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Abstract—Sleep disturbance in cancer patients and caregivers
is a substantial challenge in survivorship care. As a dyadic process
influenced by daytime experiences, understanding interdependent
sleep health by identifying critical dyadic stress regulatory factors
and psychosocial predictors is crucial for informing effective in-
terventions. This supervised machine learning (ML) study utilized
multi-modal, multi-level data from patients with colorectal cancer
and spousal caregivers (n = 149 dyads; 298 persons). The dataset
integrated psychosocial characteristics, dyadic cardiovascular
and psychological responses to laboratory-induced stress, and 20
self-report and actigraph-derived sleep markers. Preprocessing
consisted of three optional techniques: principal component
analysis (P) for high dimensionality, correlated feature selection
(C) for multicollinearity, and data augmentation (A) for small
sample size. Four regression algorithms (Linear Regression,
Ridge, Random Forest, and Support Vector Regression) were
trained independently for each sleep outcome, evaluating optimal
performance across different preprocessing combinations. SHAP
analysis was subsequently utilized on best-fitted models to iden-
tify key predictors. Linear Regression best predicted caregivers’
actigraph-derived interdaily stability (R2=31.2%, via P+C+A),
while Ridge best predicted patients’ self-reported sleep efficiency
(R2 = 18.0%, via P+A), improving non-preprocessed baselines
by 30.4% and 11.7%, respectively. SHAP identified dyadic stress
regulatory indices as key predictors with complex dynamics and
subsequent commonality analysis revealed phase-specific suppres-
sor effects among such indices. This study identified optimal
preprocessing combinations that significantly improved sleep
prediction in oncology dyads. Complex interactions observed
among key dyadic stress regulation indices map out pathways of
stress response that shape sleep health, advancing understanding
of its interdependent nature and informing targeted intervention
strategies.

I. INTRODUCTION

The growing U.S. cancer survivor population, projected
to increase from 16.9 million to 26.1 million by 2040 [1],
poses significant public health challenges. This population
faces distinct vulnerabilities, exhibiting significantly higher
morbidity and mortality rates than the general U.S. population
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[2]–[7]. Sleep disturbance – defined by difficulty falling asleep
and frequent, prolonged nighttime awakenings – is highly
prevalent in cancer survivors (33-59%, as opposed to 15-20%
in the general population) and their family caregivers (36-95%)
[8]. Such disturbance is further associated with poor quality of
life, circadian dysregulation, other major diseases, poor cancer
prognosis, recurrence, and mortality in cancer survivors, and
with degraded caregiving quality, increased morbidity risk, and
reduced quality of life in their caregivers [8].

Since sleep is often affected by various daytime stress
experiences not only at the individual level but also the dyadic
level, identifying critical factors associated with respective
stress regulatory patterns would inform effective interventions
and improve health outcomes for this already vulnerable
population. However, traditional unidimensional approaches
are insufficient to fully capture the complexity of multi-
dimensional and multi-level factors involved in sleep health
of both patients and caregivers simultaneously [9], [10].

Machine learning (ML) is particularly well-suited to address
these complexities. Specifically, supervised ML, including lin-
ear models, tree-based methods, and Support Vector Machines
(SVM), have been applied to predict perceived sleep qual-
ity by establishing quantitative links between objective data
(e.g., actigraph-derived time in bed, sleep duration, number
of awakenings, and movement indices) and subjective sleep
assessments (e.g., self-report sleep onset latency, wake after
sleep onset, and sleep duration) [10], [11]. Studies have
also included non-sleep variables, such as sociodemographic
factors, physical and mental health, health behaviors, and
medication use in the model as predictors [9], [12].

Such ML methods have been effective in pinpointing key
correlates of sleep health. For instance, in 69 community-
dwelling older adults with dementia, CatBoost identified
actigraph-derived sleep irregularity and medication burden
as primary predictors of poorer sleep efficiency from sleep
indices, dementia-related information, functional measures,
and cytokines [13]. In another study with 3,173 community-
dwelling men and women aged between 39 and 90, Lasso
and Random Forest retrieved polysomnography-derived sleep
efficiency, WASO, along with age, as top predictors for
sleep depth and restfulness from demographic, clinical,
polysomnography, and quantitative EEG variables [14].



To this end, Explainable AI (XAI) methods, including post-
hoc explainability techniques like SHAP (SHapley Additive
exPlanations), have gained traction in the literature and have
helped clarify the directional contributions of specific features
on sleep predictions [15], [16]. However, interpreting SHAP
contributions can be non-trivial when faced with multi-level
factors that are highly intercorrelated. In the case of linear
models, Commonality Analysis (CA) has been used to quantify
complex interactions like suppressor effects that can arise
among such predictors by partitioning explained variance into
unique and shared components [17], [18].

Our work introduces a novel analytical approach: the first
multi-level ML framework aimed at discovering patterns of
interdependence that influence sleep health within patient-
caregiver dyads. While prior work has applied ML to multi-
dimensional data at the individual level, our approach uniquely
leveraged an intensive multi-modal database collected from
such patient-caregiver pairs, integrating laboratory-induced
stress responses and self-report questionnaire data to identify
the most critical biopsychosocial variables involved in sleep
health of adults with cancer and their caregivers. Also, this
ML study examined for the first time multiple sleep health
outcomes within such an interdependent dyadic context, aim-
ing to identify key predictive factors operating across levels
(see Figure 1).

More specifically, this paper contributes the following:
1) An evaluation of specific data preprocessing techniques

to identify combinations that best improve out-of-sample
prediction accuracy in sleep health models for oncology
dyads.

2) The application of XAI methods to retrieve salient
predictors of sleep health, which ranked dyadic stress
regulatory indices as top factors among a set of 880
integrated multi-modal and multi-level features.

3) The use of Commonality Analysis to clarify complex
interactions among multi-level features, which revealed
significant phase-specific suppressor effects, thereby
supporting a dyadic predictive approach for sleep health.

II. METHODS

A. Data Collection
1) Procedure: The present study is a secondary analysis

that utilized initial assessment data (T1) from 149 patient-
caregiver dyads (N = 298 individuals) who participated in
a registered longitudinal study examining associations of
cancer-related stress with health outcomes [19]. The original
study received Institutional Review Board approval. Patients
were identified by medical records of participating clinics
and screened to determine their eligibility to participate
in the study. Eligible patients were asked to nominate a
spousal/partner caregiver, who were then screened for eli-
gibility. On the day of assessment, participants completed
questionnaires individually and underwent a stress induction
procedure together. Participants also completed daily sleep
logs for 14 consecutive days while wearing an actigraph on
the wrist of the non-dominant hand.

Fig. 1. Schematic representation of the supervised ML framework. The
data are subjected to a preprocessing module with optional steps before data
modeling. Salient predictive features are identified by feature importance
analysis using XAI methods.

Questionnaire

Adaptive Binning
Dummy Encode
Data Imputation

Experimental Session Daily Health Outcomes

ECG Recordings

HRV
Windowed

cross 
correlation

Coupled
linear 

oscillator

Log Transform
Scaling

Data Imputation

Sleep 
Composition 

Log

Sleep 
Composition 

Actigraph

Sleep 
Rhythm 

Actigraph

Patient Caregiver Patient Caregiver

Machine Learning Framework
   Preprocessing

Principal Component Analysis (PCA)

Correlation Analysis 

Data Augmentation

Data 
Modeling

Feature 
Importance

(XAI)

2) Self-report questionnaire data: Participants completed a
self-administered questionnaire organized into two parts. The
first collected socio-demographic information (age, gender,
ethnicity, education, income, employment status, household
composition), as well as health behaviors and indicators
(smoking status, alcohol intake, body mass index, and med-
ical conditions). The second assessed individual differences
in personality, emotion regulation, stress and coping, and
sociocultural factors (optimism [20], Big Five personality
traits [21], self-control [22], behavioral activation/inhibition
(BAS/BIS) [23], [24], perceived stress [25], coping with cancer
stress [26], cancer-related stress appraisal [27], loneliness [28],
perceived social support [29], social support network size [30],
biculturalism [31], and familism [32]) and relationship quality
with the partner (attachment quality [33], [34], and relationship
satisfaction [35]–[37]). This section also included caregiver-
specific measures, i.e., dimensions of care tasks [34], activities
of daily living (ADL/IADL) [30], [38], and the duration, stress
[39], motivation [40], and experiences [41] of caregiving.

3) Acute stress response data: Participants underwent the
STITCH task [42], [43], which involves six phases: baseline
(B), scenario presentation (S), speech preparation (P), care-
giver speech delivery (SP1), patient speech delivery (SP2), and
recovery (R). Multiple measurements were collected through-
out the session, including continuous Heart Rate Variability
(HRV) and interbeat interval (IBI) data, using a BioNex 8 Slot
Chassis modified for dyadic data collection, with participants
individually connected via seven unipolar leads equipped with
Ag/AgCl spot electrodes. These data enabled the calculation
of cardiovascular synchrony parameters using two different
methods. First, stress coregulation and stress coagitation in-
dices were derived with windowed cross correlation. Second,
a coupled linear oscillator (CLO) model was used to derive



three parameters gamma, eta, and zeta, which represent the
difference between partner’s IBI and one’s own IBI at a
momentary point in time.

4) Sleep outcomes: Participants self-reported sleep daily
upon waking using the Consensus Sleep Diary [44]. From
these diaries, 14-day averages were calculated for sleep onset
latency (SOL; minutes between intending to sleep and sleep
onset), wake after sleep onset (WASO; minutes awake between
sleep onset and final awakening), sleep duration (SD; hours
asleep, derived as [time from intending to sleep to final
awakening] – SOL – WASO), total time in bed (TB; hours
at T1), and sleep efficiency (SE; [SD / TB] * 100).

SOL, WASO, and SD were also assessed using an actigraph.
These composition indices were quantified from 60-second
epochs of actigraph-derived activity counts using the Cole-
Kripke algorithm, a validated method in sleep research [45]–
[47]. Actigraph-detected in-bed and out-of-bed times were
manually adjusted to align with self-reported times before
deriving such actigraph-measured sleep indices.

Actigraphy was also used to derive sleep rhythm markers.
Intradaily variation (IV; range 0-2) indicated rest-activity frag-
mentation and was calculated from mean squares of hourly
activity differences [48]. Interdaily stability (IS; range 0-
1) quantified 24-hour rhythm stability and synchronization
to the light-dark cycle and was derived by normalizing the
24-hour value from a chi-square periodogram [48]. Sleep
Regularity Index (SRI; range 0-100) assessed sleep-wake state
consistency between corresponding times on different days,
and was averaged over the 14-day period [49].

B. Preprocessing

1) Questionnaire: Questionnaire response distributions ex-
hibited skewness with certain item options endorsed infre-
quently. An adaptive binning procedure was implemented that
grouped response categories based on their frequency of occur-
rence. The approach preserved commonly selected responses
as individual categories while consolidating less frequent
responses.1 Following binning, questionnaire responses were
dummy encoded. Missing values in this modality were treated
as Missing Not At Random (MNAR), with missingness itself
encoded as a distinct category. The preprocessed questionnaire
data generated 850 dummy features.

2) Acute stress & sleep indices: All continuous sleep health
outcomes were standardized, while acute stress indices were
first log-transformed to address skewness and then standard-
ized. Coregulation and coagitation indices showed near-zero
correlations with sleep health outcomes while also exhibiting
multicollinearity across experimental phases. We retained all
such stress regulatory indices due to potential suppression ef-
fects. In contrast, predictors from the CLO model, which were
also found to exhibit multicollinearity, did not demonstrate
such effects and, therefore, only the gamma component from

1The procedure is performed such that, after values are sorted in ascending
order, individual values with frequencies exceeding 30 observations are
preserved as distinct buckets, while consecutive values with lower frequencies
are grouped until their combined frequency exceeds said threshold.

the caregiver speech phase was retained for both patients and
caregivers. Missing values in acute stress indices were imputed
using column-wise means, based on the assumption that miss-
ing data resulted from participants’ inability to complete the
experimental protocol. Thus, the preprocessed data retained
6 HRV measures, 12 coagitation and coregulation indices, 1
gamma CLO-derived feature, and 20 sleep health indices for
each patient and caregiver.

3) Preprocessing Module: We implemented a modular pre-
processing module designed to generate and evaluate different
integrated datasets resulting from various configurations. First,
an option for Principal Component Analysis (PCA) was imple-
mented as a denoising strategy to address high dimensionality
and noise in questionnaire-derived features. The number of
principal components was chosen to explain at least 40% of
the cumulative variance, which was determined empirically by
out-of-sample prediction performance, and these components
were then standardized. Second, different feature selection
strategies were evaluated. A key comparison involved assess-
ing the performance impact of retaining the full predictor set
(post-PCA, if applied), acknowledging potential suppressor
effects, versus applying a correlation filter. When the corre-
lation filter was applied, predictors were selected based on
their Pearson correlation coefficient with a given outcome
variable, retaining only those exceeding an absolute correlation
threshold of 0.1. Third, the module included a mechanism
to address imbalance in target variable distributions. When
employed, this procedure binned a given outcome variable into
five pseudo-classes and performed sampling with replacement
to generate a balanced training set (i.e., 1,500 virtual samples
from 300 per pseudo-class). Pseudo-classes were used only
for data augmentation, not direct training targets. Following
preprocessing, all patient and caregiver features were concate-
nated into a single input vector for model training.

C. Data Modeling

A supervised learning testbed was developed to evaluate
the predictive capacity of the integrated and preprocessed
datasets, as described in Section II-B. Four primary models
were selected that encompass both interpretable and flexible
methods: Linear Regression (LR), Ridge Regression (RIDGE),
Support Vector Regression with linear kernel (SVR), and
Random Forest (RF). All models were implemented using the
scikit-learn package in Python and evaluated using toolkit-
suggested hyperparameter settings.

The supervised testbed systematically assessed all possible
combinations of the three options in the preprocessing module:
PCA (P), correlation-based filtering (C), and data augmenta-
tion (A). This resulted in 640 distinct model configurations
(4 models × 8 preprocessing combinations × 20 outcome
variables). To maximize utilization of the limited cohort size
for training, leave-one-out cross-validation (LOOCV) was
employed, with all preprocessing applied exclusively within
each of the 149 training folds. To quantify uncertainty in pre-
dictions, cross-validated predictions were then bootstrapped.
Resampled predictions were compared against ground truth



values to retrieve bootstrapped R2 and Root Mean Square
Error (RMSE) scores. The process was repeated 1,000 times
to derive approximate 95% confidence intervals for each
performance metric.

All computational experiments were conducted on a HPC
cluster environment with Intel Xeon E5-2670 CPUs (2.60GHz,
16 cores total). Nodes were configured with dual 8-core
processors and 64GiB RAM. The code for these experiments
is made available online [19].

III. RESULTS

A. Sleep Health Prediction in Three Measurement Modalities

We evaluated the predictive performance of different model
and preprocessing combinations across 20 sleep health out-
comes. Model performance was assessed using resampled R2

and RMSE scores following LOOCV, with approximate 90%
and 95% confidence intervals computed for each configuration.
To control for multiple testing effects, False Discovery Rate
(FDR) correction was applied when determining significant
results. The optimal model for each outcome was selected
based on maximum cross-validated R2 score among config-
urations that explained significant non-trivial variance. Fig-
ure 2 presents the results across all outcomes and Table I
summarizes the R2 and RMSE results for models achieving
significance at the 95% level.

Of the 640 different model configurations tested, 15 (2.3%)
achieved significance at the 95% level. Best results were
mainly observed in actigraph-derived sleep rhythm indices.
Specifically, for predicting caregivers’ Interdaily Stability
(IS fm), LR, RIDGE, and SVR achieved 31.2%, 30.9%,
and 27.1% explained variance, respectively, where P+C+A
improved all three relative to baselines that did not contain
any of the 3 preprocessing options. Significant results were
also obtained for predicting caregivers’ Intradaily Variability
(IV fm) with LR (P; 9.4%) and RF (P; 10.1%), and predicting
patients’ Sleep Regularity Index (SRI pt), where RF achieved
9.9% explained variance (A). However, this last result was
outperformed by a baseline RF model, which achieved 15.3%.

Prediction of actigraph-derived composition indices was
comparably more difficult, with only 1 model achieving signif-
icance at the 95% level. RF significantly predicted caregivers’
average WASO (avgWASO min fm) with 8.5% explained
variance (C+A), which outperformed its baseline counterpart.

For self-report sleep indices, significant predictions were
primarily achieved for patient-level measures. Patients’ sleep
efficiency (se36 mean pt) was best predicted by LR (17.8%),
RIDGE (18.0%), and SVR (12.1%), where all 3 models im-
proved baselines following P+A. RF after preprocessing with
A also improved prediction of average TB (tb110 mean pt)
compared to its baseline, achieving 12.7% explained variance.

The addition of data augmentation (A) consistently im-
proved model performance across multiple outcomes. For care-
givers’ Interdaily Stability (IS fm) prediction, adding this step
to LR and RIDGE trained following P+C improved prediction
by 6.5% and 5.7%, respectively, representing improvements of
30.4% and 30.4% over baselines. Similar gains were observed

TABLE I
BEST PERFORMING MODELS FOR PREDICTION OF SLEEP HEALTH

OUTCOMES. BEST RESULTS FOR AN OUTCOME ARE SHOWN IN BOLD.

Outcome
(Modality)

Model Preproc R2 RMSE Baseline
R2

Baseline
RMSE

IS fm LR P+C 24.7% 1.158 0.759% 1.91e12
(actrhythm) P+C+A 31.2% 1.352

RIDGE P+C 25.2% 1.159 0.463% 1.254
P+C+A 30.9% 1.347

SVR P+C+A 27.1% 1.366 0.472% 1.223

IV fm RF P 10.1% 0.965 7.3% 0.980
(actrhythm) LR P 9.4% 1.074 1.4% 4.47e12

SRI pt RF A 9.9% 0.999 15.3% 0.934
(actrhythm)

avgWASO RF C+A 8.5% 1.217 1.5% 1.087
min fm

(actcomp)

se36 mean RIDGE P 13.5% 0.996 6.3% 1.099
pt (sleep) P+A 18.0% 1.058

LR P 14.6% 1.032 5.0% 1.21e12
P+A 17.8% 1.072

SVR P+A 12.1% 1.234 5.9% 1.095

tb110 mean RF A 12.7% 0.957 2.7% 1.010
pt(sleep)

for patients’ SE prediction (se36 mean pt), where this step
improved LR and RIDGE models trained after P by 3.2% and
4.5%, corresponding to 12.8% and 11.7% improvements over
baselines. The RF model predicting patients’ TB prediction
(tb110 mean pt) also benefited, showing a 10% improvement
over its baseline.

The benefit brought by C-based filtering was dependent on
outcome type. This step consistently improved prediction of
actigraph-derived indices (actrhythm, actcomp) but saw no
improvement when applied to models predicting self-report
sleep log indices. The divergence is likely reflective of the
impact of removing potential suppressor variables, which can
be critical to predictive performance. For actigraph-based
measures, the multicollinearity reduction achieved by this step
outweighed any negative impact from removing suppressors.

Incorporating principal components (P) derived from ques-
tionnaire features improved performance in 12 of the 15
significant models. Of the three remaining, all are RF models,
which suggests that the non-parametric approaches tested here
may benefit more by learning directly from the questionnaire
features.

B. Feature Importance Analysis of Experimental-based Pre-
dictors

To identify predictors salient to sleep health outcomes, we
conducted a SHAP feature importance analysis in our highest-
performing models, as described in Section III-A. We aimed
to identify a set of predictors that showed significance across
different outcomes and establish their specific associations.
Given that questionnaire features were transformed into prin-
cipal components that are less directly interpretable, SHAP
results were filtered to focus only on predictors derived from
the experimental session.



Fig. 2. Resampled mean R2 scores for models predicting sleep health indices across the three modalities: actigraph-derived composition (actcomp) and
rhythm (actrhythm), and self-report sleep logs (sleep). Outcomes are suffixed by participant type: patients (pt) and caregivers (fm). Single asterisks (*) indicate
significant model predictions at the 90% confidence level (p < 0.1) and double asterisks (**) denote significance at the 95% level (p < 0.05). Bars shown
without color (NA) indicate significant predictions were not obtained for any combination of the preprocessing steps.
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We selected 11 of the 640 supervised models by first
isolating those significant at the 95% level and then choosing
the most accurate configuration for each model type. To ensure
consistent interpretation across different model types and to
account for variability in LOOCV, this analysis was based
on SHAP values aggregated across folds. Predictors were
extracted that (1) ranked in the top half of all unique predictors
identified during the model’s LOOCV evaluation, based on
its aggregated mean absolute SHAP value, and (2) whose
values showed a significant correlation (p < .10) with their
corresponding SHAP values. These are visualized in Figure
3, where predictors are stratified by experimental phase and
participant type (patient/caregiver).

Analysis of experimental session features identified key
phases. High-Frequency Power (HFP) indices from HRV dur-
ing the patient’s speech (“sp2”) and recovery (“r”) phases
emerged as significant predictors across at least 10 of the
11 models tested, spanning both patient- and caregiver-level
outcomes and modeling approaches. Patient-level coregulation
index during patient speech (“sp2”) also showed significance
across 10 of the 11 models. Coregulation and coagitation
indices at the caregiver level showed similar significance, but
these effects across outcomes were mostly confined to the
patient-level and did not generalize to their own outcomes.
The only exception to this is caregivers’ HFP in the recovery
(“r”) phase, where this predictor was found significant at both
levels across 6 of the 11 models tested. In general, HFP and
CLO-based gamma features ranked lowest, with some phases
(such as baseline “b” and scenario “s” for both patients’ and
caregivers’ HFP) yielding few significant features.

SHAP analysis in best-fitted models for patient-level out-
comes revealed two key patterns. First, these models included
the full set of coregulation and coagitation indices and nearly
all these interrelated indices ranked as highly important within
their respective models. Second, the directional influence of
these indices frequently shifted depending on experimental
phase, despite measuring the same underlying construct. For

Fig. 3. SHAP heatmap of predictor importance from the STITCH task for
patients (pt) and caretakers (fm). Rows represent significant predictive models
(RF, SVR, LR, RIDGE) and columns are experimental phases. Color indicates
directional impact (blue: positive, purple: negative). Gray or blank cells denote
non-significant or predictors eliminated by preprocessing, respectively.
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instance, while several patient-level coregulation indices (e.g.,
baseline “b”, scenario “s”, prep “p”) were positively associated
with higher patients’ sleep efficiency, this relationship flipped
during other phases (e.g., patient speech “sp2” and recovery
“r”), becoming negatively associated. Such widespread im-
portance of highly correlated predictors and phase-dependent
shifts in directional influence strongly suggests the presence of
complex interactions that can be driven by suppressor effects.

To probe the interplay between coregulation and coagitation
indices more rigorously, we formally tested for multivariate
suppression with respect to the LR model predicting patients’
sleep efficiency (se36 mean pt). We employed Commonality
Analysis (CA) using the commonalityCoefficients command
from the yhat package in R to quantify suppression effects
specifically among coregulation and coagitation predictors.
As CA grows exponentially with the number of predictors,
we repeatedly sampled random subsets of six indices (out
of 24 total) and computed their pairwise commonality coeffi-



Fig. 4. Suppression network of predictors for patients’ sleep efficiency.
Nodes represent coregulation (coreg) or coagitation (coag) predictors from
patients (pt1) and caretakers (fm1) in some experimental phase. Node color
denotes community membership as detected by a walktrap algorithm. Edges
show average suppression between predictors, with thickness proportional to
the mean percentage of total variance such suppression explains and color
denoting significance (blue: p < 0.2; gray: non-significant).
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cients across 1,000 resampling iterations to estimate observed
negative commonality (i.e., suppression) effects. To assess
significance at the edge level, we then performed a permutation
test for each predictor pair: within each resampling iteration,
predictor labels were shuffled and suppression coefficients
recalculated over 1,000 permutations to generate a null dis-
tribution of negative commonalities. Figure 4 visualizes the
suppression network.

Coregulation and coagitation indices showing theoretically
counterintuitive directional effects in the SHAP analysis were
found to be embedded within these suppression clusters. For
instance, both patient-level and caretaker-level coregulation
and coagitation indices during patient speech (“sp2”) were
situated in the same densely connected cluster together with
indices taken during caretaker speech (“sp1”). Such indices
taken during recovery (“r”) also form their own distinct cluster.
This suggests that inconsistent SHAP effects observed among
these predictors may result from suppressive interactivity
rather than a lack of direct predictive validity.

IV. DISCUSSION

Our ML framework successfully identified predictive pat-
terns across multiple sleep health outcomes within a novel
interdependent dyadic context, with strongest performance in
predicting caregivers’ interdaily stability and patients’ sleep
efficiency. It also pinpointed key phases of the experimental
session and input modalities that contributed to these predic-
tions, with coagitation and coregulation indices ranking among
the most significant predictors. The proposed preprocessing
module was crucial in achieving such results, yielding im-
provements of up to 30.4% compared to baseline methods.

In the pursuit of informing integrative psychosocial core-
lates of dyadic sleep functioning, our SHAP analysis revealed
counterintuitive associations between specific stress indices
and sleep health outcomes, effects subsequently attributed via

CA to complex interactions among these highly intercorrelated
predictors. A critical finding from CA was that the identified
suppressor relationships were predominantly organized tempo-
rally, with patient and caretaker features nested together. Such
effects confirm that modeling partners’ data jointly improves
the prediction of self-report sleep health outcomes compared
to models that would exclude either partner’s data.

The phase-based structure of these interdependent effects
offers a bridge to future work. First, it motivates development
of ensemble learning methods where individual learners are
trained on phase-specific predictor clusters. While individual
predictor signs within these learners may still reflect com-
plex interactions, such an approach could help clarify how
different phases collectively contribute to sleep outcomes or by
identifying dominant phase-specific predictor patterns, without
compromising predictive power. Second, the network structure
provides an empirical basis for causal inference, informing the
specification of path analyses or structural equation models
(SEM) to test hypotheses about how dyadic interactions across
different phases influence distinct patterns of sleep health.

Strong predictive performance of T1 data also supports
using longitudinal forecasting to predict future outcomes. Such
an approach is especially valuable for overcoming modeling
limitations due to participant attrition at later time points.
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