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ABSTRACT
Graph contrastive learning (GCL) has emerged as a state-of-the-art

strategy for learning representations of diverse graphs including

social and biomedical networks. GCL widely uses stochastic graph

topology augmentation, such as uniform node removal, to gener-

ate augmented graphs. However, such stochastic augmentations

may severely damage the intrinsic properties of a graph and dete-

riorate the following representation learning process. Specifically,

cohesive topological properties (e.g., 𝑘-core and 𝑘-truss) indicate

strong and critical connections among multiple nodes; randomly

removing nodes from a cohesive subgraph may remarkably alter

the graph properties. In contrast, we argue that incorporating an

awareness of cohesive subgraphs during the graph augmentation

and learning processes has the potential to enhance GCL perfor-

mance. To this end, we propose a novel unified framework called

CTAug, to seamlessly integrate cohesion awareness into various

existing GCL mechanisms. In particular, CTAug comprises two spe-

cialized modules: topology augmentation enhancement and graph
learning enhancement. The former module generates augmented

graphs that carefully preserve cohesion properties, while the latter

module bolsters the graph encoder’s ability to discern subgraph

patterns. Theoretical analysis shows that CTAug can strictly im-

prove existing GCL mechanisms. Empirical experiments verify that

CTAug can achieve state-of-the-art performance for both graph

and node representation learning, especially for graphs with high

degrees.
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1 INTRODUCTION
Graph contrastive learning (GCL) has become a promising self-

supervised learning paradigm to learn graph and node embeddings

for various applications, such as social network analysis and web

graph mining [27, 48, 58, 60]. The idea of GCL is maximizing the

representation consistency between different augmented views

from the same original graph [54], in order to learn an effective

graph neural network encoder. Hence, the augmentation strategies

for view generation play a vital role in GCL. In general, there are

two augmentation types, i.e., topology and feature [58]. In this paper,
we focus on topology augmentation, as it can be applied to either

attributed or unattributed graphs.

Common topology augmentation strategies include node drop-

ping, edge removal, subgraph sampling, etc. [58]. Existing methods

mainly follow a stochastic manner to conduct topology augmen-

tation [54, 59]. Some methods adopt total randomized augmenta-

tion operations, like removing nodes or edges with an equivalent

probability. Concerning that nodes and edges usually hold diverse

levels of importance in a graph, some other methods argue that a

better augmentation strategy should more likely retain the more

important components of the original graph. Otherwise, randomly

deleting important edges/nodes may cause the augmented views to

vary far away from the original graph, thus degrading the learned

graph/node embedding. Recently, some pioneering work starts

leveraging the intrinsic properties of a graph or domain knowl-

edge to guide the graph augmentation of GCL [41, 46, 56, 60]. For

example, GCA [60] introduces edge centrality into topology aug-

mentation, so that important edges are likely to be kept after aug-

mentation. Nevertheless, there remain some important research

questions.

1. Property Enrichment. Very limited types of properties about

graphs have been used to determine important components of a

graph and enhance graph augmentation for effective GCL. However,

a basket of individual-level (i.e., node/edge) and structure-level

intrinsic graph properties have been defined to distinguish the

importance of elements in real-life social graphs; such properties

have also been used to improve a variety of applications [16, 47].

Can we enrich the topology augmentation with more essential

graph properties to improve GCL?

2. Unified Framework. Most existing studies focus on design-

ing a concrete GCL mechanism for representation learning. How-

ever, as topology augmentation is a widely adopted step in various

mechanisms [58], can we develop a unified framework to incorpo-

rate graph properties into all of these GCL mechanisms and benefit

graph representation learning?

3. Expressive Network.Most existing GCL methods [15, 54]

use standard Graph Neural Networks (GNNs) such as GCN [20] and

GIN [50] as GNN encoder. However, prior research has indicated

that GNNs have limited expressive power and encounter difficulties

in capturing subgraph properties [9]. Can we engineer a more

expressive graph encoder that can effectively capture subgraph

information from the original graph?

1
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This research serves as a pioneering effort to address the above

research questions. Firstly, we propose to introduce cohesive sub-
graphs to guide topology augmentations, which provide a novel

structural-level view of a graph’s properties for graph augmenta-

tions. In general, cohesive subgraphs are densely connected subsets

of important nodes in a graph. A broad of cohesive subgraphs with

different specific semantic definitions, including 𝑘-clique [28], 𝑘-

core [4, 36], and 𝑘-truss [10], have been investigated in the graph

theory literature and regarded as critical structures of graphs in a

spectrum of domains such as social networks and World Wide Web

[12, 18, 23]. Therefore, the basic idea of cohesion-guided augmen-

tation is preserving cohesive subgraphs of a graph in its augmented

views.While the existing literature primarily depends on node-level

graph properties or domain knowledge, cohesive subgraphs could
provide an effective complement to the properties studied in the

literature (e.g., centrality [60]).

Moreover, we propose a unified topology augmentation frame-

work CTAug to ensure that the cohesion-guided augmentation

idea could be flexibly adapted into a variety of graph augmenta-

tion methods. While the predominant augmentation methods fall

into either the probabilistic or deterministic categories, CTAug cus-

tomizes two distinct strategies to cater to these methods. In the

realm of probabilistic augmentation-based GCL methods for graph-

level representation learning [53, 54], diverse augmented views are

generated in a stochastic manner. CTAug refines perturbation prob-

ability to create augmented views that specifically retain the most

cohesive subgraphs from the original graph. Besides, deterministic
methods typically follow a well-defined procedure to produce a

single fixed augmented view [15]. In this context, CTAug preserves

the established procedure of a particular deterministic method but

modifies the original graph by increasing the weights of nodes and

edges within cohesive subgraphs. With this design, the augmented

graphs are supposed to better preserve cohesive subgraphs of the

original graph.

However, existing research has pointed out that plain GNNs are

hard to capture subgraph properties [9], which results in the loss

of cohesive subgraph information during the graph representation

learning process. To address this, inspired by [7], we then propose

an original-graph-oriented graph substructure network (O-GSN) to

enhance GNNs’ power to aware graph cohesive substructures effi-

ciently when encoding graphs. Besides, We also extend CTAug for

GCL methods of node-level representation learning [60].

In summary, this paper makes the following contributions.

1. To the best of our knowledge, this is one of the first studies to

incorporate cohesion properties into GCL. Considering cohesion as

a type of graph intrinsic knowledge [60], this research sheds light

on incorporating knowledge into self-supervised graph learning

paradigms.

2. We propose CTAug, a unified framework that can consider

multiple types of cohesion properties in various GCL mechanisms

during topology augmentation and graph learning processes. Theo-

retical analysis on the superiority of CTAug over conventional GCL

methods is provided.

3. Extensive experiments on real-life datasets validate thatCTAug
can significantly improve existingGCLmechanisms, such as GraphCL

[54], JOAO [53], MVGRL [15], and GCA [60], especially for graphs

with high degrees.

2 BACKGROUND AND RELATEDWORK
2.1 Cohesive Subgraph
In literature, various cohesive subgraphs have been studied in

graphs [5, 28]. In this paper, we focus on two widely-studied ones,

𝑘-core [36] and 𝑘-truss [10], as they both have efficient computation

algorithms in polynomial time [4, 45].

𝑘-core is a maximal subgraph in which every node has at least

𝑘 links to the other nodes [36]. As an extension to 𝑘-core, 𝑘-shell

is a subgraph including the nodes that are in 𝑘-core but not in

(𝑘 + 1)-core. Finding 𝑘-core and 𝑘-shell is efficient as the time

complexity is linear to the edge number [4]. Analyzing such a

subgraph can provide rich information for applications in various

social network applications [23], such as user influence [2, 8, 21, 55]

and community detection [13, 31]. For instance, researchers find

that 𝑘-core plays an important role in analyzing coauthor social

networks [13]. Specifically, it is easy to know that a paper with

(𝑘 +1) authors can lead to a 𝑘-core subgraph in a coauthor network

(i.e., every author is linked to the other 𝑘 authors as they have

the paper collaboration) [13]; then, as different research topics

usually hold diverse collaboration styles (some topics need a large

research team, i.e., many coauthors, but some do not), 𝑘-core could

be an effective indicator to infer the research domain of a given

coauthor network. In addition to social networks, 𝑘-core is verified

as an important property for bioinformatics [3], digital library text

mining [34], airline networks [49], etc.

𝑘-truss is the largest subgraph in which every edge is in at least

(𝑘 − 2) triangles of the subgraph [10]. Triangle is the fundamental

building element for networks and can indicate the stability of the

social network topology, as quantified by the clustering coefficient
[47]. Triangle also reveals the transitivity in the link formation of

networks [16]. This provides an effective indicator for link predic-

tion in social networks [17]. Besides, researchers point out that

the triangles in the hyperlink-based web graph reveal the topic

distribution over the World Wide Web [12]. As a common way to

measure triangles in subgraphs, 𝑘-truss has thus attracted much

research interest in network analysis [1, 18].

2.2 Topology Augmentation in GCL
Topology augmentation is widely adopted in GCL [58]. There are

two main types of topology augmentation strategies, i.e., probabilis-
tic and deterministic.

Most topology augmentation strategies in GCL are probabilistic,

such as stochastic node dropping, edge perturbation, and subgraph

sampling [53, 54, 59, 60]. More specifically, most traditional proba-

bilistic strategies are purely randomized. For instance, the probabil-

ity of the topology augmentation operations is set to uniform over

all the nodes and edges in GraphCL [54, 59]. More recently, some

studies have tried to adaptively learn non-uniform probabilities. One

stream of work uses intrinsic knowledge to guide topology augmen-

tation, such as centrality [60] and motif [56]. Another stream of

work uses a data-driven way to automatically adjust the probabili-

ties [24, 39, 52]. Our work follows the first stream by introducing

the cohesion property into topology augmentation.

Some studies adopt a deterministic strategy in topology aug-

mentation — given an original graph, the augmented view is fixed.

The representative strategies are diffusion-based augmentations

2
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[15, 58]. Conceptually, the diffusion operation would add edges to

the original graph. Different from the probabilistic edge adding [54],

the diffusion process is computed in a deterministic and analytic

manner, e.g., following the Personalized PageRank [15] or Markov

Chain processes [57].

Recently, there has been emerging research in topology augmen-

tation from the spectral domain. [26] suggests that GCL primar-

ily encodes low-frequency information, whereas [25] focuses on

maximizing spectral changes during augmentation. However, it’s

notable that spectral features are computed based on the entire

graph Laplacian matrix, and using them to guide augmentation

typically requires intricate transformations of the corresponding

graph topology. This may lead to substantial computational costs

and a lack of intuitive interpretation.

Unlike most prior work, our study does not aim to provide a con-

crete GCL mechanism. Instead, our goal is to improve existing GCL

mechanisms by incorporating the concept of cohesion in topology

augmentation. Recently, a review of existing GCL methods [41]

highlighted that injecting domain knowledge of graphs in GCL may

lead to better performance. Our work aligns with this direction and

demonstrates the effectiveness of considering cohesion as a knowl-

edge factor in GCL. Besides, our method are primarily concerned

with graph augmentation within the spatial domain, leading to

more conciseness and explainability.

3 THE CTAUG FRAMEWORK
GCL aims to learn graph representations by maximizing agreement

between similar graphs and minimizing agreement between dis-

similar graphs. The basic loss function for a pair of graphs G1 and

G2 with representations 𝑧1 and 𝑧2 is [54]:

𝐿 = − log

exp(𝑠𝑖𝑚(𝑧1, 𝑧2)/𝜏)∑
𝑖, 𝑗 exp(𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 )/𝜏)

(1)

where 𝜏 is a temperature parameter, 𝑠𝑖𝑚 is cosine similarity with

𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 ) = 𝑧𝑇
𝑖
𝑧 𝑗/∥𝑧𝑖 ∥∥𝑧 𝑗 ∥. For similar graph pairs (G1,G2) aug-

mented from the same graph (e.g., dropping nodes or edges with

a probability 𝑝𝑑𝑟 ), 𝑧1 and 𝑧2 should be close, so the numerator is

large and the loss is small. For dissimilar pairs augmented from

different original graphs, the denominator becomes large and the

loss increases.

As shown in Fig. 1, CTAug consists of two modules that re-

spectively enhance the topology augmentation and graph learning

steps in GCL methods. The first module modifies the augmentation

process to generate augmented graphs that preserve the cohesion

properties of the original graph. The second module improves the

GNN encoder to produce graph representations that better capture

the original graph’s cohesion properties. By jointly applying these

two modules, CTAug aims to highlight the cohesion properties of

graphs throughout the GCL pipeline.

3.1 Topology Augmentation Enhancement
3.1.1 Probabilistic Topology Augmentation. In general, the

probabilistic topology augmentation methods may generate a vari-

ety of augmented graphs with probabilistic network manipulation

operations [54]. CTAug intends to make probabilistic augmented

graphs retain more cohesive components of the original graph.

A straightforward method is firstly generating multiple candi-

date augmented graphs and selecting the one most similar to the

original graph regarding a particular cohesion property. However,

generating multiple augmented graphs and computing their co-

hesive subgraphs is time-consuming. To address this, we propose

to refine the probability of augmentation operations to make that

nodes and edges in cohesive subgraphs likely retain in augmented

graphs. Then, we need to generate only one augmented graph, while

it would tend to keep certain cohesion properties as the original

graph.

Specifically, we reduce the probability of node-dropping or edge-

dropping operations on the cohesive subgraphs of the original

graph. With this idea in mind, CTAug multiplies the original drop-

ping probability 𝑝𝑑𝑟 relevant to the nodes and edges in the cohesive

subgraphs by a decay factor 𝜖 ∈ (0, 1], leading to a newly-refined

dropping probability,

𝑝′
𝑑𝑟

= (1 − 𝜖) · 𝑝𝑑𝑟 (2)

For instance, suppose that the original node dropping probability

𝑝𝑑𝑟 is uniformly set as 0.2 [54]. Then, by setting 𝜖 = 0.5, the drop-

ping probabilities for the nodes in a cohesive subgraph will be re-

duced to 0.2×0.5 = 0.1. With the newly-refined node-dropping and

edge-dropping probability, we can continue running existing GCL

mechanisms without the need for making other modifications.
2

More specifically, for a certain cohesion property, e.g., 𝑘-core,

the parameter 𝑘 can be varied, and then various subgraphs are

extracted from an original graph. To consider cohesive subgraphs

of varying 𝑘 , first, given the original graph G, we range 𝑘 from

𝑘min to 𝑘max and thus extract a set of 𝑘-core subgraphs,

S = {S𝑘
𝑐𝑜𝑟𝑒 |𝑘 = 𝑘min, 𝑘min + 1, ..., 𝑘max} (3)

where 𝑘max is the order of the main core (the core with the largest

order) of the original graph, 𝑘min can be set to max{𝑘max − 2, 1} for
𝑘-core and max{𝑘max − 2, 2} for 𝑘-truss. For a vertex 𝑣𝑖 , we count
how many times it appears in the set of subgraphs S to calculate

its importance weight𝑤𝑣 .

𝑤𝑣 (𝑣𝑖 ) =
∑︁
S∈S

1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) (4)

where 1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) is an indicator function to output whether

𝑣𝑖 is in the vertex set of S (return 1) or not (return 0). Then, we

normalize𝑤𝑣 regarding the maximum vertex importance weight,

𝑤 ′
𝑣 (𝑣𝑖 ) =

𝑤𝑣 (𝑣𝑖 )
max𝑤𝑣

∈ [0, 1] (5)

Finally, for a node 𝑣𝑖 , its dropping probability is refined as follows,

𝑝′
𝑑𝑟
(𝑣𝑖 ) = (1 −𝑤 ′

𝑣 (𝑣𝑖 ) · 𝜖) · 𝑝𝑑𝑟 (6)

where 𝜖 ∈ (0, 1] specifies the maximum decay in the dropping

probability for the node with the maximum importance weight.

While Eq. 6 makes the dropping probability change linear to the

node importance, we can set it to a general form,

𝑝′
𝑑𝑟
(𝑣𝑖 ) = (1 − 𝑓 (𝑤 ′

𝑣 (𝑣𝑖 )) · 𝜖) · 𝑝𝑑𝑟 (7)

where 𝑓 can be any monotonic increasing function with the input

and output ranges defined on [0,1].

2
This enhancement can work only for the probabilistic topology augmentation of

node/edge-dropping. Many existing GCL methods have verified that node/edge drop-

ping alone is enough for generating effective graph augmentations [24, 39, 52, 59, 60].

3
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Figure 1: Overview of the CTAug Framework. Module 1 enhances the probabilistic and deterministic augmentation process
separately with the consideration of the cohesive subgraphs; Module 2 boosts GNN encoder to better capture the original
graph’s cohesion properties.

For edge dropping augmentation, we calculate the dropping

probability of an edge 𝑒𝑖 𝑗 by taking the average of the dropping

probability of its two ends,

𝑝′
𝑑𝑟
(𝑒𝑖 𝑗 ) = (𝑝′

𝑑𝑟
(𝑣𝑖 ) + 𝑝′

𝑑𝑟
(𝑣 𝑗 ))/2 (8)

3.1.2 Deterministic Topology Augmentation. Different from
probabilistic augmentations, deterministic augmentation generates

a single new graph from the original graph. As a representative,

MVGRL [15] leverages a personalized PageRank [30] diffusion pro-

cess to generate a deterministic augmented view from the original

graph, which can be computed in a closed form [22]. In particular,

the personalized PageRank diffusion can be calculated as,

𝑺 = 𝛼 (𝑰 − (1 − 𝛼)𝑫1/2𝑨𝑫−1/2)−1
(9)

where 𝑫 is the diagonal degree matrix, 𝑨 is the adjacency matrix,

and 𝛼 denotes the teleport probability [22]. With CTAug, we can
obtain a re-weighted adjacency matrix 𝑨′

where 𝑨′
𝑖, 𝑗

= 𝑤 ′
𝑒 (𝑒𝑖 𝑗 )

(see Eq. 12). Then, we can use 𝑨′
to replace 𝑨 in Eq. 9 and conduct

a cohesion-aware diffusion process.

As state-of-the-art deterministic topology augmentation strate-

gies aremostly based on graph diffusion, e.g., Personalized PageRank
and Markov Chain processes [15, 58], we then design an enhance-

ment strategy to make the graph diffusion process cohesion-aware.

The main idea is to assign larger weights to the graph edges in

cohesive subgraphs so that the graph diffusion process would favor

the large-weighted edges, as shown in Fig. 1.

We use 𝑘-core as an example to illustrate the process. First, given

the original graph G, we range 𝑘 from 1 to 𝑘max and thus extract

a set of 𝑘-core subgraphs S = {S𝑘
𝑐𝑜𝑟𝑒 |𝑘 = 1, 2, ..., 𝑘max}. Then, for

a vertex 𝑣𝑖 , we count how many times it appears in the set of

subgraphs S to calculate its importance weight𝑤𝑣 .

𝑤𝑣 (𝑣𝑖 ) =
∑︁
S∈S

1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) (10)

where 1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) is an indicator function to output whether 𝑣𝑖
is in the vertex set of S (return 1) or not (return 0).

Then, we normalize𝑤𝑣 regarding the average vertex importance

weight,

𝑤 ′
𝑣 (𝑣𝑖 ) = 𝜂 · 𝑤𝑣 (𝑣𝑖 )

𝑤̄𝑣
+ (1 − 𝜂) · 1

𝑤̄𝑣 =

∑
𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (G) 𝑤𝑣 (𝑣𝑖 )

|𝑣𝑒𝑟𝑡𝑒𝑥 (G)|

(11)

where 𝜂 ∈ [0, 1] is a factor controlling the degree to consider

cohesive subgraphs. If 𝜂 is set to a value closer to 1, the cohesion

property will be considered at a higher level.

Finally, suppose the original weight of edge 𝑒𝑖 𝑗 is 𝑤𝑒 (𝑒𝑖 𝑗 ), our
updated weight𝑤 ′

𝑒 (𝑒𝑖 𝑗 ) is,

𝑤 ′
𝑒 (𝑒𝑖 𝑗 ) =

1

2

(𝑤 ′
𝑣 (𝑣𝑖 ) +𝑤 ′

𝑣 (𝑣 𝑗 ))𝑤𝑒 (𝑒𝑖 𝑗 ) (12)
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Large vertex weights will increase the corresponding edge weights,

and vice versa. We use the re-weighted graph as the input for

deterministic augmentation (i.e., graph diffusion).

3.2 Graph Learning Enhancement
3.2.1 Subgraph-aware GNN Encoder. While the topology aug-

mentation enhancement part has ensured that the augmented view

would probably retain cohesive subgraphs, the graph neural net-

work (GNN) encoder may still lose this substructure information

during the graph learning process. In general, conventional GNNs

follow a message-passing neural network (MPNN) framework, as

local information is aggregated and passed to neighbors [14, 29, 50].

Nevertheless, MPNNs have been proven to be limited in capturing

subgraph properties, e.g., counting substructures [9]. Hence, we

need to improve the GNN encoder’s capacity to learn cohesive

subgraph properties.

In CTAug, we propose an original-graph-oriented graph substruc-
ture network (O-GSN) to enhance existing GNN encoders, which is

inspired by graph substructure network (GSN) [7]. GSN is a recently

proposed topology-aware graph learning scheme to encode sub-

structure information and is proven to be strictly more powerful

than conventional GNNs. Specifically, GSN modifies the neighbor-

hood aggregation process as,

GSN: 𝐴𝐺𝐺 ((h𝑣, h𝑢 , s𝑣, s𝑢 )𝑢∈N(𝑣) ) (13)

where 𝐴𝐺𝐺 is the neighborhood aggregation function such as∑
𝑢∈N(𝑣) 𝑀𝐿𝑃 (·), h𝑣 is the hidden state of node 𝑣 , and s𝑣 is the

substructure-encoded feature of node 𝑣 . In particular, s𝑣 counts

how many times node 𝑣 appears in a set of subgraph structures

H (e.g., varying-size cliques). In brief, GSN adds an extra set of

substructure-encoded node features to every GNN layer to enhance

GNN’s subgraph-aware ability. However, directly applying GSN

into CTAug still faces two issues:

(i) Low Efficiency. GSN needs to learn s𝑣 for every node in the

graph with subgraph counting algorithms [11]. As the augmented

view is randomly generated in GCL, directly applying GSN means

that subgraph counting needs to be re-computed for every aug-

mented view in an online manner, which is highly time-consuming.

(ii) Losing Track of the Original Graph. It is possible that two

different original graphs generate the same augmented view. Di-

rectly applying GSN still cannot differentiate which original graph

generates the augmented view.

To overcome the two issues, we propose the original-graph-

oriented GSN, denoted as O-GSN. Specifically, O-GSN uses the

substructure-encoded features from the original graph,

O-GSN: 𝐴𝐺𝐺 ((h𝑣, h𝑢 , s𝑜𝑣 , s𝑜𝑢 )𝑢∈N(𝑣) ) (14)

where s𝑜𝑣 is the substructure-encoded feature of node 𝑣 in the origi-

nal graph.

With O-GSN, we only need to compute the substructure-encoded

features for the original set of graphs in the data pre-processing

stage, thus improving the training efficiency. Moreover, by con-

sidering features from the original graph, O-GSN enhances the

encoder’s power to differentiate the same augmented view from

different original graphs, which may further enhance the GNN

encoder’s expressive power.

Selection of Substructures in O-GSN. In order to enhance the per-

formance of GCL by considering cohesive subgraphs, the substruc-

tures selected in O-GSN should also be representative 𝑘-core/truss

cohesive subgraphs. To achieve this, we analyze the cohesive prop-

erties of the candidate substructures used in the original GSN imple-

mentation and select those that are representative. In our current

implementation, we focus on clique substructures. A detailed anal-

ysis of why we select cliques can be found in Appendix C.

3.2.2 Multi-Cohesion Embedding Fusion. Since different co-
hesion properties can identify different important parts of graphs,

one may want to take heterogeneous cohesion properties into ac-

count, e.g., both 𝑘-core and 𝑘-truss. To this end, we also design a

multi-cohesion embedding fusion component to fuse embeddings

obtained considering a set of various cohesion properties C.
Specifically, we choose different cohesion properties and follow

the augmentation enhancement process to train GNN encoders.

Then, we concatenate embeddings learned from the augmentation

strategy based on different cohesion properties as,

𝑧𝑖 = | |𝑐∈C𝑧𝑐𝑖 (15)

where 𝑧𝑖 ∈ R𝑛×(𝑑 · |C | )
is the final graph embedding of G𝑖 , 𝑧

𝑐
𝑖
∈

R𝑛×𝑑 is the graph embedding generated based on a certain cohesion

property 𝑐 ∈ C, such as 𝑘-core/truss.

3.3 Extension for Node Embedding Learning
In general, the GCL methods for node embedding are often local-
local GCL (comparison on node pairs) [58]. Representative local-

local GCL methods include GRACE [59] and its follow-up GCA
[60]. Their basic idea of augmentation is similar to GraphCL. First,
two augmented views are generated with augmentation operations

regarding certain probabilities. Afterward, the same nodes in two

views are considered as a positive pair for node embedding learning.

As local-local GCL aims to learn node embedding, topology

augmentation usually uses edge dropping in order to ensure that all

the nodes still remain in the augmented view. Specifically, GRACE
uses a randomized edge-dropping operation to generate augmented

views; GCA improves GRACE by introducing a centrality-based

adaptive edge dropping operation. Since this augmentation step is

conceptually consistent with the edge dropping in GraphCL, we can
use a similar procedure to enhance GRACE and GCA. It is worth
noting that, since cohesion is a graph’s substructure-level property,

its importance to node embedding may not be as significant as to

graph embedding.

4 HOW CTAUG POWERS GCL?
In this section, we provide a theoretical analysis of the performance

of CTAug from the perspective of mutual information.
3
In particular,

we analyze the topology augmentation enhancement module and

the graph learning enhancement module separately. Detailed proofs

for our analysis can be found in Appendix A.

We also conduct experiments to substantiate the efficacy mecha-

nism of CTAug, and the detailed results are available in Appendix B.

3
Note that we mainly focus on the contrastive schema between the original graph

and the augmented graph, whereas the contrastive schema between two augmented

graphs is analogous.
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4.1 Topology Augmentation Enhancement
To begin, we introduce the definitions of sufficient encoder and

minimal sufficient encoder, where 𝐼 represents mutual information.

Definition 4.1. [40] (Sufficient Encoder) The encoder 𝑓 of G is suffi-
cient in the contrastive learning framework if and only if 𝐼 (G; G′) =
𝐼 (𝑓 (G); G′).

The encoder 𝑓 is sufficient if the information in G about G′
is

lossless during the encoding procedure, which is required by the

contrastive learning objective. Symmetrically, 𝐼 (G; G′) = 𝐼 (G; 𝑓 (G′))
if 𝑓 is sufficient.

Definition 4.2. [40] (Minimal Sufficient Encoder) A sufficient en-
coder 𝑓1 of G is minimal if and only if 𝐼 (𝑓1 (G); G) ≤ 𝐼 (𝑓 (G); G),
∀𝑓 that is sufficient.

The minimal sufficient encoder only extracts relevant informa-

tion about the contrastive task and discards irrelevant information.

Theorem4.3. Suppose 𝑓 is aminimal sufficient encoder. If 𝐼 (G′
; G;𝑦)

increases, then 𝐼 (𝑓 (G);𝑦) will also increase.
Given that cohesive properties are closely tied to the graph

label 𝑦 [13, 16, 23], preserving more cohesive properties of the

original graph G during graph augmentation (thereby increasing

𝐼 (𝑦; G; G′)) enables the encoder 𝑓 to learn improved representa-

tions 𝑓 (G) through contrastive learning. This results in more reten-

tion of information related to𝑦 for downstream tasks (i.e., enlarging

𝐼 (𝑓 (G);𝑦)), so downstream task performance will elevate.

4.2 Graph Learning Enhancement
Theorem 4.4. 𝑓1 is our proposed O-GSN encoder with 𝑘-core (𝑘 ≥ 2)
or 𝑘-truss (𝑘 ≥ 3) subgraphs considered in subgraph structures H , 𝑓2
is GIN (the default encoder). Then 𝐼 (𝑓1 (G);𝑦) > 𝐼 (𝑓2 (G);𝑦).

Based on Theorem 4.4, with other conditions kept constant, sub-

stituting the default GIN encoder with our proposed O-GSN encoder

empowers the encoder to acquire enhanced representations through

contrastive learning and preserve more information associated with

𝑦, which will boost the performance of downstream tasks.

5 EXPERIMENTS
5.1 Datasets and Settings
Datasets. We choose five social graph datasets [51] (IMDB-B, IMDB-
M, COLLAB, RDT-B, RDT-T ) and two biomedical graph datasets [6]

(ENZYMES, PROTEINS). Table 1 summarizes the statistics.

• IMDB-B & IMDB-M [51] datasets contain actors/actresses’

relations if they appear in the same movie. The label of each

graph is the movie genre. In IMDB-B, the label is binary; in

IMDB-M, the label is multi-class.

• COLLAB [51] is a scientific collaboration dataset. The re-

searcher’s ego network has three possible labels corresponding

to the fields that the researcher belongs to.

• RDT-B [51] dataset includes user interaction graphs in Reddit
threads, called subreddits. The task is to identify whether a

subreddit graph is question/answer-based or discussion-based.

• RDT-T [35] dataset contains discussion and non-discussion

based threads from Reddit. The task is to predict whether a

thread is discussion-based or not.

• ENZYMES [6] includes proteins that are classified as enzymes

or non-enzymes.

• PROTEINS [6] contains protein tertiary structures from 6 EC

top-level classes.

Experiment Setup. We take the unsupervised representation

learning setting commonly used for GCL benchmarks [58]. Follow-

ing the evaluation scheme [43, 58], we train a linear SVM classifier

based on graph embeddings for graph classification. We use 10-fold

cross-validation and repeat each experiment five times.
4
Following

most GCL studies in literature [54], we use accuracy to measure

the graph classification performance.

Hardware Environment. Experiments are run on a server

with a 28-core Intel CPU, 96GB RAM, and Tesla V100S GPU. The

operating system is Ubuntu 18.04.5 LTS.

5.2 Methods
For graph classification tasks, we choose 7 GCL methods for graph-

level representation learning as our baselines, including GraphCL
[54], JOAO [53], MVGRL [15], InfoGraph [38], AD-GCL [39], Auto-
GCL [52], and RGCL [24]. More details are in Appendix E.

To assess the effectiveness of CTAug, we apply it to enhance three
GCL methods: two with probabilistic augmentations (GraphCL and

JOAO) and one with deterministic augmentations (MVGRL). The re-
sulting methods are denoted as CTAug-GraphCL, CTAug-JOAO,
andCTAug-MVGRL, respectively. We consider two cohesion prop-

erties, namely 𝑘-core and 𝑘-truss, which we extracted from graphs

using NetworkX
5
with the algorithms in [4, 10]. More details are

in Appendix F.

5.3 Main Results
Probabilistic GCL Method Enhancement (CTAug-GraphCL
& CTAug-JOAO). Table 2 presents the graph classification results

of several GCL methods. Among five social graph datasets, IMDB-
B, IMDB-M, and COLLAB exhibit high average degrees (∼ 10 or

larger). We expect that CTAug will perform well on these datasets,

as high-degree graphs usually have highly-cohesive subgraphs.
6

Our experimental results validate this expectation. Specifically,

CTAug-GraphCL yields an average accuracy improvement of 5.83%

compared to GraphCL on three high-degree datasets. For COLLAB,
the improvement is the most significant as CTAug can improve

GraphCL by 9.36%, as this dataset has the largest average node

degree (∼ 65). Similar to GraphCL, CTAug can also enhance JOAO
by more than 5%.

For the remaining two social graph datasets, namely, RDT-B and

RDT-T, with low average degrees (∼ 2), CTAug’s performance im-

provement is marginal. The reason might be that CTAug primarily

exploits the cohesion properties of a graph, and its effectiveness

depends on the presence of highly cohesive substructures in the

graph. CTAug’s improvements on biomedical graphs are also not

as significant as the improvements on high-degree social graphs,

since the average degrees of biomedical datasets are small (∼ 3).

4
We fix random seeds to 1–5 for five cross-validation tests. Our results may look

slightly different from the baselines’ original papers due to different random seeds and

evaluation schemes.

5
https://networkx.org/

6
Table 1 lists the average node degrees and the maximum value of 𝑘 in 𝑘-core/truss

subgraphs (𝑘max) for all the datasets.

6
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Table 1: Dataset statistics for graph classification.

Category Dataset #Graph #Class Avg. #Nodes Avg. #Edges Avg. Degree Avg. 𝑘max (𝑘-core) Avg. 𝑘max (𝑘-truss)

Social

Graph

IMDB-B 1,000 2 19.77 96.53 9.76 (high) 9.16 10.16

IMDB-M 1,500 3 13.00 65.94 10.14 (high) 8.15 9.15

COLLAB 5,000 3 74.49 2457.78 65.97 (high) 40.53 41.52

RDT-B 2,000 2 429.63 497.75 2.32 (low) 2.33 3.09

RDT-T 203,088 2 23.93 24.99 2.08 (low) 1.58 2.46

Biomedical

Graph

ENZYMES 600 6 32.63 62.14 3.81 (low) 2.98 3.80

PROTEINS 1,113 2 39.06 72.82 3.73 (low) 3.00 3.83

Table 2: Accuracy (%) on graph classification (OOM: out-of-memory).

Method Social Graphs (High Degree) Social Graphs (Low Degree) Biomedical Graphs

IMDB-B IMDB-M COLLAB AVG. RDT-B RDT-T AVG. ENZYMES PROTEINS AVG.

InfoGraph 71.34±0.24 47.93±0.71 69.12±0.15 62.80 89.39±1.81 76.23±0.00 82.81 26.73±3.75 74.09±0.48 50.41

AD-GCL 71.28±1.10 47.59±0.62 71.22±0.89 63.36 88.84±0.90 76.51±0.00 82.68 27.33±2.28 73.39±0.85 50.36

AutoGCL 71.14±0.71 48.61±0.55 67.27±2.64 62.34 89.31±1.48 77.13±0.00 83.22 29.83±2.24 73.33±0.27 51.58

RGCL 71.14±0.64 48.28±0.60 73.48±0.93 64.30 91.38±0.40 OOM / 33.33±1.61 73.37±0.35 53.35

GraphCL 71.48±0.44 48.11±0.60 72.36±1.76 63.98 91.69±0.70 77.44±0.03 84.57 32.83±2.05 74.32±0.76 53.58

CTAug-GraphCL 76.60±1.02 51.12±0.57 81.72±0.26 69.81 92.28±0.33 77.48±0.01 84.88 39.17±1.00 74.10±0.33 56.64

JOAO 71.40±0.38 48.68±0.36 73.40±0.46 64.49 91.66±0.59 77.24±0.00 84.45 34.60±1.06 74.32±0.46 54.46

CTAug-JOAO 76.80±0.71 51.19±0.88 81.90±0.53 69.96 92.19±0.24 77.35±0.02 84.77 39.92±1.36 74.46±0.13 57.19

MVGRL 71.88±0.73 50.19±0.40 80.48±0.29 67.52 OOM OOM / 34.20±0.67 74.33±0.62 54.27

CTAug-MVGRL 73.04±0.65 50.79±0.54 81.09±0.37 68.31 OOM OOM / 35.46±1.20 75.00±0.38 55.23

Figure 2: CTAug’s improve-
ment on datasets with vary-
ing average degrees.

Figure 3: Scalability test on
RDT-T.

Table 3: Ablation study of CTAug-GraphCL.

Method IMDB-B IMDB-M COLLAB AVG.

CTAug-GraphCL 76.60±1.02 51.12±0.57 81.72±0.26 69.81

Module Ablation
Only Module 1 71.54±0.27 49.11±0.48 72.64±0.63 64.43

Only Module 2 73.80±1.21 50.27±0.81 80.03±0.42 68.03

Cohesion Property Ablation
Only 𝑘-core 75.92±0.67 51.39±0.14 81.36±0.16 69.56

Only 𝑘-truss 76.12±1.20 50.99±0.57 80.71±0.30 69.27

Fig. 2 illustrates the performance enhancement achieved by

CTAug-GraphCL/JOAO compared toGraphCL/JOAO across datasets

with different average degrees. Notably, as the average degree in-

creases, the impact of CTAug becomes more pronounced. We con-

clude that, before applyingCTAug, it is prudent to ascertain whether
the input graph is high-degree

7
or not.

DeterministicGCLMethodEnhancement (CTAug-MVGRL).
For deterministic GCL methods, CTAug can also boost the perfor-

mance by comparing CTAug-MVGRL and MVGRL. Meanwhile, the

improvement is minor even for high-degree graphs; the possible

reason is that MVGRL has already used node degrees as features,

which can be seen as a weak version of substructure-encoded fea-

tures considered in Sec. 3.2.1 (as high-degree nodes are often in

certain highly-cohesive subgraphs). Note thatMVGRL cannot finish

7
In accordance with our experimental results, graphs with average degree greater than

8 might be considered as high-degree graphs.

training for large social graphs such as RDT-B/T due to out-of-

memory. Hence, CTAug-GraphCL/JOAO may still be preferred for

practical graph-level representation learning.

Computation Scalability. Fig. 3 shows how the computation

time changes with the increase of training graphs. CTAug-GraphCL
consumes about two times compared to GraphCL as CTAug trains

graph representations considering both 𝑘-core and 𝑘-truss sub-

graphs; if only one subgraph property is considered, the training

time overhead would be very small.

CTAug also needs to pre-compute cohesive subgraphs (𝑘-core

and 𝑘-truss in our implementation) for Module 1 and substructure-

encoded features for Module 2 (O-GSN). The discovery of 𝑘-core

and 𝑘-truss subgraphs for a single graph typically takes ∼ 10
−2

seconds, while the computation of O-GSN features takes at most a

few seconds (details are in Appendix G). Moreover, this procedure

can be parallelized or conducted offline, allowing for the convenient

integration of CTAug with a variety of existing methods.

7
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5.4 Ablation Study
We conduct experiments to evaluate the effectiveness of each mod-

ule in CTAug, and the results are presented in Table 3. Since high-

degree graphs are appropriate for CTAug, the ablation study is

conducted on such graph datasets. As expected, using only one

module of CTAug leads to a decrease in accuracy, which confirms

the effectiveness of each module. While using only Module 2 has

more improvements than using only Module 1, combining the two

can enhance each other and achieve significantly higher accuracy.

Previous studies have indicated that plain GNN cannot effectively

learn subgraph properties [9], which may explain why using only

Module 1 is not effective. Module 2 (O-GSN) assists GNN in pre-

serving subgraph properties, thus enhancing Module 1.

We also examine the usefulness of combining multiple cohesion

properties in our approach. However, we observe that fusion does

not always improve accuracy. To gain more insight, we conducted

an empirical analysis on the difference between 𝑘-core and 𝑘-truss

subgraphs in IMDB-B and IMDB-M. Our findings show that the over-

lap between the 𝑘-core and 𝑘-truss subgraphs is larger than 95%,

indicating that over 95% of nodes and edges are shared between

the obtained subgraphs. This may explain why the performances of

CTAug (𝑘-core) and CTAug (𝑘-truss) are close without much differ-

ence, and why fusion may sometimes even degrade performance.

Future work may explore a more efficient fusion component to

address this issue.

5.5 Parameter Analysis
Table 4 shows the performance of CTAug-GraphCL/JOAO when 𝜖 is

varying. We observe that most settings of 𝜖 can increase accuracy

compared to the original GraphCL/JOAO. The optimal choice for 𝜖

usually falls at 0.2, allowing for an appropriate trade-off between

the diversity of augmented graphs (highest diversity at 𝜖 = 0) and

the preservation of cohesion properties (maximum preservation at

𝜖 = 1).

Table 4: Parameter analysis of 𝜖.

Method 𝜖 IMDB-B IMDB-M RDT-B

GraphCL / 71.48±0.44 48.11±0.60 91.69±0.70

CTAug-GraphCL

0.2 75.98±0.78 50.84±0.83 91.60±0.27

0.4 76.60±1.02 51.12±0.57 91.88±0.32

0.6 75.84±1.24 50.83±0.60 91.85±0.26

0.8 75.68±0.70 50.16±0.24 91.94±0.41

1.0 74.90±0.51 49.67±0.62 92.28±0.33

JOAO / 71.40±0.38 48.68±0.36 91.66±0.59

CTAug-JOAO

0.2 76.80±0.71 51.19±0.88 92.19±0.24
0.4 76.36±1.42 50.48±0.83 92.17±0.30

0.6 76.56±0.49 50.40±0.88 91.52±0.54

0.8 75.10±1.43 50.53±0.89 91.92±0.39

1.0 75.18±1.29 50.17±0.75 92.01±0.42

5.6 Node Classification Results
We evaluate CTAug on two representative GCL methods for node

embedding, namelyGRACE [59] andGCA [60], referred to asCTAug-
GRACE and CTAug-GCA, respectively. The node classification re-

sults of these methods on the Coauthor-CS, Coauthor-Physics, and

Table 5: Results on node classification. The baseline results
(exceptGRACE andGCA) are copied from [60] because we fol-
low the same experimental setup. Meanwhile, we runGRACE
and GCA by ourselves as we need to ensure that the exactly
same configurations (neural network hidden units, training
algorithm parameters, etc.) are used forGRACE/GCA and our
enhanced CTAug-GRACE/CTAug-GCA for a fair comparison
(OOM: out-of-memory).

Method Coauthor
CS

Coauthor
Physics

Amazon
Computers AVG.

DeepWalk+features 87.70±0.04 94.90±0.09 86.28±0.07 89.63

GAE 90.01±0.71 94.92±0.07 85.27±0.19 90.07

VGAE 92.11±0.09 94.52±0.00 86.37±0.21 91.00

DGI 92.15±0.63 94.51±0.52 83.95±0.47 90.20

GMI OOM OOM 82.21±0.31 /

MVGRL 92.11±0.12 95.33±0.03 87.52±0.11 91.65

GRACE 92.83±0.10 95.56±0.05 86.96±0.14 91.78

GCA 92.89±0.02 95.55±0.03 87.48±0.11 91.97

CTAug-GRACE 92.96±0.05 95.68±0.01 87.59±0.12 92.08

CTAug-GCA 92.98±0.04 95.61±0.01 88.30±0.13 92.30

Amazon-Computers datasets [37] are reported in Table 5. The dataset
and baseline details are presented in Appendix H.

Our observations indicate that CTAug-GRACE/GCA yield some

improvement over the original GRACE/GCA. However, the magni-

tude of this improvement is not as significant as the improvement

of CTAug on graph classification tasks. This discrepancy may be

attributed to the fact that cohesion is a subgraph property and

therefore, more relevant to the entire graph than a single node.

Furthermore, as observed in graph classification, the improve-

ment of CTAug is the most pronounced on Amazon-Computers,
which has the highest degree (average degree is ∼ 35 for Amazon-
Computers and ∼ 10 for the other two datasets). This reaffirms that

CTAug is more effective for high-degree graphs, as these graphs

generally contain more highly-cohesive substructures.

6 CONCLUSION AND LIMITATIONS
To introduce the awareness of cohesion properties (e.g., 𝑘-core and

𝑘-truss) into GCL, this work proposes a unified framework, called

CTAug, that can be integrated with various existing GCL mecha-

nisms. Two modules, including topology augmentation enhancement
and graph learning enhancement, are designed to incorporate cohe-

sion properties into the topology augmentation and graph learning

processes of GCL, respectively. Extensive experiments have verified

the effectiveness and flexibility of the CTAug framework.

Our current implementations are limited to𝑘-core/truss cohesion

properties, while many other types of properties are also crucial in

practice. For instance, the average shortest path length is usually

small for real-world social graphs such as Facebook [42]; then, it

is reasonable to keep a small average shortest path length when

augmenting social graphs. In the future, we will explore how to

incorporate more graph properties into GCL procedures in a unified,

flexible, and extensible manner.
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A PROOFS FOR THEORETICAL ANALYSIS
(SEC. 4)

Theorem4.3. Suppose 𝑓 is aminimal sufficient encoder. If 𝐼 (G′
; G;𝑦)

increases, then 𝐼 (𝑓 (G);𝑦) will also increase.

Proof. We denote 𝑧 = 𝑓 (G), 𝑧′ = 𝑓 (G′). 𝑓 is sufficient, so

𝐼 (G; G′) = 𝐼 (G; 𝑧′) = 𝐼 (𝑧; G′).
𝐼 (𝑧; G) = 𝐻 (𝑧) (𝑧 is a function of G)

= 𝐼 (𝑧; G′) + 𝐻 (𝑧 |G′)
≥ 𝐼 (𝑧; G′) (𝐻 (𝑧 |G′) ≥ 0)

(16)

Because 𝑓 is a minimal sufficient encoder, 𝐼 (𝑧; G) will be mini-

mized to 𝐼 (𝑧; G′) and 𝐻 (𝑧 |G′) = 0 holds.

𝐼 (𝑧;𝑦) = 𝐼 (𝑧; 𝑧′;𝑦) + 𝐼 (𝑧;𝑦 |𝑧′) (17)

𝐼 (𝑧; 𝑧′;𝑦) = 𝐼 (𝑧; 𝑧′;𝑦; G) + 𝐼 (𝑧; 𝑧′;𝑦 |G)
= 𝐼 (𝑧;𝑦; (𝑧′; G)) + 0 (𝑧 is a function of G)
= 𝐼 (𝑧;𝑦; (G; G′)) (𝐼 (G; 𝑧′) = 𝐼 (G; G′))
= 𝐼 (𝑦; G; (𝑧; G′))
= 𝐼 (𝑦; G; (G; G′)) (𝐼 (G′

; 𝑧) = 𝐼 (G; G′))
= 𝐼 (𝑦; G; G′)

(18)

𝐼 (𝑧;𝑦 |𝑧′) = 𝐼 (𝑧;𝑦; G′ |𝑧′) + 𝐼 (𝑧;𝑦 |G′, 𝑧′)
= 𝐼 (𝑦; (𝑧; G′) |𝑧′) + 𝐼 (𝑧;𝑦 |G′) (𝑧′ is a function of G′)
= 𝐼 (𝑦; G; 𝑧′ |𝑧′) + 𝐼 (𝑧;𝑦 |G′) (𝐼 (𝑧; G′) = 𝐼 (G; 𝑧′))
= 0 + 𝐼 (𝑧;𝑦 |G′)
= 0 (𝐻 (𝑧 |G′) = 0)

(19)

Based on Eq. 17, 18 and 19, 𝐼 (𝑧;𝑦) = 𝐼 (𝑦; G; G′). As a result, the
increase of 𝐼 (G′

; G;𝑦) leads to the growth of 𝐼 (𝑓 (G);𝑦).
From another perspective, we can extend InfoMin principle [40]

to the graph field: the best-performing augmented graph should

contain as much task-relevant information while discarding as

much irrelevant information as possible. Formally, given the origi-

nal graphG and its downstream task label𝑦, the optimal augmented

graph G′
satisfies 𝐼 (G; G′) = 𝐼 (G;𝑦), which is called sweet spot.

If 𝐼 (𝑦; G; G′) increases, 𝐼 (G; G′) will be close to 𝐼 (G;𝑦) (because
their intersection is increasing), approaching sweet spot. So higher

𝐼 (𝑦; G; G′) indicates better-augmented graph G′
, i.e., 𝐼 (𝑓 (G);𝑦)

will increase. We come to the same conclusion.

□

Lemma A.1. Given that 𝑓 is a GNN encoder with learnable parame-
ters. Optimizing the loss function in Eq. 1 is equivalent to maximizing
𝐼 (𝑓 (G); 𝑓 (G′)), leading to the maximization of 𝐼 (𝑓 (G); G′).

Proof. Appendix F in [54] provides theoretical justification that

minimizing loss function Eq. 1 is equivalent to maximizing a lower

bound of the mutual information between the latent representa-

tions of two augmented graphs, and can be viewed as one way of

mutual information maximization between the latent representa-

tions. Consequently, the optimization of the loss function in Eq. 1

is equivalent to maximizing 𝐼 (𝑓 (G); 𝑓 (G′)).
Because 𝑓 (G) is a function of G,

𝐼 (𝑓 (G); G′) = 𝐼 (𝑓 (G); 𝑓 (G′); G′) + 𝐼 (𝑓 (G); G′ |𝑓 (G′))
= 𝐼 (𝑓 (G); 𝑓 (G′)) + 𝐼 (𝑓 (G); G′ |𝑓 (G′))

(20)

Thus,

𝐼 (𝑓 (G); 𝑓 (G′)) = 𝐼 (𝑓 (G); G′) − 𝐼 (𝑓 (G); G′ |𝑓 (G′)) (21)

While maximizing 𝐼 (𝑓 (G); 𝑓 (G′)), either 𝐼 (𝑓 (G); G′) increases
or 𝐼 (𝑓 (G); G′ |𝑓 (G′)) decreases. When 𝐼 (𝑓 (G); G′ |𝑓 (G′)) reaches
it minimum value of 0, 𝐼 (𝑓 (G); G′) will definitely increase. Hence,

the process of maximizing 𝐼 (𝑓 (G); 𝑓 (G′)) can lead to the maxi-

mization of 𝐼 (𝑓 (G); G′) as well.
□

Theorem 4.4. 𝑓1 is our proposed O-GSN encoder with 𝑘-core (𝑘 ≥ 2)
or 𝑘-truss (𝑘 ≥ 3) subgraphs considered in subgraph structures H , 𝑓2
is GIN (the default encoder). Then 𝐼 (𝑓1 (G);𝑦) > 𝐼 (𝑓2 (G);𝑦).

Proof. Our proposed O-GSN is extended from GSN.

Theorem 3.1 in [7] proves that if 𝐻 (∈ H) is any graph except for

star graphs, GSN is strictly more powerful
8
thanMPNN. Apparently,

𝑘-core (𝑘 ≥ 2) or 𝑘-truss (𝑘 ≥ 3) graphs satisfy this condition. Thus,

GSN is strictly more powerful than MPNN when 𝑘-core (𝑘 ≥ 2) or

𝑘-truss (𝑘 ≥ 3) subgraphs are considered inH .

Despite different training processes, the graph embedding infer-

ence processes are the same for O-GSN and GSN, i.e., taking graph

substructure features into consideration. Hence, O-GSN has the

same ability as GSN to differentiate certain graphs that GIN (as an

instance of MPNN) cannot differentiate [7]. That is, 𝑓1 can capture

more information of G than 𝑓2,

𝐻 (G) ≥ 𝐻 (𝑓1 (G)) > 𝐻 (𝑓2 (G)) (22)

𝑓1 (G) and 𝑓2 (G) are functions of G, so

𝐼 (𝑓1 (G); G) > 𝐼 (𝑓2 (G); G) (23)

𝐼 (𝑓1 (G); G) = 𝐼 (𝑓1 (G); G; G′) + 𝐼 (𝑓1 (G); G|G′)
= 𝐼 (𝑓1 (G); G′) − 𝐼 (𝑓1 (G); G′ |G) + 𝐼 (𝑓1 (G); G|G′)
= 𝐼 (𝑓1 (G); G′) + 𝐼 (𝑓1 (G); G|G′)

(24)

𝐼 (𝑓1 (G); G′) = 𝐼 (𝑓1 (G); G) − 𝐼 (𝑓1 (G); G|G′) (25)

In Eq. 24, because 𝑓1 (G) is a function of G, 𝐼 (𝑓1 (G); G′ |G) =

0. According to Lemma A.1, during the contrastive learning pro-

cess, our optimization objective is to maximize 𝐼 (𝑓1 (G); G′), so
𝐼 (𝑓1 (G); G|G′) is approaching its minimum value of 0. Hence,

𝐼 (𝑓1 (G); G) ≈ 𝐼 (𝑓1 (G); G′) (26)

Similarly,

𝐼 (𝑓2 (G); G) ≈ 𝐼 (𝑓2 (G); G′) (27)

Combining Eq. 23, 26 and 27, we get

𝐼 (𝑓1 (G); G′) > 𝐼 (𝑓2 (G); G′) (28)

8expressive power means the ability of the GNNmodel to capture and represent complex

patterns and information within a graph structure [50].
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𝐼 (𝑓1 (G); G′) = 𝐼 (𝑓1 (G); G′
;𝑦) + 𝐼 (𝑓1 (G); G′ |𝑦)

= 𝐼 (𝑓1 (G);𝑦) − 𝐼 (𝑓1 (G);𝑦 |G′) + 𝐼 (𝑓1 (G); G′ |𝑦)
(29)

𝐼 (G′
; G|𝑦) = 𝐼 (𝑓1 (G); G′

; G|𝑦) + 𝐼 (G′
; G|𝑦, 𝑓1 (G))

≥ 𝐼 (𝑓1 (G); G′
; G|𝑦) (the non-negativity of 𝐼 )

= 𝐼 (𝑓1 (G); G′ |𝑦) (𝑓1 (G) is a function of G)
(30)

According to Lemma A.1, our optimization objective is to max-

imize 𝐼 (𝑓1 (G); G′) in the contrastive learning process. Therefore,

𝐼 (𝑓1 (G);𝑦 |G′) approaches itsminimumvalue of 0 and 𝐼 (𝑓1 (G); G′ |𝑦)
is nearing its maximum value of 𝐼 (G′

; G|𝑦).

𝐼 (𝑓1 (G); G′) ≈ 𝐼 (𝑓1 (G);𝑦) + 𝐼 (G′
; G|𝑦) (31)

Similarly,

𝐼 (𝑓2 (G); G′) ≈ 𝐼 (𝑓2 (G);𝑦) + 𝐼 (G′
; G|𝑦) (32)

Combining Eq. 28, 31 and 32, we get

𝐼 (𝑓1 (G);𝑦) > 𝐼 (𝑓2 (G);𝑦) (33)

□

B EMPIRICAL ANALYSIS DETAILS (SEC. 4)
To validate the efficacy mechanism of CTAug empirically, we ini-

tially confirm the crucial significance of graph cohesion properties

for downstream tasks (e.g., graph classification). Subsequently, we

verify that CTAug’s topology augmentation enhancement module

can preserve the cohesion properties of the original graph to a

greater extent during graph augmentation. Finally, we validate that

the graph learning enhancement module ensures that the GNN

encoder also acquires the cohesion property information and incor-

porates it into graph embedding.

Effectiveness of Cohesion Properties. To verify the connec-

tion between cohesion properties and graph labels, we convert

cohesive subgraphs into graph features and train the same SVM

classifier as our graph classification evaluation experiments. To be

specific, the 𝑖-th 𝑘-core feature of a graph G is the number of nodes

in its 𝑖-core subgraph, and the 𝑖-th 𝑘-truss feature is the number of

nodes in its 𝑖-truss subgraph.

Table 6 presents the classification results of the above feature

construction method, considering cohesive subgraphs. It is evi-

dent that the inclusion of cohesive features leads to a substantial

enhancement in classification accuracy compared to random se-

lection, particularly in high-degree graphs like COLLAB, where
accuracy more than doubles. Consequently, we can deduce that co-

hesive properties exhibit a strong correlation with graph labels, so

incorporating these properties into our graph contrastive learning

process provides valuable priors.

Effectiveness of Module 1 (Topology Augmentation En-
hancement). Table 7 demonstrates that the node drop augmen-

tation of our CTAug method effectively preserves more nodes in

cohesive subgraphs and retains cohesion property in the augmented

graphs, compared with random node drop augmentation (used in

GraphCL). This aligns with the design goals of CTAug’s Module 1.

Effectiveness of Module 2 (Graph Learning Enhancement).
The ablation study in Table 3 (Sec. 5.4) shows that the removal of

Module 2 leads to a significant decrease in classification accuracy.

This observation validates that Module 2 effectively empowers the

GNN encoder to incorporate more cohesion information into the

graph embedding.

Conclusion. Our experimental findings confirm: (1) there is a

strong correlation between cohesion properties and downstream

tasks; (2) Module 1 of CTAug succeeds in producing cohesion-

preserving augmented graphs; (3) Module 2 enhances the capture

of cohesion properties during representation learning. Therefore,

CTAug effectively captures cohesion information of the original

graph and is poised to improve performance in downstream tasks.

C SUBSTRUCTURE SELECTION DETAILS FOR
O-GSN (SEC. 3.2.1)

We use the classic graphs generators of NetworkX to get a set of

substructures, such as cycle, clique, and path graphs, which are also

considered in the original GSN implementation [7]. Specifically, we

select cliques for our implementation in O-GSN, as they constitute

the majority of the 𝑘max-core/truss subgraphs in the datasets we

examined. For instance, in IMDB-B and IMDB-M, we observed that

over 80% of 𝑘max-core/truss subgraphs are cliques (where 𝑘max

represents the maximum 𝑘-core/truss subgraph). Similarly, in RDT-

B, the percentage of 𝑘max-core/truss subgraphs containing a clique

is larger than 75%. Our empirical analysis further confirms that

cliques outperform other substructures, and selecting 3/4/5 together

generally leads to better results compared to selecting only one of

them (Table 9).

D 𝑘max DISTRIBUTION FOR DATASETS
(SEC. 5.1)

Fig. 4 depicts the distribution of 𝑘max, the maximum 𝑘-core index,

for different datasets. We can observe that the IMDB-B/M and COL-
LAB datasets have higher degrees and 𝑘max values, indicating the

presence of more highly cohesive subgraphs. Therefore, we antici-

pate that CTAug may achieve better performance on these three

datasets.

E BASELINE METHODS DETAILS (SEC. 5.2)
• InfoGraph [38] maximizes the mutual information between

graph-level representations and different scales’ sub-structure-

level representations to learn graph embedding without graph

augmentations. We run InfoGraph with the PyGCL library.
9

• MVGRL [15] uses personalized PageRank on the original graph

to generate a diffusionmatrix as the augmented view for GCL.
10

• GraphCL [54] designs four types of graph augmentations (ran-

dom node dropping/edge perturbation/attribute masking/ran-

dom walk-based subgraph sampling) used for GCL. We run

GraphCL with the PyGCL library.

9
https://github.com/PyGCL/PyGCL

10
https://github.com/kavehhassani/mvgrl
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Table 6: Accuracy (%) on graph classification with linear SVM classifier.

Input Feature Considering
Cohesion

Social Graphs (High Degree) Social Graphs (Low Degree) Biomedical Graphs

IMDB-B IMDB-M COLLAB AVG. RDT-B RDT-T AVG. ENZYMES PROTEINS AVG.

None (random selection) ✘ 50.60±5.62 33.27±2.79 32.48±3.06 38.78 50.20±3.08 50.03±0.39 50.12 14.17±2.81 48.43±5.08 31.30

𝑘-core node count ✔ 69.90±3.53 49.73±3.44 76.28±2.11 65.30 79.90±2.75 63.50±0.30 71.70 25.67±6.06 74.38±3.80 50.03

𝑘-truss node count ✔ 69.80±3.82 49.47±3.66 76.04±2.13 65.10 78.25±3.34 63.06±0.32 70.66 28.83±6.58 74.83±2.99 51.83

𝑘-core & 𝑘-truss node count ✔ 69.60±3.69 49.53±3.58 76.92±1.86 65.35 80.80±2.83 64.15±0.32 72.48 30.33±5.26 74.38±4.12 52.36

GraphCL embedding ✘ 71.48±0.44 48.11±0.60 72.36±1.76 63.98 91.69±0.70 77.44±0.03 84.57 32.83±2.05 74.32±0.76 53.58

CTAug-GraphCL embedding ✔ 76.60±1.02 51.12±0.57 81.72±0.26 69.81 92.28±0.33 77.48±0.01 84.88 39.17±1.00 74.10±0.33 56.64

Table 7: Proportion of cohesive subgraph nodes preserved in the augmented graph on average. We set node dropping probability
𝑝𝑑𝑟 = 0.2 and decay factor 𝜖 = 0.2.

Augmentation Property IMDB-B IMDB-M COLLAB RDT-B RDT-T ENZYMES PROTEINS AVG.

Random node drop
𝑘-core 0.801 0.799 0.802 0.800 0.800 0.800 0.799 0.800

𝑘-truss 0.803 0.801 0.800 0.800 0.800 0.801 0.798 0.800

CTAug node drop
𝑘-core 0.837 0.838 0.840 0.825 0.833 0.837 0.835 0.835

𝑘-truss 0.836 0.838 0.839 0.825 0.833 0.832 0.827 0.833

(a) IMDB-B (b) IMDB-M (c) COLLAB

(d) RDT-B (e) RDT-T (f) ENZYMES (g) PROTEINS

Figure 4: Histogram of 𝑘max (𝑘-core).

• JOAO [53] extends GraphCL by adaptively choosing the aug-

mentation operation. We re-implement JOAO based on PyGCL
for experimentation.

11

• AD-GCL [39] optimizes graph augmentations in an adversarial

way to give encoder the minimal sufficient information.
12

11
We also tried the code released by [53] in https://github.com/Shen-

Lab/GraphCL_Automated, but the results are worse than our re-implementation. So

we report the results with our re-implementation.

12
https://github.com/susheels/adgcl

• AutoGCL [52] builds learnable generative node-wise augmen-

tation policies for graph contrastive learning in an end-to-end

manner.
13

• RGCL [24] automatically discovers rationales as graph aug-

mentations.
14

13
https://github.com/Somedaywilldo/AutoGCL

14
https://github.com/lsh0520/RGCL
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Table 8: Relationship between classic substructures and 𝑘-
core/𝑘-truss.

Substructure 𝑘-core 𝑘-truss

𝑘-cycle 2-core /

𝑘-clique (𝑘 − 1)-core 𝑘-truss

𝑘-path 1-core /

𝑘-star 1-core /

𝑘-binomial-tree 1-core /

𝑘-nonisomorphic-trees 1-core /

Table 9: Substructure and 𝑘 selection (CTAug-GraphCL).

Substructure k IMDB-B IMDB-M AVG.

clique 3 75.82±0.43 50.65±0.52 63.24

clique 4 75.65±0.34 51.22±0.41 63.44

clique 5 75.10±0.37 50.53±0.22 62.82

clique 3,4,5 76.60±1.02 51.12±0.57 63.86

clique 4 75.65±0.34 51.22±0.41 63.44
cycle 4 74.18±0.47 49.17±0.45 61.68

star 3 70.45±1.13 48.98±0.68 59.72

path 4 67.25±0.43 47.80±0.64 57.53

binomial-tree 2 67.25±0.43 47.80±0.64 57.53

Table 10: Probabilistic topology augmentation behaviors of
existing GCL methods.

Method Aug. Operation Aug. Probability

GraphCL [54] randomly selected uniform

JOAO [53] min-max optimized uniform

AD-GCL [39] edge dropping adversarial learning

AutoGCL [52] node dropping generative learning

RGCL [24] node dropping rationale-based learning

Table 10 shows the comparison of augmentation operations and

probabilities of existing probabilistic GCL topology augmentation

methods.

F IMPLEMENTATION DETAILS FOR CTAUG
VARIANTS (SEC. 5.2)

Here, we clarify the implementation details of our methods in ex-

periments. We implement our method with Python 3.8 and PyTorch

1.12.0.

(1) CTAug-GraphCL. GraphCL [54] randomly selects an opera-

tion from T={node dropping, edge dropping, edge adding, random
walk-based sampling} and then performs the probabilistic augmenta-

tion in a uniform manner (e.g., every node has the same probability

of being removed). We fix the augmentation operation to node

dropping (with the default probability of 0.2), as node dropping

proves to be generally well across different datasets [24, 54]. The

default GNN encoder ofGraphCL, i.e., GIN [50], is then enhanced by

O-GSN to consider cohesive-substructure features. We implement

this method mainly based on PyGCL. The hidden dim is 128, and

the batch size is chosen from {16, 64} according to the size of the

graphs.

Table 11 presents the graph classification performance for differ-

ent 𝑓 functions in Eq. 7. Overall, there are no substantial differences

between different functions. We select 𝑓 (𝑥) = 𝑥2
in our implemen-

tation. We set the dropping probability decay factor 𝜖 through grid

search for each dataset. Table 12 shows the grid search results.

Table 11: Accuracy(%) on graph classification for different 𝑓
functions.

IMDB-B IMDB-M AVG.

GraphCL 71.48±0.44 48.11±0.60 59.80

+ CTAug (𝑓 (𝑥 ) = 𝑥 ) 76.85±1.60 50.98±0.62 63.92
+ CTAug

(
𝑓 (𝑥 ) =

√
𝑥
)

76.12±1.10 51.42±0.75 63.77

+ CTAug
(
𝑓 (𝑥 ) = 𝑥2

)
76.60±1.02 51.12±0.57 63.86

(2)CTAug-JOAO. InCTAug-JOAO, both node and edge-dropping
operations are kept. The usage of the node or edge-dropping is

determined by the optimization algorithm in JOAO [53]. Other

parameter settings are the same as CTAug-GraphCL.
(3) CTAug-MVGRL. We implement this framework mainly

based on MVGRL. We use GCN as the encoder, and the number of

hidden units is 128. The batch size is 64. The factor 𝜂 controlling

the degree to consider cohesive subgraphs in Eq. 11 is also set with

grid search on the specific dataset, and the grid search results are

shown on Table 12.

(4) CTAug-GRACE & GTAug-GCA. We implement this frame-

work based on GRACE and GCA. We select degree centrality as

the centrality measure, and the parameter settings are the same as

in the original GRACE [59] and GCA [60] papers. The dropping

probability decay factor 𝜖 is fixed at 1. The function 𝑓 in Eq. 7 is

instantiated as 𝑓 (𝑥) = 𝑥 .

It should be noted that for computational resource and perfor-

mance reasons, we only employ Module 1 for the CTAug-GraphCL
and CTAug-JOAO methods on the RDT-B dataset, as well as for the

CTAug-MVGRL method on the COLLAB, ENZYMES, and PROTEINS
datasets.

G PRE-COMPUTATION TIME (SEC. 5.3)
Table 13 presents the average pre-computation time for one graph.

For the computation of O-GSN features for high-degree graphs, it

takes up to a few seconds, while low-degree graphs only require

0.00𝑋 seconds. Calculating 𝑘-core and 𝑘-truss subgraphs typically

only takes 0.00𝑋 ∼ 0.0𝑋 seconds. We take 3-clique as substructure

to calculate O-GSN features for COLLAB, and we choose 3,4,5-clique
for other datasets.

H DATASETS AND BASELINES FOR NODE
CLASSIFICATION (SEC. 5.6)

For node classification, we conduct experiments on Coauthor-CS,
Coauthor-Physics and Amazon-Computers (Table 14).
• Coauthor-CS&Coauthor-Physics [37] are two co-authorship

graphs based on the Microsoft Academic Graph from the KDD

Cup 2016 challenge. In these graphs, nodes are authors; node

features represent paper keywords for each author’s papers;

edges reveal co-authorship relationships; class labels indicate

their most active research field.

14
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Table 12: Specific factor values obtained by grid search.

Parameter IMDB-B IMDB-M COLLAB RDT-B RDT-T ENZYMES PROTEINS

𝜖 (CTAug-GraphCL) 0.2 0.4 0.2 0.4 0.2 0.4 0.8

𝜖 (CTAug-JOAO) 0.2 0.2 0.2 0.2 0.2 0.2 1.0

𝜂 (CTAug-MVGRL) 0.4 0.4 0.2 / / 0.6 0.8

Table 13: Average pre-computation time (seconds per graph).

Precomputation IMDB-B IMDB-M COLLAB RDT-B RDT-T ENZYMES PROTEINS

O-GSN features 5.357 3.868 4.355 0.005 0.001 0.002 0.003

𝑘-core subgraphs 0.001 0.001 0.015 0.007 0.000 0.001 0.001

𝑘-truss subgraphs 0.001 0.001 0.081 0.009 0.000 0.001 0.001

Table 14: Dataset statistics for node classification task.

Dataset #Nodes #Edges #Features #Classes Avg. Degree 𝑘max (𝑘-core) 𝑘max (𝑘-truss)

Coauthor-CS 18,333 81,894 6,805 15 8.93 19 20

Coauthor-Physics 34,493 247,962 8,415 5 14.38 18 12

Amazon-Computers 13,752 245,861 767 10 35.76 53 33

• Amazon-Computers [37] is a co-purchase relationship net-

work built based on Amazon, where nodes represent goods, and

two goods are connected if customers frequently buy them to-

gether. Each node has a bag-of-words feature (encoding product

reviews), and class labels indicate the product category.

We use eight representative baseline methods that learn node em-

bedding in an unsupervised manner. Node features are considered

in all the baselines.

• DeepWalk [33] uses local information obtained from random

walks to learn latent representations without supervision. Note

that the original DeepWalk does not consider node features.

To make a fair comparison, we concatenate a node’s Deep-
Walk-learned embedding and raw features together as a node’s

representation.

• GAE, VGAE [19] uses latent variables to learn representations

for graphs based on variational auto-encoders.

• DGI [44] maximizes the mutual information between patch

representations and high-level summaries of graphs.

• GMI [32] maintains the consistency of information between

the input and output of a graph neural encoder.

• MVGRL [15] contrasts encodings from first-order neighbors

and a graph diffusion.

• GRACE [59] generates two graph views by corruption and

learn node representations by maximizing the similarity be-

tween these two views’ node representations.

• GCA [60] augments the original graph adaptively by incorpo-

rating centrality priors (e.g., degree centrality).
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