.08

Table A2: Policy learning (success rate) of world model in Gym Fetch, Franka Kitchen, i-Gibson,
and Libero tasks.

Environment Dreamer-V3 TD-MPC2 EIT DINO-WM FIOC

Sprites 0.026 0.019 0.006 0.012 0.004
Fetch 0.042 0.039 0.026 0.009 0.007
Kitchen 0.102 0.123 0.096 0.035 0.038
i-Gbison 0.135 0.092 0.085 0.063 0.068
Libero 0.089 0.061 0.040 0.035 0.027

Table A3: Comparison of world models on LPIPS metrics.

Using pre-trained embeddings for Dreamer and TD-MPC Specifically, we adapted both base-
lines to use DINO embeddings as input:

• For Dreamer-V3, we replaced the pixel encoder with a frozen DINO encoder and used
DINO-WM’s decoder to reconstruct the observations.

• For TD-MPC2, we used DINO features to predict actions, terminal values, and rewards via
its original decoding heads.

The updated results are shown in Table A5. The results indicate that the pre-trained DINO features
improves both Dreamer-V3 and TD-MPC2 performance in some cases, but they still under-perform
compared to FIOC. This suggests that while strong visual representations help, our proposed factor-
ization (Stage 1) and policy learning (Stage 2) are key contributors to the performance gain.

Generalize to more objects To assess the model’s ability to generalize to a greater number of
objects, we train FIOC on environments containing three objects and evaluate on tasks with six
and eight objects while keeping the world model fixed in Fetch Env. As shown in Table A6, FIOC
achieves strong generalization performance, comparable to or better than baselines such as EIT, and
it consistently outperforms Dreamer-V3 and TD-MPC2 under distribution shifts in object count.

Visualization Rollouts Some visualization rollouts are found at the project homepage: https:
//sites.google.com/view/fioc-wm.
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Envs FIOC (w/o Online Tuning) FIOC (w/ Online Tuning)
Gym Fetch (Task 1) 0.95± 0.03 0.96± 0.02
Gym Fetch (Task 2) 0.98± 0.01 0.98± 0.01
Franka Kitchen (Task 1) 0.82± 0.04 0.79± 0.06
Franka Kitchen (Task 2) 0.79± 0.06 0.82± 0.05
i-Gibson (Task 1) 0.76± 0.12 0.78± 0.14
i-Gibson (Task 2) 0.72± 0.10 0.75± 0.06
Libero (Task 1) 0.81± 0.11 0.83± 0.08
Libero (Task 2) 0.74± 0.09 0.71± 0.06
Push & Switch (Attri. Gen.) 0.91± 0.05 0.95± 0.08
i-Gibson (Attri. Gen.) 0.79± 0.13 0.81± 0.15
Libero (Attri. Gen.) 0.76± 0.14 0.68± 0.09
Push & Switch (Comp. Gen.) 0.86± 0.10 0.82± 0.12
Libero (Comp. Gen.) 0.70± 0.09 0.74± 0.08
Push & Switch (Skill Gen.) 0.81± 0.06 0.82± 0.08
Franka Kitchen (Skill Gen.) 0.73± 0.06 0.72± 0.07

Table A4: Performance comparison of FIOC with and without online world model tuning across
different environments. Values are mean ± standard deviation.

Envs FIOC Dreamer-V3 (DINO/original) TD-MPC2 (DINO/original)
Kitchen 0.82 0.77 / 0.75 0.79 / 0.83
i-Gibson 0.76 0.71 / 0.69 0.73 / 0.72
Libero 0.81 0.69 / 0.65 0.74 / 0.76

Table A5: Comparison of FIOC with baselines using DINO features as input. Values indicate task
success rates.

E Network Architectures and Hyper-parameters

E.1 World Models

Learning the Observation Functions For DINO-v2, we use ViT-Base for all cases. For R3M, we
use ResNet-50 as backbones for all cases. For slot attention parameters, all settings remain consistent.
Following VideoSAUR [47], we transform the original features using a two-layer MLP with an output
dimension equal to the slot dimension. The slot attention module is initialized with randomly sampled
slots to group the first-frame features. For subsequent frames, we initialize the slot attention module
with the slots from the previous frame, which are additionally transformed using a predictor module
with a GRU recurrent unit in the slot attention grouping.

For the VAE used to learn latent states, we employ a two-layer MLP with a hidden size of 256. The
specific hyperparameters for different environments are detailed in Table A7.

Learning the Regime Variables For variational masks with a categorical distribution, we directly
adopt the hyperparameters and network design from ACD [52]. However, unlike ACD, we use a
GRU as the encoder, where the MLP has a hidden size of 256 with 3 layers. For the codebook-based
approach, we use an MLP with 3 layers. The hidden layer size is set to 128 for Sprites-World, while
for other environments, it is 256. The number of the centered codes are 16 for Sprites World, 8 for
Gym Fetch, and 10 for others. All training hyperparameters follow those specified in [52] and [53].

For conditional independence testing, the threshold hyperparameters are set as follows: 0.02 for
Sprites-World, 0.15 for Gym-Fetch, and 0.05 for other environments. All remaining hyperparameters
are shared across environments.

Learning the State Transitions The state transitions are modeled using MLP layers with different
configurations across environments. Specifically, we use a 2-layer MLP with hidden dimensionality
32 and SiLU activation for Sprites-World, a 2-layer MLP with hidden dimensionality 64 for Gym-
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Envs FIOC (Ours) Dreamer-V3 EIT TD-MPC2
3 objects 0.93 0.96 0.94 0.97
6 objects 0.81 0.54 0.77 0.62
8 objects 0.70 0.44 0.62 0.53

Table A6: Generalization to increased object count. Models are trained with 3 objects and evaluated
with 6 and 8 objects using a fixed world model. FIOC shows strong generalization, matching or
exceeding EIT and outperforming Dreamer-V3 and TD-MPC2 under distribution shifts in object
count.

Parameter Values (shared if not specified)
Used VIT for DINO Base
Used ResNet for R3M ResNet-50
Patch Size 16
Feature Dimension 768
Gradient Norm Clip 0.05
Image Crop/Resize 64 (SpritesWorld), 224 (others)
Slots Number of objects + 2
Iterations for Clustering 3
Slot Dimension 32 (SpritesWorld), 64 (Gym-Fetch), 128 (others)
Latent Dimensions for ss, sc 8, 6 (SpritesWorld); 10, 8 (Gym-Fetch); 16, 12 (others)

Table A7: Hyperparameters used in learning observation functions.

Fetch, and a 3-layer MLP with hidden dimensionality 128 for other environments. The one-step
prediction GRU layer consists of 3 MLP layers, with hidden dimensionality 128 for Sprites-World
and 256 for i-Gibson, Gym-Fetch, Libero, and Franka Kitchen. The detailed settings are provided in
Table A8. All with the learning rate 3e− 4.

Environment MLP Layers (State Transition) GRU Layers (One-Step Prediction)
Sprites-World 2 layers, 32 hidden 3 layers, 128 hidden
Gym-Fetch 2 layers, 64 hidden 3 layers, 256 hidden
i-Gibson 3 layers, 128 hidden 3 layers, 256 hidden
Libero 3 layers, 128 hidden 3 layers, 256 hidden
Franka Kitchen 3 layers, 128 hidden 3 layers, 256 hidden

Table A8: Hyperparameters for state transition modeling across different environments.

Offline RL For offline RL experiments, we use the same hyper-parameters as the online ones.
Same as DINO-WM [27], we do not use expert demonstrations and inverse dynamics models to learn
the mapping p(at|st, st+1).

Others For offline training, we collect 3000 episodes with random actions for Sprites-World. For
all other environments, we collect 2000 episodes using pre-trained policies from Dreamer-v3. The
hyperparameters for the loss terms are set as {α, β, γ, η} = {1, 0.05, 0.1, 0.2}, and the learning rate
is set to 3× 10−4. The detailed data collection settings are provided in Table A9.

E.2 Policy Learning

Low-Level Policy For MPC, we use gradient descent with a learning rate of 5× 10−5. For those
using PPO, we set the learning rate to 3 × 10−4 with a clip ratio of 0.1. The MLP architecture
consists of hidden sizes [256, 256] for Gym-Fetch, while for other environments, we use [512, 512].
Generalized Advantage Estimation (GAE) is set to 0.95 for all environments, and the entropy
coefficient is 0.1.
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Environment Number of Episodes Action Strategy

Sprites-World 3000 Random Actions
Gym-Fetch, i-Gibson, Libero, Franka Kitchen 2000 Pre-trained Policies (Dreamer-v3)

Table A9: Offline training settings across different environments.

High-Level Policy For high-level policy learning, we use PPO with a learning rate of 1×10−4. The
MLP architecture follows the same structure as the low-level policy, with hidden sizes of [256, 256]
for Gym-Fetch and [512, 512] for other environments. The batch size is 1024 for all.

E.3 Computes and Training Time

Compute used for training the FIOC-WM:

• For Sprites-World, we use 3 hours on 1x NVIDIA A100;
• For Fetch, we use 8 hours on 6x NVIDIA 4090;
• For i-Gibson, we use 9 hours on 6x NVIDIA 4090;
• For Libero-object, we use 8 hours on 1x NVIDIA A100;
• For Kitchen, we use 6 hours on 1x NVIDIA A100.

F Task Details

(a) (b) (e)(c) (d)

(a) (b)

(e)

(c)

(d)

Figure A4: visualization of used benchmarks. From left to right: (a). Sprites-World; (b). OpenAI-
Gym Fetch; (c). Franka Kitchen; (d). i-Gibson; and (e). Libero.

OpenAI Gym Fetch [78] is an environment featuring a Fetch robotic arm capable of manipulating
cubes and switches. The tasks involve completing sub-tasks that require pushing or switching a
varying number of objects. For single-task learning, we consider 2-push (Task 1) and 2-switch
(Task 2), each with 2 million and 1.5 million training steps. For the attribute generalization task,
we consider changing the color of the objects. For the compositional generalization task, we add
one object to the push task, making it becoming the 3-push task. For skill one, we consider training
both 2-push and 2-switch and compose them together for 2-push + 3-switch. All generalization tasks
are evaluated with zero-shot generalization (for the skill generalization, we let the agent know the
compositional task structure by providing separate rewards).

Franka-kitchen [40] is the environment where the 7-DoF Franka Emika Panda arm needs to perform
tasks in the kitchen setup. Here we consider several sequential sub-tasks, such as turning on the
microwave, moving the kettle, turning on the stove, and turning on the light. For single-task learning,
we consider these two tasks:

• Task-1 is Turn on the microwave - Move the kettle - Turn on the stove - Turn on the light;
• Task-2 is Turn on the microwave - Turn on the light - Slide the cabinet to the right - Open

the cabinet.

All tasks are with 2M training steps. The skill generalization one is Turn on the microwave - Move
the kettle - Slide the cabinet to the right - Open the cabinet, evaluating with 0.2M training (10% as
the base tasks).

i-Gibson [82] is a realistic environment with a simulated Fetch robot operating in everyday household
tasks with rich objects and interactions. Similar to the setting in [37], we consider the tasks that
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related to the peach object. The peach can be washed or cut, adding complexity to the tasks. The
Task-1 is grasping the peach, Task-2 is cutting it with a knife. Each is with 20M steps to train. For
attribute generalization, we change both the color and the size of the peach and follow the Task-1
setting with 1M adaptation steps.

Libero [80] is a benchmark designed for lifelong robot learning and imitation learning in household
and tabletop environments. We focus on tasks randomly selected from the task library within libero-
object. Task 1 and Task 2 involve picking two different sets of daily objects (boxes, cubes, and
glasses) and moving them to a designated basket. The compositional generalization setting introduces
objects with different colors and requires picking another randomly selected set of objects and placing
them in the basket. The number of objects to manipulate is 5 for Task 1 and Task 2, while the
generalization setting includes 7 objects. Number of training steps are 10M for the base tasks and 1M
for the generalization task.
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