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Abstract

We introduce DABstep, a novel benchmark for evaluating Al agents on realistic
multi-step data analysis tasks. DABstep comprises over 450 real-world challenges
derived from a financial analytics platform, requiring models to combine code-
based data processing with contextual reasoning over heterogeneous documenta-
tion. Each task demands an iterative, multi-step problem-solving approach, testing
capabilities in data manipulation, cross-referencing multiple sources, and precise
result reporting. The benchmark provides a factoid-style answer format with au-
tomatic correctness checks for objective scoring at scale. We evaluate leading
LLM-based agents, revealing a substantial performance gap: even the best agent
achieves only 14.55% accuracy on the hardest tasks. We detail our benchmark’s
design, dataset composition, task formulation, evaluation protocol, report baseline
results and analyze failure modes. DABstep is released with a public leaderboard
and toolkit to accelerate research in autonomous data analysis.
) Data & Code: huggingface.co/spaces/adyen/DABstep
(%) Data & Dataset Card: huggingface.co/datasets/adyen/dabstep

1 Introduction

Recent advances in large language models (LLMs) have enabled the development of autonomous
agentic workflows, particularly showing promise for automating complex, multi-step tasks within
domains like data science and software engineering. However, the evaluation of such agents, espe-
cially for data analysis, faces significant hurdles. Many existing benchmarks rely on synthetic tasks,
overly simplistic evaluations, or subjective assessment methods (such as LLM-as-a-judge, known for
biases), limiting their ability to accurately reflect the challenges encountered in real-world analytical
scenarios and gauge true agent capabilities.

To address these limitations, we introduce the Data Agent Benchmark for Multi-step Reasoning
(DABstep) which comprises over 450 authentic data analysis tasks derived directly from operational
workloads at Adyen. Distinctly, these tasks combine structured (e.g., CSV, JSON) and unstruc-
tured data (e.g., text, domain-specific documentation or complicated manuals), requiring agents to
demonstrate technical data manipulation skills (spanning SQL, statistical analysis, coding), a deep
understanding of contextual instructions, and the ability to plan hierarchically.

A core design principle of DABstep is its focus on multi-step reasoning complexity. Unlike bench-
marks where tasks might be solvable via single-shot generation [47, 24, 21, 201, hard tasks in DAB-
step are designed to require multi-step reasoning. Agents must decompose problems into sequential,
iterative steps—such as filtering data, computing aggregates, consulting reference tables, and han-
dling intermediate results—often requiring interaction with a code execution environment as shown
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Question: Which card scheme had the highest average fraud rate in 2023?
Ground Truth: SwiftCharge

Question: For the year 2023, focusing on the merchant Crossfit Hanna, if we aimed to

Hard reduce fraudulent transactions by encouraging users to switch to a different Authorization
Characteristics Indicator through incentives, which option would be the most cost-effective?
Ground Truth: E:346.49
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Figure 1: System overview of DABstep’s agent-task interaction. The figure illustrates the core
components: task input (questions), agent, execution environment, and output (answers). Two rep-
resentative questions are shown: a Risk/Fraud question from the Easy set (top), requiring 2+ data
sources and at least 3 execution steps; and a Scheme Fees question from the Hard set (bottom),
requiring 3+ sources and more complex reasoning over at least 6 steps. Agents must combine con-
textual understanding, code execution, and iterative refinement to produce a correct answer. See full
trace example in section A.4

in Figure 1. Furthermore, DABstep is designed for accessibility with a low barrier to entry, avoiding
complex scaffolding or environments. An automated online leaderboard facilitates easy submission
and standardized evaluation while also fostering community participation.

Our evaluations underscore DABstep’s significant challenge to current state-of-the-art LLMs. Top-
performing agents, such as o4-mini [34], at time of writing, achieve only 14.55% accuracy (Table
1), highlighting substantial gaps between current agent capabilities and the demands of rigorous,
practical data analysis.

This paper makes the following key contributions:

* Data: A novel benchmark featuring over 450 real-world data analysis tasks designed
to test complex, multi-step reasoning and planning while leveraging diverse data sources
including a large (+100k) payments dataset among others.

* Factoid Evaluation Framework: An objective and standardized evaluation methodology
centered on factoid answers with binary (right/wrong) outcomes, supported by a flexible
scoring mechanism to handle formatting variations fairly.

* Baselines: Performance results and failure modes for leading open and closed LLM agents,
identifying current limitations and key areas for future research.

* Community Platform: An accessible setup including a developer set, a quick-start note-
book, an open-source baseline code, and a centralized live leaderboard to track progress
and foster collaboration.

Through DABstep, we aim to drive progress in developing Al agents capable of rigorous, practical,
multi-step data analysis, better aligned with real-world analytical needs.

2 Design Principles & Related Works

The guiding philosophy behind DABstep is grounded in four key principles that collectively empha-
size realism, complexity, objectivity, and accessibility. In Table 2 we provide a high-level compar-
ison to other related benchmarks on the main characteristics that we consider required to evaluate
real-world data analysis tasks.
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Table 1: Performance of baseline models on the DABstep benchmark (Hidden Test Set). Scores
reflect accuracy (%) on Hard and Easy splits. Costs are estimates based on public pricing at the
time of evaluation (Q1 2025) and token usage; open models run locally are considered free (‘-’). All
baselines run for a maximum of 10 steps per task with a ReAct style prompt except for the reasoning
models. See Section 4 for methodology.

Name Hard (%) Easy (%) Total Cost ($)
o4-mini [34] 14.55 76.39 93
Claude 3.7 Sonnet [4] 13.76 75.00 139
03-mini [34] 13.76 72.22 85
Gemini 2.5 Pro [10] 12.70 66.67 270
GPT 4.1 [33] 12.43 80.56 155
ol [32] 11.11 69.44 435
Deepseek R1 [12] 11.04 68.21 3
Claude 3.5 Sonnet [3] 9.26 77.78 97
Llama 4 Maverick [2] 8.73 75.00 -
GPT-40 [30] 6.08 66.67 53
Deepseek V3 [26] 5.56 66.67 2
Claude 3.5 Haiku [3] 5.03 77.78 35
Llama 3.3 70B [11] 3.70 68.06 -
GPT-40-mini [31] 3.44 69.44 3
Llama 4 Scout [2] 1.85 52.78 -
Llama 3.2 1B [1] 0.00 1.39 -

2.1 Real-World and Multi-Step Complexity

A central design principle of DABstep is its emphasis on realistic analytical challenges that require
multi-step reasoning over heterogeneous data sources. Unlike benchmarks that focus on abstract
math problems [14], isolated code snippets [7], or synthetic QA tasks [8], DABstep’s over 450 tasks
are derived directly from operational workloads at Adyen, reflecting the complex, iterative problem-
solving scenarios faced by professional data analysts.

These tasks are grounded in real-world financial analysis and integrate both structured data (e.g.,
CSV tables like payments. csv, JSON files like fees. json) and unstructured documentation (e.g.,
Markdown files like manual .md). Solving them demands technical proficiency in data manipulation
(e.g., filtering, aggregation, joins), statistical reasoning, and the ability to extract and apply domain-
specific rules from documentation. For example, agents must answer questions such as “Which card
scheme had the highest average fraud rate in 2023?” or perform scenario analysis like “If merchant
X changed its business category, how would that affect fees?”

Crucially, DABstep tasks are explicitly designed to resist one-shot code generation strategies [47,
24]. Especially in the Hard split (84% of tasks), no question can be answered through a single direct
execution. Hard tasks require iterative data filtering and cross-referencing, which single-shot code
cannot handle. Instead, agents must follow a multi-step reasoning process that involves identify-
ing relevant context, synthesizing data across files, computing intermediate results, and validating
outputs. Many tasks require cross-referencing structured sources such as tables (CSV or other-
wise) or JSON datasets with unstructured content such as documentation or technical manuals, and
executing multi-stage plans within a Python environment (see Figure 1). Previous code genera-
tion benchmarks [21, 7, 25] focus on isolated coding skills but lack the requirement for multi-step
reasoning grounded on domain knowledge across structured and unstructured sources. Other bench-
marks moved towards iterative analysis via interactive environments with multiple code executions
inspired by Intercode [44], but lacked the focus on domain-specific knowledge integration during
planning [23, 17], are limited to text-to-Pandas within Jupyter environments [46] or do not require
integrating with heterogeneous data sources [15].

This emphasis on sequential, tool-augmented reasoning distinguishes DABstep from benchmarks
focused solely on Text-to-SQL benchmarks [47, 24, 40, 13, 22, 50] or closed-domain QA [18], and
better reflects the iterative nature of real-world data workflows. As evidenced in Section 4, even
state-of-the-art LLM agents struggle with these challenges, especially when planning, tool use, or
implicit instruction following is required.
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Table 2: Comparison with existing related benchmarks. Columns include the benchmark topic
(Topic), the number of tasks (# Tasks) and whether the tasks in the benchmark involve: integrating
heterogeneous data sources (Hetero.), come from real-world scenarios driving business value and not
from just educational, synthetic or online resources (Real World), require following domain-specific
business knowledge and/or rules to arrive to a solution (Domain Knowledge), require multi-model
input handling (Multi-modal), require multiple steps of reasoning to arrive to a solution (Multi-step),
require agents to perform analysis via code (Code), can be objectively evaluated (Objective Evals).
DABstep vl focuses on structured/unstructured text only.

Benchmark Topic Hetero. \Egslld K]r?(?“r/qzldnge lr\n/[g(lit;i Multi-step Code O%]s;{;ve #Tasks
FinanceBench [18] Finance QA v v v X X X X 10,231
GAIA [28] General QA v v X v X v v 466
MATH [14] Math QA X X X X X X v 12,500
GSMS8K [29] Math QA X X X X X X v 8,500
Spider [47] Text-to-SQL X X X X X X v 1,181
Spider 2 [23] Text-to-SQL v X v X v v v 632
BIRD [24] Text-to-SQL X X v X X X v 12,751
KaggleDBQA [22] Text-to-SQL v X X X X v v 272
WikiSQL [50] Text-to-SQL X v X X X X v 80,654
HumanEval [7] Text-to-Python X X X X X v X 164
NL2Bash [25] Text-to-Bash X v X X X X X 9,305
Arcade [46] Text-to-Pandas X X X X v v v 10,082
SWE-Bench [19] Software X v X v X X v 2,294
WebArena [51] Web v X X v v X v 812
OSWorld [42] Computer Control v v X v v X v 369
Intercode [44] Iterative code X X X X v v v 1351
MLAgentBench [16] Machine Learning v v X v v v v 13
DABench [15] Data Analysis X v X X v v v 257
DA-Code [17] Data Science v v X X v v v 500
DS-1000 [21] Data Science X v X X X v v 1,000
Spider2-V [5] Data Science v v v X X v v 494
DSEval [48] Data Science X X X X v v v 825
DSBench [20] Data Science v X X v v v X 540
DABstep (ours) Data Analysis v v v X v v v 450

2.2 Objective Evaluation

DABstep was designed with a guiding principle of verifiable answers to ensure robust and straight-
forward evaluations. Unlike many benchmarks that include tasks validated by LLM-as-a-judge ap-
proaches [20, 43, 28], we selectively curated questions to produce objective, factoid answers—such
as numbers, lists, or concise strings—amenable to automated scoring. This choice reflects a de-
liberate trade-off: while many impactful use-cases often involve free-form outputs (e.g., analytical
reports, narrative summaries), their evaluation often requires subjective, resource-intensive methods
like LLM-as-a-judge, introducing potential bias and infrastructure costs [49]. By focusing on veri-
fiable answers, DABstep sacrifices some task diversity (like more open-ended tasks with free-form
output) but gains in advantages: high evaluation reliability, scalability without LLM dependency,
and a streamlined experience for developers and users. As a concrete example, factoid task answers
may be numerical (e.g., 42) or a list of items (e.g., ‘CardA, CardB’). This curation aligns with our
goal of creating a benchmark that prioritizes reliability and accessibility, enabling fair comparisons
of LLM agents on data analysis tasks without the overhead of complex evaluation pipelines. How-
ever, even factoid answers exhibit variability (e.g., ‘42’ vs. ‘forty-two’ vs. *42.00’), necessitating a
flexible and deterministic scoring mechanism (detailed in Section A.2) to maintain fairness without
reverting to rigid exact matching or LLM-based subjectivity.

2.3 Simple accessible setup

A key design philosophy underpinning DABstep is ensuring a low barrier to entry for researchers and
practitioners. We deliberately avoided requiring complex environments or specialized infrastructure
often associated with other benchmarks, like general agent platforms [27, 5, 9, 42, 41], software and
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ML engineering development benchmarks [19, 6, 16] and dedicated SQL benchmarks [47]. Instead,
DABstep is designed for ease of use, requiring only a standard Python runtime for task execution.

The evaluation process is streamlined through an automated online leaderboard. Participants can
submit their results easily, receiving standardized evaluations without needing to manage complex
local evaluation setups and avoids biased cherry-picked baselining [35]. To further support acces-
sibility, baseline implementations and prompts are provided openly. This simplicity in setup and
evaluation is intended to encourage broad participation from the research community, mirroring the
accessibility that has spurred progress in widely adopted NLP benchmarks [39]. By minimizing
setup complexity, DABstep allows researchers to focus directly on the core challenges of multi-step
reasoning and data analysis for LLM agents.

3 Benchmark

3.1 Task Curation

DABstep consists of over 450 tasks derived from real-world analytical challenges at Adyen, curated
to evaluate agent capabilities through factoid-style question answering with objective scoring. Each
task mirrors typical workflows and queries faced by professional data analysts. The tasks were
selected from real but anonymized internal queries to ensure a diverse range of data manipulation,
reasoning steps, and contextual understanding. Each task (see example in Section A.4) is presented
with a natural language prompt, which includes:

* Question: A specific question (e.g., “Which card scheme had the highest average fraud rate
in 2023?”) or an analytical scenario (e.g., assessing the fee impact of a merchant changing
business categories).

* Guidance: Clear guidance on the required answer format (e.g., “Provide the name of the
scheme” or “Provide the result as scheme : fee where fee is rounded to 2 decimal places”).
This minimizes penalties due to trivial formatting errors.

* Context: A set of context files (datasets and documentation) necessary to solve the task.

* Level: A difficulty tag (Easy or Hard).

The tasks require agents to integrate information from heterogeneous data sources, demanding both
technical data analysis skills (using code) and domain-specific understanding learned from the pro-
vided context.

To provide the necessary context or domain knowledge for agents to reason over while solving tasks,
we release several datasets, including a large payments dataset with over 100,000 anonymized trans-
actions and various industry-specific manuals and documentation represented in simplified formats.
For instance, in the finance industry, business context is often outlined in extensive handbooks from
payment networks, regulators, and processors. For this benchmark version, we have created mark-
down documentation distilling essential business knowledge (e.g., concepts like Merchant Category
Codes (MCC), Authorization Characteristics Indicators (ACI), scheme fee structures) into a precise
yet accessible format crucial for solving many tasks accurately.

Symbolic Reasoning through Parameterization In the spirit of GSM-Symbolic [29], many base
task types have been expanded into multiple concrete instances by systematically varying param-
eters like time ranges, merchant names, or specific thresholds. This parameterization significantly
increases the number of unique task instances derived from a smaller set of core analytical work-
flows. Concretely, out of the 450 total questions, 95 of those are core questions. The rationale is
twofold: first, to minimize the possibility of agents succeeding through ‘lucky guesses’ or mem-
orization of answers potentially seen during pre-training; second, to rigorously validate the core
reasoning capabilities of the agents — their ability to apply the same logical steps consistently across
different input values, thereby testing generalization. This approach emphasizes evaluating the un-
derlying problem-solving process rather than just retrieving specific facts. A concrete example: A
task asking for fraud rates in September is varied by changing the month to July or February, or by
altering merchant names.
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3.2 Task Distribution

DABstep comprises over 450 data analysis tasks, permuted from a core of 95 (see 3.1), combining
structured datasets (like CSV tables and JSON files) with unstructured text (Markdown documenta-
tion). The tasks are categorized by difficulty:

» Easy Tasks: 72 tasks (approximately 16% of the total). These generally involve query-
ing or processing a single primary dataset with minimal reliance on complex contextual
information from documentation. They serve as basic sanity checks or warm-ups.

* Hard Tasks: 378 tasks (approximately 84% of the total and permuted from 23 core ques-
tions). These tasks form the core challenge of the benchmark. They typically require
cross-referencing multiple data sources, understanding domain-specific concepts explained
in manuals/documentation and executing a multi-step reasoning process involving several
stages of data manipulation and interpretation. Section A.4 shows that solving these tasks
goes significantly beyond simple single-shot code generation capabilities.

This distribution, heavily weighted towards Hard tasks, intentionally reflects the complexity of real-
world data analysis challenges faced by professional data analysts, demanding robust technical skills
combined with planning and reasoning capabilities. From our baselines in Section 4, there is a 49%
correlation with performance on the easy set to performance on the hard set. In Section A.3 we
provide a snapshot of the key data sources included in the benchmark’s context, illustrating the mix
of structured formats and unstructured documentation.

3.3 Evaluation Protocol

DABstep is designed for automated, fast, and factual evaluation. Echoing the principles of bench-
marks like GAIA [28], each task requires a specific factoid answer: typically a string (one or a few
words), a number, or a list of strings/numbers (comma-separated unless otherwise specified in the
guidance). There is only one correct ground truth answer for each task.

Evaluation is performed via automated comparison between the agent’s final answer and the cor-
responding ground truth answer, using a flexible scoring algorithm detailed in Section A.2 (and
Algorithm 1 in the Appendix). This quasi-exact match approach, with type-specific normalization
and tolerance, ensures objective and scalable scoring.

Hidden Test Set for Zero-Shot Generalization To robustly evaluate the zero-shot generalization
capabilities of agents, DABstep employs a single, held-out hidden test set. This set contains the
majority of the benchmark tasks and is used exclusively for the official evaluation conducted via our
public leaderboard. We do not release separate public validation or test sets derived from this hidden
data.

This design choice serves several purposes. First, it encourages the development of agents that
generalize well across the diverse range of data analysis tasks represented in the benchmark, rather
than overfitting to a specific public subset. Second, by hiding the test ground truths, we maintain
the long-term integrity of the benchmark and reduce the risk of leakage into the training corpora of
future models, i.e saturation. This safeguard ensures that DABstep remains a reliable measure of
true generalization capabilities over time. Finally, our design aligns with best practices for rigorous
benchmarking [35], supporting fair and standardized evaluation across all participants.

To facilitate development, local testing, and environment setup without requiring interaction with the
official leaderboard for every iteration, we release a smaller public developer set. This set includes
a representative sample of tasks with their ground truth answers, allowing researchers to verify
their agent implementations and scoring logic end-to-end before submitting to the leaderboard for
evaluation on the hidden test set.

4 Baselines

To establish initial performance levels on DABstep and highlight the gap between current LLM
agent capabilities and the demands of complex, real-world data analysis tasks, we evaluated a range
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of state-of-the-art open and closed-source language models available at the time of evaluation (Q1
2025).

4.1 Baseline Setup

To ensure fair and scalable evaluation across a diverse range of models, we adopted a standardized
setup with minimal model-specific tuning. Most models were prompted using a generic ReAct-style
approach [45], framing the LLM as a data analyst that reasons step by step, invokes a Python exe-
cution tool when needed, and formats its final answer in a structured output. The prompt included
abstract demonstrations of the desired reasoning-action-observation loop. We intentionally avoided
heavily engineered or model-specific prompts to keep comparisons consistent across different archi-
tectures.

For a few models—such as 04-mini, 03-mini, ol, R1 and Gemini 2.5 Pro—we employed a "Rea-
soning Prompt,” a slightly adapted variant better aligned with their internal reasoning paradigms.
However, these were still standardized across those models to ensure internal consistency.

Open-source models were run on a dedicated cluster with 4x Nvidia A100 GPUs (80GB each).
All tasks were executed in isolated environments where the agent had access to a Python kernel,
enabling dynamic code execution for data loading, manipulation, and statistical analysis via standard
libraries. Each task environment also included mounted context files containing relevant datasets and
documentation.

Notably, we avoided the use of complex agent frameworks or external orchestration layers. The
entire setup consisted of a lightweight wrapper [36] around the LLM API, providing Python exe-
cution and I/O, but leaving all decision-making—including reasoning, code generation, and result
interpretation—to the model itself. This minimal infrastructure ensures that observed performance
reflects the model’s inherent capabilities, rather than the sophistication of external tooling.

The full baseline implementation, including prompts and evaluation code, is available in the bench-
mark repository.”

4.2 Results

Table 1 presents accuracy results, broken down by the Easy (16% of tasks) and Hard (84 % of tasks)
splits of the benchmark. These scores demonstrate the significant challenge posed by DABstep,
particularly in the Hard split. Even the top-performing model, 04-mini (using the reasoning prompt)
achieves only 14.55% accuracy on the Hard tasks. Several other leading models—including propri-
etary models (e.g., Claude 3.7 Sonnet and 03-mini), as well as strong open models— scored below
14% on the Hard set.

In contrast, performance on the Easy split is considerably higher. For instance, 0o4-mini reaches
76.39% accuracy, suggesting that many LLMs can already handle one-shot analysis tasks with high
effectiveness. The stark drop in scores on the Hard split reveals that tasks requiring multiple steps of
reasoning remain largely unsolved. Notably, smaller or less specialized models, such as Llama 3.2
1B, struggle across the board, particularly on the Hard tasks, further highlighting the gap in current
capabilities.

The evaluation also considered the approximate cost of running the benchmark for proprietary API-
based models (Table 1), revealing significant trade-offs between performance and cost. Costs per
full benchmark run varied widely, highlighting the economic factors involved in deploying these
agents.

4.3 Failure Modes

Agent performance often degrades when deviating from the ideal iterative trajectory outlined in
Figure 1, particularly during planning and execution phases. Analysis of incorrect agent trajectories
revealed common failure patterns frequently linked to DABstep’s design principles emphasizing
multi-step complexity and real-world nuances. Section A.4 illustrates a real agent trace example
with some of the failure modes we introduce below.

*https://huggingface.co/spaces/adyen/DABstep/tree/main/baseline
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Planning and Instruction Following Deficiencies. Agents often struggled to correctly decom-
pose complex Hard tasks into a viable sequence of sub-steps. They might miss necessary interme-
diate calculations, fail to consult required documentation at the right point, or hallucinate incorrect
analysis plans. A common issue was attempting calculations before reading the relevant sections
of documentation that defined key domain terms or logic. In addition, we observed that agents
tend to perform well at following instructions which are explicitly stated in the context (i.e domain-
specific formula). However, agents are considerably more prone to fail when they face a task in
which they need to follow rules implicitly mentioned in the context (i.e domain-specific rule with
multiple downstream implications) or composite rules which are linked together implicitly. While
our observations are preliminary, one plausible explanation for these failure modes lies in the nature
of the current retrieval systems that can be scaffolded around models and the inductive biases of
LLMs. Specifically, the self-attention mechanism [38], central to the LLM architecture and retrieval
systems, primarily captures semantic similarity (i.e., relationships based on token co-occurrence and
contextual proximity) rather than abstract conceptual similarity (i.e., relationships between underly-
ing ideas irrespective of their surface-level expression). This might result in agents missing to link
together pieces of information, not explicitly mentioned, which are crucial for the task at hand. In
contrast, human analysts excel at identifying and linking such implicit cues, highlighting a potential
area where current models fall short.

Inefficient Code. We observe that the code generated by the agent becomes increasingly inef-
ficient as the complexity of the reasoning required by a task also increases. In particular, agents
tend to default to low-level constructs such as explicit for-loops for tasks like computing group av-
erages, even when high-level abstractions or idioms such as group-by or filter are available. This
suggests that while the models can produce functionally correct code, their reasoning process fails
to generalize to more abstract or idiomatic programming patterns as task difficulty grows.

Multi-step Instruction Following. In addition to the main, user-provided agent prompt, answers
to tasks must also follow a formatting guidance prompt (Section 3.1). Potentially resulting in a
complex, but realistic set of instructions to follow. Studies have shown [37] that enforcing multiple
instructions in a single prompt, such as, in this case, formatting guidelines, significantly reduces
LLM reasoning abilities. We did observe a non-trivial amount of errors resulted from failing to
follow the specified output format guidance, for example, agents will often provide conversational
text instead of outputting a number or apply incorrect rounding, wrong list delimiters or order,
suggesting decomposing instructions into independent units as in [37].

Prompt Sensitivity. Certain models known for strong reasoning capabilities (R1, ol, etc) per-
formed poorly with the standardized ReAct prompt (some scoring near 0% initially before trying
a reasoning-specific standard prompt), indicating a high sensitivity to prompt structure and a po-
tential reliance on specific custom prompting techniques not used in our fair, standardized baseline
evaluation.

While these baseline results represent performance with non-optimized, standardized prompts and
should be considered a lower bound, they effectively demonstrate the significant challenges DAB-
step presents in areas crucial for practical data analysis: robust multi-step reasoning, accurate han-
dling of diverse data sources and domain knowledge, reliable tool use, and precise instruction fol-
lowing. These findings establish a clear benchmark and highlight key areas for future research aimed
at improving agent capabilities.

5 Conclusion, Limitations & Future Work

DABstep is a large-scale benchmark designed to rigorously evaluate autonomous agents on realistic,
multi-step data analysis tasks. With over 450 grounded challenges derived from financial workloads,
DABstep uniquely combines code execution, contextual reasoning over structured and unstructured
data, and an objective factoid-based evaluation protocol. Our baseline results show a stark capa-
bility gap: state-of-the-art LLM agents achieve only 14.55% accuracy on Hard tasks, underscoring
critical limitations in reasoning, planning, tool use, and instruction following. By releasing data,
evaluation tools, baseline code, and a public leaderboard, we aim to foster community engagement
and accelerate research on practical, agentic data analysis.
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However, this is the first iteration of the DABstep benchmark. It currently supports only text-based
inputs and factoid-style outputs, limiting its ability to assess critical skills like visual reasoning (e.g.,
from charts or PDFs) or open-ended analysis (e.g., narratives, recommendations). These constraints
reflect deliberate trade-offs to favor objective, scalable evaluation, but future iterations will address
them by (i) expanding financial tasks (e.g., approval rate and temporal analysis), (ii) incorporating
other domains (e.g., healthcare, e-commerce), (iii) increasing data scale and heterogeneity (e.g.,
longer documents, PDF manuals), (iv) introducing multimodal tasks, and (v) pushing toward agents
capable of interactive clarification, exploratory analysis, and synthesis. These directions aim to close
the gap between benchmark and real-world analytical workflows, while continuing to emphasize
transparency, rigor, and accessibility.
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Technical Appendices and Supplementary Material

A.1 Usage and Accessibility

DABstep is designed for broad accessibility. The benchmark platform, including baseline code,
documentation, and the live leaderboard, is publicly hosted on Hugging Face Spaces. The core
dataset, anonymized and released under an open license [Creative Commons Attribution 4.0 Inter-
national], is available on the Hugging Face Hub with a detailed dataset card. The platform provides

a standardized environment for evaluation via leaderboard submissions. '

-

Thttps://creativecommons.org/licenses/by/4.0/
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A.2 Hybrid Scoring Algorithm

To ensure objective and robust evaluation while accommodating minor, semantically irrelevant vari-
ations in agent outputs, DABstep employs a hybrid scoring algorithm. This approach avoids the
brittleness of pure exact string matching, which would unfairly penalize correct answers with triv-
ial differences (e.g., ”$42.00” vs. 742”), and sidesteps the potential biases, costs, and complexities
associated with LLM-as-a-judge methods [49].

The algorithm first normalizes both the agent’s predicted answer and the ground truth answer (e.g.,
converting to lowercase, trimming whitespace). It then applies type-specific comparison logic:

* Numeric Comparison: If both inputs can be interpreted as numbers, it extracts the nu-
meric values, ignoring formatting like currency symbols or thousands separators (e.g.,
‘$1,234.56” becomes 1234.56). Comparison allows for a small tolerance (e.g., 107%) to
handle potential floating-point rounding differences.

» List Comparison: If inputs appear to be lists (based on delimiters like commas or semi-
colons), they are split into elements. Each element is normalized (e.g., whitespace trimmed,
converted to lowercase). The lists are then compared, typically ignoring the order of ele-
ments unless the task specifically requires ordered output. Normalization handles variations
like ‘uber, spotify, nike’ matching ‘Nike, Uber, Spotify’. Recursive calls to the scoring
function handle comparisons of elements within the lists if they are complex (e.g., lists of
numbers).

» String Comparison: For general string answers, basic cleaning is applied (e.g., removing
punctuation, extra whitespace). If the cleaned strings match exactly, the answer is correct.
If not, fuzzy string matching (e.g., using Levenshtein distance or a similar metric) is em-
ployed, accepting answers with a high similarity score (e.g., > 0.95) to the ground truth
which handles minor typos or variations. Special handling might apply for single-word vs.
multi-word comparisons.

This tiered approach ensures that the evaluation focuses on the semantic correctness of the factoid
answer, providing a fair yet rigorous assessment aligned with DABstep’s goal of objective, auto-
mated scoring. Pseudocode for the algorithm is provided in Algorithm 1 in the Appendix (Figure
A2).

To validate our automated scoring algorithm, we collected 75 model-generated answers across Easy
and Hard tasks from a diverse set of LLMs (GPT-4, Claude 3.5, LLaMA 3). Each answer was
manually judged by two independent annotators, who labeled the response as correct or incorrect
according to the task instructions and gold reference. Inter-annotator agreement was 97.3% (Cohen’s
k = 0.94), with disagreements resolved via discussion.

Our scoring function matched human judgment on all 75 examples, achieving 100% accuracy. Using
binomial confidence intervals, this yields a 95% CI of [96.2%, 100%], indicating strong reliability.
Crucially, many examples required tolerance to numeric rounding, flexible list ordering, or fuzzy
string similarity—highlighting the importance of a robust scoring mechanism.

A.3 Dataset Snapshot
In Table 3 we provide a concise overview of each file in the DABstep benchmark’s dataset bundle.

This snapshot highlights file names, formats, and a brief description of their contents, which together
capture the key aspects of our finance use cases.
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Algorithm 1 Hybrid Answer Scoring Algorithm (Pseudocode)
1: procedure SCOREANSWER(predicted_answer, ground_truth)

2: pred < Normalize(predicted_answer) > e.g., lowercase, trim whitespace
3 gt < Normalize(ground_truth)
4 if IsNumeric(pred) and IsNumeric(gt) then > Check if both are numeric
5: Npred < ExtractNumeric(pred) > Handles , etc.
6 ngt < ExtractNumeric(gt)
7 return CompareNumeric(nyycd, Mgt tolerance=10"2) > Allows small float diff
8 end if
9: if IsList(pred) and IsList(gt) then > Check if both look like lists
10: lprea < SplitSortNormalizeList(pred) > Split, normalize elements, sort
11: l4¢ < SplitSortNormalizeList(gt)
12: if length(l,,cq) # length(ly) then
13: return false
14: end if
15: all_match < true
16: for i from O to length({,,¢q) - 1 do
17: if not ScoreAnswer(lpreqli], {4:[i]) then > Recursive call for elements
18: all_match < false
19: break
20: end if
21: end for
22: return all_match
23: end if

> Default to string comparison
24: predejeqn < CleanString(pred) > Remove punctuation, extra spaces
25: Gteiean < CleanString(gt)
26: if predeican = gteiean then

27: return true > Exact match after cleaning
28: end if

29: similarity_score <— CalculateStringSimilarity(pred ican, gtciean) > €.2., Levenshtein ratio
30: if similarity_score > 0.95 then > Threshold for fuzzy match
31: return true

32: end if

33: return false > Default to false if no match

34: end procedure
> Helper functions like Normalize, IsNumeric, ExtractNumeric, CompareNumeric, IsList,
SplitSortNormalizeList, CleanString, CalculateStringSimilarity are assumed.
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Table 3: Snapshot of key datasets provided as context within the DABstep benchmark, covering
aspects of the financial payments sector.

Name Description

payments.csv Anonymized payments dataset containing over 138,000
transactions with features relevant to fraud detection and risk
analysis use-cases.

payments-readme.md Human-readable documentation explaining the columns and
content of the payments. csv dataset.

acquirer_countries.csv Table mapping acquiring bank identifiers to their respective
countries.

fees. json Dataset detailing various scheme fee structures (over 1000
entries), often dependent on transaction and merchant at-
tributes.

merchant_category_codes.csv Table listing Merchant Category Codes (MCCs) and their de-
scriptions.

merchant_data. json Table containing descriptive information about various mer-
chants (anonymized).

manual .md A comprehensive guide (distilled for the benchmark) ex-

plaining core payment processing concepts (e.g., Account
Types, MCC, ACI), detailing fee calculation logic based on
merchant and transaction attributes, and outlining best prac-
tices for minimizing costs and fraud risk. Essential for solv-
ing many Hard tasks.
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A.4 Failure Mode Example

Figures 2—11 illustrate a trace from a real task execution by a Claude 3.7 Sonnet agent, one of the
best performing baselines, on the DABstep benchmark. For clarity, we omit action outputs that are
excessively verbose (e.g., full documentation dumps, programming error traces).

The task requires identifying all applicable fees for a specific merchant on a given date, with the
expected output being a comma-separated list as defined in the task guidelines. To address this, the
agent first explores the data sources available in the data/context environment. In steps O and 1
(Figures 2 and 3), the agent succeeds in identifying and retrieving the relevant context files.

In steps 2 and 3, the agent parses these data to extract merchant business attributes (Figures 4 and
5). Next, it returns to the context in step 4 (Figure 6) to refine its understanding of fee scheme rules.
After refining its understanding, at step 5 (Figure 7), the agent recognizes a missing piece of the
puzzle: merchant payment traffic characteristics, which it attempts to find next.

Step 6 (Figures 8—10) represents the synthesis stage, where the agent combines insights from mer-
chant’s business and payment traffic with domain-specific rules to discriminate the applicable fees.
Finally, in step 7 (Figure 11), it composes an answer conforming to the task output format.

Despite the apparently coherent strategy, the agent ultimately fails to produce the correct result.
This is because the agent misses a critical piece of information from the context (in step 6, Figure
9), although it has ingested into its memory in step 1 (Figure 3). The overlooked information is that
merchant monthly fraud rates and other monthly payment traffic statistics discriminate between fees,
and these statistics need to be computed to then be filtered on. Therefore the provided list of fees
in the answer is a superset of the actual applicable fees. This behavior is an example of Planning
and Instruction Following Deficiencies described in Section 4.3. Step 6 (Figure 9) also shows some
inefficient code where the agent iterates transactions and fees using nested for-loops instead of using
libraries built-in operations like group-by and filters.
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| LLM: Claude 3.7 Sonnet - Input Tokens: 81k - Output Tokens: 8k |

Question: For the 10th day of the year 2023, what are the Fee IDs applicable to
Belles_cookbook_store?

Guidelines: Answer must be a list of values in comma separated list, eg: A, B, C. If the answer is
an empty list, reply with an empty string. If a question does not have a relevant or applicable
answer for the task, please respond with 'Not Applicable'

Before answering the question, reference any documentation in the data dir and leverage its
information in your reasoning / planning.

=

Agent

I'll solve this task by exploring the data in the "data/context’ directory, understanding the structure, and
then finding the Fee IDs applicable to Belles cookbook store for the 10th of the year 2023.

Thought: First, I need to explore the "data/context’ directory to see what files are available and
understand the data structure and documentation.

Code:
S

import 0s

# List files in the data/context directory
files = os.listdir('data/context')
print("Files in data/context directory:")
for file in files:

print(file)

Execution Logs

Files in data/context directory:
fees.json

merchant data.json
merchant_category_codes.csv
payments.csv
payments-readme.md
acquirer countries.csv
manual.md

Figure 2: Agent step 0 where environment exploration happens.
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Agent

=

Thought: Great, I can see several files that might be useful for answering this question. I should first
check if there's a manual or documentation file that could help me understand the data
structure. I see a ‘'manual.md" file which could be useful.

Code:
py
# Read the manual.md file to understand the data structure
with open('data/context/manual.md', 'r') as file:
manual content = file.read()
print(manual content)

Execution Logs

# Merchant Guide to Optimizing Payment Processing and Minimizing Fees
Version 2.1 | Last Updated: November 1, 2024

## Table of Contents

1. Introduction

2. Account Type

3. Merchant Category Code

[Excluded content]

Figure 3: Agent step 1 where the agent loads domain-specific documentation into its working mem-
ory. Full documentation dump is omitted.
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Agent

Thought: The manual provides a lot of useful information. I understand that there are different files
that might contain the information I need. Let's first check the ‘'merchant data.json’ file to find
information about Belles cookbook_store.

Code:
py

import json

# Read the merchant data.json file
with open('data/context/merchant data.json’, 'r') as file:
merchant_data = json.load(file)

# Check if Belles cookbook_store is in the data

if 'Belles cookbook store' in merchant data:
print("Found Belles_cookbook_store in merchant_data.json")
print(merchant data['Belles cookbook store'])

else:
print("Belles cookbook store not found in merchant data.json")

# Let's list the keys in the merchant data to see if the name might be formatted differently
print("\nMerchant names in the data:")
for merchant_name in merchant_data.keys():

print(merchant name)

Execution Logs

Belles cookbook store not found in merchant data.json

Merchant names in the data:

ERROR: Code execution failed at line 'for merchant name in merchant _data.keys():
print(merchant name)' because of the following error:

Object [ {'merchant': 'Crossfit_Hanna', 'capture_delay": 'manual’, 'acquirer': ['gringotts',

'the savings and loan bank', 'bank of springfield’, 'dagoberts vault'], 'merchant category code":

7997,

'account_type" 'F'}, {'merchant” 'Martinis Fine ... ] has no attribute keys

Figure 4: Agent step 2 where the agent tries to find more about the merchant but it fails to produce
valid code. The full error trace is omitted.
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Agent

=

Thought: T see the issue. The merchant_data.json file contains a list of dictionaries, not a dictionary
with keys. Let's try a different approach to find information about Belles _cookbook store.

Code:
py

import json

# Read the merchant data.json file
with open('data/context/merchant_data.json', 'r') as file:
merchant data = json.load(file)

# Find data for Belles_cookbook_store
belles data = None
for merchant in merchant _data:
if merchant. get('merchant') == 'Belles_cookbook_store":
belles_data = merchant
print("Found Belles_cookbook_store data:")
print(belles data)
break

if belles_data is None:
print("Belles cookbook store not found in merchant data.json")

Execution Logs

Found Belles_cookbook_store data:
{'merchant”: "Belles_cookbook_store', 'capture_delay': '1", "acquirer': ['lehman_brothers'],
'merchant_category_code" 5942, 'account_type'

Figure 5: Agent step 3 where the agent successfully finds merchant business related data.
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[ Agent]

Agent

Thought: Great! Now I have information about Belles cookbook store. According to the data, it's a
merchant with category code 5942, account type 'R’ (Enterprise - Retail), and a capture delay of '1".

Next, I need to look at the fees.json file to understand the fee structure and then check what fees are
applicable on the 10th of the year 2023.

Code:
py

import json

# Read the fees.json file
with open('data/context/fees.json', 'r') as file:
fees data = json.load(file)

# Check the structure of the fees data

print("Fees data structure:")

print(type(fees_data))

if isinstance(fees_data, list) and len(fees_data) > 0:
print("Sample fee entry:")
print(fees_data[0])

else:
print("No fee data found or unexpected format")

Execution Logs

Fees data structure:

<class "list'™>

Sample fee entry:

{'ID": 1, 'card scheme" 'TransactPlus', 'account type': [], ‘capture delay": None, 'monthly fraud level"
None, 'monthly_volume': None, 'merchant_category code': [8000, 8011, 8021, 8031, 8041, 7299,
9399, 8742], 'is_credit: False, 'aci": ['C', 'B'], 'fixed_amount" 0.1, 'rate” 19, 'intracountry” None}

Figure 6: Agent step 4 where the agent refines its understanding about fee calculations.
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Agent

Thought: Now I understand the structure of the fees.json file. I need to find the fees that are applicable
to Belles cookbook store on the 10th of the year 2023. Let me first check if there's a
payments.csv file that might contain payment information for the date in question.

Code:

“py

import pandas as pd

# Read payments.csv

try:
payments df = pd.read csv('data/context/payments.csv')
print("Payments.csv columns:")
print(payments df.columns.tolist())

# Let's check if there are any records for Belles cookbook store on the 10th of the year 2023
if 'merchant' in payments df.columns and 'date' in payments df.columns:
belles payments = payments dff(payments df]'merchant'] == 'Belles cookbook store') &
(payments df['date'].str.contains('2023") &
payments df]'date'].str.contains('10"))]
if not belles payments.empty:
print("\nPayments for Belles cookbook store on the 10th of 2023:")
print(belles payments.head())
else:
print("\nNo payments found for Belles cookbook store on the 10th of 2023")
else:
print("\nRequired columns 'merchant' or 'date' not found in payments.csv")
except Exception as e:
print(f"Error reading payments.csv: {e}")

# Let's also check the payments-readme.md
try:
with open('data/context/payments-readme.md', 'r') as file:
readme content = file.read()
print("\nPayments-readme.md content:")
print(readme content)
except Exception as e:
print(f"Error reading payments-readme.md: {e}")

Execution Logs

Payments.csv columns:
['psp_reference', 'merchant’, .. [Excluded]]
Required columns 'merchant' or 'date’ not found in payments.csv

Payments-readme.md content:
This is documentation for the payments.csv dataset [Excluded] ...

Figure 7: Agent step 5 where the agent is looking for relevant information in the merchant’s payment
traffic.
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[ agent ]

Agent

Thought: Now I understand that the payments.csv file contains information about payments but with a
different column structure than I initially expected. Instead of a 'date’ column, it has 'year' and

'day_of year' columns, which is actually helpful for our question. The 10th day of the year 2023
would be corresponding to 'year' = 2023 and 'day_of year' = 10.

Let's filter the payments data to find transactions for Belles _cookbook_store on the 10th day of 2023,
and then identify which Fee IDs would apply to those transactions based on the fees.json file and
the merchant characteristics.

Code:

Y

import pandas as pd
import json

# Read the necessary files
with open('data/context/merchant_data.json', 'r') as file:
merchant data = json.load(file)

with open('data/context/fees.json’, 'r') as file:
fees_data = json.load(file)

payments_df = pd.read_csv('data/context/payments.csv')

# Find Belles_cookbook_store data
belles_data = None
for merchant in merchant_data:
if merchant.get('merchant') == 'Belles_cookbook_store":
belles_data = merchant
break

if belles_data:
print("Belles_cookbook store characteristics:")
print(f"Account Type: {belles_data['account_type']}")
print(f"Merchant Category Code: {belles_data['merchant category code']}")
print(f"Capture Delay: {belles data['capture delay']}")

# Filter payments for Belles_cookbook_store on day 10 of 2023

belles payments dayl0 = payments df]
(payments_df['merchant'] == "Belles_cookbook_store') &
(payments_df]'year'] == 2023) &
(payments_df['day of year']| = 10)

]

Continued

Figure 8: Agent step 6, part 0, where agent is retrieving payment traffic from the merchant. The full
code generated by the agent in step 6 is continued in 9.
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[ e ]

Agent

if not belles payments dayl0.empty:
print(f"\nFound {len(belles payments dayl0)} payments for Belles cookbook store on day 10
of 2023")

# Get unique combinations of relevant fields for checking fee applicability

unique txn types = belles payments dayl0[['card scheme', 'is credit', 'aci']].drop duplicates()
print("\nUnique transaction types:")

print(unique _txn_types)

# Find applicable fee IDs
applicable fees =]

for ,txn type in unique txn types.iterrows():
card scheme = txn type['card scheme']
is_credit = txn_type['is_credit']
aci = txn_type['aci']

for fee in fees data:

# Check if fee applies to this merchant and transaction type

scheme match = fee['card scheme'] == card_scheme or fee['card scheme'] is None

account type match = not fee['account_type'] or belles data['account type'] in
fee['account type']

mec_match = not fee['merchant category code'] or belles data['merchant category code']
in fee['merchant_category code']

credit match = fee['is_credit'] == is_credit or fee['is credit'] is None

aci_match = not fee['aci'] or aci in fee['aci']

if scheme match and account type match and mee _match and credit match and aci_match:
if fee['ID'] not in applicable fees:
applicable fees.append(fee['ID'])

applicable fees.sort()
print("\nApplicable Fee 1Ds:")
print(applicable fees)
else:
print("\nNo payments found for Belles cookbook store on day 10 of 2023")
else:
print("Belles cookbook store not found in merchant data.json")

Figure 9: Agent step 6, part 1, where the agent joins the payment traffic information with the rules
about fee calculations it has learned about. Step 6 is continued in 10.
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Execution Logs |

Belles_cookbook_store characteristics:
Account Type: R

Merchant Category Code: 5942
Capture Delay: 1

Found 37 payments for Belles_cookbook_store on day 10 of 2023

Unique transaction types:
card scheme is_credit aci

6042 NexPay  False F

7109  GlobalCard  False A
7961  GlobalCard True D
10061  GlobalCard True G
23853 NexPay True D
35807 TransactPlus True
36239 TransactPlus True
45238  GlobalCard True
58584 GlobalCard  False
64920 GlobalCard  False
78788 TransactPlus True
79891 TransactPlus True
96367 NexPay True F

98810 SwiftCharge False F
108163 GlobalCard True F
111835 NexPay False G
131861 TransactPlus  False F

omgEarEQ

Applicable Fee IDs:
[29, 78, 121, 286, 304, 357, 359, 381, 427, 454, 456, 473, 477, 484, 502, 536, 572, 596, 602, 606, 642,
704, 709, 741, 792, 813, 861, 871, 895, 917, 944, 968]

Figure 10: Agent step 6, part 2, where the execution logs show the found fees by the agent.
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Agent |

Thought: Now I have the information I need to provide the answer. I've found the applicable Fee IDs
for Belles_cookbook_store on the 10th day of the year 2023. According to the analysis, there are 32
fee IDs that apply:

[29, 78, 121, 286, 304, 357, 359, 381, 427, 454, 456, 473, 477, 484, 502, 536, 572, 596, 602, 606, 642,
704, 709, 741, 792, 813, 861, 871, 895, 917, 944, 968]

I should format them according to the guidelines provided: "Answer must be a list of values in comma
separated list, eg: A, B, C."

Code:

Py

# Format the answer as a comma-separated list

fee 1ds =[29, 78, 121, 286, 304, 357, 359, 381, 427, 454, 456, 473, 477, 484, 502, 536, 572, 596, 602,
606, 642, 704, 709, 741, 792, 813, 861, 871, 895, 917, 944, 968]

# Convert integers to strings and join with commas
formatted answer =", ".join(str(fee_id) for fee_id in fee ids)
# Provide the final answer

final answer(formatted answer)

Execution Logs

Final answer: 29, 78, 121, 286, 304, 357, 359, 381, 427, 454, 456, 473, 477, 484, 502, 536, 572, 596,
602, 606, 642, 704, 709, 741, 792, 813, 861, 871, 895, 917, 944, 968

Figure 11: Agent step 7 where agent produces a final answer compliant with the task guidelines.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We describe throughout the paper our benchmark design, dataset composi-
tion, evaluation strategy and task formulations. Furthermore, we report baselines results
across multiple state-of-the-art LLMs and analyze failure modes we discovered. Finally,
we release data and code for reproducibility and accessibility under HuggingFace spaces.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are described in Section 5. We discuss how our design choice
of objective evaluation has the drawback that we can not evaluate some impactful use-cases
where free-form outputs are involved. However, with our choice we avoid potential biases
and infrastructure costs of LLMs-as-a-judge approaches. Additionally, we acknowledge
that in order to stand as a benchmark that evaluates generalization in data analysis we must
diversify the task domains (not just finance) as well as increasing data scale and complexity.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: Our work does not entail theoretical work that would require a proof.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release full code for reproducing the baselines and running the evalua-
tions in https://huggingface.co/spaces/adyen/DABstep/tree/main . Additionally, all bench-
mark data is publicly available here https://huggingface.co/datasets/adyen/DABstep (we
only hide the ground truth answers to preserve the benchmark integrity). On top of this, in
Section A.2, we also describe with pseudocode the evaluation algorithm, and, in Section 4,
we detail the main high level steps involved to generate the baselines minimal scaffolding.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

28


https://huggingface.co/spaces/adyen/DABstep/tree/main
https://huggingface.co/datasets/adyen/DABstep

670
671
672
673
674
675
676
677
678

679

680
681
682

683

684
685
686

688
689

690

691
692
693
694
695
696
697
698
699

701
702
703
704
705
706
707
708
709

710

71
712
713

714

715
716
717
718
719
720
721
722
723
724

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We release full code for reproducing the baselines and running the evalua-
tions in https://huggingface.co/spaces/adyen/DABstep/tree/main . Additionally, all bench-
mark data is publicly available here https://huggingface.co/datasets/adyen/DABstep (we
only hide the ground truth answers to preserve the benchmark integrity). On top of this, in
Section A.2, we also describe with pseudocode the evaluation algorithm, and, in Section 4,
we detail the main high level steps involved to generate the baselines scaffolding.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The only experiment we conduct is running a baseline agent, powered by
different state-of-the-art LLMs, against the presented benchmark. We detail the task for-
mulation and statistics of the tasks forming the benchmark that we run the agent against.
The different sets of data in this case are Easy or Hard splits. Additionally, we provided
a high level overview of the data sources the benchmark provides in Section A.3 but full
details are disclosed in https://huggingface.co/datasets/adyen/DABstep. Additionally, re-
production of all experiments can be easily accomplished by running this baseline script,
https://huggingface.co/spaces/adyen/DABstep/blob/main/baseline/run.py, with the desired
set of arguments (model name, maximum steps per task, ...). Specifically, one must run
such script with maz_steps = 10 to reproduce our results.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: Creating error bars for each of the baselines would be too computationally
expensive given the high compute demands of LLMs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4.1 we share the GPU cluster used to deploy and benchmark
open source LLMs but its unknown to us the cluster characteristics of closed source LLM
providers so we just provide the inference costs in Table 1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
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10.

11.

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Given this is a submission to the Datasets and Benchmarks track, we are sub-
mitting in a single-blinded fashion without anonymizing any of the links to the benchmark
artifacts.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our contribution is purely a benchmark and associated dataset constructed
from non-sensitive, anonymized data. It does not involve personal or demographic at-
tributes, decision-making systems, or any functionality that can be directly deployed.
Hence, there is no clear pathway through which it could produce either beneficial or harm-
ful societal effects.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: The data we are releasing has no risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.
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12.

13.

14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Provided benchmark data, baseline code and evaluation code are all original

from this paper. The only external assets we use are the LLMs which are appropriately
cited. We also properly license our released assets under CC-BY-4.0 in section A.1.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Yes, the benchmark data and baseline experiments code hosted in Hugging-
face is accompanied with instructions to work with it. On top of this we provide a quickstart
notebook linked from the benchmark leaderboard.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

e The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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