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Abstract

Scientific discovery across diverse fields increasingly grapples with datasets exhibit-
ing pathological long-tailed distributions: a few common phenomena overshadow
a multitude of rare yet scientifically critical instances. Unlike standard benchmarks,
these scientific datasets often feature extreme imbalance coupled with a modest
number of classes and limited overall sample volume, rendering existing long-tailed
recognition (LTR) techniques ineffective. Such methods, biased by majority classes
or prone to overfitting on scarce tail data, frequently fail to identify the very in-
stances—novel materials, rare disease biomarkers, faint astronomical signals—that
drive scientific breakthroughs. This paper introduces a novel, end-to-end frame-
work explicitly designed to address pathological long-tailed recognition in scientific
contexts. Our approach synergizes a Balanced Supervised Contrastive Learning (B-
SCL) mechanism, which enhances the representation of tail classes by dynamically
re-weighting their contributions, with a Smooth Objective Regularization (SOR)
strategy that manages the inherent tension between tail-class focus and overall
classification performance. We introduce and analyze the real-world ZincFluor
chemical dataset (T = 137.54) and synthetic benchmarks with controllable ex-
treme imbalances (CIFAR-LT variants). Extensive evaluations demonstrate our
method’s superior ability to decipher these extremes. Notably, on ZincFluor, our
approach achieves a Tail Top-2 accuracy of 66.84%, significantly outperforming
existing techniques. On CIFAR-10-LT with an imbalance ratio of 1000 (T = 100),
our method achieves a tail-class accuracy of 38.99%, substantially leading the next
best. These results underscore our framework’s potential to unlock novel insights
from complex, imbalanced scientific datasets, thereby accelerating discovery. We
provide the detailed code in https://github.com/DataLab-atom/PLTR-SD.

1 Introduction

Scientific discovery, spanning disciplines from materials science and drug development to astrophysics
and genomics, increasingly relies on harnessing vast datasets. However, a pervasive and often
underestimated challenge in these domains is the pathological long-tailed distribution of data. Unlike
common benchmark datasets (e.g., ImageNet-LT [18], Places365-LT [29]), scientific datasets often
exhibit extreme imbalances: a few well-understood or easily observable phenomena constitute the
majority classes, while a multitude of rare, novel, or hard-to-characterize instances form an extensive
tail. More critically, while many existing highly imbalanced benchmarks feature a large number
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of classes and a relatively substantial total sample size, the pathological long-tailed distributions
encountered in scientific exploration are frequently characterized by a comparatively smaller number
of classes coupled with a limited overall sample volume. This scarcity of available information for
each tail class imposes even more stringent demands on a model’s learning capabilities. This is not
an artifact but an intrinsic feature of scientific exploration: groundbreaking discoveries often reside
in these sparse tail regions, representing new materials with unique properties, biomarkers for rare
diseases, or faint astronomical signals indicative of new physical laws. The criticality of accurately
identifying and understanding these tail-class instances in scientific domains cannot be overstated.

Standard deep learning models and existing Long-Tailed Recognition (LTR) techniques [28, 26] often
falter with such pathological imbalances (illustrated in Figure 1a or a if using subfigures). Current
LTR methods, whether based on re-sampling [4, 8], re-weighting [7, 2], decoupled training [12], or
specific loss designs [17, 3], primarily aim to mitigate head-class dominance. However, with extreme
scarcity, re-weighting can overfit to noise, re-sampling may lose or redundantly add information, and
decoupled training struggles if initial features for tail classes are poorly learned. These shortcomings
are drastically amplified at pathological imbalance levels, leading to CATASTROPHIC FAILURES
in identifying scientifically paramount tail instances. For example, in our ZincFluor dataset (T =
137.54), rare, valuable fluorescent compounds are often missed, hindering discovery. This paper
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(b) Our framework: B-SCL (LB-CS) for tail classes, CPO (LCPO) for
overall accuracy, balanced by SOR (LSOR).

Figure 1: Visualizing (a) the pathological long-tail challenge in scientific discovery (e.g., T = 137.54
in the ZincFluor dataset), where critical findings are in sparse tails, and (b) our proposed framework
leveraging Balanced Supervised Contrastive Learning (B-SCL), Classification Performance Objective
(CPO), and Smooth Objective Regularization (SOR) to address it.

directly confronts pathological long-tailed recognition in scientific data. We argue that extreme
imbalance necessitates a paradigm shift from adapting existing LTR methods to designing bespoke
solutions. To this end, we propose a novel, end-to-end trainable framework (overviewed in Figure 1b,
with key contributions highlighted below:

▶ We profoundly unveil and quantify the unique severity of the “pathological long-tail” prob-
lem within scientific discovery contexts. By introducing and analyzing the real-world ZincFluor
chemical dataset (T = 137.54), and complementing it with synthetic datasets we constructed
featuring controllable extreme imbalance (variants of CIFAR-10-LT and CIFAR-100-LT [15]), we
systematically benchmark the performance bottlenecks of existing LTR methods in these extreme
scenarios, thereby providing new benchmarks and challenges for research in this domain.

▶ We introduce an innovative balanced supervised contrastive learning framework, inspired
by [14], engineered to fundamentally enhance the model’s capacity to perceive and represent
rare yet critical scientific signals. Our approach dynamically adjusts the contribution weights
of samples from different classes during contrastive learning and integrates multi-objective
optimization strategies. This not only compels the model to focus on and learn fine-grained,
discriminative features for tail classes but also, through artful loss function design, ensures
stable learning of common head-class phenomena. Consequently, it achieves a balanced cognitive
understanding across varying class frequencies, effectively preventing the neglect of scarce signals.

▶ We demonstrate the remarkable efficacy of our method through extensive evaluations.
Critically, on the highly challenging real-world ZincFluor dataset, our approach achieves a
breakthrough in identifying rare fluorescent compounds, evidenced by, for instance, a Tail Top-2
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accuracy of 66.84%, significantly outperforming existing techniques. Furthermore, on synthetic
long-tailed benchmarks with tunable pathological imbalance, our model consistently surpasses
state-of-the-art LTR methods, especially when the imbalance is more extreme. For instance, with
an imbalance ratio of 1000 on CIFAR-10-LT (T = 100), our method achieves a tail-class accuracy
of 38.99%, substantially leading the next best method at 28.55%. These results underscore the
immense potential of our approach to unlock novel insights from complex, imbalanced scientific
datasets, offering a potent tool to accelerate scientific discovery.

By developing a robust solution tailored to the pathological long-tailed distributions inherent in
scientific research, this work aims to bridge the gap between advanced machine learning capabilities
and the pressing need to extract knowledge from the most challenging, yet often most valuable,
segments of scientific data.

2 Related Work

2.1 Long-Tailed Phenomena in Scientific Tasks

Long-tailed distributions, where a few common observations dominate numerous rare ones, are
intrinsic to many scientific domains. For instance, in materials science, novel materials with
exceptional functionalities are far rarer than common stable compounds [1, 19]. Similarly, drug
discovery and genomics face challenges in identifying rare genetic variants or novel drug targets
from vast datasets [5, 23]. Astrophysics also encounters this, with rare celestial events or objects
being crucial yet sparsely observed compared to common ones [13, 9]. Distinct from typical large-
scale LTR benchmarks like ImageNet-LT [18] or Places365-LT [29], scientific datasets often exhibit
a pathological long-tail: extreme imbalance ratios coupled with a modest number of total classes
and often limited overall sample sizes. This unique setting challenges generic LTR methods and
motivates our tailored approach.

2.2 Long-Tailed Learning (LTR)

LTR techniques aim to mitigate biases towards majority classes. Broadly, these include:

• Re-sampling strategies balance data distribution by over-sampling minority classes (e.g.,
SMOTE [4]) or under-sampling majority classes [8]. However, these can lead to overfitting or
information loss.

• Re-weighting strategies modify the loss function to assign higher importance to tail classes,
examples being class-balanced loss [7], focal loss [17], and LDAM loss [2]. Some recent works
provide a unified theoretical perspective for these loss-oriented methods [25]. Careful calibration
is needed to avoid issues with extremely scarce samples.

• Decoupled learning[12] separates representation learning from classifier training, often re-
training the classifier on a balanced set. The efficacy depends heavily on the initial representation
quality. Relatedly, other works focus on directly improving the feature space, for instance by
learning a feature manifold that is more balanced and fair for all classes[20, 22, 21].

• Other approaches like transfer learning and knowledge distillation [10, 11] have also been
applied to LTR. More complex strategies aim to address hierarchical label structures or scenarios
where the test distribution is unknown [27].

Contrastive learning for LTR is an emerging direction. Supervised Contrastive Learning
(SupCon)[14] provides a strong basis for learning discriminative embeddings. Adaptations for
LTR include balanced sampling or re-weighting contrastive losses[6, 16]. Our Balanced Supervised
Contrastive Learning (B-SCL) specifically integrates a class-frequency aware re-weighting into the
SupCon objective to handle pathological imbalances. While most LTR methods are validated on
benchmarks with many classes and samples (e.g., iNaturalist [24]), our work focuses on the distinct
pathological long-tails in scientific discovery (extreme imbalance, modest class count, limited data).
This necessitates a robust solution like our B-SCL with Smooth Objective Regularization (SOR) to
balance learning from scarce, high-value tail data while maintaining overall performance.

3



3 Methodology: Balanced Contrastive Representation Learning under
Dynamic Multi-Objective Constraints for Pathological Long-Tails

Our methodology addresses the critical challenge of pathological long-tailed recognition, prevalent in
scientific discovery, by architecting a synergistic learning framework. This framework prioritizes
the discriminative representation of tail classes while ensuring overall classification efficacy and
robustness. We formalize this as a multi-objective optimization problem and derive a tractable loss
function that dynamically balances these, often conflicting, objectives.

3.1 Formalizing Pathological Long-Tailed Recognition as a Multi-Objective Optimization
Problem

We consider a dataset D = {(xi, yi)}Ni=1 characterized by a pathological long-tailed distribution
across C classes, where xi ∈ X and yi ∈ {0, . . . , C − 1}. The per-class sample count Nc exhibits
extreme imbalance, quantified by T = (maxc Nc)/((minc Nc) · C). Our goal is to learn model
parameters θ for a feature extractor fbackbone, a projection head πproj, and a classifier gcls.

In this setting, we identify three primary, potentially conflicting, learning objectives:

1. Robust Classification Performance (O1(θ)): The model must achieve high classification accuracy
across all classes, for both original and augmented data views. This is quantified by the Classification
Performance Objective (CPO):

LCPO(θ) = E(x,y)∼D [ℓCE(gcls(fbackbone(x; θ)), y) + ℓCE(gcls(fbackbone(x
′; θ)), y)] (1)

where ℓCE(o, y) = − log(softmax(o)y) is the standard cross-entropy loss. Let LCE,orig(θ) =
E [ℓCE(gcls(fbackbone(x; θ)), y)] and LCE,aug(θ) = E [ℓCE(gcls(fbackbone(x

′; θ)), y)]. Thus, LCPO(θ) =
LCE,orig(θ) + LCE,aug(θ).

2. Tail-Centric Discriminative Representation (O2(θ)): The model must learn highly discrimina-
tive features, particularly for information-starved tail classes, to enable their identification. This is
addressed by the Balanced Supervised Contrastive Learning (B-SCL) objective:

LB-SC(θ) = λB-SC · 1

2B

∑
zj∈Sbatch

wyj
ℓSC(zj ; θ) (2)

where ℓSC(zj ; θ) is the standard per-anchor SupCon loss for anchor zj with label yj , computed
using embeddings z = πproj(fbackbone(·; θ)). The weights wc = exp(s′c)/

∑
k exp(s

′
k) with s′k =

(NC−1−k)
α up-weight tail-class contributions.

The challenge is that minimizing LCPO (often dominated by head classes) can conflict with minimizing
LB-SC (emphasizing tail classes). We seek a solution θ∗ that is Pareto-optimal with respect to
(LCE,orig,LCE,aug,LB-SC).

Optimization Target 1 (Constrained Multi-Objective Formulation) We aim to find parameters
θ∗ that minimize a primary combined objective while ensuring no individual sub-objective becomes
excessively large. This can be conceptualized as:

min
θ

LCPO(θ) + LB-SC(θ)

subject to LCE,orig(θ) ≤ ϵ1
LCE,aug(θ) ≤ ϵ2
LB-SC(θ) ≤ ϵ3

(3)

where ϵ1, ϵ2, ϵ3 are dynamically adjusted upper bounds.

Solving Optimization Target 1 directly is intractable. Instead, we formulate a penalty-based approach.

3.2 Derivation of the Training Objective from Multi-Objective Constraints

To find a solution approximating the Pareto front of (LCE,orig,LCE,aug,LB-SC), we employ a scalariza-
tion technique that incorporates a penalty for deviations from a balanced state.
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Proposition 1 (LogSumExp as a Smooth Maximum) The LogSumExp (LSE) function, LSE(v) =
log
∑

i exp(vi), is a differentiable, convex approximation of the maximum function, i.e., maxi vi ≤
LSE(v) ≤ maxi vi + logM for a vector v of M components.

We introduce a Smooth Objective Regularization (SOR) term designed to penalize solutions where
any of the fundamental objectives (LCE,orig, LCE,aug, or LB-SC) becomes disproportionately large. This
aligns with the Tchebycheff (min-max) approach for multi-objective optimization. Let Lconstituent(θ) =
[LCE,orig(θ),LCE,aug(θ),LB-SC(θ)]

T . The SOR term is defined as:

LSOR(θ) = λSOR · LSE(Lconstituent(θ)/τSOR) (4)

where λSOR is a regularization strength and τSOR is a temperature parameter. For simplicity and
alignment with the paper’s practical implementation, we set τSOR = 1. Thus,

LSOR(θ) = λSOR · log (exp(LCE,orig(θ)) + exp(LCE,aug(θ)) + exp(LB-SC(θ))) . (5)

The final training objective Ltotal(θ) combines the primary objectives with this dynamic regularization:

Ltotal(θ) = LCE,orig(θ) + LCE,aug(θ)︸ ︷︷ ︸
LCPO(θ)

+LB-SC(θ) + LSOR(θ).
(6)

Substituting Eq. 5 into Eq. 6:

Ltotal(θ) = LCPO(θ) + LB-SC(θ)

+ λSOR · log (exp(LCE,orig(θ)) + exp(LCE,aug(θ)) + exp(LB-SC(θ))) .
(7)

Theoretical Justification. Minimizing Ltotal(θ) aims to achieve a state where: 1. The sum of the
primary objectives (LCPO + LB-SC) is low. 2. The SOR term, leveraging Proposition 1, ensures that
the maximum of the constituent objectives (LCE,orig,LCE,aug,LB-SC) is also kept low.

This formulation implicitly seeks a solution where no single objective can be significantly improved
without degrading another, which is characteristic of Pareto-optimal solutions. The SOR term
dynamically adjusts the pressure on each constituent objective. If, for instance, LB-SC becomes very
large (e.g., due to difficulty in representing extremely rare tail classes or overfitting), the gradient
contribution from the SOR term with respect to LB-SC will increase, effectively pushing the optimizer
to reduce it. Similarly, if LCE,orig is high (poor classification on original data), SOR will penalize this.

This dynamic balancing is crucial for pathological long-tails:

• B-SCL (O2) provides the necessary focus on tail classes by up-weighting their contribution to
representation learning, fostering discriminative features despite data scarcity.

• CPO (O1) ensures general classification utility.
• SOR acts as the arbiter, preventing either the tail-class specific learning or the general clas-

sification learning from excessively dominating and destabilizing the other, thus guiding the
optimization towards a robust equilibrium suitable for the extreme imbalances encountered in
scientific discovery.The Appendix C provides more theory.

4 Experiments

In this section, we conduct extensive experiments to evaluate the efficacy of our proposed method,
referred to as Ours, in addressing pathological long-tailed recognition. We first detail the datasets
and evaluation metrics (Section 4.1). We then outline the experimental setup, including baselines and
implementation details (Section 4.2). Subsequently, we present quantitative results on both real-world
scientific datasets and synthetic long-tailed benchmarks (Section 4.3), followed by ablation studies
(Section 4.4) and qualitative analyses (Section 4.5).

4.1 Datasets, Metrics, and Pathological Imbalance

The variable T is used to quantify the degree of pathological imbalance in the dataset. A higher value
of T corresponds to a more pronounced imbalance. It is defined as:

T =
Nmajority

Nminority ·Nclasses
(8)
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Figure 2: Dataset characteristics: (a) CIFAR-10-LT class distributions. (b) ZincFluor sample counts.

Table 1: The anonymized ZincFluor dataset examples.
Index SMILES Pred Fluor Colour Intensity Fluor Value
ZINC1 CC(=O)Nc1c(-c2cccccc2)c(C)nn1-c1ccc(C(=O)Nc2ccc... Ultraviolet Weak 1
ZINC2 Cc1nc(-c2cccc(NC(=O)c3ncccn3)c2)cs1 Ultraviolet Weak 1
ZINC3 CCCc1ccc(/N=N/C(Sc2nnc(-c3ccncc3)o2)=C(O)c2ccc... Ultraviolet Weak 1
ZINC4 CCOC(=O)Nc1ccc2c(Sc3ccccc[n+]3[O-])cc(=O)oc2c1 Violet Weak 2
ZINC5 O=CNC(=O)c1sc2ncccc3c2c1ncn3-c1cccccc1 Violet Weak 2
ZINC6 Cc1ccn(C(=O)c2cccc(N3CCCS3(=O)=O)c2)c=NC2CCCC... Blue Weak 3

where Nmajority represents the number of samples in the majority class, Nminority represents the number
of samples in the minority class, and Nclasses denotes the total number of classes.

Real Dataset: ZincFluor. This is a classification dataset from a chemical laboratory. Its general
content is exemplified in Table 1. As shown in Figure 2b, the dataset exhibits an extremely patho-
logical class imbalance with an imbalance degree T = 137.54 after an 8:2 train-test split. This
severe imbalance poses a significant challenge to existing long-tailed learning methods. The dataset
comprises 8 distinct fluorescence levels used as classes.

Synthetic Datasets: CIFAR-LT. To comprehensively evaluate robustness, we use long-tailed
variants of CIFAR-10 and CIFAR-100 [15] (i.e., CIFAR-10-LT and CIFAR-100-LT). We control
the imbalance ratio (IR = Nmajority/Nminority) to construct datasets with varying degrees of pathological
imbalance T . Figure 2a visualizes the training sample distribution across classes in CIFAR-10-LT
under different T settings.

Evaluation Metrics. We report Top-1 accuracy as the primary metric. For ZincFluor, we show per-
class Top-1 accuracy and aggregated tail-class accuracies (Tail Top-6, Top-4, Top-2). For CIFAR-LT,
we report overall Top-1 accuracy (“All”), and accuracies on “Head”, “Medium”, and “Tail” class
splits based on training sample counts.

4.2 Experimental Setup

Baselines. We compare Ours against several long-tailed recognition baselines evaluated in prior
work and relevant to our problem setting: CE BS , BCL, CE-DRW, LDAM-DRW , KPS , and
LORT . For the ablation study on ZincFluor (Figure 3a), “base” refers to a LOS-based baseline
method.

Implementation Details. All models were implemented using PyTorch and PyTorch Geometric. The
experiments were conducted on a single NVIDIA Tesla A100 GPU, with results reported accordingly.
Specifically, for the ZincFluor dataset, RDKit was utilized to convert SMILES strings into graph data,
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and a backbone network consisting of six stacked GCN layers was employed. During training, the
number of epochs for the ZincFluor dataset was set to 100. For all other experiments, configurations
followed those of LOS. Models were trained for 200 epochs using the SGD optimizer (learning rate
lr=0.01, momentum=0.9, weight decay=5e-3) in conjunction with the CosineAnnealingLR learning
rate scheduler.

4.3 Quantitative Results

Table 2: Top-1 accuracy on ZincFluor T = 137.54. The grayed-out section indicates the primary
observation indicator. Blod indicates the best performance while underline indicates the second best.

Method Fluor Leval Tail Top acc
1 2 3 4 5 6 7 8 Top-6 Top-4 Top-2

CE 85.19 70.49 19.71 25.62 0.00 0.00 73.40 0.00 19.78 18.35 36.70
BS 82.73 30.66 43.21 28.51 0.00 25.00 72.34 0.00 28.17 24.33 36.17
BCL 86.45 51.17 51.82 22.31 17.43 40.38 69.15 50.00 41.84 44.24 59.57
CE-DRW 94.52 45.62 27.59 26.86 12.84 42.31 67.02 33.33 34.99 38.87 50.17
LDAM-DRW 91.93 47.27 28.91 20.66 22.94 28.85 69.15 33.33 33.97 38.56 51.24
KPS 91.10 45.70 51.09 23.97 1.83 19.23 71.28 0.00 27.90 23.08 35.64
LORT 72.23 25.81 1.75 33.88 0.00 26.92 75.53 0.00 23.01 25.61 37.76
Ours 90.97 42.21 58.10 21.49 11.01 34.62 67.02 66.67 43.15 44.83 66.84

Performance on ZincFluor. Table 2 details the Top-1 accuracy on ZincFluor (T = 137.54). Our
method demonstrates highly competitive performance on individual “Fluor Levels” and substantially
outperforms all baselines in tail-class focused metrics. Notably, Ours achieves a Tail Top-2 accuracy
of 66.84%, a significant improvement over the second-best, BCL (59.57%). This underscores our
method’s capability in handling real-world, pathologically imbalanced scientific data.

Table 3: Top-1 accuracy on CIFAR10-LT with different Imbalance ratio. The grayed-out section
indicates the primary observation indicator. Blod indicates the best performance while underline
indicates the second best.

Method
IR=1000 IR=500 IR=200 IR=100
T = 100 T = 50 T = 20 T = 10

Head Medium Tail All Head Medium Tail All Head Medium Tail All Head Medium Tail All
CE 79.03 45.90 - 56.6 81.32 53.55 7.8 61.06 81.91 47.8 - 71.68 83.54 58.5 - 78.53
BS 76.68 64.0 16.85 62.18 76.98 69.10 30.5 66.11 82.21 61.53 - 76.01 84.81 64.8 - 80.81
BCL 79.82 57.3 28.55 65.06 82.22 60.05 41.25 70.79 82.47 71.50 - 79.18 83.25 81.2 - 82.84
CE-DRW 77.97 55.15 4.15 58.64 81.58 56.15 31.2 66.42 79.34 65.17 - 75.09 81.94 68.9 - 79.33
LDAM-DRW 75.57 52.0 15.25 61.19 78.27 59.75 40.7 67.05 78.79 63.7 - 74.29 81.98 68.55 - 79.29
KPS 78.9 56.85 6.65 60.04 78.95 45.2 42.75 64.96 82.27 57.23 - 74.76 82.73 61.0 - 78.38
LORT 80.75 65.30 0.05 61.52 81.0 60.0 0.05 60.61 83.36 58.50 - 75.9 83.76 85.1 - 84.03
Ours 76.80 76.60 38.99 69.20 81.68 79.64 59.39 77.94 84.05 84.33 - 84.14 87.59 89.80 - 88.04

Table 4: Top-1 accuracy on CIFAR100-LT with different Imbalance ratio. The grayed-out section
indicates the primary observation indicator. Blod indicates the best performance while underline
indicates the second best.

Method
IR=500 IR=200 IR=100
T = 5 T = 2 T = 1

Head Medium Tail All Head Medium Tail All Head Medium Tail All
CE 80.96 46.15 7.37 36.59 79.07 51.55 6.87 42.38 78.09 48.51 10.97 47.6
BS 78.81 50.35 14.56 40.57 74.73 55.06 18.92 46.87 75.46 52.06 27.23 52.8
BCL 78.31 51.31 14.96 40.88 76.73 53.48 20.44 47.57 74.57 52.66 26.23 52.4
CE-DRW 77.58 47.08 13.58 38.93 74.87 52.55 18.71 46.05 75.89 51.69 22.07 51.27
LDAM-DRW 74.73 49.58 15.83 39.92 73.97 52.29 18.21 45.5 72.74 51.09 21.80 49.88
KPS 78.96 48.35 12.94 39.31 77.27 52.84 16.97 46.18 76.54 45.6 22.6 50.93
LORT 67.69 39.46 7.44 31.43 71.63 56.9 20.21 47.01 70.11 55.37 33.33 53.92
Ours 68.57 56.65 22.52 43.37 68.26 60.38 30.30 51.02 71.57 62.02 32.03 56.37

Performance on CIFAR-LT Benchmarks. Across CIFAR-LT benchmarks (Tables 3 4), our method
consistently achieves superior overall accuracy and, more critically, demonstrates substantial gains in
tail class accuracy across all tested imbalance ratios. For instance, on CIFAR-10-LT with extreme
imbalance (IR=1000), our tail accuracy reaches 38.99%, significantly outperforming BCL (28.55%),
alongside leading overall accuracy (69.20% vs. 65.06%). This superior tail performance extends to
CIFAR-100-LT, where at IR=100, our 32.03% tail accuracy notably exceeds competitors (e.g., BS
27.23%), and at IR=500, we achieve 22.52% against BCL’s 14.96%, while consistently maintaining
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the highest overall accuracies. These comprehensive results validate our approach’s robustness and
effectiveness in enhancing recognition of underrepresented tail classes, particularly under severe
imbalance conditions.

4.4 Ablation Studies

To dissect the contributions of the core components of our method, we conduct ablation studies
on the ZincFluor dataset, with results shown in Figure 3a. Removing the Balanced Supervised
Contrastive learning loss (“sc.”) from our full model (“ours”) leads to a significant drop in per-class
performance, particularly for the tail classes, highlighting the importance of B-SCL for learning
discriminative representations under severe imbalance. Similarly, removing the Smooth Objective
Regularization term (“st.”) also results in degraded performance compared to the full model, indicating
that SOR plays a vital role in balancing the different learning objectives and stabilizing training. The
performance of our ablated models still generally surpasses the “base” LOS-based baseline. These
studies confirm that both B-SCL and SOR are crucial for achieving the superior performance of our
proposed framework.

4.5 Qualitative Analysis

Representation Robustness to Augmentation. Figure 3b shows the cosine similarity between the
model outputs (features) of original samples and their augmented counterparts on CIFAR-10-LT
(IR=10, models trained on IR=1000). Ours generally maintains higher similarity across classes
compared to a Base method, suggesting that our approach learns representations that are more
invariant and robust to data augmentations.

Class-Level Feature Discriminability. The quality of learned feature representations is further
assessed by visualizing class-level cosine similarity matrices on CIFAR-10-LT (IR=1000), as shown
in Figure 4. Panel (a) (standard CE loss) exhibits a diffuse similarity matrix with poor separation
between classes. In contrast, panel (b) (Ours) displays a much clearer block-diagonal structure,
indicating strong intra-class compactness and high inter-class separability. This demonstrates the
superior ability of our method to learn discriminative features, which is fundamental for effective
long-tailed recognition.

4.6 Discussion of Experimental Findings

The comprehensive experimental results consistently validate the efficacy of our proposed method.
The substantial gains observed on the pathologically imbalanced ZincFluor dataset, especially in
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Figure 4: Class-level feature representation cosine similarities on CIFAR-10-LT (IR=1000). (a)
Standard cross-entropy loss. (b) Our proposed method, showing improved class separability.

recognizing rare tail classes, highlight its practical utility for scientific discovery tasks. Furthermore,
its robust and superior performance across a wide spectrum of imbalance ratios on synthetic CIFAR-
LT benchmarks underscores its generalizability and strength in handling varying degrees of data
imbalance. The ablation studies confirm the synergistic contributions of the B-SCL and SOR
components, and qualitative analyses provide visual evidence of the improved representation quality
and feature discriminability achieved by our approach. These findings strongly support our central
claim that a tailored framework integrating balanced contrastive representation learning with dynamic
multi-objective optimization is pivotal for effectively addressing pathological long-tailed recognition.

5 Conclusion

This paper tackled the critical issue of pathological long-tailed recognition in scientific discovery,
where rare instances crucial for breakthroughs are often missed by standard methods. We introduced
a novel framework combining Balanced Supervised Contrastive Learning (B-SCL) to enhance tail-
class representation and Smooth Objective Regularization (SOR) to dynamically balance competing
learning objectives. Our approach ensures focused learning on sparse tail data without compromising
overall performance. Extensive experiments on the real-world ZincFluor dataset and synthetic CIFAR-
LT benchmarks with extreme imbalances demonstrated significant improvements over state-of-the-art
LTR techniques, particularly in identifying critical tail classes. This work provides a robust tool
for extracting valuable insights from severely imbalanced scientific datasets, paving the way for
accelerated discovery. Future directions include incorporating domain knowledge and extending to
other scientific data modalities.
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A ZincFluor Dataset: Molecular Fluorescence and Pathological Imbalance

This section provides a more detailed introduction to the ZincFluor dataset used in our experiments
(Section 4.2). We describe its origin, the underlying scientific task of molecular fluorescence
prediction, and elaborate on why its inherent data distribution constitutes a "pathological long-tail"
challenge, distinct from standard long-tailed benchmarks.

A.1 Molecular Fluorescence and Its Scientific Significance

Molecular fluorescence is a photophysical process where a molecule absorbs light at a specific
wavelength and then re-emits light at a longer wavelength. This phenomenon is of immense scientific
and technological importance, underpinning applications in diverse fields such as:

• Materials Science: Development of organic light-emitting diodes (OLEDs), fluorescent
probes for material characterization, and luminescent sensors.

• Biology and Medicine: Bioimaging (using fluorescent tags or probes), drug discovery
(screening for compounds with desired fluorescence properties or using fluorescent markers),
and diagnostic assays.

• Chemistry: Understanding molecular electronic structure, reaction monitoring, and analyti-
cal techniques.

Discovering and synthesizing novel molecules with tailor-made fluorescence properties (e.g., specific
emission wavelengths, high quantum yield, photostability, environmental sensitivity) is a core pursuit
in chemistry and materials science. Predicting these properties computationally from molecular
structure is a valuable tool to accelerate this discovery process, avoiding costly and time-consuming
experimental synthesis and screening.

A.2 The ZincFluor Dataset: Structure and Task

The ZincFluor dataset originates from experimental measurements conducted in a chemical laboratory.
It comprises a collection of molecular compounds, each represented by its SMILES (Simplified
Molecular Input Line Entry System) string, which provides a concise textual description of the
molecule’s structure. For each compound, an associated fluorescence property has been measured
and categorized into one of 8 distinct levels. These levels, serving as the classification labels in our
task, represent different aspects of the molecule’s fluorescent behavior, such as intensity or emission
characteristics (exemplified by the ’Pred Fluor Colour’, ’Intensity’, and ’Fluor Value’ columns in
Table 1 in the main paper). The task is to predict the fluorescence level of a molecule given its
SMILES string (or its graph representation derived from it, as described in Section ??).

A.3 Pathological Imbalance in ZincFluor

As highlighted in the main paper (Figure 2b), the ZincFluor dataset exhibits an exceptionally severe
class imbalance across its 8 fluorescence levels. Following an 8:2 training-test split, the imbalance
factor T (defined as Nmajority/(Nminority ·Nclasses)) is calculated to be 137.54. This metric quantifies
the extreme disparity between the most frequent and least frequent fluorescence levels relative to the
total number of classes.

The distribution is not merely skewed; it is pathologically imbalanced in the context of scientific
discovery for the following key reasons:

1. Scientific Value Concentrated in the Tail: The rare fluorescence levels (minority classes)
often correspond to molecules exhibiting unusual, extreme, or highly specific fluorescent
properties. These are precisely the properties that are most sought after for cutting-edge
applications (e.g., a molecule with exceptionally high brightness for bioimaging, or a
compound emitting light at a very specific wavelength for sensing). In essence, the "rare"
instances in this dataset represent the potential scientific breakthroughs or novel materials,
not just less common variations of typical compounds.

2. Limited Sample Volume: Unlike large-scale public benchmarks like ImageNet-LT or
Places365-LT which have millions of images and hundreds/thousands of classes, scientific
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datasets like ZincFluor often arise from costly and labor-intensive experimental processes.
This results in a relatively modest total sample size (approximately [Insert Total Sample
Count Here] samples for ZincFluor). The combination of extreme imbalance and limited
total data volume means that the tail classes have critically few samples, sometimes only a
handful, making robust learning for these classes incredibly difficult.

3. Fundamental Task Objective: The implicit goal in analyzing such scientific data is often
to discover or identify these rare, high-value instances for further investigation. A model
that performs well on the frequent (head) classes but fails to identify the rare fluorescent
compounds in the tail effectively misses the primary scientific objective.

The ZincFluor dataset represents a "pathological long-tail" problem because the tail instances are
not just rare data points, but are scientifically critical signals buried within a sea of common
observations. Standard LTR methods, primarily designed to mitigate majority bias in general
classification tasks, struggle significantly with this unique combination of extreme imbalance, limited
data, and the paramount importance of correctly identifying the scarce tail instances that drive
scientific advancement. Our work is specifically motivated to address this particular challenge.

B Evaluation on Custom Places-LT Datasets with Reduced Class Counts

To further demonstrate the robustness and generalizability of our method across different domains
and varying degrees of pathological imbalance complexity, we conducted additional experiments on
modified versions of the standard Places-LT dataset [29]. While the original Places-LT features a
large number of classes (365), our definition of pathological long-tail in scientific discovery contexts
highlights scenarios with extreme imbalance coupled with a modest number of classes and limited
overall sample volume(Section 1). To better align with this, we constructed synthetic long-tailed
datasets derived from Places-LT that maintain a high imbalance ratio but reduce the total number of
classes.

B.1 Custom Places-LT Dataset Construction

We generated new synthetic datasets based on the original Places-LT dataset (with an imbalance ratio
of 996) by performing class-level sampling. Specifically, we followed a procedure to select a subset
of classes:

• We identified the class with the maximum number of samples (most frequent) and the class
with the minimum number of samples (least frequent) in the original Places-LT dataset.
These two classes were always included in our custom datasets.

• From the remaining classes in the original Places-LT, we uniformly sampled additional
classes until the desired total number of categories was reached.

Using this procedure, we constructed three new datasets containing a total of 10, 50, and 100 classes,
respectively. These datasets are referred to as "Places-LT (IR 996, 10 Categories)", "Places-LT (IR
996, 50 Categories)", and "Places-LT (IR 996, 100 Categories)".

Importantly, these newly constructed datasets maintain the same imbalance ratio (IR =
Nmajority/Nminority = 996) as the original Places-LT. However, by significantly reducing the to-
tal number of classes while keeping a very high IR, these datasets exhibit an even more pronounced
"pathological" nature in terms of the *relative sparsity of tail classes within a smaller overall class
space*, aligning more closely with the characteristics observed in datasets like ZincFluor compared
to the original 365-class Places-LT. Figure 5 shows the sample distribution characteristics for these
three custom datasets, illustrating the persistent long-tail across varying numbers of categories.

B.2 Experimental Setup

B.3 Results and Analysis

Table 5 presents the quantitative results on the three custom Places-LT datasets.

The results show that our method consistently achieves the best overall Top-1 accuracy across all
three variants of the custom Places-LT datasets, ranging from 10 to 100 categories, while maintaining
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Figure 5: The Sample Distribution Characteristics of Various Datasets Generated via Places-LT (IR
996) with 10, 50, and 100 Categories.

a very high imbalance ratio (996). More critically, our method demonstrates superior performance on
the challenging Tail classes in all scenarios. For the 10-category dataset, Ours achieves a Tail accuracy
of 62.0%, significantly outperforming the next best method, LDAM-DRW (60.33%). As the number
of classes increases to 50 and 100, while maintaining the extreme IR, the Tail task becomes even more
challenging, and many baselines exhibit severely degraded performance (e.g., CE, CE-DRW, KPS,
LORT showing near zero or very low tail accuracy). In these more complex pathological settings
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Table 5: Top-1 accuracy on Custom Places-LT Datasets (IR 996) with 10, 50, and 100 Categories.
The grayed-out column indicates the overall accuracy. Bold indicates the best performance while
underline indicates the second best.

IR 996 / 10 Categories IR 996 / 50 Categories IR 996 / 100 Categories
Method Head Medium Tail All Head Medium Tail All Head Medium Tail All
CE 61.50 0.00 0.00 24.60 40.28 0.00 0.00 14.50 28.14 0.00 0.00 10.13
BS 93.25 56.00 39.00 65.80 66.17 51.00 35.60 53.38 53.39 43.27 32.95 44.85
BCL 89.00 82.00 56.00 77.00 77.22 62.23 39.10 63.00 63.78 58.52 50.70 58.85
CE-DRW 94.50 62.67 37.67 67.90 66.28 44.36 15.10 46.44 53.97 39.77 16.90 40.31
LDAM-DRW 91.00 77.00 60.33 77.60 76.83 62.73 43.10 63.88 62.75 55.75 44.30 55.97
KPS 91.00 85.67 15.67 66.80 77.28 48.77 3.90 50.06 63.56 45.77 8.90 44.80
LORT 95.75 14.00 0.00 42.50 50.61 0.32 0.00 18.36 36.11 3.70 0.05 14.64
Ours 85.00 77.50 62.0 83.60 60.22 76.71 58.50 67.13 47.92 59.81 53.55 54.27

(50 and 100 categories), Ours continues to achieve the highest Tail accuracy (58.50% and 53.55%
respectively), substantially leading the second best methods (LDAM-DRW at 43.10% and 44.30%).

Furthermore, Ours also shows strong performance on Medium classes (best on 50 and 100 categories)
and competitive, albeit not always leading, performance on Head classes (best on 100 categories),
demonstrating its ability to balance learning across the entire frequency spectrum. The strong overall
performance (83.60%, 67.13%, 54.27%) underscores this capability.

These experiments on custom Places-LT datasets with varied, but modest, class counts further validate
the effectiveness of our proposed framework in handling pathological long-tailed distributions beyond
the specific domain of ZincFluor. They highlight our method’s unique ability to maintain high
accuracy on scarce tail classes while ensuring robust overall performance, a critical requirement for
scientific discovery applications.

C Detailed Theoretical Analysis

This section provides a detailed theoretical analysis of our proposed framework, emphasizing its
formulation as an implicitly constrained multi-objective optimization problem and the role of Smooth
Objective Regularization (SOR) in achieving a dynamically balanced solution for pathological
long-tailed recognition. Our approach deviates from methods solely focused on manipulating
classification logits or sample/loss weights based on class frequencies, by instead directly influencing
the optimization trajectory to balance competing objectives via a principled penalty mechanism.

We define the model parameters as θ ∈ RP . The learning process is driven by three constituent loss
functions defined on the dataset D:

• L1(θ) = LCE,orig(θ): Cross-Entropy loss on original data.
• L2(θ) = LCE,aug(θ): Cross-Entropy loss on augmented data.
• L3(θ) = LB-SC(θ): Balanced Supervised Contrastive Learning loss, which incorporates

frequency-aware weighting wy for tail classes (details in Appendix Section ??).

Let L(θ) = [L1(θ),L2(θ),L3(θ)]
T ∈ R3 be the vector of constituent losses.

In the context of pathological long-tailed data, minimizing the simple sum
∑3

k=1 Lk(θ) can lead to
suboptimal solutions where one loss is significantly higher than others. Our framework implicitly
aims to solve a constrained multi-objective optimization problem: finding θ∗ that minimizes a primary
objective while keeping all constituent losses below certain thresholds ϵk. This is conceptually similar
to:

min
θ

3∑
k=1

Lk(θ) s.t. Lk(θ) ≤ ϵk, k = 1, 2, 3.

Directly solving this is challenging. We approximate this via a penalty method, augmenting the sum
of losses with a term that penalizes the maximum of the constituent losses.

Proposition 2 (LogSumExp as a Smooth Maximum) The LogSumExp (LSE) function, LSE(v) =
log
∑M

i=1 exp(vi), is a differentiable, convex approximation of the maximum function, satisfying
maxi vi ≤ LSE(v) ≤ maxi vi + logM for any vector v = [v1, . . . , vM ]T ∈ RM .
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Let vmax = maxi∈{1,...,M} vi. For the lower bound:
M∑
i=1

exp(vi) ≥ exp(vmax). (9)

Taking the logarithm (monotonic):

log

(
M∑
i=1

exp(vi)

)
≥ log(exp(vmax)) = vmax. (10)

Thus, maxi vi ≤ LSE(v).

For the upper bound: Since vi ≤ vmax for all i, exp(vi) ≤ exp(vmax). Summing:
M∑
i=1

exp(vi) ≤
M∑
i=1

exp(vmax) = M exp(vmax). (11)

Taking the logarithm:

log

(
M∑
i=1

exp(vi)

)
≤ log(M exp(vmax)) = logM + log(exp(vmax)) = logM + vmax. (12)

Thus, LSE(v) ≤ maxi vi + logM . Differentiability and convexity are standard properties of LSE.

We define the Smooth Objective Regularization (SOR) term using the LSE function applied to our
vector of constituent losses L(θ):

LSOR(θ) = λSOR · LSE(L(θ)/τSOR) (13)
where λSOR > 0 and τSOR > 0. In our implementation, we set τSOR = 1 and M = 3, yielding:

LSOR(θ) = λSOR · log (exp(L1(θ)) + exp(L2(θ)) + exp(L3(θ))) . (14)
Minimizing LSOR directly penalizes the largest constituent loss, pushing it down relative to the others.

Our total training objective is defined as the sum of the constituent losses augmented by the SOR
term:

Ltotal(θ) =

3∑
k=1

Lk(θ) + LSOR(θ) (15)

Substituting the expression for LSOR:

Ltotal(θ) =

3∑
k=1

Lk(θ) + λSOR · log

 3∑
j=1

exp(Lj(θ))

 . (16)

Minimizing Ltotal serves as a penalty method approximation to the constrained multi-objective
problem. It drives down the sum of losses while simultaneously using LSOR to keep the maximum
loss value in check, acting as a soft "tail penalty" (when L3 is high) and a "smooth constraint"
promoting balance across all objectives.

The dynamic balancing property is evident from the gradient of Ltotal(θ):

∇θLtotal(θ) =

3∑
k=1

∇θLk(θ) +∇θLSOR(θ). (17)

The gradient of the SOR term is derived using the chain rule. Let Lk = Lk(θ):

∇θLSOR(θ) = λSOR · ∇θ log

 3∑
j=1

exp(Lj)


= λSOR

3∑
k=1

∂ log(
∑3

j=1 exp(Lj))

∂Lk
∇θLk

= λSOR

3∑
k=1

exp(Lk)∑3
j=1 exp(Lj)

∇θLk(θ).
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Let pk(θ) =
exp(Lk(θ))∑3
j=1 exp(Lj(θ))

. These pk values form a probability distribution over the constituent

losses, where pk is high when Lk is large. The total gradient becomes:

∇θLtotal(θ) =

3∑
k=1

∇θLk(θ) + λSOR

3∑
k=1

pk(θ)∇θLk(θ). (18)

Rearranging terms:

∇θLtotal(θ) =

3∑
k=1

(1 + λSORpk(θ))∇θLk(θ). (19)

Equation 19 reveals the dynamic balancing. The gradient of each constituent loss ∇θLk contributes
to the total gradient with a weight (1+λSORpk). When a specific loss Lk becomes significantly larger
than others, pk → 1, and the weight (1 + λSORpk) → 1 + λSOR, effectively amplifying the gradient
∇θLk. Conversely, for a small loss Lj , pj → 0, and its gradient is weighted by approximately 1.
This mechanism ensures that the optimization actively targets the largest loss component, pulling it
down.

This adaptive weighting, governed by the relative magnitudes of L1,L2,L3, imposes the "smooth
constraint" by discouraging any single loss from dominating. For pathological long-tails, this is
crucial: it prevents the model from solely optimizing the easily satisfied CPO on head classes while
neglecting the critical L3 for tail classes, and vice-versa. Instead, it promotes a balanced decrease
across all objectives, leading to a more robust model capable of deciphering the challenging extremes.
This principled approach, rooted in approximating constrained multi-objective optimization via
SOR’s gradient dynamics, provides a theoretical basis for our method’s superior performance on
pathological long-tailed data.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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