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Abstract001

We focus on the problem of fusing two or more002
heterogeneous large language models (LLMs)003
to leverage their complementary strengths. One004
of the challenges of model fusion is high com-005
putational load, specifically in fine-tuning or006
aligning vocabularies. To address this, we007
propose Cool-Fusion, a simple yet effective008
approach that fuses the knowledge of source009
LLMs, which does not require training. Unlike010
ensemble methods, Cool-Fusion is applicable011
to any set of source LLMs that have different012
vocabularies. To overcome the vocabulary dis-013
crepancies among LLMs, we ensemble LLMs014
on text level, allowing them to rerank the gen-015
erated texts by each other with different granu-016
larities. Extensive experiments have been con-017
ducted across a variety of benchmark datasets.018
On GSM8K, Cool-Fusion increases accuracy019
from three strong source LLMs by a significant020
margin of 17.4%. We will make our source021
code in the attachment publicly available.022

1 Introduction023

Different large language models (LLMs) exhibit024

diverse strengths and weaknesses due to various025

factors, such as datasets used for pre-training and026

fine-tuning, architectures, optimizers, hyperparam-027

eters, and training methodologies. Recent work028

(Jiang et al., 2023) has found that it is possible to029

develop fusion methods to harness the complemen-030

tary potentials of the LLMs for improved general or031

task-specific performance, such as higher accuracy032

and better alignment with human preferences.033

However, conventional ensemble approaches re-034

quire the source LLMs to have the same token035

vocabulary, while weight merging (Wortsman et al.,036

2022; Jolicoeur-Martineau et al., 2024) is further037

limited to models with identical architectures. Al-038

though model fusion (Li et al., 2023a) has attracted039

increasing interest, it faces a series of challenges,040

including the formidable computational costs asso-041

ciated with training (Bansal et al., 2024; Xu et al.,042

2024), fine-tuning (Jiang et al., 2023), distillation 043

(Taori et al., 2023; Wan et al., 2024a,b), and the 044

combinatorial optimization needed for vocabulary 045

alignment (Wan et al., 2024a,b; Fu et al., 2023; Xu 046

et al., 2024). Therefore, existing fusion approaches 047

are daunting for researchers and practitioners who 048

cannot afford to train or fine-tuning LLMs, and 049

are unsuitable for application scenarios that require 050

rapid deployment. 051

Aiming for a general LLM fusion approach that 052

is applicable to any set of source LLMs with diverse 053

tokenizers, and is both cost-effective and fast to 054

deploy, we propose Cool-Fusion to fuse the knowl- 055

edge of heterogeneous LLMs without any training. 056

The core of our algorithm combines the source 057

LLMs to rerank text segments that they generate in- 058

dividually, rather than using the ensemble of LLMs 059

as token generators with their own sets of disjoint 060

vocabularies. In Cool-Fusion, we propose to fuse 061

knowledge at text segments of different granulari- 062

ties, and discuss their pros and cons. An overview 063

of Cool-Fusion is shown in Figure 1. In summary, 064

Cool-Fusion has the following properties: 065

• Simplicity: Cool-Fusion is simple both in con- 066

cept and for implementation. Unlike prior ap- 067

proaches, Cool-Fusion starts to generate texts 068

as soon as we have the source LLMs, since no 069

training of any type is required. Consequently, 070

we do not need to worry about the problems 071

associated with fine-tuning and training, such 072

as overfitting the training distribution, insuffi- 073

cient hyper-parameter tuning, or loss of gen- 074

eralization ability (Fu et al., 2023). 075

• Availability: Based only on pure inference, 076

Cool-Fusion can be accessed by a larger range 077

of budget-limited researchers and practition- 078

ers. 079

• Scalability: Cool-Fusion alternates between a 080

generation and an evaluation step. Each of the 081
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Figure 1: An illustration of Cool-Fusion. The TextGen component is illustrated in Figure 2.

#iteration 0 1 2 3 4 5 6 7 8 9 10
LLaMA-3 _not _the _only _ones _who _can _be _used _for _this _purpose
Phi-3 _trained _inherently _only _ones _that _can _be _used _for _this _purpose
LLaMA-3 _not _the _only _ones _who _have _been _affected _by _the _pandemic
Phi-3 _trained _on _vast _datasets _that _include _a _wide _variety _of _human

Table 1: A example of Cool-Fusion for 10 iterations following the example in Figure 1. The first two rows show the
text segments predicted by LLaMA-3 and Phi-3 jointly in Cool-Fusion, where the winning text segments are in bold.
We use underscores to represent whitespaces. For comparison, the last two rows are text segments predicted by
LLaMA-3 and Phi-3 individually.

two steps invoke the source LLMs indepen-082

dently, and small amount of texts and scores083

are gathered and scattered between the steps.084

Given k GPUs, Cool-Fusion is scalable to k085

source LLMs with constant delay.086

• Superior performance: Albeit being simple,087

Cool-Fusion also exhibits competitive perfor-088

mances over strong baselines, which are per-089

sistent across a wide range of challenging090

tasks.091

We evaluated extensively on greedy comple-092

tion benchmarks across various domains, including093

math (GSM8K, multilingual GSM, and MATH),094

and Q&A (CoQA, DROP, TriviaQA). We experi-095

mented on an array of open-source LLMs, includ-096

ing the most recent state-of-the-art LLMs, namely097

LLaMA-3 8B (Touvron et al., 2023), Phi-3 mini098

(et al, 2024), and GLM-4 9B (Zeng et al., 2023).099

Our results demonstrate that Cool-Fusion signifi-100

cantly outperforms the individual source LLMs as101

well as recent LLM fusion methods that require102

training. On the GSM8K dataset, Cool-Fusion103

increases the prediction accuracy from the best-104

performing source LLM LLaMA-3 8B by a signifi-105

cant margin of 17.4%.106

2 Cool-Fusion: Fuse LLMs without107

Fine-tuning108

Since the token vocabularies are usually different109

across LLMs, a token predicted by one LLM may110

not find a deterministic counterpart in another LLM.111

For instance, the common tokens between LLaMA-112

3 and Phi-3 account for only 6.4% of their total to- 113

kens, and those between Phi-3 and GLM-4 account 114

for only 7.5%. Prior approaches resort to heuristics 115

to find similar tokens across token vocabularies, 116

which introduces errors and requires heavy training 117

due to the combinatorial optimization complexity. 118

In ensemble approaches, the predicted distributions 119

on heterogeneous token vocabularies are first in- 120

dividually mapped into distributions on a shared 121

tokens-vocabulary, and the next jointly predicted 122

token from the shared vocabulary is the one that 123

has the largest sum of logit values from these dis- 124

tributions. Inspired by this, we ggeneralize the 125

element of predicting from a single token to pre- 126

dicting a short text segment containing one or more 127

tokens that can be commonly decoded by all het- 128

erogeneous tokenizers, and the criteria from the 129

sum of logit values to the averaged perplexities of 130

the text segment obtained from the LLMs. With 131

this new approach, we can avoid the computation 132

and inaccuracies associated with the mapping from 133

individual token vocabularies into a single shared 134

token vocabulary. 135

2.1 Overview of Cool-Fusion 136

A text generation task involves generating a con- 137

tinuation of a given context. Our approach can be 138

easily explained with a real running example, as 139

illustrated in Figure 1. Cool-Fusion features a text 140

generation loop, where a text segment is generated 141

at each iteration of the loop. In the example, we 142

fuse two source LLMs, LLaMA-3 8B and Phi-3 143

mini, with the input context text being “LLMs are”. 144

Each iteration in the text generation loop consists 145
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of three steps: (1) each source LLM individually146

generates a text segment, (2) each source LLM147

computes a perplexity for every text segment gener-148

ated in step 1, (3) the text segment with the largest149

averaged perplexity is selected as the jointly pre-150

dicted text segment, which is then broadcast to up-151

date all source LLMs. Next, we will discuss more152

details for each step, paired with the illustration in153

Figure 1.154

In step 1 of each iteration, a text generation com-155

ponent (TextGen) in each source LLM is respon-156

sible for generating text segments. Different im-157

plementations of TextGen may generate text seg-158

ments of different lengths, ranging from minimal159

decodable text segments consisting of one or a few160

tokens to phrases containing several words. We161

will discuss two implementation options in Sec-162

tions 2.2 and 2.3. In Figure 1, the text segments163

generated by the two TextGen components are “not”164

and “trained”, respectively.165

In step 2, each text segment is sent to all LLMs to166

obtain a perplexity using the key-value cache from167

the previous iteration, specifically the key-value168

cache before the generation of the text segment in169

the current iteration. Finally, the perplexities of170

each text segment are gathered from every LLM171

and are averaged to evaluate the text segment. In172

Figure 1, the text segment “not” is first encoded by173

the tokenizers of LLaMA-3 8B and Phi-3 mini into174

token sequences [539,] and [451,]. These two token175

sequences are forwarded through their correspond-176

ing LLMs, resulting in two perplexities, 16.6 and177

15.3, for text segment “not”, which are finally aver-178

aged to 15.9. For better efficiency in this step, we179

forward all text segments, i.e. “not” and “trained”,180

together in a batch through all LLMs.181

In step 3, the winner among the text segments182

is selected based on their average perplexity com-183

puted in step 2. In Figure 1, the winner is “not”,184

whose average perplexity of 15.9 is better (smaller)185

than that of “trained”, which is 152.2. We justify186

the adoption of average perplexity with two per-187

spectives: the ensemble perspective and the critic188

perspective. From the ensemble perspective, the189

average perplexity is aligned with the cross-entropy190

objective of the ensemble of the LLMs. From the191

critic perspective, the LLMs leverage their comple-192

mentary critical abilities to detect non-factual text193

segments by giving them high perplexities. Finally,194

the winning text segment is forwarded through all195

LLMs, except for the LLM that generated the win-196

ning text segment, to update their states before197
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Figure 2: A contrived example illustrates our aligned
text segments generation. In this example, the gener-
ated token sequence from LLaMA is first decoded into
text, and then encoded and decoded by the tokenizers of
two source LLMs into text segments: [“not”, “the”] and
[“no”, “t”, “the”], respectively. The aligned text segment
“not” ends at the first common decodable boundary of
all tokenizers, which helps to reduce biases in perplex-
ity assessment due to the uneven text segment lengths
across the tokenizers.

entering the next iteration. The winning text seg- 198

ment selected in our approach may not be optimal, 199

and a natural extension for improved accuracy is to 200

let each LLM generates its top-k text segments in 201

step 1. 202

Table 1 shows the running results of our Cool- 203

Fusion following the example in Figure 1 with a 204

side-by-side comparison of the generation from 205

the two source LLMs. As we can see from this 206

example, the text generated by Cool-Fusion is sel- 207

dom identical to that of its source LLM, since the 208

divergence accumulates from the different text seg- 209

ment in each iteration. It seems that shorter text 210

segments can result in more flexibility and lower 211

perplexity; however, this is not necessarily the case. 212

We will present two options for the selection of text 213

segment length in Sections 2.2 and 2.3. 214

On the other extreme, the entire continuation can 215

be used as a text segment, and sentence-level per- 216

plexity is employed to select (rerank) the the best 217

continuation. In our Cool-Fusion approach, we can 218

simultaneously employ an iterative fine-grained 219

text segment selection and a coarse-grained sen- 220

tence level reranking at the same time with almost 221

no additional overhead. We let each source LLM 222

independently predict a continuation segment in 223

the same batch as each fine-grained text segment, 224

with an additional overhead only on packing their 225

key-value caches together. Then, we obtain k in- 226
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Name Model ID Parameters Vocab size Tokenizer category
LLaMA-3 (Touvron et al., 2023) meta-llama/Meta-Llama-3-8B-Instruct 8B 128,256 LLaMA-3
MPT (Team, 2023) mosaicml/mpt-7b-instruct 7B 50,277 LLaMA-3
LLaMA-2 (Touvron et al., 2023) meta-llama/Llama-2-7b-chat-hf 7B 32,000 LLaMA-2
Phi-3 (et al, 2024) microsoft/Phi-3-mini-128k-instruct 3.8B 32,038 LLaMA-2
OpenLLaMA (Geng and Liu, May 2023) m-a-p/OpenLLaMA-Reproduce 7B 32,000 LLaMA-2
GLM-4 (GLM, 2024) THUDM/glm-4-9b-chat 9B 151,343 OTHER
ChatGLM-3 (Zeng et al., 2023) THUDM/chatglm3-6b 6B 64,796 OTHER
ChatGLM-2 (Zeng et al., 2023) THUDM/chatglm2-6b 6B 64,787 OTHER
Baichuan2 (Baichuan., 2023) Baichuan2-7B-Chat 7B 125,696 OTHER

Table 2: Source LLMs used in our experiments are divided into three categories in the last columns according to
how to obtain their shortest text segments.

dividual continuations in addition to a jointly pre-227

dicted continuation. Our experiment results show228

that reranking these k+1 continuations on their av-229

erage perplexities can lead to substantial improve-230

ments over using the joint prediction alone.231

2.2 Shortest Text Segment232

We will discuss two implementations of the233

TextGen component, as shown in Figure 2. We234

prefer shorter text segments since they suggest235

finer-grained token selection and are therefore more236

likely to obtain a similar token sequence from an237

optimal token level ensemble approach. In this sub-238

section, we will demonstrate how to generate the239

shortest possible text segments.240

We define the shortest text segment as a text241

that can be decoded from the shortest token se-242

quence generated by a greedy decoding process.243

Not all token sequences are decodable. For in-244

stance, LLaMA-2 uses three Unicode bytes as the245

tokens to encode a single Chinese character, so the246

first or the first two of these three tokens cannot be247

decoded.248

When decoding a token sequence into text, some249

tokenizers return additional information about the250

sequence of words in the text as well as the tokens251

that decode each of these words. In this case, we252

adopt the words as our shortest text segments since253

they are the minimal semantic units underlying a254

token sequence, although sometimes a word cannot255

be further divided into subwords that are decodable256

from tokens.257

Specifically, tokenizers derived from the258

LLaMA-3 tokenizer provide a word_ids function259

that returns the IDs of the words in each decoded260

text, and a word_to_tokens function that returns261

the indexes of the first and last tokens for each262

word id. Tokenizers derived from the LLaMA-2263

tokenizer provide an offsets property for each264

token, which contains the starting and ending char-265

acter indexes in the text for the word decoded from266

the token.267

For tokenizers that return decoded text without 268

information about words, we derive shortest text 269

segments as follows. Iteratively, we build a token 270

sequence that initially contains only the next pre- 271

dicted tokens. Subsequently, a new next token is 272

appended to the token sequence in each new itera- 273

tion. In some iterations, if we can decode the cur- 274

rent token sequence into a text that can be encoded 275

back into the same token sequence, the decoded 276

text is the shortest decodable text segment we need. 277

Table 2 lists the LLMs that we will use in our 278

experiments and their categories according to the 279

above discussion. 280

2.3 Aligned Text Segments 281

In this subsection, we propose a better type of text 282

segment to reduce the bias in the average perplexity 283

used to select the best text segments generated by 284

the source LLMs. 285

Different tokenizers may produce their shortest 286

text segments of varying lengths. For instance, 287

the text “Multi-tasking” is divided by LLaMA-3 288

and LLaMA-2 tokenizers into words [“Multi”, “- 289

tasking”] and [“Multi-tasking”], respectively. 290

On the other hand, perplexity, as a measure of 291

how well a given model generates a continuation 292

given a context, is the most widely used metric for 293

evaluating language models due to simplicity and 294

its alignment to the cross-entropy (CE) loss used 295

for the next-token prediction objective. Since the 296

latter confers multi-step reasoning ability to LLMs, 297

we believe that perplexity is not only a measure of 298

language fluency but also an indicator of inference 299

correctness to some extent. The perplexity (PPL) 300

of a token sequence s is proportional to the average 301

of the logits of the tokens: 302

PPLu(s) = exp(
1

|s|
∑
si∈s

− log pu(si)), (1) 303

where log pu(si) is the logit output of the LM u for 304

each token si. 305
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Metric LLaMA-3 Phi-3 Cool2 GLM-4 Rerank3 Cool−align Cool Cool+R
Avg. perplexity 1.48 1.35 - 1.46 - - 1.29 -
Accuracy 0.6914 0.6831 0.7233 0.6338 0.7779 0.7445 0.7468 0.812

Table 3: Averaged perplexities and accuracies in the GSM8K datasets (Section 3.4).

However, as a measure of uncertainty,306

− log pu(si) tends to be larger at the first token of307

each word. This is comparable to the observation308

on larger scales that the perplexity of the first309

word in a sentence is usually larger than those310

of the words following it, and that the perplexity311

of the first sentence in a paragraph is larger than312

those of the sentences following it. Here is a313

concrete example: in the LLaMA-3 8B model, the314

− log pu(si)’s values for the three tokens [“Multi”,315

“-task”, “ing”] are -2.66, -9.13, -14.69, respectively.316

Clearly, the model is more uncertain about the317

first token, and becomes more confident about the318

second token “-task” given the first token being319

“Multi”.320

Therefore, using perplexity as an assessment321

will bias towards longer text segments, and to-322

wards LLMs with tokenizers that generate text seg-323

ments of larger average lengths. Suppose both324

LLaMA-3 and LLaMA-2 will predict the word325

“Multi-tasking”, and their next text segments should326

be tied. Based on perplexity, however, the text seg-327

ment “Multi-” from LLaMA-3 (-2.66) is regarded328

as worse than “Multi-tasking” from LLaMA-2329

((−2.66− 9.13− 14.69)/3 = −8.83).330

To mitigate this problem, we must reduce the331

discrepancies between the average lengths of the332

text segments generated by different source LLMs.333

To this end, we define a new aligned text segment334

for each source LLM as the shortest text segment335

that is generated by the LLM and is decodable by336

the tokenizers of all source LLMs.337

2.4 Incremental Encoding & Decoding338

Both shortest text segments and aligned text seg-339

ments require more frequent invocations of tokeniz-340

ers than conventional decoding. In this subsection,341

we investigate how to make decoding and encoding342

more efficient. First, let us examine the problem343

that not all tokenizers encode and decode incremen-344

tally, that is, the next text cannot be decoded solely345

from the next tokens.346

It is expected that the text input and the tokenized347

sequence are reversibly convertible. For multilin-348

gual tokenizers, whitespace is treated as a normal349

symbol and preserved in the segmented tokens, al-350

lowing us to de-tokenize text without relying on 351

language-specific rules such as: there is whites- 352

pace between two English words, but not between 353

Chinese and Japanese words. 354

An instance of non-incremental encoding and de- 355

coding is the LLaMA-2 tokenizer, whose encode 356

and decode functions are context-dependent and 357

require complete token sequences or text to work 358

correctly. For example, the decode function in 359

LLaMA-2 decodes the token [839] into “If” or “ If” 360

depending on whether or not the token is the first 361

token in the token sequence. Therefore, we cannot 362

encode a new token in isolation, and the conven- 363

tional method to decode a few new tokens is to 364

encode the concatenation of all previous tokens 365

and the new tokens, which makes it inefficient for 366

long sequences. 367

To enable incremental decoding, we only 368

prepend the tokens belonging to the previous k 369

decoded words to the new tokens, and we remove 370

these k words from the decoded text after decod- 371

ing. We handle incremental encoding similarly 372

by prepending k decoded words to new text to be 373

encode. Thus, we can encode and decode with con- 374

stant computational complexity regardless of the 375

context length. We empirically found that k = 4 376

ensures correctness for both incremental encoding 377

and decoding. 378

3 Experiments 379

Our experiments are conducted in a challenging 380

scenario for LLM fusion, where the tokenizers of 381

the source LLMs have very different token vocabu- 382

laries and define text segments differently. A wide 383

range of datasets is used to make our evaluations 384

comprehensive. The questions that we want to 385

answer from our experiments include: How does 386

Cool-Fusion’s performance compare with recent 387

work? What are the contributions of its individual 388

components, such as fine-grained perplexity-based 389

text segment selection, shortest text segments, and 390

aligned text segments? Is it a general method that 391

performs well in various domains? Can it improve 392

multilingual performance? Does its performance 393

persist when fusing different LLMs? 394
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System GSM8K
LLaMA2-7B-Chat 24.64
ChatGLM2-6B 30.78
Baichuan2-7B-Chat 29.95
InternLM-7B-Chat 32.30
TigerBot-7B-Chat-V3 27.29
Vicuna-7B-V1.5 18.88
ChineseAlpaca2-7B 13.12
MBR (Farinhas and et al., 2023) 36.47(+4.17)
PairRanker (Chen et al., 2023) 39.58(+7.28)
LLM-Blender (Jiang et al., 2023) 34.80(+2.50)
EVA (Xu et al., 2024) 42.91(+10.61)
LLaMA2-7B-Chat 19.3
ChatGLM2-6B 25.9
Baichuan2-7B-Chat 26.9
Cool (training-free, 3 source LLMs) 33.5 (+6.6)

Table 4: We compare our results with recent model
fusion algorithms that use training. Data in the first two
blocks are from (Xu et al., 2024), and those in the last
two blocks are our results. Please note that this is not
an apple-to-apple comparison: (1) we are comparing
a training-free method to those that require different
types of training, (2) the results of our Cool-Fusion are
based on fusing three source LLMs due to our resource
limitations, and (3) the scores of our source LLMs are
on average more than 4 points lower than those reported
in (Xu et al., 2024) due to differences in experimental
settings.

3.1 Settings and Datasets395

We conduct experiments with several recent state-396

of-the-art open-source LLMs as our source LLMs,397

as listed in Table 2.398

To assess the performance of Cool-Fusion, we399

conduct experiments using the LM-Evaluation-400

Harness (Gao et al., 2023), a benchmark framework401

designed to evaluate LLMs’ few-shot capabilities402

across various domains. We use its default set-403

tings, except for employing 3-shot prompting in404

all experiments. We conducted experiments on the405

following greedy text generation tasks.406

CoQA (Reddy et al., 2019) requires understand-407

ing a text passage and answer a series of intercon-408

nected questions that appear in a conversation.409

DROP (Dua et al., 2019) is a crowdsourced,410

adversarially-created, 96k-question benchmark, in411

which a system must resolve references in a ques-412

tion, perhaps to multiple input positions, and per-413

form discrete operations over them (such as addi-414

tion, counting, or sorting).415

TriviaQA (Joshi et al., 2017) is challenging as416

the answers for a question may not be directly ob-417

tained by span prediction and the context is very418

long.419

MATH (Hendrycks et al., 2021) is a dataset of420

Dataset LLaMA-3 Phi-3 GLM-4 Cool
Algebra 0.2797 0.3783 0.1137 0.4330
Count-prob 0.1899 0.27 0.1983 0.2785
Prealgebra 0.3846 0.4294 0.2939 0.5718
Average 0.2847 0.3592 0.2020 0.4278

Table 5: Accuracies in the Math dataset.
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Figure 3: Accuracies in the Math dataset.

12,500 challenging competition mathematics prob- 421

lems. Each problem in MATH has a full step-by- 422

step answer derivations and explanations. 423

GSM8K (Cobbe et al., 2021) is a dataset of high 424

quality linguistically diverse grade school math 425

word problems, that take between 2 and 8 steps of 426

elementary calculations (+−×÷) to solve. 427

MGSM (Saparov and He, 2023) stands for Mul- 428

tilingual Grade School Math Benchmark, where 429

the same 250 problems from GSM8K are each 430

translated in 10 languages other than English. 431

3.2 Ablation study 432

We compare Cool-Fusion with several source 433

LLMs as baselines in Table 3. Cool2, which fuses 434

LLaMA-3 and Phi-3, immediately increases accu- 435

racy by 4.6% and 5.9%, respectively. Cool, which 436

fuses LLaMA-3, Phi-3, and GLM-4, further in- 437

creases the increments to 8.0%, 9.3%, and 17.8%, 438

respectively. This verifies the effectiveness of our 439

fine-grained perplexity-based reranking. 440

Cool−align is an implementation where each 441

LLM generates text segments that may not align 442

with those of other LMMs. Cool−align leads 443

to a 0.3% relative decrement, which shows that 444

Cool−align suffers from occasional bias in its per- 445

plexity assessment. 446

Rerank is a simple reranking method, where each 447

source LLM predicts a continuation individually, 448

and these continuations are reranked using their 449

average perplexities from all source LLMs. Rerank 450

turns out to be very effective and it obtains a 12.5% 451

increment over LLaMA-3. Cool+R is a combina- 452

6



Dataset LLaMA-3 Phi-3 Cool2 GLM-4 Cool
English 0.72 0.696 0.724 0.652 0.716
Chinese 0.504 0.472 0.504 0.58 0.588
Spanish 0.572 0.456 0.548 0.564 0.596
French 0.568 0.576 0.62 0.668 0.636
German 0.592 0.568 0.568 0.66 0.696
Russian 0.54 0.428 0.548 0.564 0.592
Average 0.5827 0.5327 0.5853 0.6147 0.6373

Table 6: Accuracies in the multilingual GSM datasets.

tion of Cool-Fusion and Rerank, which achieves a453

significant accuracy improvement of 17.4% over454

LLaMA-3 and 4.4% over Rerank.455

3.3 Compare with Other LLM Fusion456

Systems.457

We compare several existing fusion algorithms in458

Table 4 on GSM8K. Due to resource limitations,459

we can only fuse three LLMs in our experiments.460

It is difficult to make an apple-to-apple compar-461

ison. Due to differences in experimental setting,462

our scores for the source LLMs are, on average,463

4 points lower than those reported in (Xu et al.,464

2024). Table 4 shows that, although using only the465

three source LLMs and requiring no training, our466

Cool-Fusion reports a comparable score increment467

to existing methods that require different types of468

training to fuse all of the seven source LLMs.469

3.4 Cross-domain Performances470

Next, we examine the general performance of Cool-471

Fusion in three different domains, where not all of472

source LLMs used have good performance. On473

the Q&A datasets (Table 7 and Figure 5), LLaMA-474

3 performs best, but GLM-4 fails to follow the475

output format in our 3-shot prompts. On the other476

hand, in the multilingual GSM datasets (Table 6477

and Figure 4), the overall performance of GLM-4478

is the best, while Phi-3 does not perform well on479

multilingual data (et al, 2024). Finally, on the Math480

dataset (Table 5 and Figure 3), Phi-3 is the best481

performer, and the other two LLMs lag behind with482

significant gaps. It is therefore challenging to fuse483

LLMs in these datasets where the performance of484

the source LLMs differs and fluctuates dramatically.485

Cool-Fusion either outperforms all source LLMs or486

is comparable to the best performer and not being487

affected by the poorer ones, which shows that Cool-488

Fusion is a stable method for fusing source LLMs489

across different domains.490

Comparing the performance of Cool-Fusion in491

Table 3 with that in Table 5, we can see that Cool-492

Fusion performs much better on GSM8K than on493

multilingual GSM, although the latter is a trans-494

English

Chinese

Spanish

French

German

Russian

Average

0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75

model
LLaMA-3
Phi-3
Cool 2 
GLM-4
Cool

Figure 4: Accuracies in the multilingual GSM datasets.

lated subset of the former. This is probably because 495

multilingual GSM contains a larger proportion of 496

hard problems than in GSM8K. 497

3.5 Summary of Experiments 498

In this section, we verify the effectiveness of the 499

components in Cool-Fusion through ablation stud- 500

ies, which shows that our Cool-Fusion achieves 501

significant improvements over the source LLMs 502

on challenging tasks. It is able to achieve further 503

advances when combined with other approaches, 504

and persistently being better or comparable to the 505

best-performing source LLMs even when some of 506

them exhibit deteriorated performance. Our Cool- 507

Fusion shows comparable performance with recent 508

state-of-the-art LLM fusion methods that require 509

training. 510

4 Related Work 511

In this section, we summarize prior work on model 512

and LLM fusion. To the best of our knowledge, all 513

prior approaches for the fusion of heterogeneous 514

LLMs involve different types of training. 515

Reranking. Reranking methods first generate 516

multiple candidates via probabilistic sampling, or 517

by prompting LLMs. Then, different scoring meth- 518

ods (Ravaut et al., 2022; Jiang et al., 2023) are used 519

to assess the quality of these candidates. 520

Alignment. Alignment matches the units of pre- 521

diction from multiple models, i.e. the vocabularies 522

of different LLMs. However, finding the optimal 523

alignment is a combinatorial optimization problem. 524

Heuristics with specific metrics are used for re- 525

ducing the vocabulary differences between models. 526

Currently, alignment between vocabulary is still 527

an open problem. It is unclear if the alignment ap- 528

proaches (Mavromatis et al., 2024; Xu et al., 2024), 529

which assume lexically similar basic symbols (the 530
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Dataset LLaMA-3 Phi-3 Cool
F1
CoQA 0.8172 0.8091 0.8225
Drop 0.5277 0.4041 0.5504
Average 0.6724 0.6066 0.6865
EM
CoQA 0.6727 0.6848 0.6795
Drop 0.4268 0.2925 0.4539
TriviaQA 0.6121 0.4829 0.5927
Average 0.5705 0.4867 0.5754

Table 7: F1 & EM in the four Q&A datasets.

existence of a substantial amount of common to-531

kens across vocabularies) will work for Unicode vo-532

cabularies such as Chinese, where tokenizers share533

little portion of their basic symbols. For instance,534

Unicode bytes are the basic symbols in Phi-3 (et al,535

2024), while sub-word tokenization for Chinese536

(Si et al., 2023) uses glyph or pronunciation encod-537

ing. FuseLLM (Wan et al., 2024a), FuseChat (Wan538

et al., 2024b), and Specialized (Fu et al., 2023) use539

the edit-distance between tokens to map token dis-540

tributions of a source LLM to that of a target LLM.541

EVA (Xu et al., 2024) trains a vocabulary projec-542

tion matrix to map from each non-pivot model to543

the pivot model before ensembling their logits.544

Ensembling. Conventional ensembling ap-545

proaches require the source models to have the546

same token vocabulary, which can be partially re-547

laxed by vocabulary alignment (Mavromatis et al.,548

2024). LLM-Blender (Jiang et al., 2023) ensembles549

the outputs from several source LLMs by firstly550

using a fine-tuned ranking model to predict the551

top-ranked outputs, conditions on which, another552

fine-tuned Flan-T5-XL generates a fused output.553

EVA (Xu et al., 2024) proposes to ensemble LLMs554

via a pre-trained vocabulary alignment matrix to555

enable a fine-grained token-level ensemble at each556

generation step.557

Weight average. Researchers do not limit them-558

selves to predictions, e.g. logics. Model soups559

(Wortsman et al., 2022), which average the weights560

of multiple models fine-tuned with different hyper-561

parameter configurations, often improves accuracy562

and robustness. PAPA (Jolicoeur-Martineau et al.,563

2024) proposes to obtain a strong single model564

by training a population of models and averaging565

them once-in-a-while or slowly pushing them to-566

ward the average. These methods gain improved567

performance without accessing the training data,568

however, they require that the models to fuse share569

the same architecture.570

Knowledge distillation. Training LLMs from571

CoQA F1

Drop F1

CoQA EMDrop EM

TriviaQA EM

0 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

model
LLaMA-3
Phi-3
Cool

Figure 5: F1 & EM in the four Q&A datasets.

scratch comes at significant costs, Alpaca (Taori 572

et al., 2023) used text-davinci-003 to generate the 573

instruction data to distill a 7B LLaMA (Touvron 574

et al., 2023) model. Recent work (Wan et al., 575

2024a,b) applies distillation as a cost-effective ap- 576

proach to merge existing pre-trained LLMs into a 577

more potent model. 578

Multi-agent. Multi-agent approaches enable 579

an orchestration of a collection of LLM modules 580

working together, each with different potentials. 581

MetaGPT (Hong et al., 2024) encodes a standard- 582

ized operating procedure (SOP) for software devel- 583

opment into a prompt sequence. This breaks down 584

complex tasks into subtasks, allowing agents with 585

different domain expertise–such as architecture de- 586

sign and code debugging–to work harmoniously. 587

Others Contrastive decoding (Li et al., 2023b) 588

exploits the contrasts between expert and amateur 589

LLMs by choosing tokens that maximize their log- 590

likelihood difference to amplify the good expert 591

behavior and diminish the undesired amateur be- 592

havior. Composition to Augment Language Mod- 593

els (CALM) (Bansal et al., 2024) introduces cross- 594

attention between models to compose their repre- 595

sentations and enable new capabilities. 596

5 Conclusion and Future Directions 597

In this work, we propose Cool-Fusion, a simple 598

yet effective approach that fuses the knowledge 599

of heterogeneous source LLMs. Extensive experi- 600

ments with challenging datasets and strong source 601

LLMs verify the persistent improvements and ro- 602

bustness of our proposal. Future work can focus on 603

improving inference speed, including streamlining 604

different inference processes to fill GPU vacancies 605

waiting for communication, parallelizing tokeniz- 606

ers to find out whether a text segment is decodable 607

by all tokenizers, using longer text segments to 608

reduce communication overhead between LLMs. 609

8



Limitations610

The inference speed of our implementation of Cool-611

Fusion is about six times slower than that of a stan-612

dard LLM, mainly due to the additional communi-613

cation among LLMs and the frequent invocation of614

tokenizers. Further optimizations, such as stream-615

lining different inference processes or implement-616

ing parallel tokenizers, might increase the speed of617

Cool-Fusion.618

Due to resource limitations, we only conduct619

experiments with two and three source LLMs. We620

used the automatic metrics that come with theh621

Evaluation Harness (Gao et al., 2023). Human622

or GPT-4 evaluations could provide us with more623

reliable and comprehensive results.624

Ethical Statement625

This work fully complies with the ACL Ethics Pol-626

icy. We declare that there are no ethical issues in627

this paper, to the best of our knowledge.628
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