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Abstract

Scientific discovery across diverse fields increasingly grapples with datasets exhibit-1

ing pathological long-tailed distributions: a few common phenomena overshadow2

a multitude of rare yet scientifically critical instances. Unlike standard benchmarks,3

these scientific datasets often feature extreme imbalance coupled with a modest4

number of classes and limited overall sample volume, rendering existing long-tailed5

recognition (LTR) techniques ineffective. Such methods, biased by majority classes6

or prone to overfitting on scarce tail data, frequently fail to identify the very in-7

stances—novel materials, rare disease biomarkers, faint astronomical signals—that8

drive scientific breakthroughs. This paper introduces a novel, end-to-end frame-9

work explicitly designed to address pathological long-tailed recognition in scientific10

contexts. Our approach synergizes a Balanced Supervised Contrastive Learning (B-11

SCL) mechanism, which enhances the representation of tail classes by dynamically12

re-weighting their contributions, with a Smooth Objective Regularization (SOR)13

strategy that manages the inherent tension between tail-class focus and overall14

classification performance. We introduce and analyze the real-world ZincFluor15

chemical dataset (T = 137.54) and synthetic benchmarks with controllable ex-16

treme imbalances (CIFAR-LT variants). Extensive evaluations demonstrate our17

method’s superior ability to decipher these extremes. Notably, on ZincFluor, our18

approach achieves a Tail Top-2 accuracy of 66.84%, significantly outperforming19

existing techniques. On CIFAR-10-LT with an imbalance ratio of 1000 (T = 100),20

our method achieves a tail-class accuracy of 38.99%, substantially leading the next21

best. These results underscore our framework’s potential to unlock novel insights22

from complex, imbalanced scientific datasets, thereby accelerating discovery. We23

provide the detailed code in Appendix.24

1 Introduction25

Scientific discovery, spanning disciplines from materials science and drug development to astrophysics26

and genomics, increasingly relies on harnessing vast datasets. However, a pervasive and often27

underestimated challenge in these domains is the pathological long-tailed distribution of data. Unlike28

common benchmark datasets (e.g., ImageNet-LT [16], Places365-LT [22]), scientific datasets often29

exhibit extreme imbalances: a few well-understood or easily observable phenomena constitute the30

majority classes, while a multitude of rare, novel, or hard-to-characterize instances form an extensive31

tail. More critically, while many existing highly imbalanced benchmarks feature a large number32

of classes and a relatively substantial total sample size, the pathological long-tailed distributions33

encountered in scientific exploration are frequently characterized by a comparatively smaller number34

of classes coupled with a limited overall sample volume. This scarcity of available information for35
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each tail class imposes even more stringent demands on a model’s learning capabilities. This is not36

an artifact but an intrinsic feature of scientific exploration: groundbreaking discoveries often reside37

in these sparse tail regions, representing new materials with unique properties, biomarkers for rare38

diseases, or faint astronomical signals indicative of new physical laws. The criticality of accurately39

identifying and understanding these tail-class instances in scientific domains cannot be overstated.40

Standard deep learning models and existing Long-Tailed Recognition (LTR) techniques [21, 20] often41

falter with such pathological imbalances (illustrated in Figure 1a or a if using subfigures). Current42

LTR methods, whether based on re-sampling [3, 7], re-weighting [6, 2], decoupled training [10], or43

specific loss designs [15], primarily aim to mitigate head-class dominance. However, with extreme44

scarcity, re-weighting can overfit to noise, re-sampling may lose or redundantly add information, and45

decoupled training struggles if initial features for tail classes are poorly learned. These shortcomings46

are drastically amplified at pathological imbalance levels, leading to CATASTROPHIC FAILURES47

in identifying scientifically paramount tail instances. For example, in our ZincFluor dataset (T =48

137.54), rare, valuable fluorescent compounds are often missed, hindering discovery.49

This paper directly confronts pathological long-tailed recognition in scientific data. We argue that50

extreme imbalance necessitates a paradigm shift from adapting existing LTR methods to designing51

bespoke solutions. To this end, we propose a novel, end-to-end trainable framework (overviewed in52

Figure 1b, with key contributions highlighted below:53

▶ We profoundly unveil and quantify the unique severity of the “pathological long-tail” prob-54

lem within scientific discovery contexts. By introducing and analyzing the real-world ZincFluor55

chemical dataset (T = 137.54), and complementing it with synthetic datasets we constructed56

featuring controllable extreme imbalance (variants of CIFAR-10-LT and CIFAR-100-LT [13]), we57

systematically benchmark the performance bottlenecks of existing LTR methods in these extreme58

scenarios, thereby providing new benchmarks and challenges for research in this domain.59

▶ We introduce an innovative balanced supervised contrastive learning framework, inspired60

by [12], engineered to fundamentally enhance the model’s capacity to perceive and represent61

rare yet critical scientific signals. Our approach dynamically adjusts the contribution weights62

of samples from different classes during contrastive learning and integrates multi-objective63

optimization strategies. This not only compels the model to focus on and learn fine-grained,64

discriminative features for tail classes but also, through artful loss function design, ensures65

stable learning of common head-class phenomena. Consequently, it achieves a balanced cognitive66

understanding across varying class frequencies, effectively preventing the neglect of scarce signals.67

▶ We demonstrate the remarkable efficacy of our method through extensive evaluations.68

Critically, on the highly challenging real-world ZincFluor dataset, our approach achieves a69

breakthrough in identifying rare fluorescent compounds, evidenced by, for instance, a Tail Top-270

accuracy of 66.84%, significantly outperforming existing techniques. Furthermore, on synthetic71

long-tailed benchmarks with tunable pathological imbalance, our model consistently surpasses72

state-of-the-art LTR methods, especially when the imbalance is more extreme. For instance, with73

an imbalance ratio of 1000 on CIFAR-10-LT (T = 100), our method achieves a tail-class accuracy74

of 38.99%, substantially leading the next best method at 28.55%. These results underscore the75

immense potential of our approach to unlock novel insights from complex, imbalanced scientific76

datasets, offering a potent tool to accelerate scientific discovery.77

By developing a robust solution tailored to the pathological long-tailed distributions inherent in78

scientific research, this work aims to bridge the gap between advanced machine learning capabilities79

and the pressing need to extract knowledge from the most challenging, yet often most valuable,80

segments of scientific data.81

2 Related Work82

2.1 Long-Tailed Phenomena in Scientific Tasks83

Long-tailed distributions, where a few common observations dominate numerous rare ones, are84

intrinsic to many scientific domains. For instance, in materials science, novel materials with85

exceptional functionalities are far rarer than common stable compounds [1, 17]. Similarly, drug86

discovery and genomics face challenges in identifying rare genetic variants or novel drug targets87
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(b) Our framework: B-SCL (LB-CS) for tail classes, CPO (LCPO) for
overall accuracy, balanced by SOR (LSOR).

Figure 1: Visualizing (a) the pathological long-tail challenge in scientific discovery (e.g., T = 137.54
in the ZincFluor dataset), where critical findings are in sparse tails, and (b) our proposed framework
leveraging Balanced Supervised Contrastive Learning (B-SCL), Classification Performance Objective
(CPO), and Smooth Objective Regularization (SOR) to address it.

from vast datasets [4, 18]. Astrophysics also encounters this, with rare celestial events or objects88

being crucial yet sparsely observed compared to common ones [11, 8]. Distinct from typical large-89

scale LTR benchmarks like ImageNet-LT [16] or Places365-LT [22], scientific datasets often exhibit90

a pathological long-tail: extreme imbalance ratios coupled with a modest number of total classes91

and often limited overall sample sizes. This unique setting challenges generic LTR methods and92

motivates our tailored approach.93

2.2 Long-Tailed Learning (LTR)94

LTR techniques aim to mitigate biases towards majority classes. Broadly, these include:95

• Re-sampling strategies balance data distribution by over-sampling minority classes (e.g.,96

SMOTE [3]) or under-sampling majority classes [7]. However, these can lead to overfitting or97

information loss.98

• Re-weighting strategies modify the loss function to assign higher importance to tail classes,99

examples being class-balanced loss [6], focal loss [15], and LDAM loss [2]. Careful calibration100

is needed to avoid issues with extremely scarce samples.101

• Decoupled learning [10] separates representation learning from classifier training, often re-102

training the classifier on a balanced set. The efficacy depends heavily on the initial representation103

quality.104

• Other approaches like transfer learning and knowledge distillation [9] have also been applied105

to LTR.106

Contrastive learning for LTR is an emerging direction. Supervised Contrastive Learning (Sup-107

Con) [12] provides a strong basis for learning discriminative embeddings. Adaptations for LTR108

include balanced sampling or re-weighting contrastive losses [5, 14]. Our Balanced Supervised109

Contrastive Learning (B-SCL) specifically integrates a class-frequency aware re-weighting into the110

SupCon objective to handle pathological imbalances.111

While most LTR methods are validated on benchmarks with many classes and samples (e.g., iNatu-112

ralist [19]), our work focuses on the distinct pathological long-tails in scientific discovery (extreme113

imbalance, modest class count, limited data). This necessitates a robust solution like our B-SCL with114

Smooth Objective Regularization (SOR) to balance learning from scarce, high-value tail data while115

maintaining overall performance.116
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3 Methodology: Balanced Contrastive Representation Learning under117

Dynamic Multi-Objective Constraints for Pathological Long-Tails118

Our methodology addresses the critical challenge of pathological long-tailed recognition, prevalent in119

scientific discovery, by architecting a synergistic learning framework. This framework prioritizes120

the discriminative representation of tail classes while ensuring overall classification efficacy and121

robustness. We formalize this as a multi-objective optimization problem and derive a tractable loss122

function that dynamically balances these, often conflicting, objectives.123

3.1 Formalizing Pathological Long-Tailed Recognition as a Multi-Objective Optimization124

Problem125

We consider a dataset D = {(xi, yi)}Ni=1 characterized by a pathological long-tailed distribution126

across C classes, where xi ∈ X and yi ∈ {0, . . . , C − 1}. The per-class sample count Nc exhibits127

extreme imbalance, quantified by T = (maxc Nc)/((minc Nc) · C). Our goal is to learn model128

parameters θ for a feature extractor fbackbone, a projection head πproj, and a classifier gcls.129

In this setting, we identify three primary, potentially conflicting, learning objectives:130

1. Robust Classification Performance (O1(θ)): The model must achieve high classification accuracy131

across all classes, for both original and augmented data views. This is quantified by the Classification132

Performance Objective (CPO):133

LCPO(θ) = E(x,y)∼D [ℓCE(gcls(fbackbone(x; θ)), y) + ℓCE(gcls(fbackbone(x
′; θ)), y)] (1)

where ℓCE(o, y) = − log(softmax(o)y) is the standard cross-entropy loss. Let LCE,orig(θ) =134

E [ℓCE(gcls(fbackbone(x; θ)), y)] and LCE,aug(θ) = E [ℓCE(gcls(fbackbone(x
′; θ)), y)]. Thus, LCPO(θ) =135

LCE,orig(θ) + LCE,aug(θ).136

2. Tail-Centric Discriminative Representation (O2(θ)): The model must learn highly discrimina-137

tive features, particularly for information-starved tail classes, to enable their identification. This is138

addressed by the Balanced Supervised Contrastive Learning (B-SCL) objective:139

LB-SC(θ) = λB-SC · 1

2B

∑
zj∈Sbatch

wyj
ℓSC(zj ; θ) (2)

where ℓSC(zj ; θ) is the standard per-anchor SupCon loss for anchor zj with label yj , computed140

using embeddings z = πproj(fbackbone(·; θ)). The weights wc = exp(s′c)/
∑

k exp(s
′
k) with s′k =141

(NC−1−k)
α up-weight tail-class contributions.142

The challenge is that minimizing LCPO (often dominated by head classes) can conflict with minimizing143

LB-SC (emphasizing tail classes). We seek a solution θ∗ that is Pareto-optimal with respect to144

(LCE,orig,LCE,aug,LB-SC).145

Optimization Target 1 (Constrained Multi-Objective Formulation) We aim to find parameters146

θ∗ that minimize a primary combined objective while ensuring no individual sub-objective becomes147

excessively large. This can be conceptualized as:148

min
θ

LCPO(θ) + LB-SC(θ)

subject to LCE,orig(θ) ≤ ϵ1
LCE,aug(θ) ≤ ϵ2
LB-SC(θ) ≤ ϵ3

(3)

where ϵ1, ϵ2, ϵ3 are dynamically adjusted upper bounds.149

Solving Optimization Target 1 directly is intractable. Instead, we formulate a penalty-based approach.150

3.2 Derivation of the Training Objective from Multi-Objective Constraints151

To find a solution approximating the Pareto front of (LCE,orig,LCE,aug,LB-SC), we employ a scalariza-152

tion technique that incorporates a penalty for deviations from a balanced state.153
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Proposition 1 (LogSumExp as a Smooth Maximum) The LogSumExp (LSE) function, LSE(v) =154

log
∑

i exp(vi), is a differentiable, convex approximation of the maximum function, i.e., maxi vi ≤155

LSE(v) ≤ maxi vi + logM for a vector v of M components.156

We introduce a Smooth Objective Regularization (SOR) term designed to penalize solutions where157

any of the fundamental objectives (LCE,orig, LCE,aug, or LB-SC) becomes disproportionately large. This158

aligns with the Tchebycheff (min-max) approach for multi-objective optimization. Let Lconstituent(θ) =159

[LCE,orig(θ),LCE,aug(θ),LB-SC(θ)]
T . The SOR term is defined as:160

LSOR(θ) = λSOR · LSE(Lconstituent(θ)/τSOR) (4)

where λSOR is a regularization strength and τSOR is a temperature parameter. For simplicity and161

alignment with the paper’s practical implementation, we set τSOR = 1. Thus,162

LSOR(θ) = λSOR · log (exp(LCE,orig(θ)) + exp(LCE,aug(θ)) + exp(LB-SC(θ))) . (5)

The final training objective Ltotal(θ) combines the primary objectives with this dynamic regularization:163

Ltotal(θ) = LCE,orig(θ) + LCE,aug(θ)︸ ︷︷ ︸
LCPO(θ)

+LB-SC(θ) + LSOR(θ).
(6)

Substituting Eq. 5 into Eq. 6:164

Ltotal(θ) = LCPO(θ) + LB-SC(θ)

+ λSOR · log (exp(LCE,orig(θ)) + exp(LCE,aug(θ)) + exp(LB-SC(θ))) .
(7)

Theoretical Justification. Minimizing Ltotal(θ) aims to achieve a state where: 1. The sum of the165

primary objectives (LCPO + LB-SC) is low. 2. The SOR term, leveraging Proposition 1, ensures that166

the maximum of the constituent objectives (LCE,orig,LCE,aug,LB-SC) is also kept low.167

This formulation implicitly seeks a solution where no single objective can be significantly improved168

without degrading another, which is characteristic of Pareto-optimal solutions. The SOR term169

dynamically adjusts the pressure on each constituent objective. If, for instance, LB-SC becomes very170

large (e.g., due to difficulty in representing extremely rare tail classes or overfitting), the gradient171

contribution from the SOR term with respect to LB-SC will increase, effectively pushing the optimizer172

to reduce it. Similarly, if LCE,orig is high (poor classification on original data), SOR will penalize this.173

This dynamic balancing is crucial for pathological long-tails:174

• B-SCL (O2) provides the necessary focus on tail classes by up-weighting their contribution to175

representation learning, fostering discriminative features despite data scarcity.176

• CPO (O1) ensures general classification utility.177

• SOR acts as the arbiter, preventing either the tail-class specific learning or the general clas-178

sification learning from excessively dominating and destabilizing the other, thus guiding the179

optimization towards a robust equilibrium suitable for the extreme imbalances encountered in180

scientific discovery.The Appendix provides more theory.181

4 Experiments182

In this section, we conduct extensive experiments to evaluate the efficacy of our proposed method,183

referred to as Ours, in addressing pathological long-tailed recognition. We first detail the datasets184

and evaluation metrics (Section 4.1). We then outline the experimental setup, including baselines and185

implementation details (Section 4.2). Subsequently, we present quantitative results on both real-world186

scientific datasets and synthetic long-tailed benchmarks (Section 4.3), followed by ablation studies187

(Section 4.4) and qualitative analyses (Section 4.5).188

4.1 Datasets, Metrics, and Pathological Imbalance189

The variable T is used to quantify the degree of pathological imbalance in the dataset. A higher value190

of T corresponds to a more pronounced imbalance. It is defined as:191

T =
Nmajority

Nminority ·Nclasses
(8)
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Figure 2: Dataset characteristics: (a) CIFAR-10-LT class distributions. (b) ZincFluor sample counts.

Table 1: The anonymized ZincFluor dataset examples.
Index SMILES Pred Fluor Colour Intensity Fluor Value
ZINC1 CC(=O)Nc1c(-c2cccccc2)c(C)nn1-c1ccc(C(=O)Nc2ccc... Ultraviolet Weak 1
ZINC2 Cc1nc(-c2cccc(NC(=O)c3ncccn3)c2)cs1 Ultraviolet Weak 1
ZINC3 CCCc1ccc(/N=N/C(Sc2nnc(-c3ccncc3)o2)=C(O)c2ccc... Ultraviolet Weak 1
ZINC4 CCOC(=O)Nc1ccc2c(Sc3ccccc[n+]3[O-])cc(=O)oc2c1 Violet Weak 2
ZINC5 O=CNC(=O)c1sc2ncccc3c2c1ncn3-c1cccccc1 Violet Weak 2
ZINC6 Cc1ccn(C(=O)c2cccc(N3CCCS3(=O)=O)c2)c=NC2CCCC... Blue Weak 3

where Nmajority represents the number of samples in the majority class, Nminority represents the number192

of samples in the minority class, and Nclasses denotes the total number of classes.193

Real Dataset: ZincFluor. This is a classification dataset from a chemical laboratory. Its general194

content is exemplified in Table 1. As shown in Figure 2b, the dataset exhibits an extremely patho-195

logical class imbalance with an imbalance degree T = 137.54 after an 8:2 train-test split. This196

severe imbalance poses a significant challenge to existing long-tailed learning methods. The dataset197

comprises 8 distinct fluorescence levels used as classes.198

Synthetic Datasets: CIFAR-LT. To comprehensively evaluate robustness, we use long-tailed199

variants of CIFAR-10 and CIFAR-100 [13] (i.e., CIFAR-10-LT and CIFAR-100-LT). We control200

the imbalance ratio (IR = Nmajority/Nminority) to construct datasets with varying degrees of pathological201

imbalance T . Figure 2a visualizes the training sample distribution across classes in CIFAR-10-LT202

under different T settings.203

Evaluation Metrics. We report Top-1 accuracy as the primary metric. For ZincFluor, we show per-204

class Top-1 accuracy and aggregated tail-class accuracies (Tail Top-6, Top-4, Top-2). For CIFAR-LT,205

we report overall Top-1 accuracy (“All”), and accuracies on “Head”, “Medium”, and “Tail” class206

splits based on training sample counts.207

4.2 Experimental Setup208

Baselines. We compare Ours against several long-tailed recognition baselines evaluated in prior209

work and relevant to our problem setting: CE BS , BCL, CE-DRW, LDAM-DRW , KPS , and210

LORT . For the ablation study on ZincFluor (Figure 3a), “base” refers to a LOS-based baseline211

method.For more details, please refer to Appendix.212

Implementation Details. All models were implemented using PyTorch and PyTorch Geometric. The213

experiments were conducted on a single NVIDIA Tesla A100 GPU, with results reported accordingly.214

Specifically, for the ZincFluor dataset, RDKit was utilized to convert SMILES strings into graph data,215
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and a backbone network consisting of six stacked GCN layers was employed. During training, the216

number of epochs for the ZincFluor dataset was set to 100. For all other experiments, configurations217

followed those of LOS. Models were trained for 200 epochs using the SGD optimizer (learning rate218

lr=0.01, momentum=0.9, weight decay=5e-3) in conjunction with the CosineAnnealingLR learning219

rate scheduler.220

4.3 Quantitative Results221

Table 2: Top-1 accuracy on ZincFluor T = 137.54. The grayed-out section indicates the primary
observation indicator. Blod indicates the best performance while underline indicates the second best.

Method Fluor Leval Tail Top acc
1 2 3 4 5 6 7 8 Top-6 Top-4 Top-2

CE 85.19 70.49 19.71 25.62 0.00 0.00 73.40 0.00 19.78 18.35 36.70
BS 82.73 30.66 43.21 28.51 0.00 25.00 72.34 0.00 28.17 24.33 36.17
BCL 86.45 51.17 51.82 22.31 17.43 40.38 69.15 50.00 41.84 44.24 59.57
CE-DRW 94.52 45.62 27.59 26.86 12.84 42.31 67.02 33.33 34.99 38.87 50.17
LDAM-DRW 91.93 47.27 28.91 20.66 22.94 28.85 69.15 33.33 33.97 38.56 51.24
KPS 91.10 45.70 51.09 23.97 1.83 19.23 71.28 0.00 27.90 23.08 35.64
LORT 72.23 25.81 1.75 33.88 0.00 26.92 75.53 0.00 23.01 25.61 37.76
Ours 90.97 42.21 58.10 21.49 11.01 34.62 67.02 66.67 43.15 44.83 66.84

Performance on ZincFluor. Table 2 details the Top-1 accuracy on ZincFluor (T = 137.54). Our222

method demonstrates highly competitive performance on individual “Fluor Levels” and substantially223

outperforms all baselines in tail-class focused metrics. Notably, Ours achieves a Tail Top-2 accuracy224

of 66.84%, a significant improvement over the second-best, BCL (59.57%). This underscores our225

method’s capability in handling real-world, pathologically imbalanced scientific data.226

Table 3: Top-1 accuracy on CIFAR10-LT with different Imbalance ratio. The grayed-out section
indicates the primary observation indicator. Blod indicates the best performance while underline
indicates the second best.

Method
IR=1000 IR=500 IR=200 IR=100
T = 100 T = 50 T = 20 T = 10

Head Medium Tail All Head Medium Tail All Head Medium Tail All Head Medium Tail All
CE 79.03 45.90 - 56.6 81.32 53.55 7.8 61.06 81.91 47.8 - 71.68 83.54 58.5 - 78.53
BS 76.68 64.0 16.85 62.18 76.98 69.10 30.5 66.11 82.21 61.53 - 76.01 84.81 64.8 - 80.81
BCL 79.82 57.3 28.55 65.06 82.22 60.05 41.25 70.79 82.47 71.50 - 79.18 83.25 81.2 - 82.84
CE-DRW 77.97 55.15 4.15 58.64 81.58 56.15 31.2 66.42 79.34 65.17 - 75.09 81.94 68.9 - 79.33
LDAM-DRW 75.57 52.0 15.25 61.19 78.27 59.75 40.7 67.05 78.79 63.7 - 74.29 81.98 68.55 - 79.29
KPS 78.9 56.85 6.65 60.04 78.95 45.2 42.75 64.96 82.27 57.23 - 74.76 82.73 61.0 - 78.38
LORT 80.75 65.30 0.05 61.52 81.0 60.0 0.05 60.61 83.36 58.50 - 75.9 83.76 85.1 - 84.03
Ours 76.80 76.60 38.99 69.20 81.68 79.64 59.39 77.94 84.05 84.33 - 84.14 87.59 89.80 - 88.04

Table 4: Top-1 accuracy on CIFAR100-LT with different Imbalance ratio. The grayed-out section
indicates the primary observation indicator. Blod indicates the best performance while underline
indicates the second best.

Method
IR=500 IR=200 IR=100
T = 5 T = 2 T = 1

Head Medium Tail All Head Medium Tail All Head Medium Tail All
CE 80.96 46.15 7.37 36.59 79.07 51.55 6.87 42.38 78.09 48.51 10.97 47.6
BS 78.81 50.35 14.56 40.57 74.73 55.06 18.92 46.87 75.46 52.06 27.23 52.8
BCL 78.31 51.31 14.96 40.88 76.73 53.48 20.44 47.57 74.57 52.66 26.23 52.4
CE-DRW 77.58 47.08 13.58 38.93 74.87 52.55 18.71 46.05 75.89 51.69 22.07 51.27
LDAM-DRW 74.73 49.58 15.83 39.92 73.97 52.29 18.21 45.5 72.74 51.09 21.80 49.88
KPS 78.96 48.35 12.94 39.31 77.27 52.84 16.97 46.18 76.54 45.6 22.6 50.93
LORT 67.69 39.46 7.44 31.43 71.63 56.9 20.21 47.01 70.11 55.37 33.33 53.92
Ours 68.57 56.65 22.52 43.37 68.26 60.38 30.30 51.02 71.57 62.02 32.03 56.37

Performance on CIFAR-LT Benchmarks. Across CIFAR-LT benchmarks (Tables 3 4), our method227

consistently achieves superior overall accuracy and, more critically, demonstrates substantial gains in228

tail class accuracy across all tested imbalance ratios. For instance, on CIFAR-10-LT with extreme229

imbalance (IR=1000), our tail accuracy reaches 38.99%, significantly outperforming BCL (28.55%),230

alongside leading overall accuracy (69.20% vs. 65.06%). This superior tail performance extends to231

CIFAR-100-LT, where at IR=100, our 32.03% tail accuracy notably exceeds competitors (e.g., BS232

27.23%), and at IR=500, we achieve 22.52% against BCL’s 14.96%, while consistently maintaining233
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the highest overall accuracies. These comprehensive results validate our approach’s robustness and234

effectiveness in enhancing recognition of underrepresented tail classes, particularly under severe235

imbalance conditions.236

4.4 Ablation Studies237

To dissect the contributions of the core components of our method, we conduct ablation studies238

on the ZincFluor dataset, with results shown in Figure 3a. Removing the Balanced Supervised239

Contrastive learning loss (“sc.”) from our full model (“ours”) leads to a significant drop in per-class240

performance, particularly for the tail classes, highlighting the importance of B-SCL for learning241

discriminative representations under severe imbalance. Similarly, removing the Smooth Objective242

Regularization term (“st.”) also results in degraded performance compared to the full model, indicating243

that SOR plays a vital role in balancing the different learning objectives and stabilizing training. The244

performance of our ablated models still generally surpasses the “base” LOS-based baseline. These245

studies confirm that both B-SCL and SOR are crucial for achieving the superior performance of our246

proposed framework.247

4.5 Qualitative Analysis248

Representation Robustness to Augmentation. Figure 3b shows the cosine similarity between the249

model outputs (features) of original samples and their augmented counterparts on CIFAR-10-LT250

(IR=10, models trained on IR=1000). Ours generally maintains higher similarity across classes251

compared to a Base method, suggesting that our approach learns representations that are more252

invariant and robust to data augmentations.253

Class-Level Feature Discriminability. The quality of learned feature representations is further254

assessed by visualizing class-level cosine similarity matrices on CIFAR-10-LT (IR=1000), as shown255

in Figure 4. Panel (a) (standard CE loss) exhibits a diffuse similarity matrix with poor separation256

between classes. In contrast, panel (b) (Ours) displays a much clearer block-diagonal structure,257

indicating strong intra-class compactness and high inter-class separability. This demonstrates the258

superior ability of our method to learn discriminative features, which is fundamental for effective259

long-tailed recognition.260

4.6 Discussion of Experimental Findings261

The comprehensive experimental results consistently validate the efficacy of our proposed method.262

The substantial gains observed on the pathologically imbalanced ZincFluor dataset, especially in263
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(b) Our Method

Figure 4: Class-level feature representation cosine similarities on CIFAR-10-LT (IR=1000). (a)
Standard cross-entropy loss. (b) Our proposed method, showing improved class separability.

recognizing rare tail classes, highlight its practical utility for scientific discovery tasks. Furthermore,264

its robust and superior performance across a wide spectrum of imbalance ratios on synthetic CIFAR-265

LT benchmarks underscores its generalizability and strength in handling varying degrees of data266

imbalance. The ablation studies confirm the synergistic contributions of the B-SCL and SOR267

components, and qualitative analyses provide visual evidence of the improved representation quality268

and feature discriminability achieved by our approach. These findings strongly support our central269

claim that a tailored framework integrating balanced contrastive representation learning with dynamic270

multi-objective optimization is pivotal for effectively addressing pathological long-tailed recognition.271

5 Conclusion272

This paper tackled the critical issue of pathological long-tailed recognition in scientific discovery,273

where rare instances crucial for breakthroughs are often missed by standard methods. We introduced274

a novel framework combining Balanced Supervised Contrastive Learning (B-SCL) to enhance tail-275

class representation and Smooth Objective Regularization (SOR) to dynamically balance competing276

learning objectives. Our approach ensures focused learning on sparse tail data without compromising277

overall performance. Extensive experiments on the real-world ZincFluor dataset and synthetic CIFAR-278

LT benchmarks with extreme imbalances demonstrated significant improvements over state-of-the-art279

LTR techniques, particularly in identifying critical tail classes. This work provides a robust tool280

for extracting valuable insights from severely imbalanced scientific datasets, paving the way for281

accelerated discovery. Future directions include incorporating domain knowledge and extending to282

other scientific data modalities.283
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NeurIPS Paper Checklist350

1. Claims351

Question: Do the main claims made in the abstract and introduction accurately reflect the352

paper’s contributions and scope?353

Answer: [Yes]354

Justification: We list our contributions in detail at the end of the Introduction.355

Guidelines:356

• The answer NA means that the abstract and introduction do not include the claims357

made in the paper.358

• The abstract and/or introduction should clearly state the claims made, including the359

contributions made in the paper and important assumptions and limitations. A No or360

NA answer to this question will not be perceived well by the reviewers.361

• The claims made should match theoretical and experimental results, and reflect how362

much the results can be expected to generalize to other settings.363

• It is fine to include aspirational goals as motivation as long as it is clear that these goals364

are not attained by the paper.365

2. Limitations366

Question: Does the paper discuss the limitations of the work performed by the authors?367

Answer: [Yes]368

Justification: We discuss the limitations in Appendix.369

Guidelines:370

• The answer NA means that the paper has no limitation while the answer No means that371

the paper has limitations, but those are not discussed in the paper.372

• The authors are encouraged to create a separate "Limitations" section in their paper.373

• The paper should point out any strong assumptions and how robust the results are to374

violations of these assumptions (e.g., independence assumptions, noiseless settings,375

model well-specification, asymptotic approximations only holding locally). The authors376

should reflect on how these assumptions might be violated in practice and what the377

implications would be.378

• The authors should reflect on the scope of the claims made, e.g., if the approach was379

only tested on a few datasets or with a few runs. In general, empirical results often380

depend on implicit assumptions, which should be articulated.381

• The authors should reflect on the factors that influence the performance of the approach.382

For example, a facial recognition algorithm may perform poorly when image resolution383

is low or images are taken in low lighting. Or a speech-to-text system might not be384

used reliably to provide closed captions for online lectures because it fails to handle385

technical jargon.386

• The authors should discuss the computational efficiency of the proposed algorithms387

and how they scale with dataset size.388

• If applicable, the authors should discuss possible limitations of their approach to389

address problems of privacy and fairness.390

• While the authors might fear that complete honesty about limitations might be used by391

reviewers as grounds for rejection, a worse outcome might be that reviewers discover392

limitations that aren’t acknowledged in the paper. The authors should use their best393

judgment and recognize that individual actions in favor of transparency play an impor-394

tant role in developing norms that preserve the integrity of the community. Reviewers395

will be specifically instructed to not penalize honesty concerning limitations.396

3. Theory assumptions and proofs397

Question: For each theoretical result, does the paper provide the full set of assumptions and398

a complete (and correct) proof?399

Answer: [Yes]400
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Justification: We provide the relevant assumptions and proofs in Appendix.401

Guidelines:402

• The answer NA means that the paper does not include theoretical results.403

• All the theorems, formulas, and proofs in the paper should be numbered and cross-404

referenced.405

• All assumptions should be clearly stated or referenced in the statement of any theorems.406

• The proofs can either appear in the main paper or the supplemental material, but if407

they appear in the supplemental material, the authors are encouraged to provide a short408

proof sketch to provide intuition.409

• Inversely, any informal proof provided in the core of the paper should be complemented410

by formal proofs provided in appendix or supplemental material.411

• Theorems and Lemmas that the proof relies upon should be properly referenced.412

4. Experimental result reproducibility413

Question: Does the paper fully disclose all the information needed to reproduce the main ex-414

perimental results of the paper to the extent that it affects the main claims and/or conclusions415

of the paper (regardless of whether the code and data are provided or not)?416

Answer: [Yes]417

Justification: We provide code links in the abstract and implementation details in Appendix.418

Guidelines:419

• The answer NA means that the paper does not include experiments.420

• If the paper includes experiments, a No answer to this question will not be perceived421

well by the reviewers: Making the paper reproducible is important, regardless of422

whether the code and data are provided or not.423

• If the contribution is a dataset and/or model, the authors should describe the steps taken424

to make their results reproducible or verifiable.425

• Depending on the contribution, reproducibility can be accomplished in various ways.426

For example, if the contribution is a novel architecture, describing the architecture fully427

might suffice, or if the contribution is a specific model and empirical evaluation, it may428

be necessary to either make it possible for others to replicate the model with the same429

dataset, or provide access to the model. In general. releasing code and data is often430

one good way to accomplish this, but reproducibility can also be provided via detailed431

instructions for how to replicate the results, access to a hosted model (e.g., in the case432

of a large language model), releasing of a model checkpoint, or other means that are433

appropriate to the research performed.434

• While NeurIPS does not require releasing code, the conference does require all submis-435

sions to provide some reasonable avenue for reproducibility, which may depend on the436

nature of the contribution. For example437

(a) If the contribution is primarily a new algorithm, the paper should make it clear how438

to reproduce that algorithm.439

(b) If the contribution is primarily a new model architecture, the paper should describe440

the architecture clearly and fully.441

(c) If the contribution is a new model (e.g., a large language model), then there should442

either be a way to access this model for reproducing the results or a way to reproduce443

the model (e.g., with an open-source dataset or instructions for how to construct444

the dataset).445

(d) We recognize that reproducibility may be tricky in some cases, in which case446

authors are welcome to describe the particular way they provide for reproducibility.447

In the case of closed-source models, it may be that access to the model is limited in448

some way (e.g., to registered users), but it should be possible for other researchers449

to have some path to reproducing or verifying the results.450

5. Open access to data and code451

Question: Does the paper provide open access to the data and code, with sufficient instruc-452

tions to faithfully reproduce the main experimental results, as described in supplemental453

material?454
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Answer: [Yes]455

Justification: We provide the source of the dataset and code in Appendix.456

Guidelines:457

• The answer NA means that paper does not include experiments requiring code.458

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/459

public/guides/CodeSubmissionPolicy) for more details.460

• While we encourage the release of code and data, we understand that this might not be461

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not462

including code, unless this is central to the contribution (e.g., for a new open-source463

benchmark).464

• The instructions should contain the exact command and environment needed to run to465

reproduce the results. See the NeurIPS code and data submission guidelines (https:466

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.467

• The authors should provide instructions on data access and preparation, including how468

to access the raw data, preprocessed data, intermediate data, and generated data, etc.469

• The authors should provide scripts to reproduce all experimental results for the new470

proposed method and baselines. If only a subset of experiments are reproducible, they471

should state which ones are omitted from the script and why.472

• At submission time, to preserve anonymity, the authors should release anonymized473

versions (if applicable).474

• Providing as much information as possible in supplemental material (appended to the475

paper) is recommended, but including URLs to data and code is permitted.476

6. Experimental setting/details477

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-478

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the479

results?480

Answer: [Yes]481

Justification: We describe the relevant details in Appendix.482

Guidelines:483

• The answer NA means that the paper does not include experiments.484

• The experimental setting should be presented in the core of the paper to a level of detail485

that is necessary to appreciate the results and make sense of them.486

• The full details can be provided either with the code, in appendix, or as supplemental487

material.488

7. Experiment statistical significance489

Question: Does the paper report error bars suitably and correctly defined or other appropriate490

information about the statistical significance of the experiments?491

Answer: [Yes]492

Justification: We report performance metrics such as average accuracy on multiple datasets.493

Guidelines:494

• The answer NA means that the paper does not include experiments.495

• The authors should answer "Yes" if the results are accompanied by error bars, confi-496

dence intervals, or statistical significance tests, at least for the experiments that support497

the main claims of the paper.498

• The factors of variability that the error bars are capturing should be clearly stated (for499

example, train/test split, initialization, random drawing of some parameter, or overall500

run with given experimental conditions).501

• The method for calculating the error bars should be explained (closed form formula,502

call to a library function, bootstrap, etc.)503

• The assumptions made should be given (e.g., Normally distributed errors).504

• It should be clear whether the error bar is the standard deviation or the standard error505

of the mean.506
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• It is OK to report 1-sigma error bars, but one should state it. The authors should507

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis508

of Normality of errors is not verified.509

• For asymmetric distributions, the authors should be careful not to show in tables or510

figures symmetric error bars that would yield results that are out of range (e.g. negative511

error rates).512

• If error bars are reported in tables or plots, The authors should explain in the text how513

they were calculated and reference the corresponding figures or tables in the text.514

8. Experiments compute resources515

Question: For each experiment, does the paper provide sufficient information on the com-516

puter resources (type of compute workers, memory, time of execution) needed to reproduce517

the experiments?518

Answer: [Yes]519

Justification: We mention the computational resources used for the experiments in Appendix.520

Guidelines:521

• The answer NA means that the paper does not include experiments.522

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,523

or cloud provider, including relevant memory and storage.524

• The paper should provide the amount of compute required for each of the individual525

experimental runs as well as estimate the total compute.526

• The paper should disclose whether the full research project required more compute527

than the experiments reported in the paper (e.g., preliminary or failed experiments that528

didn’t make it into the paper).529

9. Code of ethics530

Question: Does the research conducted in the paper conform, in every respect, with the531

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?532

Answer: [Yes]533

Justification: We have read and understood the code of ethics; and have done our best to534

conform.535

Guidelines:536

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.537

• If the authors answer No, they should explain the special circumstances that require a538

deviation from the Code of Ethics.539

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-540

eration due to laws or regulations in their jurisdiction).541

10. Broader impacts542

Question: Does the paper discuss both potential positive societal impacts and negative543

societal impacts of the work performed?544

Answer: [NA]545

Justification: Our experiments are conducted on publicly available data. It does no impact546

the society at large, beyond improving our understanding of certain aspects of deep learning547

and crystal struction prediction.548

Guidelines:549

• The answer NA means that there is no societal impact of the work performed.550

• If the authors answer NA or No, they should explain why their work has no societal551

impact or why the paper does not address societal impact.552

• Examples of negative societal impacts include potential malicious or unintended uses553

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations554

(e.g., deployment of technologies that could make decisions that unfairly impact specific555

groups), privacy considerations, and security considerations.556
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• The conference expects that many papers will be foundational research and not tied557

to particular applications, let alone deployments. However, if there is a direct path to558

any negative applications, the authors should point it out. For example, it is legitimate559

to point out that an improvement in the quality of generative models could be used to560

generate deepfakes for disinformation. On the other hand, it is not needed to point out561

that a generic algorithm for optimizing neural networks could enable people to train562

models that generate Deepfakes faster.563

• The authors should consider possible harms that could arise when the technology is564

being used as intended and functioning correctly, harms that could arise when the565

technology is being used as intended but gives incorrect results, and harms following566

from (intentional or unintentional) misuse of the technology.567

• If there are negative societal impacts, the authors could also discuss possible mitigation568

strategies (e.g., gated release of models, providing defenses in addition to attacks,569

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from570

feedback over time, improving the efficiency and accessibility of ML).571

11. Safeguards572

Question: Does the paper describe safeguards that have been put in place for responsible573

release of data or models that have a high risk for misuse (e.g., pretrained language models,574

image generators, or scraped datasets)?575

Answer: [NA]576

Justification: Our work poses no such risks.577

Guidelines:578

• The answer NA means that the paper poses no such risks.579

• Released models that have a high risk for misuse or dual-use should be released with580

necessary safeguards to allow for controlled use of the model, for example by requiring581

that users adhere to usage guidelines or restrictions to access the model or implementing582

safety filters.583

• Datasets that have been scraped from the Internet could pose safety risks. The authors584

should describe how they avoided releasing unsafe images.585

• We recognize that providing effective safeguards is challenging, and many papers do586

not require this, but we encourage authors to take this into account and make a best587

faith effort.588

12. Licenses for existing assets589

Question: Are the creators or original owners of assets (e.g., code, data, models), used in590

the paper, properly credited and are the license and terms of use explicitly mentioned and591

properly respected?592

Answer: [Yes]593

Justification: We are not shipping our code with any source code or binary files from any594

other existing libraries, so there are no concerns over getting permission or including a595

license. We did cite open-sourced libraries, e.g. PyTorch, in our paper.596

Guidelines:597

• The answer NA means that the paper does not use existing assets.598

• The authors should cite the original paper that produced the code package or dataset.599

• The authors should state which version of the asset is used and, if possible, include a600

URL.601

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.602

• For scraped data from a particular source (e.g., website), the copyright and terms of603

service of that source should be provided.604

• If assets are released, the license, copyright information, and terms of use in the package605

should be provided. For popular datasets, paperswithcode.com/datasets has606

curated licenses for some datasets. Their licensing guide can help determine the license607

of a dataset.608
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• For existing datasets that are re-packaged, both the original license and the license of609

the derived asset (if it has changed) should be provided.610

• If this information is not available online, the authors are encouraged to reach out to611

the asset’s creators.612

13. New assets613

Question: Are new assets introduced in the paper well documented and is the documentation614

provided alongside the assets?615

Answer: [Yes]616

Justification: We will release our code base with included readme files. We do not ship any617

source code or binary files from any other existing libraries.618

Guidelines:619

• The answer NA means that the paper does not release new assets.620

• Researchers should communicate the details of the dataset/code/model as part of their621

submissions via structured templates. This includes details about training, license,622

limitations, etc.623

• The paper should discuss whether and how consent was obtained from people whose624

asset is used.625

• At submission time, remember to anonymize your assets (if applicable). You can either626

create an anonymized URL or include an anonymized zip file.627

14. Crowdsourcing and research with human subjects628

Question: For crowdsourcing experiments and research with human subjects, does the paper629

include the full text of instructions given to participants and screenshots, if applicable, as630

well as details about compensation (if any)?631

Answer: [NA]632

Justification: This work does not involve crowdsourcing nor research with human subjects.633

Guidelines:634

• The answer NA means that the paper does not involve crowdsourcing nor research with635

human subjects.636

• Including this information in the supplemental material is fine, but if the main contribu-637

tion of the paper involves human subjects, then as much detail as possible should be638

included in the main paper.639

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,640

or other labor should be paid at least the minimum wage in the country of the data641

collector.642

15. Institutional review board (IRB) approvals or equivalent for research with human643

subjects644

Question: Does the paper describe potential risks incurred by study participants, whether645

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)646

approvals (or an equivalent approval/review based on the requirements of your country or647

institution) were obtained?648

Answer: [NA]649

Justification: This work does not involve crowdsourcing nor research with human subjects.650

Guidelines:651

• The answer NA means that the paper does not involve crowdsourcing nor research with652

human subjects.653

• Depending on the country in which research is conducted, IRB approval (or equivalent)654

may be required for any human subjects research. If you obtained IRB approval, you655

should clearly state this in the paper.656

• We recognize that the procedures for this may vary significantly between institutions657

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the658

guidelines for their institution.659
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• For initial submissions, do not include any information that would break anonymity (if660

applicable), such as the institution conducting the review.661

16. Declaration of LLM usage662

Question: Does the paper describe the usage of LLMs if it is an important, original, or663

non-standard component of the core methods in this research? Note that if the LLM is used664

only for writing, editing, or formatting purposes and does not impact the core methodology,665

scientific rigorousness, or originality of the research, declaration is not required.666

Answer: [NA]667

Justification: Our work does not involve LLMs as any important, original, or non-standard668

components.669

Guidelines:670

• The answer NA means that the core method development in this research does not671

involve LLMs as any important, original, or non-standard components.672

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/673

LLM) for what should or should not be described.674
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