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ABSTRACT

The deployment of multimodal models in safety-critical applications, such as
autonomous driving and medical diagnostics, requires more than high predictive
accuracy; it also demands reliable mechanisms for detecting failures. In this
work, we address the largely unexplored problem of misclassification detection
in multimodal settings. We propose MultiMisD, a novel framework specifically
designed to detect such multimodal failures. Our approach is driven by a key
observation: in most misclassification cases, the confidence of the multimodal
prediction is significantly lower than that of at least one unimodal branch, a
phenomenon we term confidence degradation. To mitigate this, we introduce
an Adaptive Confidence Loss that penalizes such degradations during training.
In addition, we propose Multimodal Feature Swapping, a novel outlier synthesis
technique that generates challenging, failure-aware training examples. By training
with these synthetic failures, MultiMisD learns to more effectively recognize
and reject uncertain predictions, thereby improving overall reliability. Extensive
experiments across four datasets, three modalities, and multiple evaluation settings
demonstrate that MultiMisD achieves consistent and robust gains. The source code
will be publicly released.

1 INTRODUCTION

Multimodal models are increasingly adopted in safety-critical domains such as autonomous driving
and medical diagnostics. By integrating complementary cues from diverse modalities (e.g., video, au-
dio), they often achieve superior robustness and generalization over unimodal approaches (Feng et al.,
2020; Wang et al., 2018). However, even state-of-the-art models can be dangerously overconfident in
their erroneous predictions (Zeng et al., 2025), posing serious risks in high-stakes applications. In such
settings, detecting untrustworthy predictions is as crucial as achieving high overall accuracy. While
prior work in uncertainty estimation (Lakshminarayanan et al., 2017), calibration (Guo et al., 2017),
and out-of-distribution (OOD) detection (Liu et al., 2020) has aimed to mitigate overconfidence, these
methods often fail to reliably flag individual predictions that should be rejected. Misclassification
detection (MisD) – also referred to as selective classification or failure prediction – directly addresses
this challenge by identifying unreliable predictions for potential rejection or human intervention,
thereby reducing the risk of catastrophic failures (Feng et al., 2022).

While MisD is well-established in unimodal settings, with methods spanning confidence-based
scoring (Granese et al., 2021; Jiang et al., 2018), outlier exposure (Cheng et al., 2024; Zhu et al., 2023),
and confidence learning (Corbière et al., 2019; Moon et al., 2020), its extension to multimodal systems
remains largely unexplored. This gap is non-trivial, as unimodal approaches often fail to effectively
leverage the complementary information across modalities or to handle failure modes unique to
multimodal data, such as signal conflict and misalignment (Rasenberg et al., 2020). Furthermore,
some works (Dong et al., 2024; Li et al., 2024a) explore OOD detection with multiple modalities,
but their settings fundamentally differ from those of MisD. To illustrate the potential benefits of
utilizing multiple modalities for MisD, we present empirical results on the HMDB51 dataset (Kuehne
et al., 2011). All models in this analysis were trained solely with a standard cross-entropy loss. As
shown in Figure 1 (left), a simple fusion of video and optical flow inputs substantially improves
MisD performance – measured by AURC, AUROC, and FPR95 – over unimodal baselines. This
finding highlights the considerable potential of multimodal signals for improving MisD. Concurrently,
Figure 1 (right) reveals that sophisticated OOD detection methods like Energy (Liu et al., 2020),
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Figure 1: (Left) Multimodal models substantially enhance MisD performance compared to unimodal
models, without the need for complex designs. (Right) Advanced OOD detection methods underper-
form on MisD tasks, while the simple MSP baseline surprisingly remains the most effective.

Entropy (Tian et al., 2022), and MaxLogit (Hendrycks et al., 2019) are outperformed by a simple
Maximum Softmax Probability (MSP) baseline (Hendrycks & Gimpel, 2016). Taken together,
these findings demonstrate that merely adapting OOD techniques is insufficient and motivate the
development of dedicated methods tailored for multimodal MisD.

In this work, we identify and systematically characterize the phenomenon of confidence degradation,
a scenario where the confidence of fused multimodal predictions undesirably falls below that of
individual unimodal predictions, particularly in misclassified instances. To address this, we propose
MultiMisD, the first dedicated framework for detecting misclassifications in multimodal systems.
MultiMisD comprises two key innovations: (1) an Adaptive Confidence Loss that explicitly penalizes
confidence degradation during training, and (2) Multimodal Feature Swapping, a novel augmentation
technique that synthesizes challenging, failure-aware training samples by swapping cross-modal
embeddings. Training with the confidence penalty and failure-aware outliers improves the model’s
ability to detect and reject uncertain samples, yielding gains in both accuracy and MisD performance.
Comprehensive experiments across five datasets and five modalities demonstrate that MultiMisD
sets a new state of the art, outperforming prior best methods by up to 9.58% in AURC, 1.63% in
AUROC, and 15.45% in FPR95. Further ablation studies under distribution shifts and multimodal
OOD detection settings confirm the robustness and strong generalization of our approach. The
primary contributions of this work are:

• We highlight the importance of leveraging multimodal inputs for effective MisD, and provide
empirical evidence on the limitations of existing OOD detection approaches in this context.

• We reveal and empirically validate the phenomenon of confidence degradation in multimodal
models, showing its strong correlation with misclassification.

• We propose MultiMisD, the first dedicated framework tailored to the complex task of multimodal
MisD. MultiMisD integrates a novel Adaptive Confidence Loss, addressing the issue of confidence
degradation, and introduces Multimodal Feature Swapping to further enhance confidence reliability.

• We perform extensive evaluations across diverse datasets and modalities, demonstrating the robust-
ness and effectiveness of MultiMisD in a wide range of scenarios.

2 METHODOLOGY

2.1 PROBLEM SETUP

Multimodal Misclassification Detection aims to detect misclassified samples using multiple modal-
ities. We consider a training set D = {(xi, yi)}ni=1 drawn i.i.d. from the joint data distribution PXY ,
where X is the input space and Y = {1, 2, ..., C} is the label space. Each sample xi is composed of
M modalities, denoted as xi = {xk

i | k = 1, · · · ,M}. Let f : X 7→ RC be a neural network trained
on samples in PXY that predicts the label of each input sample. The f in multimodal misclassification
detection comprises M feature extractors gk(·) and a classifier h(·). Each feature extractor gk(·)
extracts an embedding Ek for its corresponding modality k, and the classifier h(·) takes the combined
embeddings from all modalities as input and outputs a prediction probability p̂:

p̂ = δ(f(x)) = δ(h([g1(x
1), ..., gM (xM )])) = δ(h([E1, ...,EM ])), (1)
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where δ(·) is the softmax function. We further include a classifier hk(·) for each modality k to get
predictions from each modality separately, with the prediction probability from the k-th modality as
p̂k = δ(hk(gk(x

k))).

To safely deploy classifier f in real-world applications, it should not only be able to make accurate
predictions but also distinguish and reject incorrect ones. Formally, let κ(·) be a confidence-scoring
function that quantifies the model’s confidence in its prediction. With a predefined threshold τ ∈ R+,
the misclassified samples can be detected based on a decision function G such that for a given input x:

G(x) =

{
correct if κ(x) ≥ τ,

misclassified otherwise.
(2)

For example, we can easily use MSP (Hendrycks & Gimpel, 2016) as the confidence-scoring function
for a given input x as κ(x) = maxy∈Y p̂. Similarly, other confidence-scoring functions can be
adapted from the OOD detection literature, such as MaxLogit (Hendrycks et al., 2019), Energy (Liu
et al., 2020), and Entropy (Chan et al., 2021).

2.2 CONFIDENCE DEGRADATION: A FAILURE INDICATOR IN MULTIMODAL SYSTEMS

We begin by investigating the relationship between multimodal and unimodal prediction confidences
to identify systematic patterns that distinguish correct classifications from errors. Our analysis, which
uses MSP for confidence scoring, spans four diverse action recognition datasets: HMDB51 (Kuehne
et al., 2011), EPIC-Kitchens (Damen et al., 2018), HAC (Dong et al., 2023), and Kinetics-600 (Kay
et al., 2017). We consistently observe a specific failure pattern where the confidence of multimodal
prediction p̂ falls below that of an individual modality p̂k. We formalize this phenomenon as follows:
Definition 1 (Confidence Degradation). A sample is considered to exhibit confidence degradation
if the confidence of the fused multimodal prediction is strictly lower than that of at least one of its
unimodal counterparts:

∃ k ∈ {1, . . . ,M} s.t. max
y∈Y

p̂ < max
y∈Y

p̂k.
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Figure 2: Misclassified samples exhibit a signifi-
cantly higher proportion of confidence degradation
compared to correctly classified ones.

Figure 2 illustrates the central finding: confi-
dence degradation is strongly associated with
misclassification. Across all datasets, misclas-
sified samples consistently exhibit a markedly
higher rate of degradation than correct predic-
tions, with increases of 32.4% on HMDB51,
23.1% on EPIC-Kitchens, 52.4% on HAC, and
22.0% on Kinetics-600. This suggests that fail-
ures in multimodal systems frequently coincide
with such confidence degradation. One expla-
nation is that misclassified samples often contain
conflicting or ambiguous signals across modal-
ities, which increases uncertainty. When their
unimodal outputs are fused, this uncertainty fre-
quently causes the combined confidence to drop
below that of at least one unimodal branch. In contrast, correctly classified samples typically exhibit
agreement across modalities, leading to boosted or at least non-degraded fusion confidence. This
directly motivates our adaptive training objective, which explicitly penalizes confidence degradation.

2.3 PROPOSED MULTIMISD FRAMEWORK

We introduce MultiMisD, a novel framework for multimodal misclassification detection that integrates
two complementary components (Figure 3). First, motivated by the strong correlation between mis-
classification and the confidence degradation phenomenon, we propose an Adaptive Confidence Loss
that directly penalizes this degradation during training. Second, we introduce Multimodal Feature
Swapping, an outlier synthesis technique that generates challenging, failure-aware training samples
by exchanging cross-modal embeddings. By training on these synthesized failures, MultiMisD learns
a more robust uncertainty representation, improving its ability to reject unreliable predictions.
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Figure 3: Our MultiMisD framework integrates two principal components. The Adaptive Confidence
Loss is designed to penalize the phenomenon of confidence degradation. The Multimodal Feature
Swapping serves to generate challenging, failure-aware training instances. This process enables the
model to learn to more effectively identify and reject uncertain samples.

The MultiMisD architecture processes inputs from multiple modalities. Each input is passed through
a modality-specific encoder to yield an embedding, e.g., E1 and E2 for modalities 1 and 2. These
embeddings are then concatenated, E = [E1,E2], and fed into a fusion classifier to produce the final
multimodal prediction p̂ with confidence conf = maxy∈Y p̂. In parallel, each unimodal embedding Ek

is also passed through a dedicated classifier to obtain the unimodal prediction p̂k and its corresponding
confidence confk.

2.4 ADAPTIVE CONFIDENCE LOSS

Ideally, effective multimodal fusion should achieve synergy, where the confidence of a fused predic-
tion surpasses that of any single modality, assuming all modalities provide predictive information
for the target (Wu et al., 2022). This reflects the successful integration of complementary infor-
mation to reduce uncertainty and reinforce the decision. However, as we observe in Section 2.2,
misclassifications are strongly correlated with confidence degradation, a phenomenon where the
fused confidence falls below that of a unimodal counterpart. Such degradation often arises from
conflicting or unreliable signals and serves as a strong indicator of prediction failure. Motivated by
this observation, we introduce the Adaptive Confidence Loss (ACL), which encourages the fused
confidence to be at least as high as that of any individual modality. For a two-modality case, ACL is
defined as:

Lacl =
1

2
(max(0, conf1 − conf) + max(0, conf2 − conf)) . (3)

The ACL imposes no penalty when the fused confidence surpasses both unimodal confidences;
however, it increasingly penalizes instances where the fused confidence is lower than that of either
individual modality. Consequently, ACL encourages the fusion mechanism to learn improved
information integration, such that combined evidence from different modalities leads to a more
confident prediction. By effectively integrating complementary information from different modalities,
ACL enhances prediction reliability. Furthermore, ACL mitigates unimodal overconfidence by
penalizing the model when a high-confidence prediction from one modality conflicts with another.
To minimize this cross-modal penalty during training, the model learns to reduce the confidence of
the unreliable unimodal stream itself. This process effectively regularizes the unimodal networks,
forcing them to become better calibrated and less prone to being "confidently wrong". As a result, the
model can integrate information more effectively and produce more reliable multimodal predictions.
Additional discussion on ACL is provided in Section G.
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(a) 96 (c) 256 (d) 512(b) 128

Figure 4: Visualization on outliers generated by Multimodal Feature Swapping with different nswap
(96, 128, 256, 512). Small swaps produce hard negatives that lie near the in-distribution manifold,
while larger swaps create more distinct outliers further away.

2.5 MULTIMODAL FEATURE SWAPPING

While Outlier Exposure (OE) is an effective technique for improving OOD detection (Hendrycks
et al., 2018; Zhang et al., 2023a), it has been shown to be ineffective for MisD (Zhu et al., 2023).
This is because OE regularizes the decision boundary by compressing the confidence distribution of
in-distribution (ID) samples, which inadvertently makes it harder to distinguish correct ID predictions
from incorrect ones. A related challenge, particularly in multimodal settings, is the lack of training
data that realistically emulates system failures, such as conflicting modality cues or sensor corruption.
Although approaches like OpenMix (Zhu et al., 2023) attempt to address these issues by interpolating
between ID and outlier data, they have two critical shortcomings for multimodal tasks. First, they
depend on large, auxiliary outlier datasets that are often impractical or unavailable. Second, as a
fundamentally unimodal method, OpenMix cannot synthesize the complex failure modes that arise
from cross-modal interactions.

To generate challenging, failure-aware outliers without external data, we propose Multimodal Feature
Swapping (MFS). MFS operates by dynamically swapping multimodal feature embeddings and
assigning them corresponding soft labels (as illustrated in Figure 3). By generating outliers directly in
feature space, MFS ensures computational efficiency and compatibility with various modalities. MFS
is designed to ensure that the synthesized features remain distinct from ID features while preserving
semantic consistency. Given ID features E = [E1,E2], where E1 represents features from modality 1
and E2 from modality 2, MFS randomly selects a subset of nswap ∼ U(nmin, nmax) continuous feature
dimensions from each modality. These selected dimensions are then swapped to obtain new feature
representations Ẽ1 and Ẽ2, which are subsequently concatenated to form the multimodal outlier
features Eo = [Ẽ1, Ẽ2]. A prediction p̂o is then obtained from Eo as p̂o = δ(h([Eo)). To supervise
these synthesized outliers, we generate soft labels by interpolating between the original ground-truth
one-hot label ytrue and an additional class designated for outliers (e.g., youtlier = C + 1). The weight
λ for this label interpolation reflects the proportion of features swapped:

yswapped = (1− λ)ytrue + λyoutlier, where λ =
nswap

nmax
. (4)

MFS generates failure-aware outliers by partially swapping cross-modal features. Such swapping
preserves intra-modality semantics while disrupting cross-modal consistency—capturing a critical
and common failure mode in multimodal systems. Figure 4 illustrates a t-SNE visualization of the
embedding space under different nswap values. For small nswap, the generated outliers (red) lie close to
the ID clusters (blue), acting as hard negatives. As nswap increases, the outliers gradually move farther
from the ID manifold, confirming that MFS provides a controllable mechanism for generating diverse
and realistic failure cases. This property is particularly valuable for training models that must remain
sensitive to subtle misclassification signals, especially in multimodal scenarios where errors often
stem from partial or conflicting evidence. By introducing corrupted or ambiguous multimodal outliers,
MFS encodes the prior knowledge of what is uncertain and should be assigned low confidence,
thereby teaching the model to recognize broader patterns of uncertainty and enhancing its robustness
in detecting real-world misclassifications. Additional discussion on MFS is provided in Section G.

Overall, MFS offers a simple, generalizable, and computationally efficient approach to simulating
realistic failure cases for multimodal misclassification detection without requiring external data. The
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loss for the synthetic outliers is defined as:

Loutlier = CE(p̂o,yswapped), (5)

where CE denotes the cross-entropy loss. The final training objective integrates all components:

Ltotal = Lcls + Loutlier + λaclLacl, (6)

where Lcls is the cross-entropy loss for the original training samples, and λacl is a hyperparameter
that balances the influence of Lacl.

2.6 INFERENCE

Our method focuses on detecting misclassified samples within known classes. Therefore, during the
test phase, evaluation is performed exclusively on the original C classes. Specifically, for a given
input x, the predicted label is ŷ = argmaxy∈Y p̂, and the corresponding confidence is determined
using the common MSP score, i.e., κ(x) = maxy∈Y p̂.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We evaluate our proposed framework on four action recognition datasets sourced from the
MultiOOD benchmark (Dong et al., 2024): HMDB51 (Kuehne et al., 2011), Kinetics-600 (Kay et al.,
2017), HAC (Dong et al., 2023), and EPIC-Kitchens (Damen et al., 2018). Each of these datasets
incorporates video and optical flow modalities. For the HAC dataset, we also include evaluations
utilizing the audio modality. Further details on each dataset are in the Appendix.

Implementation. We conduct experiments across three modalities: video, audio, and optical flow.
The MMAction2 (Contributors, 2020) toolkit is adopted for all experiments. To encode visual
information, we utilize the SlowFast network (Feichtenhofer et al., 2019), initialized with weights
pre-trained on the Kinetics-400 dataset (Kay et al., 2017). For the audio encoder, we employ a
ResNet-18 architecture (He et al., 2016), with weights initialized from the VGGSound pre-trained
checkpoint (Chen et al., 2020). Similarly, the optical flow encoder uses the SlowFast network,
configured with a slow-only pathway and also leveraging pre-trained weights from Kinetics-400 (Kay
et al., 2017). The Adam optimizer (Kingma & Ba, 2015) is used for model training, with a learning
rate of 0.0001 and a batch size of 16. The hyperparameters for our proposed method are set as
follows: λacl = 2.0, nmin = 32, nmax = 256. We train the models for 50 epochs on an NVIDIA RTX
3090 GPU and select the model with the best performance on the validation dataset.

Baselines. We compare our approach against several standard confidence-scoring functions, including
MSP (Hendrycks & Gimpel, 2016), MaxLogit (Hendrycks et al., 2019), Energy (Liu et al., 2020),
and Entropy (Chan et al., 2021). Additionally, we adapt unimodal MisD methods for our framework,
including DOCTOR (Granese et al., 2021) and OpenMix (Zhu et al., 2023), along with the outlier
synthesis techniques Mixup (Zhang et al., 2017), RegMixup (Pinto et al., 2022). We also include
established training strategies, namely CRL (Moon et al., 2020) and A2D (Dong et al., 2024), where
A2D is designed for multimodal OOD detection. These baselines collectively represent a diverse
array of techniques for MisD.

Evaluation Metrics. Following (Zhu et al., 2023), we assess MisD performance using the following
metrics: (1) AURC (Area Under the Risk-Coverage Curve), which measures the model’s risk (error
rate) as a function of coverage (fraction of samples retained). The AURC value is multiplied by 103

following (Zhu et al., 2023). (2) AUROC (Area Under the Receiver Operating Characteristic Curve),
quantifying the trade-off between the true positive rate (TPR) and the false positive rate (FPR); (3)
FPR95 (False Positive Rate at 95% TPR), indicating the proportion of incorrectly classified samples
that are misidentified as correct when the TPR is fixed at 95%; (4) ACC (Accuracy), representing the
standard test accuracy on the ID data.

3.2 MAIN RESULTS

Performance on Multimodal MisD. Table 1 presents a comparative analysis of our method against
various baseline approaches across four datasets—HMDB51, EPIC-Kitchens, HAC, and Kinetics-
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HMDB51 EPIC-Kitchens HAC Kinetics-600
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

MaxLogit 34.76 85.65 57.02 86.20 114.22 76.92 80.00 74.25 53.61 85.12 58.97 82.11 63.90 81.25 69.85 81.24
Energy 35.78 85.03 58.68 86.20 114.91 76.67 78.95 74.25 54.33 84.80 58.97 82.11 66.48 80.12 76.58 81.24
Entropy 30.24 87.87 57.85 86.20 114.09 76.83 78.42 74.25 42.63 89.46 61.54 82.11 47.30 86.85 65.22 81.24

MSP 29.56 88.28 52.07 86.20 115.03 76.52 76.84 74.25 42.90 89.27 66.67 82.11 46.29 87.33 61.29 81.24
DOCTOR 29.65 88.42 52.46 86.20 114.92 76.57 79.47 74.25 42.60 89.46 64.10 82.11 46.37 87.28 62.27 81.24

Mixup 36.52 87.98 50.00 84.72 110.54 77.72 75.41 75.20 34.06 87.88 55.88 84.40 50.56 86.87 60.57 80.58
RegMixup 29.86 88.25 55.37 86.20 105.25 79.26 78.19 74.53 50.28 82.83 72.22 83.49 51.44 86.06 62.71 81.16
OpenMix 24.15 90.13 51.33 87.12 112.14 78.46 73.68 74.25 35.42 87.51 54.84 83.03 46.73 87.69 60.27 80.79

A2D 25.01 89.79 47.01 86.66 109.90 77.85 76.72 74.39 45.89 89.77 57.14 83.94 49.26 87.97 59.79 79.97
CRL 26.44 90.39 46.40 85.75 107.42 78.33 79.17 73.98 36.46 86.53 59.38 83.49 49.16 87.29 61.73 80.47

MultiMisD 19.97 92.02 41.96 87.23 103.25 79.27 71.58 75.20 27.41 91.48 39.39 84.86 41.85 88.99 55.89 81.45

Table 1: MisD performance on action recognition datasets with video and optical flow modalities.

video+audio optical flow+audio video+optical flow+audio Average
AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑ AURC↓ AUROC↑ FPR95↓ ACC↑

MaxLogit 28.35 84.41 68.00 88.07 117.73 83.08 72.46 68.35 26.34 87.82 75.00 87.16 57.47 85.10 71.82 81.19
Energy 29.32 83.90 68.00 88.07 120.43 82.37 75.36 68.35 27.63 86.99 75.00 87.16 59.13 84.42 72.79 81.19
Entropy 25.10 86.03 64.00 88.07 116.95 82.75 66.67 68.35 21.40 91.00 57.14 87.16 54.48 86.59 62.60 81.19

MSP 26.79 86.30 57.69 88.07 118.04 82.46 71.01 68.35 20.99 91.35 42.86 87.16 55.27 86.70 57.19 81.19
DOCTOR 27.10 86.02 53.85 88.07 118.03 82.51 72.46 68.35 21.03 91.33 46.43 87.16 55.39 86.62 57.58 81.19

Mixup 26.03 88.72 54.84 85.78 147.96 76.69 78.57 67.89 21.76 86.96 69.57 89.45 65.25 84.12 67.66 81.04
RegMixup 25.58 89.56 73.33 86.24 134.26 78.00 86.96 68.35 29.77 86.43 68.97 86.71 63.20 84.66 76.42 80.43
OpenMix 26.09 88.33 64.29 87.16 117.48 81.99 71.88 70.64 20.10 91.04 48.15 87.61 54.56 87.12 61.44 81.80

A2D 59.65 81.36 60.53 82.57 108.07 81.27 79.37 71.10 20.16 90.81 48.28 86.70 62.63 84.48 62.73 80.12
CRL 26.88 89.29 43.33 86.24 118.65 83.47 71.83 67.43 31.16 87.42 64.52 85.78 58.90 86.73 59.89 79.82

MultiMisD 24.70 89.67 41.38 86.70 98.49 83.96 63.47 71.10 15.09 92.26 34.78 89.45 46.09 88.63 46.54 82.42

Table 2: MisD performance on HAC dataset with different modality combinations.

600—utilizing video and optical flow as input modalities. Our proposed method consistently out-
performs all baselines across key MisD metrics. For instance, on the HMDB51 dataset, our method
reduces the FPR95 from 52.07% to 41.96% and improves the AUROC from 88.28% to 92.02% when
compared to the MSP baseline. On the HAC dataset, it achieves a reduction in AURC from 42.90%
to 27.41% and an increase in AUROC from 89.27% to 91.48%. Furthermore, on the Kinetics-600
dataset, our method reduces the FPR95 from 61.29% to 55.89%. In addition to these MisD improve-
ments, our method even improves classification accuracy on all evaluated datasets. These consistent
gains observed across diverse video domains underscore the strong generalization capabilities and
robustness of the proposed method.

Performance under Different Modality Combinations. Table 2 presents results comparing our
method against baseline approaches on the HAC dataset under various modality combinations:
video+audio, optical flow+audio, and video+optical flow+audio. While Table 1 exclusively reports
results using video and optical flow, this evaluation investigates the generalization of our method
across different modality configurations. Our method surpasses baselines in most scenarios, achieving
average improvements of 8.39% in AURC, 1.51% in AUROC, and 10.65% in FPR95 relative to the
strongest baseline. Concurrently, it enhances classification accuracy from 81.19% to 82.42%. These
improvements demonstrate the robustness of our approach to diverse modality configurations and its
efficacy in enhancing both accuracy and MisD performance.

40 60 80 100 120 140
AURC

Brightness

Defocus Blur

Frost

Compression

Pixelation
MSP
A2D
Mixup
CRL
Ours

Figure 5: MisD under distribution shift on HAC dataset.
The performance of five types of corruption on videos
under the severity level of 5 is reported.

Performances under Distribution Shifts.
In practical applications, environmen-
tal conditions can change rapidly (e.g.,
weather transitioning from sunny to cloudy,
then to rainy), necessitating reliable model
decisions under such distribution or domain
shifts. To simulate these scenarios, we eval-
uate model performance under various data
corruptions with a severity level of 5, in-
cluding Defocus Blur, Frost, Brightness,
Pixelate, and JPEG Compression. Models
were trained on the clean HAC dataset us-
ing video and optical flow modalities, with
corruptions introduced to the video modal-
ity exclusively during the testing phase.
As illustrated in Figure 5, our framework
demonstrates significantly improved MisD performance on AURC under various corruptions in the
majority of tested cases.
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Methods

OOD Datasets

ID ACC ↑Kinetics-600 UCF101 EPIC-Kitchens HAC Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MSP 39.11 88.78 46.64 86.40 17.33 95.99 39.91 89.10 35.75 90.07 87.23

+AN 29.42 90.73 40.02 88.08 13.34 96.43 28.16 91.63 27.74 91.72 86.89
+Ours 27.71 92.81 34.89 89.10 12.20 97.76 21.78 94.25 24.15 93.48 87.23

Energy 32.95 92.48 44.93 87.95 8.10 97.70 32.95 92.28 29.73 92.60 87.23
+AN 24.52 93.96 36.49 89.67 6.96 97.53 22.92 94.41 22.72 93.89 86.89

+Ours 18.59 95.39 31.58 91.05 8.32 96.57 13.45 96.07 17.99 94.77 87.23

MaxLogit 33.07 92.31 44.93 88.02 9.12 97.77 33.06 92.17 30.05 92.57 87.23
+AN 24.86 93.69 36.60 89.71 6.96 97.67 22.92 94.22 22.84 93.82 86.89

+Ours 19.16 95.27 31.93 91.00 8.21 97.75 14.82 96.15 18.53 95.04 87.23

GEN 41.51 90.34 46.18 87.91 8.21 98.26 38.31 91.28 33.55 91.95 87.23
+AN 25.66 93.50 37.40 91.19 5.25 98.98 24.63 94.28 23.24 94.49 86.89
+Ours 22.46 95.17 31.58 92.19 2.62 99.38 15.17 96.62 17.96 95.84 87.23

Table 5: Multimodal OOD detection using video and optical flow, with HMDB51 as ID.

3.3 ABLATION STUDIES

Effect of Each Component. Table 3 summarizes performance gains contributed by each component

AURC↓ AUROC↑ FPR95↓ ACC↑
MSP 29.56 88.28 52.07 86.20
ACL 24.48 90.32 43.97 86.77
MFS 25.11 90.55 46.22 86.43
ACL + MFS 19.97 92.02 41.96 87.23

Table 3: Effect of each component.

of our framework, evaluated on the HMDB dataset. Com-
mencing from the MSP baseline, the individual incorpo-
ration of either the Adaptive Confidence Loss or the Mul-
timodal Feature Swapping module leads to performance
improvements across all metrics. Crucially, the combina-
tion of both components yields the most substantial overall
enhancements. These findings underscore the complemen-
tary strengths of the two proposed modules.

Robustness to Different Architectures. To demonstrate the scalability of our approach, we evaluate

AURC↓ AUROC↑ FPR95↓ Accuracy↑
MSP 31.77 88.17 58.59 85.40
DOCTOR 31.76 88.18 59.38 85.40
Mixup 41.12 87.29 56.76 83.12
RegMixup 41.67 89.41 54.27 81.30
OpenMix 33.16 88.30 55.12 84.26
A2D 34.47 88.38 55.80 84.72
CRL 37.13 89.09 60.78 82.55
MultiMisD 27.73 90.00 51.56 85.40

Table 4: Ablation on different architectures.

its performance using alternative backbone encoders,
specifically, I3D (Carreira & Zisserman, 2017) and
TSN (Wang et al., 2016), for extracting video and
optical flow features. The results on the HMDB51
dataset are presented in Table 4. Despite the uti-
lization of lighter and structurally distinct architec-
tures, our method maintains competitive performance
across all four evaluation metrics. It consistently
achieves lower FPR95 and AURC, and higher AU-
ROC values compared to all baseline methods.

MultiMisD Improves Multimodal OOD Detection. A reliable multimodal system should be
capable of distinguishing both OOD samples and misclassified ID samples from correct predictions.
Therefore, in addition to MisD, we investigate the OOD detection capabilities of our method using
the MultiOOD benchmark (Dong et al., 2024), focusing on video and optical flow modalities. The ID
dataset employed is HMDB51. For OOD datasets, we utilize Kinetics-600, UCF101 (Soomro et al.,
2012), EPIC-Kitchens, and HAC. Performance is evaluated using AUROC, FPR95, and ID Accuracy.
We train models using both the A2D+NP-Mix (AN) (Dong et al., 2024) strategies in MultiOOD and
our MultiMisD framework, and subsequently evaluate them with various OOD confidence-scoring
functions, including MSP, Energy, MaxLogit, and GEN (Liu et al., 2023). The results, presented in
Table 5, indicate that MultiMisD not only exhibits strong MisD capabilities but also achieves robust
OOD detection performance in comparison to AN.

MisD in Presence of OOD Samples. In this challenging setting, OOD samples are introduced
AUROC↑ FPR95↓ ACC↑

MSP 94.14 39.35 86.20
Mixup 95.35 24.92 84.72
A2D 94.33 29.90 86.66
CRL 94.14 32.29 85.75
MultiMisD 96.82 20.47 87.23

Table 6: Performance under both
OOD and misclassified samples.

into the test data, and the model is required to distinguish
both OOD samples and misclassified ID samples from correct
predictions. We use HMDB51 as the ID dataset and incorporate
OOD samples from the HAC dataset. As shown in Table 6,
our MultiMisD demonstrates strong robustness in this scenario,
accurately identifying both OOD and misclassified samples. It
achieves average improvements of 1.47% in AUROC, 4.45% in
FPR95, and 0.57% in ACC compared to the strongest baseline.
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(b) Ours(a) MSP
Figure 6: Score distribution for correct and wrong predictions. Our method leads to more clearly
separated distributions, thereby enhancing the efficacy of misclassification detection.

Compare with Other Feature-space Augmentation Methods. To assess the effectiveness of

AURC↓ AUROC↑ FPR95↓ ACC↑
MSP 29.56 88.28 52.07 86.20
Random Noise 24.86 90.82 42.86 86.43
Random Drop 22.80 91.24 46.09 86.89
Feature Mixing 21.79 91.33 42.11 87.00
MFS 19.97 92.02 41.96 87.23

Table 7: Compare with other feature space
augmentation methods.

alternative augmentation strategies, we replace MFS
with Random Noise (randomly replacing embedding
values with noise), Random Drop (randomly replac-
ing embedding values with zeros), and Feature Mix-
ing (Liu et al., 2025). As shown in Table 7, all base-
line methods improve MisD performance, highlight-
ing the importance of outlier synthesis for regular-
ization. However, MFS proves most effective, as
it generates outliers of varying difficulty that better
capture cross-modal inconsistency.

Evaluation on More Modalities. To further evaluate the robustness of our framework, we conduct

AURC↓ AUROC↑ FPR95↓ mIoU↑
MSP 33.90 79.97 55.49 59.25
MultiMisD 21.90 84.51 52.51 63.56

Table 8: Results on SemanticKITTI for 3D
semantic segmentation task.

experiments on the SemanticKITTI dataset (Behley
et al., 2019), using image and LiDAR point cloud
modalities for the 3D semantic segmentation task. We
adopt the fusion framework of Zhuang et al. (2021)
and adapt the evaluation to the MisD setting. As
shown in Table 8, our framework achieves strong
misclassification detection performance for the se-
mantic segmentation task with image and LiDAR modalities.

Visualization. To qualitatively assess confidence score distributions, we visualized them for correct
and incorrect predictions on the HMDB51 dataset, as depicted in Figure 6. The baseline MSP method
exhibits a less distinct separation in confidence scores between correctly classified and misclassified
samples. In contrast, our proposed solution assigns higher confidence scores to correct predictions
and discernibly lower scores to incorrect ones. This leads to more clearly separated distributions,
thereby enhancing the efficacy of misclassification detection.

4 CONCLUSION

In this work, we addressed the critical yet underexplored challenge of misclassification detection
in multimodal systems, a vital component for ensuring reliability in safety-sensitive domains. We
introduced MultiMisD, the first dedicated framework designed to tackle this problem. By char-
acterizing the confidence degradation phenomenon—where fused multimodal predictions exhibit
lower confidence than their unimodal counterparts in most error cases—we introduced an Adaptive
Confidence Loss that directly penalizes this behavior during training. Complementing this loss, our
Multimodal Feature Swapping technique synthesizes challenging outliers, further enhancing the
model’s ability to flag unreliable predictions. Extensive evaluations across four diverse datasets and
three modalities demonstrated MultiMisD’s superior performance and generalization capabilities, sig-
nificantly outperforming existing baselines. By enabling more reliable identification of untrustworthy
predictions, MultiMisD represents a significant step towards enhancing the safety and trustworthiness
of multimodal systems in real-world applications.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and
Jurgen Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In
ICCV, 2019.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In CVPR, 2017.

Robin Chan, Matthias Rottmann, and Hanno Gottschalk. Entropy maximization and meta classifica-
tion for out-of-distribution detection in semantic segmentation. In ICCV, 2021.

Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale
audio-visual dataset. In ICASSP, 2020.

Zhen Cheng, Fei Zhu, Xu-Yao Zhang, and Cheng-Lin Liu. Breaking the limits of reliable prediction
via generated data. IJCV, 2024.

C. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information
Theory, 16(1):41–46, 1970.

MMAction2 Contributors. Openmmlab’s next generation video understanding toolbox and benchmark.
https://github.com/open-mmlab/mmaction2, 2020.

Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. Addressing
failure prediction by learning model confidence. In NeurIPS, 2019.

Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos
Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Scaling
egocentric vision: The epic-kitchens dataset. In ECCV, 2018.

Giancarlo Di Biase, Hermann Blum, Roland Siegwart, and Cesar Cadena. Pixel-wise anomaly
detection in complex driving scenes. In CVPR, 2021.

Hao Dong, Ismail Nejjar, Han Sun, Eleni Chatzi, and Olga Fink. SimMMDG: A simple and effective
framework for multi-modal domain generalization. In NeurIPS, 2023.

Hao Dong, Yue Zhao, Eleni Chatzi, and Olga Fink. Multiood: Scaling out-of-distribution detection
for multiple modalities. In NeurIPS, 2024.

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video
recognition. In ICCV, 2019.

Di Feng, Christian Haase-Schütz, Lars Rosenbaum, Heinz Hertlein, Claudius Glaeser, Fabian Timm,
Werner Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detection and semantic seg-
mentation for autonomous driving: Datasets, methods, and challenges. IEEE Transactions on
Intelligent Transportation Systems, 22(3):1341–1360, 2020.

Leo Feng, Mohamed Osama Ahmed, Hossein Hajimirsadeghi, and Amir Abdi. Towards better
selective classification. arXiv preprint arXiv:2206.09034, 2022.

Federica Granese, Marco Romanelli, Daniele Gorla, Catuscia Palamidessi, and Pablo Piantanida.
Doctor: A simple method for detecting misclassification errors. In NeurIPS, 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. In ICML, 2017.

Shuangpeng Han and Mengmi Zhang. Unveiling ai’s blind spots: An oracle for in-domain, out-of-
domain, and adversarial errors. arXiv preprint arXiv:2410.02384, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, pp. 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

10

https://github.com/open-mmlab/mmaction2


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajabi,
Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
arXiv preprint arXiv:1911.11132, 2019.

Paul F Jaeger, Carsten T Lüth, Lukas Klein, and Till J Bungert. A call to reflect on evaluation
practices for failure detection in image classification. arXiv preprint arXiv:2211.15259, 2022.

Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier. In
NeurIPS, 2018.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset.
arXiv preprint arXiv:1705.06950, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a
large video database for human motion recognition. In ICCV, 2011.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NeurIPS, 2017.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In NeurIPS, 2018.

Shawn Li, Huixian Gong, Hao Dong, Tiankai Yang, Zhengzhong Tu, and Yue Zhao. Dpu: Dynamic
prototype updating for multimodal out-of-distribution detection. arXiv preprint arXiv:2411.08227,
2024a.

Yuting Li, Yingyi Chen, Xuanlong Yu, Dexiong Chen, and Xi Shen. Sure: Survey recipes for building
reliable and robust deep networks. In CVPR, 2024b.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Moru Liu, Hao Dong, Jessica Kelly, Olga Fink, and Mario Trapp. Extremely simple multimodal outlier
synthesis for out-of-distribution detection and segmentation. arXiv preprint arXiv:2505.16985,
2025.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
In NeurIPS, 2020.

Xixi Liu, Yaroslava Lochman, and Christopher Zach. Gen: Pushing the limits of softmax-based
out-of-distribution detection. In CVPR, 2023.

Yijun Liu, Jiequan Cui, Zhuotao Tian, Senqiao Yang, Qingdong He, Xiaoling Wang, and Jingyong
Su. Typicalness-aware learning for failure detection. arXiv preprint arXiv:2411.01981, 2024.

Yan Luo, Yongkang Wong, Mohan S Kankanhalli, and Qi Zhao. Learning to predict trustworthiness
with steep slope loss. In NeurIPS, 2021.

Jooyoung Moon, Jihyo Kim, Younghak Shin, and Sangheum Hwang. Confidence-aware learning for
deep neural networks. In ICML, 2020.

Francesco Pinto, Harry Yang, Ser Nam Lim, Philip Torr, and Puneet Dokania. Using mixup as a
regularizer can surprisingly improve accuracy & out-of-distribution robustness. In NeurIPS, 2022.

Xin Qiu and Risto Miikkulainen. Detecting misclassification errors in neural networks with a gaussian
process model. In AAAI, 2022.

Marlou Rasenberg, Asli Özyürek, and Mark Dingemanse. Alignment in multimodal interaction: An
integrative framework. Cognitive science, 44(11), 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
in videos. In NeurIPS, 2014.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In ICML, 2022.

Yu Tian, Yuyuan Liu, Guansong Pang, Fengbei Liu, Yuanhong Chen, and Gustavo Carneiro. Pixel-
wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes.
In ECCV, 2022.

Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc Van Gool.
Temporal segment networks: Towards good practices for deep action recognition. In ECCV, 2016.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, and Ronald M Summers. Tienet: Text-image
embedding network for common thorax disease classification and reporting in chest x-rays. In
CVPR, 2018.

Nan Wu, Stanislaw Jastrzebski, Kyunghyun Cho, and Krzysztof J Geras. Characterizing and
overcoming the greedy nature of learning in multi-modal deep neural networks. In ICML, 2022.

Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, and Ziwei
Liu. Semantically coherent out-of-distribution detection. In ICCV, 2021a.

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. arXiv preprint arXiv:2110.11334, 2021b.

Qing Yu and Kiyoharu Aizawa. Unsupervised out-of-distribution detection by maximum classifier
discrepancy. In ICCV, 2019.

Fanhu Zeng, Zhen Cheng, Fei Zhu, and Xu-Yao Zhang. Towards efficient and general-purpose
few-shot misclassification detection for vision-language models. arXiv preprint arXiv:2503.20492,
2025.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Jingyang Zhang, Nathan Inkawhich, Randolph Linderman, Yiran Chen, and Hai Li. Mixture outlier
exposure: Towards out-of-distribution detection in fine-grained environments. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5531–5540, 2023a.

Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
Sun, Xuefeng Du, Yixuan Li, Ziwei Liu, Yiran Chen, and Hai Li. Openood v1.5: Enhanced
benchmark for out-of-distribution detection. arXiv preprint arXiv:2306.09301, 2023b.

Yibo Zhou. Rethinking reconstruction autoencoder-based out-of-distribution detection. In CVPR,
2022.

Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-Lin Liu. Rethinking confidence calibration for
failure prediction. In ECCV, 2022.

Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-Lin Liu. Openmix: Exploring outlier samples for
misclassification detection. In CVPR, 2023.

Zhuangwei Zhuang, Rong Li, Kui Jia, Qicheng Wang, Yuanqing Li, and Mingkui Tan. Perception-
aware multi-sensor fusion for 3d lidar semantic segmentation. In ICCV, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely as assistive tools for improving the readability of
this paper. In particular, they were employed to polish the writing style, correct grammar, and fix
spelling mistakes. All research ideas, experiments, analyses, and conclusions were conceived and
conducted entirely by the authors without assistance from LLMs.

B BROADER IMPACT, LIMITATIONS, AND FUTURE WORK

Broader Impact. The MultiMisD framework presented in this work has the potential to generate a
significant positive societal impact. As AI systems, especially multimodal ones, are increasingly inte-
grated into safety-critical applications such as autonomous driving, medical diagnosis, and industrial
robotics, the ability to reliably detect potential misclassifications is paramount. MultiMisD directly
contributes to enhancing the safety and trustworthiness of these systems by providing a dedicated
mechanism to identify and flag uncertain predictions before they can lead to adverse outcomes. This
can foster greater public trust and accelerate the responsible adoption of AI technologies in areas
where reliability is non-negotiable. Furthermore, by improving the understanding of failure modes
in multimodal models, such as the identified confidence degradation phenomenon, our work can
guide the development of more robust and dependable AI systems across various domains, ultimately
leading to safer and more effective human-AI collaboration.

Limitations. While MultiMisD demonstrates strong gains across multiple datasets and modalities,
it has several limitations. First, while we demonstrate robustness under certain distribution shifts
and OOD scenarios, the behavior of MultiMisD against sophisticated adversarial attacks specifically
designed to fool the misclassification detector itself remains an open area. Second, our current study
primarily focuses on specific types of modalities (e.g., video, optical flow, and audio). The general-
ization of MultiMisD to a very broad range of disparate modalities (e.g., text with medical imaging,
or sensor data with acoustic signals) without specific adaptations warrants further investigation.

Future Work. Building upon the contributions of this paper, several avenues for future research
present themselves. First, we plan to explore the integration of MultiMisD with online learning and
continual learning paradigms. This would allow the misclassification detector to adapt dynamically to
evolving data distributions and novel failure modes encountered during real-world deployment, which
is crucial for long-term operational reliability. Second, extending and evaluating MultiMisD across a
wider spectrum of modalities (e.g., language, audio, tabular data) and a more diverse set of complex,
safety-critical tasks (e.g., real-time robotic interaction) is a key direction. Finally, investigating the
robustness of MultiMisD against targeted adversarial attacks and developing defense mechanisms
will be crucial for deployment in adversarial settings.

C RELATED WORK

C.1 MISCLASSIFICATION DETECTION

Foundational work on failure prediction traces back to the concept of selective classification, which
formalizes the trade-off between prediction accuracy and abstention when model confidence is
low (Chow, 1970). In the deep learning era, this concept has re-emerged as misclassification
detection—approaches that enable a model to identify when its output is likely to be incorrect (Qiu &
Miikkulainen, 2022). While thresholding the MSP (Hendrycks & Gimpel, 2016) remains a simple yet
effective baseline, its susceptibility to overconfidence limits its reliability (Qiu & Miikkulainen, 2022;
Pinto et al., 2022). A variety of methods have been proposed to more effectively estimate prediction
risk. One stream of research focuses on training auxiliary modules, such as heads or separate
networks, to explicitly predict correctness based on intermediate features or model logits (Corbière
et al., 2019; Jiang et al., 2018; Granese et al., 2021). For instance, ConfidNet (Corbière et al.,
2019) introduces a dedicated confidence estimation head that operates on penultimate-layer features.
A distinct line of research adopts an integrated approach, jointly optimizing MisD functionalities
with the primary model’s training objective. Representative techniques in this category include
improving the separability of correct and incorrect representations (Luo et al., 2021), enhancing
confidence ranking (Moon et al., 2020), regularizing based on sample typicality (Liu et al., 2024),
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and enforcing flatter loss landscapes around misclassified examples (Zhu et al., 2022). Concurrently,
data augmentation strategies have proven effective, primarily by exposing the model to synthesized
failure cases during training (Zhu et al., 2023; Li et al., 2024b; Cheng et al., 2024; Han & Zhang,
2024). However, all previous approaches were designed for unimodal scenarios, without accounting
for the interaction and complementary nature of diverse modalities.

C.2 OUT-OF-DISTRIBUTION DETECTION

OOD detection shares a similar objective with MisD but addresses fundamentally different challenges.
Specifically, OOD detection aims to identify test samples that exhibit semantic shifts from the training
distribution, typically without compromising in-distribution (ID) classification accuracy. OOD
detection has been extensively investigated in recent years (Yang et al., 2021b; Zhang et al., 2023b),
encompassing diverse approaches such as post-hoc scoring (Hendrycks & Gimpel, 2016; Liang
et al., 2017; Liu et al., 2020), feature-based techniques (Lee et al., 2018; Sun et al., 2022), outlier
exposure (Hendrycks et al., 2018; Yu & Aizawa, 2019; Yang et al., 2021a), and reconstruction-based
methods (Di Biase et al., 2021; Zhou, 2022). Multimodal OOD detection (Dong et al., 2024; Li et al.,
2024a) is also an emerging research area. Although OOD detection methods are often employed as
baselines for MisD, recent studies (Zhu et al., 2022; Jaeger et al., 2022; Zhu et al., 2023) demonstrate
that techniques optimized for OOD detection generally exhibit suboptimal performance on MisD
tasks. This finding underscores the necessity for developing specialized MisD approaches.

D FURTHER DETAILS ON DATASETS

Our framework is primarily evaluated on four action recognition datasets from the MultiOOD bench-
mark (Dong et al., 2024): HMDB51 (Kuehne et al., 2011), EPIC-Kitchens (Damen et al., 2018),
HAC (Dong et al., 2023), and Kinetics-600 (Kay et al., 2017). For evaluating multimodal Out-of-
Distribution (OOD) detection in ablation studies, we additionally employ the UCF101 dataset (Si-
monyan & Zisserman, 2014), also from the MultiOOD benchmark.

HMDB51 is an action recognition dataset comprising 6,766 video clips distributed across 51 action
categories. The videos are sourced from digitized movies and YouTube. This dataset includes both
video and optical flow modalities. EPIC-Kitchens is an egocentric video dataset capturing daily
kitchen activities recorded by 32 participants. For our experiments, we utilize a subset of 4,871 video
clips from participant P22, encompassing eight common actions (put, take, open, close, wash, cut,
mix, and pour). The dataset provides video and optical flow modalities. Kinetics-600 is a large-scale
action recognition dataset containing approximately 480,000 10-second clips distributed across 600
action classes. Following (Dong et al., 2024), we utilize a subset of 100 classes, resulting in 24,981
video clips for our study. This dataset offers video, audio, and optical flow modalities. HAC contains
3,381 video clips featuring seven action categories (e.g., sleeping, watching TV, eating, running)
performed by humans, animals, and cartoon characters. The dataset includes video, optical flow, and
audio modalities. UCF101 is a diverse video action recognition dataset consisting of 13,320 clips
across 101 action classes. The videos, sourced from YouTube, exhibit significant variation in camera
motion, object appearance, scale, pose, viewpoint, and background. This dataset provides video and
optical flow modalities.

E MORE IMPLEMENTATION DETAILS

Pseudo Code for Multimodal Feature Swapping. We provide the pseudo code for multimodal
outlier synthesis in Algorithm 1, where we dynamically swap multimodal feature embeddings and
assign them corresponding soft labels.

Extension to More Modalities. Our framework is not limited to two modalities and can be easily
extended to M modalities. Given a training sample x with M modalities, we obtain prediction
confidence score conf from the combined embeddings of all modalities, and conf1, conf2, ..., confM
from each modality. The Adaptive Confidence Loss can then be defined as:

Lacl =
1

M

M∑
i=1

max(0, confi − conf). (7)
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Algorithm 1 Multimodal Feature Swapping
Input: ID feature E = [E1,E2], where E1 and E2 are from modality 1 and 2; minimum
and maximum number nmin and nmax for swapping; ground-truth one-hot label ytrue for E and
youtlier = C + 1.
Pseudo Code:

Sample nswap ∼ U(nmin, nmax), λ =
nswap

nmax
;

Randomly select start indices s1, s2 for modality 1 and 2;
Clone features Ẽ1 ← E1, Ẽ2 ← E2;
Swap nswap dimensions across modalities:

Ẽ1[s1:s1+nswap]← E2[s2:s2+nswap]

Ẽ2[s2:s2+nswap]← E1[s1:s1+nswap]

Generate label for outlier feature yswapped = (1− λ)ytrue + λyoutlier.
Output: Multimodal outlier feature Eo = [Ẽ1, Ẽ2] and label ymixed.

AURC↓ AUROC↑ FPR95↓ ACC↑
128 29.08 88.27 49.57 86.66
256 25.11 90.55 46.22 86.43
512 25.34 90.98 43.90 85.97

Table 9: Effect of nmax in MFS.

AURC↓ AUROC↑ FPR95↓ ACC↑
0.2 24.42 90.19 46.15 86.66
0.5 24.18 90.28 46.22 87.00
1.0 23.11 90.93 42.11 86.55
2.0 19.97 92.02 41.96 87.23

Table 10: Effect of weight λacl for ACL.

F MORE ABLATION STUDIES

Parameter Sensitivity. We evaluate the sensitivity of our framework to two key hyperparameters
using the HMDB51 dataset. First, the maximum swapping dimension nmax for Multimodal Feature
Swapping (MFS) was varied among 128, 256, and 512, with results presented in Table 9. An nmax

value of 256 yielded the optimal balance, achieving robust performance across all evaluation metrics.
Subsequently, with nmax fixed at 256, the weight λacl for Adaptive Confidence Loss (ACL) was
evaluated over the set 0.2, 0.5, 1.0, and 2.0 (detailed in Table 10). A value of λacl = 2.0 consistently
delivered the strongest MisD performance. Importantly, the framework’s performance remained stable
across both parameter sweeps, underscoring its robustness to variations in these hyperparameters.

G FURTHER DISCUSSIONS ON PROPOSED MODULES

How Adaptive Confidence Loss Addresses Unimodal Overconfidence. Imagine a situation where
one modality (e.g., audio) is ambiguous or corrupted, causing its corresponding unimodal network to
make a confidently wrong prediction (high conf1). The other modality (e.g., video) provides clear
evidence for the correct class, leading to a correct, high-confidence prediction (conf2). A standard
fusion model might struggle to integrate these conflicting signals. If the fusion process results in a
moderate fused confidence conf that is lower than the erroneously high conf1, it will incur a large
ACL penalty from the max(0, conf1 − conf) term. To minimize this loss, the model can’t easily force
the fused confidence up without a good reason, as that would be penalized by the cross-entropy loss
term Lcls if the prediction is wrong. Instead, a more effective way to reduce the ACL loss is to lower
the confidence of the overconfident unimodal prediction (conf1). Through repeated exposure to such
conflicting examples during training, the unimodal feature extractor learns a valuable lesson. It learns
that producing a high-confidence prediction that is likely to be contradicted by another modality is
"expensive" in terms of the overall loss. Therefore, it adjusts its weights to become more cautious and
better calibrated. The unimodal network learns to associate maximum confidence not just with strong
internal features, but with features that are also robust and likely to lead to cross-modal agreement.
As shown in Fig. 7 and Fig. 8, training with ACL effectively alleviates unimodal overconfidence on
incorrect predictions across all datasets.

Adaptive Confidence Loss Does Not Induce Overconfidence in Incorrect Predictions. ACL is
designed to encourage the fused confidence to be at least as high as that of any individual modality, but
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Figure 7: The average confidence on incorrect
predictions for video modality w/ and w/o ACL.
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Figure 8: The average confidence on incorrect
predictions for optical flow modality w/ and w/o
ACL.

Normal features Failure-aware outlier

Figure 9: An illustration of how MFS enables the detection and rejection of uncertain predictions,
thereby improving model reliability. The failure-aware outliers generated by MFS are treated as
uncertain because they introduce cross-modal inconsistency. Accordingly, their soft label yswapped
reduces the ground-truth class probability from 1 to 1− λ, compared to ytrue. Training with cross-
entropy loss on yswapped ensures that the prediction confidence on failure-aware outliers remains lower
than on normal features, which is exactly the desired outcome.

it does not make fused predictions overconfident when they are wrong. Specifically, when predictions
are correct, the cross-entropy loss term Lcls and ACL act in synergy, both encouraging higher fused
confidence. In contrast, when predictions are incorrect, a higher fused confidence increases the
cross-entropy loss Lcls, which counteracts the ACL term. This balance ensures that ACL boosts
confidence only for correct predictions while avoiding overconfidence in errors.

Multimodal Feature Swapping. Our MFS module isn’t designed to replicate the entire, complex
distribution of all possible real-world failures, as this would be intractable. Instead, MFS serves as a
principled and targeted regularizer that exposes the model to a critical and common failure mode in
multimodal systems: cross-modal inconsistency. Our core hypothesis is that many real-world errors
arise from conflicting or ambiguous signals between modalities. MFS directly simulates this failure
mode by swapping feature segments, creating semantically incoherent but challenging "hard negative"
samples that are near the in-distribution data. Training on these synthesized samples forces the model
to develop a more robust fusion mechanism that must critically assess the semantic agreement
between modalities. This closer examination of cross-modal consistency improves its ability to detect
real-world misclassifications, which often exhibit similar signal conflicts. The effectiveness of this
approach is validated by our extensive empirical results, which demonstrate that learning to reject
these synthetic inconsistencies directly translates to better identification of real-world errors. Fig. 9
gives a detailed illustration of how MFS enables the detection and rejection of uncertain predictions,
thereby improving model reliability.
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