
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Graph Contrastive Learning with Cohesive Subgraph Awareness
Anonymous Author(s)

∗

ABSTRACT
Graph contrastive learning (GCL) has emerged as a state-of-the-art

strategy for learning representations of diverse graphs including

social and biomedical networks. GCL widely uses stochastic graph

topology augmentation, such as uniform node removal, to gener-

ate augmented graphs. However, such stochastic augmentations

may severely damage the intrinsic properties of a graph and dete-

riorate the following representation learning process. Specifically,

cohesive topological properties (e.g., 𝑘-core and 𝑘-truss) indicate

strong and critical connections among multiple nodes; randomly

removing nodes from a cohesive subgraph may remarkably alter

the graph properties. In contrast, we argue that incorporating an

awareness of cohesive subgraphs during the graph augmentation

and learning processes has the potential to enhance GCL perfor-

mance. To this end, we propose a novel unified framework called

CTAug, to seamlessly integrate cohesion awareness into various

existing GCL mechanisms. In particular, CTAug comprises two spe-

cialized modules: topology augmentation enhancement and graph
learning enhancement. The former module generates augmented

graphs that carefully preserve cohesion properties, while the latter

module bolsters the graph encoder’s ability to discern subgraph

patterns. Theoretical analysis shows that CTAug can strictly im-

prove existing GCL mechanisms. Empirical experiments verify that

CTAug can achieve state-of-the-art performance for both graph

and node representation learning, especially for graphs with high

degrees.
1

CCS CONCEPTS
• Information systems→ Social networks; •Computingmethod-
ologies → Unsupervised learning.

KEYWORDS
social networks, graph contrastive learning, self-supervised learn-

ing, cohesive subgraph

ACM Reference Format:
Anonymous Author(s). 2018. Graph Contrastive Learning with Cohesive

Subgraph Awareness. In Proceedings of Make sure to enter the correct con-
ference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1
Codes: https://anonymous.4open.science/r/CTAug-BFD6

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph contrastive learning (GCL) has become a promising self-

supervised learning paradigm to learn graph and node embeddings

for various applications, such as social network analysis and web

graph mining [27, 48, 58, 60]. The idea of GCL is maximizing the

representation consistency between different augmented views

from the same original graph [54], in order to learn an effective

graph neural network encoder. Hence, the augmentation strategies

for view generation play a vital role in GCL. In general, there are

two augmentation types, i.e., topology and feature [58]. In this paper,
we focus on topology augmentation, as it can be applied to either

attributed or unattributed graphs.

Common topology augmentation strategies include node drop-

ping, edge removal, subgraph sampling, etc. [58]. Existing methods

mainly follow a stochastic manner to conduct topology augmen-

tation [54, 59]. Some methods adopt total randomized augmenta-

tion operations, like removing nodes or edges with an equivalent

probability. Concerning that nodes and edges usually hold diverse

levels of importance in a graph, some other methods argue that a

better augmentation strategy should more likely retain the more

important components of the original graph. Otherwise, randomly

deleting important edges/nodes may cause the augmented views to

vary far away from the original graph, thus degrading the learned

graph/node embedding. Recently, some pioneering work starts

leveraging the intrinsic properties of a graph or domain knowl-

edge to guide the graph augmentation of GCL [41, 46, 56, 60]. For

example, GCA [60] introduces edge centrality into topology aug-

mentation, so that important edges are likely to be kept after aug-

mentation. Nevertheless, there remain some important research

questions.

1. Property Enrichment. Very limited types of properties about

graphs have been used to determine important components of a

graph and enhance graph augmentation for effective GCL. However,

a basket of individual-level (i.e., node/edge) and structure-level

intrinsic graph properties have been defined to distinguish the

importance of elements in real-life social graphs; such properties

have also been used to improve a variety of applications [16, 47].

Can we enrich the topology augmentation with more essential

graph properties to improve GCL?

2. Unified Framework. Most existing studies focus on design-

ing a concrete GCL mechanism for representation learning. How-

ever, as topology augmentation is a widely adopted step in various

mechanisms [58], can we develop a unified framework to incorpo-

rate graph properties into all of these GCL mechanisms and benefit

graph representation learning?

3. Expressive Network.Most existing GCL methods [15, 54]

use standard Graph Neural Networks (GNNs) such as GCN [20] and

GIN [50] as GNN encoder. However, prior research has indicated

that GNNs have limited expressive power and encounter difficulties

in capturing subgraph properties [9]. Can we engineer a more

expressive graph encoder that can effectively capture subgraph

information from the original graph?

1

https://doi.org/XXXXXXX.XXXXXXX
https://anonymous.4open.science/r/CTAug-BFD6
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

This research serves as a pioneering effort to address the above

research questions. Firstly, we propose to introduce cohesive sub-
graphs to guide topology augmentations, which provide a novel

structural-level view of a graph’s properties for graph augmenta-

tions. In general, cohesive subgraphs are densely connected subsets

of important nodes in a graph. A broad of cohesive subgraphs with

different specific semantic definitions, including 𝑘-clique [28], 𝑘-

core [4, 36], and 𝑘-truss [10], have been investigated in the graph

theory literature and regarded as critical structures of graphs in a

spectrum of domains such as social networks and World Wide Web

[12, 18, 23]. Therefore, the basic idea of cohesion-guided augmen-

tation is preserving cohesive subgraphs of a graph in its augmented

views.While the existing literature primarily depends on node-level

graph properties or domain knowledge, cohesive subgraphs could
provide an effective complement to the properties studied in the

literature (e.g., centrality [60]).

Moreover, we propose a unified topology augmentation frame-

work CTAug to ensure that the cohesion-guided augmentation

idea could be flexibly adapted into a variety of graph augmenta-

tion methods. While the predominant augmentation methods fall

into either the probabilistic or deterministic categories, CTAug cus-

tomizes two distinct strategies to cater to these methods. In the

realm of probabilistic augmentation-based GCL methods for graph-

level representation learning [53, 54], diverse augmented views are

generated in a stochastic manner. CTAug refines perturbation prob-

ability to create augmented views that specifically retain the most

cohesive subgraphs from the original graph. Besides, deterministic
methods typically follow a well-defined procedure to produce a

single fixed augmented view [15]. In this context, CTAug preserves

the established procedure of a particular deterministic method but

modifies the original graph by increasing the weights of nodes and

edges within cohesive subgraphs. With this design, the augmented

graphs are supposed to better preserve cohesive subgraphs of the

original graph.

However, existing research has pointed out that plain GNNs are

hard to capture subgraph properties [9], which results in the loss

of cohesive subgraph information during the graph representation

learning process. To address this, inspired by [7], we then propose

an original-graph-oriented graph substructure network (O-GSN) to

enhance GNNs’ power to aware graph cohesive substructures effi-

ciently when encoding graphs. Besides, We also extend CTAug for

GCL methods of node-level representation learning [60].

In summary, this paper makes the following contributions.

1. To the best of our knowledge, this is one of the first studies to

incorporate cohesion properties into GCL. Considering cohesion as

a type of graph intrinsic knowledge [60], this research sheds light

on incorporating knowledge into self-supervised graph learning

paradigms.

2. We propose CTAug, a unified framework that can consider

multiple types of cohesion properties in various GCL mechanisms

during topology augmentation and graph learning processes. Theo-

retical analysis on the superiority of CTAug over conventional GCL

methods is provided.

3. Extensive experiments on real-life datasets validate thatCTAug
can significantly improve existingGCLmechanisms, such as GraphCL

[54], JOAO [53], MVGRL [15], and GCA [60], especially for graphs

with high degrees.

2 BACKGROUND AND RELATEDWORK
2.1 Cohesive Subgraph
In literature, various cohesive subgraphs have been studied in

graphs [5, 28]. In this paper, we focus on two widely-studied ones,

𝑘-core [36] and 𝑘-truss [10], as they both have efficient computation

algorithms in polynomial time [4, 45].

𝑘-core is a maximal subgraph in which every node has at least

𝑘 links to the other nodes [36]. As an extension to 𝑘-core, 𝑘-shell

is a subgraph including the nodes that are in 𝑘-core but not in

(𝑘 + 1)-core. Finding 𝑘-core and 𝑘-shell is efficient as the time

complexity is linear to the edge number [4]. Analyzing such a

subgraph can provide rich information for applications in various

social network applications [23], such as user influence [2, 8, 21, 55]

and community detection [13, 31]. For instance, researchers find

that 𝑘-core plays an important role in analyzing coauthor social

networks [13]. Specifically, it is easy to know that a paper with

(𝑘 +1) authors can lead to a 𝑘-core subgraph in a coauthor network

(i.e., every author is linked to the other 𝑘 authors as they have

the paper collaboration) [13]; then, as different research topics

usually hold diverse collaboration styles (some topics need a large

research team, i.e., many coauthors, but some do not), 𝑘-core could

be an effective indicator to infer the research domain of a given

coauthor network. In addition to social networks, 𝑘-core is verified

as an important property for bioinformatics [3], digital library text

mining [34], airline networks [49], etc.

𝑘-truss is the largest subgraph in which every edge is in at least

(𝑘 − 2) triangles of the subgraph [10]. Triangle is the fundamental

building element for networks and can indicate the stability of the

social network topology, as quantified by the clustering coefficient
[47]. Triangle also reveals the transitivity in the link formation of

networks [16]. This provides an effective indicator for link predic-

tion in social networks [17]. Besides, researchers point out that

the triangles in the hyperlink-based web graph reveal the topic

distribution over the World Wide Web [12]. As a common way to

measure triangles in subgraphs, 𝑘-truss has thus attracted much

research interest in network analysis [1, 18].

2.2 Topology Augmentation in GCL
Topology augmentation is widely adopted in GCL [58]. There are

two main types of topology augmentation strategies, i.e., probabilis-
tic and deterministic.

Most topology augmentation strategies in GCL are probabilistic,

such as stochastic node dropping, edge perturbation, and subgraph

sampling [53, 54, 59, 60]. More specifically, most traditional proba-

bilistic strategies are purely randomized. For instance, the probabil-

ity of the topology augmentation operations is set to uniform over

all the nodes and edges in GraphCL [54, 59]. More recently, some

studies have tried to adaptively learn non-uniform probabilities. One

stream of work uses intrinsic knowledge to guide topology augmen-

tation, such as centrality [60] and motif [56]. Another stream of

work uses a data-driven way to automatically adjust the probabili-

ties [24, 39, 52]. Our work follows the first stream by introducing

the cohesion property into topology augmentation.

Some studies adopt a deterministic strategy in topology aug-

mentation — given an original graph, the augmented view is fixed.

The representative strategies are diffusion-based augmentations

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Graph Contrastive Learning with Cohesive Subgraph Awareness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

[15, 58]. Conceptually, the diffusion operation would add edges to

the original graph. Different from the probabilistic edge adding [54],

the diffusion process is computed in a deterministic and analytic

manner, e.g., following the Personalized PageRank [15] or Markov

Chain processes [57].

Recently, there has been emerging research in topology augmen-

tation from the spectral domain. [26] suggests that GCL primar-

ily encodes low-frequency information, whereas [25] focuses on

maximizing spectral changes during augmentation. However, it’s

notable that spectral features are computed based on the entire

graph Laplacian matrix, and using them to guide augmentation

typically requires intricate transformations of the corresponding

graph topology. This may lead to substantial computational costs

and a lack of intuitive interpretation.

Unlike most prior work, our study does not aim to provide a con-

crete GCL mechanism. Instead, our goal is to improve existing GCL

mechanisms by incorporating the concept of cohesion in topology

augmentation. Recently, a review of existing GCL methods [41]

highlighted that injecting domain knowledge of graphs in GCL may

lead to better performance. Our work aligns with this direction and

demonstrates the effectiveness of considering cohesion as a knowl-

edge factor in GCL. Besides, our method are primarily concerned

with graph augmentation within the spatial domain, leading to

more conciseness and explainability.

3 THE CTAUG FRAMEWORK
GCL aims to learn graph representations by maximizing agreement

between similar graphs and minimizing agreement between dis-

similar graphs. The basic loss function for a pair of graphs G1 and

G2 with representations 𝑧1 and 𝑧2 is [54]:

𝐿 = − log

exp(𝑠𝑖𝑚(𝑧1, 𝑧2)/𝜏)∑
𝑖, 𝑗 exp(𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗)/𝜏)

(1)

where 𝜏 is a temperature parameter, 𝑠𝑖𝑚 is cosine similarity with

𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗) = 𝑧𝑇
𝑖
𝑧 𝑗/∥𝑧𝑖 ∥∥𝑧 𝑗 ∥. For similar graph pairs (G1,G2) aug-

mented from the same graph (e.g., dropping nodes or edges with

a probability 𝑝𝑑𝑟), 𝑧1 and 𝑧2 should be close, so the numerator is

large and the loss is small. For dissimilar pairs augmented from

different original graphs, the denominator becomes large and the

loss increases.

As shown in Fig. 1, CTAug consists of two modules that re-

spectively enhance the topology augmentation and graph learning

steps in GCL methods. The first module modifies the augmentation

process to generate augmented graphs that preserve the cohesion

properties of the original graph. The second module improves the

GNN encoder to produce graph representations that better capture

the original graph’s cohesion properties. By jointly applying these

two modules, CTAug aims to highlight the cohesion properties of

graphs throughout the GCL pipeline.

3.1 Topology Augmentation Enhancement
3.1.1 Probabilistic Topology Augmentation. In general, the

probabilistic topology augmentation methods may generate a vari-

ety of augmented graphs with probabilistic network manipulation

operations [54]. CTAug intends to make probabilistic augmented

graphs retain more cohesive components of the original graph.

A straightforward method is firstly generating multiple candi-

date augmented graphs and selecting the one most similar to the

original graph regarding a particular cohesion property. However,

generating multiple augmented graphs and computing their co-

hesive subgraphs is time-consuming. To address this, we propose

to refine the probability of augmentation operations to make that

nodes and edges in cohesive subgraphs likely retain in augmented

graphs. Then, we need to generate only one augmented graph, while

it would tend to keep certain cohesion properties as the original

graph.

Specifically, we reduce the probability of node-dropping or edge-

dropping operations on the cohesive subgraphs of the original

graph. With this idea in mind, CTAug multiplies the original drop-

ping probability 𝑝𝑑𝑟 relevant to the nodes and edges in the cohesive

subgraphs by a decay factor 𝜖 ∈ (0, 1], leading to a newly-refined

dropping probability,

𝑝′
𝑑𝑟

= (1 − 𝜖) · 𝑝𝑑𝑟 (2)

For instance, suppose that the original node dropping probability

𝑝𝑑𝑟 is uniformly set as 0.2 [54]. Then, by setting 𝜖 = 0.5, the drop-

ping probabilities for the nodes in a cohesive subgraph will be re-

duced to 0.2×0.5 = 0.1. With the newly-refined node-dropping and

edge-dropping probability, we can continue running existing GCL

mechanisms without the need for making other modifications.
2

More specifically, for a certain cohesion property, e.g., 𝑘-core,

the parameter 𝑘 can be varied, and then various subgraphs are

extracted from an original graph. To consider cohesive subgraphs

of varying 𝑘 , first, given the original graph G, we range 𝑘 from

𝑘min to 𝑘max and thus extract a set of 𝑘-core subgraphs,

S = {S𝑘
𝑐𝑜𝑟𝑒 |𝑘 = 𝑘min, 𝑘min + 1, ..., 𝑘max} (3)

where 𝑘max is the order of the main core (the core with the largest

order) of the original graph, 𝑘min can be set to max{𝑘max − 2, 1} for
𝑘-core and max{𝑘max − 2, 2} for 𝑘-truss. For a vertex 𝑣𝑖 , we count
how many times it appears in the set of subgraphs S to calculate

its importance weight𝑤𝑣 .

𝑤𝑣 (𝑣𝑖) =
∑︁
S∈S

1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) (4)

where 1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) is an indicator function to output whether

𝑣𝑖 is in the vertex set of S (return 1) or not (return 0). Then, we

normalize𝑤𝑣 regarding the maximum vertex importance weight,

𝑤 ′
𝑣 (𝑣𝑖) =

𝑤𝑣 (𝑣𝑖)
max𝑤𝑣

∈ [0, 1] (5)

Finally, for a node 𝑣𝑖 , its dropping probability is refined as follows,

𝑝′
𝑑𝑟
(𝑣𝑖) = (1 −𝑤 ′

𝑣 (𝑣𝑖) · 𝜖) · 𝑝𝑑𝑟 (6)

where 𝜖 ∈ (0, 1] specifies the maximum decay in the dropping

probability for the node with the maximum importance weight.

While Eq. 6 makes the dropping probability change linear to the

node importance, we can set it to a general form,

𝑝′
𝑑𝑟
(𝑣𝑖) = (1 − 𝑓 (𝑤 ′

𝑣 (𝑣𝑖)) · 𝜖) · 𝑝𝑑𝑟 (7)

where 𝑓 can be any monotonic increasing function with the input

and output ranges defined on [0,1].

2
This enhancement can work only for the probabilistic topology augmentation of

node/edge-dropping. Many existing GCL methods have verified that node/edge drop-

ping alone is enough for generating effective graph augmentations [24, 39, 52, 59, 60].

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 1: Overview of the CTAug Framework. Module 1 enhances the probabilistic and deterministic augmentation process
separately with the consideration of the cohesive subgraphs; Module 2 boosts GNN encoder to better capture the original
graph’s cohesion properties.

For edge dropping augmentation, we calculate the dropping

probability of an edge 𝑒𝑖 𝑗 by taking the average of the dropping

probability of its two ends,

𝑝′
𝑑𝑟
(𝑒𝑖 𝑗) = (𝑝′

𝑑𝑟
(𝑣𝑖) + 𝑝′

𝑑𝑟
(𝑣 𝑗))/2 (8)

3.1.2 Deterministic Topology Augmentation. Different from
probabilistic augmentations, deterministic augmentation generates

a single new graph from the original graph. As a representative,

MVGRL [15] leverages a personalized PageRank [30] diffusion pro-

cess to generate a deterministic augmented view from the original

graph, which can be computed in a closed form [22]. In particular,

the personalized PageRank diffusion can be calculated as,

𝑺 = 𝛼 (𝑰 − (1 − 𝛼)𝑫1/2𝑨𝑫−1/2)−1
(9)

where 𝑫 is the diagonal degree matrix, 𝑨 is the adjacency matrix,

and 𝛼 denotes the teleport probability [22]. With CTAug, we can
obtain a re-weighted adjacency matrix 𝑨′

where 𝑨′
𝑖, 𝑗

= 𝑤 ′
𝑒 (𝑒𝑖 𝑗)

(see Eq. 12). Then, we can use 𝑨′
to replace 𝑨 in Eq. 9 and conduct

a cohesion-aware diffusion process.

As state-of-the-art deterministic topology augmentation strate-

gies aremostly based on graph diffusion, e.g., Personalized PageRank
and Markov Chain processes [15, 58], we then design an enhance-

ment strategy to make the graph diffusion process cohesion-aware.

The main idea is to assign larger weights to the graph edges in

cohesive subgraphs so that the graph diffusion process would favor

the large-weighted edges, as shown in Fig. 1.

We use 𝑘-core as an example to illustrate the process. First, given

the original graph G, we range 𝑘 from 1 to 𝑘max and thus extract

a set of 𝑘-core subgraphs S = {S𝑘
𝑐𝑜𝑟𝑒 |𝑘 = 1, 2, ..., 𝑘max}. Then, for

a vertex 𝑣𝑖 , we count how many times it appears in the set of

subgraphs S to calculate its importance weight𝑤𝑣 .

𝑤𝑣 (𝑣𝑖) =
∑︁
S∈S

1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) (10)

where 1𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (S) is an indicator function to output whether 𝑣𝑖
is in the vertex set of S (return 1) or not (return 0).

Then, we normalize𝑤𝑣 regarding the average vertex importance

weight,

𝑤 ′
𝑣 (𝑣𝑖) = 𝜂 · 𝑤𝑣 (𝑣𝑖)

𝑤̄𝑣
+ (1 − 𝜂) · 1

𝑤̄𝑣 =

∑
𝑣𝑖 ∈𝑣𝑒𝑟𝑡𝑒𝑥 (G) 𝑤𝑣 (𝑣𝑖)

|𝑣𝑒𝑟𝑡𝑒𝑥 (G)|

(11)

where 𝜂 ∈ [0, 1] is a factor controlling the degree to consider

cohesive subgraphs. If 𝜂 is set to a value closer to 1, the cohesion

property will be considered at a higher level.

Finally, suppose the original weight of edge 𝑒𝑖 𝑗 is 𝑤𝑒 (𝑒𝑖 𝑗), our
updated weight𝑤 ′

𝑒 (𝑒𝑖 𝑗) is,

𝑤 ′
𝑒 (𝑒𝑖 𝑗) =

1

2

(𝑤 ′
𝑣 (𝑣𝑖) +𝑤 ′

𝑣 (𝑣 𝑗))𝑤𝑒 (𝑒𝑖 𝑗) (12)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Graph Contrastive Learning with Cohesive Subgraph Awareness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Large vertex weights will increase the corresponding edge weights,

and vice versa. We use the re-weighted graph as the input for

deterministic augmentation (i.e., graph diffusion).

3.2 Graph Learning Enhancement
3.2.1 Subgraph-aware GNN Encoder. While the topology aug-

mentation enhancement part has ensured that the augmented view

would probably retain cohesive subgraphs, the graph neural net-

work (GNN) encoder may still lose this substructure information

during the graph learning process. In general, conventional GNNs

follow a message-passing neural network (MPNN) framework, as

local information is aggregated and passed to neighbors [14, 29, 50].

Nevertheless, MPNNs have been proven to be limited in capturing

subgraph properties, e.g., counting substructures [9]. Hence, we

need to improve the GNN encoder’s capacity to learn cohesive

subgraph properties.

In CTAug, we propose an original-graph-oriented graph substruc-
ture network (O-GSN) to enhance existing GNN encoders, which is

inspired by graph substructure network (GSN) [7]. GSN is a recently

proposed topology-aware graph learning scheme to encode sub-

structure information and is proven to be strictly more powerful

than conventional GNNs. Specifically, GSN modifies the neighbor-

hood aggregation process as,

GSN: 𝐴𝐺𝐺 ((h𝑣, h𝑢 , s𝑣, s𝑢)𝑢∈N(𝑣)) (13)

where 𝐴𝐺𝐺 is the neighborhood aggregation function such as∑
𝑢∈N(𝑣) 𝑀𝐿𝑃 (·), h𝑣 is the hidden state of node 𝑣 , and s𝑣 is the

substructure-encoded feature of node 𝑣 . In particular, s𝑣 counts

how many times node 𝑣 appears in a set of subgraph structures

H (e.g., varying-size cliques). In brief, GSN adds an extra set of

substructure-encoded node features to every GNN layer to enhance

GNN’s subgraph-aware ability. However, directly applying GSN

into CTAug still faces two issues:

(i) Low Efficiency. GSN needs to learn s𝑣 for every node in the

graph with subgraph counting algorithms [11]. As the augmented

view is randomly generated in GCL, directly applying GSN means

that subgraph counting needs to be re-computed for every aug-

mented view in an online manner, which is highly time-consuming.

(ii) Losing Track of the Original Graph. It is possible that two

different original graphs generate the same augmented view. Di-

rectly applying GSN still cannot differentiate which original graph

generates the augmented view.

To overcome the two issues, we propose the original-graph-

oriented GSN, denoted as O-GSN. Specifically, O-GSN uses the

substructure-encoded features from the original graph,

O-GSN: 𝐴𝐺𝐺 ((h𝑣, h𝑢 , s𝑜𝑣 , s𝑜𝑢)𝑢∈N(𝑣)) (14)

where s𝑜𝑣 is the substructure-encoded feature of node 𝑣 in the origi-

nal graph.

With O-GSN, we only need to compute the substructure-encoded

features for the original set of graphs in the data pre-processing

stage, thus improving the training efficiency. Moreover, by con-

sidering features from the original graph, O-GSN enhances the

encoder’s power to differentiate the same augmented view from

different original graphs, which may further enhance the GNN

encoder’s expressive power.

Selection of Substructures in O-GSN. In order to enhance the per-

formance of GCL by considering cohesive subgraphs, the substruc-

tures selected in O-GSN should also be representative 𝑘-core/truss

cohesive subgraphs. To achieve this, we analyze the cohesive prop-

erties of the candidate substructures used in the original GSN imple-

mentation and select those that are representative. In our current

implementation, we focus on clique substructures. A detailed anal-

ysis of why we select cliques can be found in Appendix C.

3.2.2 Multi-Cohesion Embedding Fusion. Since different co-
hesion properties can identify different important parts of graphs,

one may want to take heterogeneous cohesion properties into ac-

count, e.g., both 𝑘-core and 𝑘-truss. To this end, we also design a

multi-cohesion embedding fusion component to fuse embeddings

obtained considering a set of various cohesion properties C.
Specifically, we choose different cohesion properties and follow

the augmentation enhancement process to train GNN encoders.

Then, we concatenate embeddings learned from the augmentation

strategy based on different cohesion properties as,

𝑧𝑖 = | |𝑐∈C𝑧𝑐𝑖 (15)

where 𝑧𝑖 ∈ R𝑛×(𝑑 · |C |)
is the final graph embedding of G𝑖 , 𝑧

𝑐
𝑖
∈

R𝑛×𝑑 is the graph embedding generated based on a certain cohesion

property 𝑐 ∈ C, such as 𝑘-core/truss.

3.3 Extension for Node Embedding Learning
In general, the GCL methods for node embedding are often local-
local GCL (comparison on node pairs) [58]. Representative local-

local GCL methods include GRACE [59] and its follow-up GCA
[60]. Their basic idea of augmentation is similar to GraphCL. First,
two augmented views are generated with augmentation operations

regarding certain probabilities. Afterward, the same nodes in two

views are considered as a positive pair for node embedding learning.

As local-local GCL aims to learn node embedding, topology

augmentation usually uses edge dropping in order to ensure that all

the nodes still remain in the augmented view. Specifically, GRACE
uses a randomized edge-dropping operation to generate augmented

views; GCA improves GRACE by introducing a centrality-based

adaptive edge dropping operation. Since this augmentation step is

conceptually consistent with the edge dropping in GraphCL, we can
use a similar procedure to enhance GRACE and GCA. It is worth
noting that, since cohesion is a graph’s substructure-level property,

its importance to node embedding may not be as significant as to

graph embedding.

4 HOW CTAUG POWERS GCL?
In this section, we provide a theoretical analysis of the performance

of CTAug from the perspective of mutual information.
3
In particular,

we analyze the topology augmentation enhancement module and

the graph learning enhancement module separately. Detailed proofs

for our analysis can be found in Appendix A.

We also conduct experiments to substantiate the efficacy mecha-

nism of CTAug, and the detailed results are available in Appendix B.

3
Note that we mainly focus on the contrastive schema between the original graph

and the augmented graph, whereas the contrastive schema between two augmented

graphs is analogous.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

4.1 Topology Augmentation Enhancement
To begin, we introduce the definitions of sufficient encoder and

minimal sufficient encoder, where 𝐼 represents mutual information.

Definition 4.1. [40] (Sufficient Encoder) The encoder 𝑓 of G is suffi-
cient in the contrastive learning framework if and only if 𝐼 (G; G′) =
𝐼 (𝑓 (G); G′).

The encoder 𝑓 is sufficient if the information in G about G′
is

lossless during the encoding procedure, which is required by the

contrastive learning objective. Symmetrically, 𝐼 (G; G′) = 𝐼 (G; 𝑓 (G′))
if 𝑓 is sufficient.

Definition 4.2. [40] (Minimal Sufficient Encoder) A sufficient en-
coder 𝑓1 of G is minimal if and only if 𝐼 (𝑓1 (G); G) ≤ 𝐼 (𝑓 (G); G),
∀𝑓 that is sufficient.

The minimal sufficient encoder only extracts relevant informa-

tion about the contrastive task and discards irrelevant information.

Theorem4.3. Suppose 𝑓 is aminimal sufficient encoder. If 𝐼 (G′
; G;𝑦)

increases, then 𝐼 (𝑓 (G);𝑦) will also increase.
Given that cohesive properties are closely tied to the graph

label 𝑦 [13, 16, 23], preserving more cohesive properties of the

original graph G during graph augmentation (thereby increasing

𝐼 (𝑦; G; G′)) enables the encoder 𝑓 to learn improved representa-

tions 𝑓 (G) through contrastive learning. This results in more reten-

tion of information related to𝑦 for downstream tasks (i.e., enlarging

𝐼 (𝑓 (G);𝑦)), so downstream task performance will elevate.

4.2 Graph Learning Enhancement
Theorem 4.4. 𝑓1 is our proposed O-GSN encoder with 𝑘-core (𝑘 ≥ 2)
or 𝑘-truss (𝑘 ≥ 3) subgraphs considered in subgraph structures H , 𝑓2
is GIN (the default encoder). Then 𝐼 (𝑓1 (G);𝑦) > 𝐼 (𝑓2 (G);𝑦).

Based on Theorem 4.4, with other conditions kept constant, sub-

stituting the default GIN encoder with our proposed O-GSN encoder

empowers the encoder to acquire enhanced representations through

contrastive learning and preserve more information associated with

𝑦, which will boost the performance of downstream tasks.

5 EXPERIMENTS
5.1 Datasets and Settings
Datasets. We choose five social graph datasets [51] (IMDB-B, IMDB-
M, COLLAB, RDT-B, RDT-T) and two biomedical graph datasets [6]

(ENZYMES, PROTEINS). Table 1 summarizes the statistics.

• IMDB-B & IMDB-M [51] datasets contain actors/actresses’

relations if they appear in the same movie. The label of each

graph is the movie genre. In IMDB-B, the label is binary; in

IMDB-M, the label is multi-class.

• COLLAB [51] is a scientific collaboration dataset. The re-

searcher’s ego network has three possible labels corresponding

to the fields that the researcher belongs to.

• RDT-B [51] dataset includes user interaction graphs in Reddit
threads, called subreddits. The task is to identify whether a

subreddit graph is question/answer-based or discussion-based.

• RDT-T [35] dataset contains discussion and non-discussion

based threads from Reddit. The task is to predict whether a

thread is discussion-based or not.

• ENZYMES [6] includes proteins that are classified as enzymes

or non-enzymes.

• PROTEINS [6] contains protein tertiary structures from 6 EC

top-level classes.

Experiment Setup. We take the unsupervised representation

learning setting commonly used for GCL benchmarks [58]. Follow-

ing the evaluation scheme [43, 58], we train a linear SVM classifier

based on graph embeddings for graph classification. We use 10-fold

cross-validation and repeat each experiment five times.
4
Following

most GCL studies in literature [54], we use accuracy to measure

the graph classification performance.

Hardware Environment. Experiments are run on a server

with a 28-core Intel CPU, 96GB RAM, and Tesla V100S GPU. The

operating system is Ubuntu 18.04.5 LTS.

5.2 Methods
For graph classification tasks, we choose 7 GCL methods for graph-

level representation learning as our baselines, including GraphCL
[54], JOAO [53], MVGRL [15], InfoGraph [38], AD-GCL [39], Auto-
GCL [52], and RGCL [24]. More details are in Appendix E.

To assess the effectiveness of CTAug, we apply it to enhance three
GCL methods: two with probabilistic augmentations (GraphCL and

JOAO) and one with deterministic augmentations (MVGRL). The re-
sulting methods are denoted as CTAug-GraphCL, CTAug-JOAO,
andCTAug-MVGRL, respectively. We consider two cohesion prop-

erties, namely 𝑘-core and 𝑘-truss, which we extracted from graphs

using NetworkX
5
with the algorithms in [4, 10]. More details are

in Appendix F.

5.3 Main Results
Probabilistic GCL Method Enhancement (CTAug-GraphCL
& CTAug-JOAO). Table 2 presents the graph classification results

of several GCL methods. Among five social graph datasets, IMDB-
B, IMDB-M, and COLLAB exhibit high average degrees (∼ 10 or

larger). We expect that CTAug will perform well on these datasets,

as high-degree graphs usually have highly-cohesive subgraphs.
6

Our experimental results validate this expectation. Specifically,

CTAug-GraphCL yields an average accuracy improvement of 5.83%

compared to GraphCL on three high-degree datasets. For COLLAB,
the improvement is the most significant as CTAug can improve

GraphCL by 9.36%, as this dataset has the largest average node

degree (∼ 65). Similar to GraphCL, CTAug can also enhance JOAO
by more than 5%.

For the remaining two social graph datasets, namely, RDT-B and

RDT-T, with low average degrees (∼ 2), CTAug’s performance im-

provement is marginal. The reason might be that CTAug primarily

exploits the cohesion properties of a graph, and its effectiveness

depends on the presence of highly cohesive substructures in the

graph. CTAug’s improvements on biomedical graphs are also not

as significant as the improvements on high-degree social graphs,

since the average degrees of biomedical datasets are small (∼ 3).

4
We fix random seeds to 1–5 for five cross-validation tests. Our results may look

slightly different from the baselines’ original papers due to different random seeds and

evaluation schemes.

5
https://networkx.org/

6
Table 1 lists the average node degrees and the maximum value of 𝑘 in 𝑘-core/truss

subgraphs (𝑘max) for all the datasets.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Graph Contrastive Learning with Cohesive Subgraph Awareness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Dataset statistics for graph classification.

Category Dataset #Graph #Class Avg. #Nodes Avg. #Edges Avg. Degree Avg. 𝑘max (𝑘-core) Avg. 𝑘max (𝑘-truss)

Social

Graph

IMDB-B 1,000 2 19.77 96.53 9.76 (high) 9.16 10.16

IMDB-M 1,500 3 13.00 65.94 10.14 (high) 8.15 9.15

COLLAB 5,000 3 74.49 2457.78 65.97 (high) 40.53 41.52

RDT-B 2,000 2 429.63 497.75 2.32 (low) 2.33 3.09

RDT-T 203,088 2 23.93 24.99 2.08 (low) 1.58 2.46

Biomedical

Graph

ENZYMES 600 6 32.63 62.14 3.81 (low) 2.98 3.80

PROTEINS 1,113 2 39.06 72.82 3.73 (low) 3.00 3.83

Table 2: Accuracy (%) on graph classification (OOM: out-of-memory).

Method Social Graphs (High Degree) Social Graphs (Low Degree) Biomedical Graphs

IMDB-B IMDB-M COLLAB AVG. RDT-B RDT-T AVG. ENZYMES PROTEINS AVG.

InfoGraph 71.34±0.24 47.93±0.71 69.12±0.15 62.80 89.39±1.81 76.23±0.00 82.81 26.73±3.75 74.09±0.48 50.41

AD-GCL 71.28±1.10 47.59±0.62 71.22±0.89 63.36 88.84±0.90 76.51±0.00 82.68 27.33±2.28 73.39±0.85 50.36

AutoGCL 71.14±0.71 48.61±0.55 67.27±2.64 62.34 89.31±1.48 77.13±0.00 83.22 29.83±2.24 73.33±0.27 51.58

RGCL 71.14±0.64 48.28±0.60 73.48±0.93 64.30 91.38±0.40 OOM / 33.33±1.61 73.37±0.35 53.35

GraphCL 71.48±0.44 48.11±0.60 72.36±1.76 63.98 91.69±0.70 77.44±0.03 84.57 32.83±2.05 74.32±0.76 53.58

CTAug-GraphCL 76.60±1.02 51.12±0.57 81.72±0.26 69.81 92.28±0.33 77.48±0.01 84.88 39.17±1.00 74.10±0.33 56.64

JOAO 71.40±0.38 48.68±0.36 73.40±0.46 64.49 91.66±0.59 77.24±0.00 84.45 34.60±1.06 74.32±0.46 54.46

CTAug-JOAO 76.80±0.71 51.19±0.88 81.90±0.53 69.96 92.19±0.24 77.35±0.02 84.77 39.92±1.36 74.46±0.13 57.19

MVGRL 71.88±0.73 50.19±0.40 80.48±0.29 67.52 OOM OOM / 34.20±0.67 74.33±0.62 54.27

CTAug-MVGRL 73.04±0.65 50.79±0.54 81.09±0.37 68.31 OOM OOM / 35.46±1.20 75.00±0.38 55.23

Figure 2: CTAug’s improve-
ment on datasets with vary-
ing average degrees.

Figure 3: Scalability test on
RDT-T.

Table 3: Ablation study of CTAug-GraphCL.

Method IMDB-B IMDB-M COLLAB AVG.

CTAug-GraphCL 76.60±1.02 51.12±0.57 81.72±0.26 69.81

Module Ablation
Only Module 1 71.54±0.27 49.11±0.48 72.64±0.63 64.43

Only Module 2 73.80±1.21 50.27±0.81 80.03±0.42 68.03

Cohesion Property Ablation
Only 𝑘-core 75.92±0.67 51.39±0.14 81.36±0.16 69.56

Only 𝑘-truss 76.12±1.20 50.99±0.57 80.71±0.30 69.27

Fig. 2 illustrates the performance enhancement achieved by

CTAug-GraphCL/JOAO compared toGraphCL/JOAO across datasets

with different average degrees. Notably, as the average degree in-

creases, the impact of CTAug becomes more pronounced. We con-

clude that, before applyingCTAug, it is prudent to ascertain whether
the input graph is high-degree

7
or not.

DeterministicGCLMethodEnhancement (CTAug-MVGRL).
For deterministic GCL methods, CTAug can also boost the perfor-

mance by comparing CTAug-MVGRL and MVGRL. Meanwhile, the

improvement is minor even for high-degree graphs; the possible

reason is that MVGRL has already used node degrees as features,

which can be seen as a weak version of substructure-encoded fea-

tures considered in Sec. 3.2.1 (as high-degree nodes are often in

certain highly-cohesive subgraphs). Note thatMVGRL cannot finish

7
In accordance with our experimental results, graphs with average degree greater than

8 might be considered as high-degree graphs.

training for large social graphs such as RDT-B/T due to out-of-

memory. Hence, CTAug-GraphCL/JOAO may still be preferred for

practical graph-level representation learning.

Computation Scalability. Fig. 3 shows how the computation

time changes with the increase of training graphs. CTAug-GraphCL
consumes about two times compared to GraphCL as CTAug trains

graph representations considering both 𝑘-core and 𝑘-truss sub-

graphs; if only one subgraph property is considered, the training

time overhead would be very small.

CTAug also needs to pre-compute cohesive subgraphs (𝑘-core

and 𝑘-truss in our implementation) for Module 1 and substructure-

encoded features for Module 2 (O-GSN). The discovery of 𝑘-core

and 𝑘-truss subgraphs for a single graph typically takes ∼ 10
−2

seconds, while the computation of O-GSN features takes at most a

few seconds (details are in Appendix G). Moreover, this procedure

can be parallelized or conducted offline, allowing for the convenient

integration of CTAug with a variety of existing methods.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

5.4 Ablation Study
We conduct experiments to evaluate the effectiveness of each mod-

ule in CTAug, and the results are presented in Table 3. Since high-

degree graphs are appropriate for CTAug, the ablation study is

conducted on such graph datasets. As expected, using only one

module of CTAug leads to a decrease in accuracy, which confirms

the effectiveness of each module. While using only Module 2 has

more improvements than using only Module 1, combining the two

can enhance each other and achieve significantly higher accuracy.

Previous studies have indicated that plain GNN cannot effectively

learn subgraph properties [9], which may explain why using only

Module 1 is not effective. Module 2 (O-GSN) assists GNN in pre-

serving subgraph properties, thus enhancing Module 1.

We also examine the usefulness of combining multiple cohesion

properties in our approach. However, we observe that fusion does

not always improve accuracy. To gain more insight, we conducted

an empirical analysis on the difference between 𝑘-core and 𝑘-truss

subgraphs in IMDB-B and IMDB-M. Our findings show that the over-

lap between the 𝑘-core and 𝑘-truss subgraphs is larger than 95%,

indicating that over 95% of nodes and edges are shared between

the obtained subgraphs. This may explain why the performances of

CTAug (𝑘-core) and CTAug (𝑘-truss) are close without much differ-

ence, and why fusion may sometimes even degrade performance.

Future work may explore a more efficient fusion component to

address this issue.

5.5 Parameter Analysis
Table 4 shows the performance of CTAug-GraphCL/JOAO when 𝜖 is

varying. We observe that most settings of 𝜖 can increase accuracy

compared to the original GraphCL/JOAO. The optimal choice for 𝜖

usually falls at 0.2, allowing for an appropriate trade-off between

the diversity of augmented graphs (highest diversity at 𝜖 = 0) and

the preservation of cohesion properties (maximum preservation at

𝜖 = 1).

Table 4: Parameter analysis of 𝜖.

Method 𝜖 IMDB-B IMDB-M RDT-B

GraphCL / 71.48±0.44 48.11±0.60 91.69±0.70

CTAug-GraphCL

0.2 75.98±0.78 50.84±0.83 91.60±0.27

0.4 76.60±1.02 51.12±0.57 91.88±0.32

0.6 75.84±1.24 50.83±0.60 91.85±0.26

0.8 75.68±0.70 50.16±0.24 91.94±0.41

1.0 74.90±0.51 49.67±0.62 92.28±0.33

JOAO / 71.40±0.38 48.68±0.36 91.66±0.59

CTAug-JOAO

0.2 76.80±0.71 51.19±0.88 92.19±0.24
0.4 76.36±1.42 50.48±0.83 92.17±0.30

0.6 76.56±0.49 50.40±0.88 91.52±0.54

0.8 75.10±1.43 50.53±0.89 91.92±0.39

1.0 75.18±1.29 50.17±0.75 92.01±0.42

5.6 Node Classification Results
We evaluate CTAug on two representative GCL methods for node

embedding, namelyGRACE [59] andGCA [60], referred to asCTAug-
GRACE and CTAug-GCA, respectively. The node classification re-

sults of these methods on the Coauthor-CS, Coauthor-Physics, and

Table 5: Results on node classification. The baseline results
(exceptGRACE andGCA) are copied from [60] because we fol-
low the same experimental setup. Meanwhile, we runGRACE
and GCA by ourselves as we need to ensure that the exactly
same configurations (neural network hidden units, training
algorithm parameters, etc.) are used forGRACE/GCA and our
enhanced CTAug-GRACE/CTAug-GCA for a fair comparison
(OOM: out-of-memory).

Method Coauthor
CS

Coauthor
Physics

Amazon
Computers AVG.

DeepWalk+features 87.70±0.04 94.90±0.09 86.28±0.07 89.63

GAE 90.01±0.71 94.92±0.07 85.27±0.19 90.07

VGAE 92.11±0.09 94.52±0.00 86.37±0.21 91.00

DGI 92.15±0.63 94.51±0.52 83.95±0.47 90.20

GMI OOM OOM 82.21±0.31 /

MVGRL 92.11±0.12 95.33±0.03 87.52±0.11 91.65

GRACE 92.83±0.10 95.56±0.05 86.96±0.14 91.78

GCA 92.89±0.02 95.55±0.03 87.48±0.11 91.97

CTAug-GRACE 92.96±0.05 95.68±0.01 87.59±0.12 92.08

CTAug-GCA 92.98±0.04 95.61±0.01 88.30±0.13 92.30

Amazon-Computers datasets [37] are reported in Table 5. The dataset
and baseline details are presented in Appendix H.

Our observations indicate that CTAug-GRACE/GCA yield some

improvement over the original GRACE/GCA. However, the magni-

tude of this improvement is not as significant as the improvement

of CTAug on graph classification tasks. This discrepancy may be

attributed to the fact that cohesion is a subgraph property and

therefore, more relevant to the entire graph than a single node.

Furthermore, as observed in graph classification, the improve-

ment of CTAug is the most pronounced on Amazon-Computers,
which has the highest degree (average degree is ∼ 35 for Amazon-
Computers and ∼ 10 for the other two datasets). This reaffirms that

CTAug is more effective for high-degree graphs, as these graphs

generally contain more highly-cohesive substructures.

6 CONCLUSION AND LIMITATIONS
To introduce the awareness of cohesion properties (e.g., 𝑘-core and

𝑘-truss) into GCL, this work proposes a unified framework, called

CTAug, that can be integrated with various existing GCL mecha-

nisms. Two modules, including topology augmentation enhancement
and graph learning enhancement, are designed to incorporate cohe-

sion properties into the topology augmentation and graph learning

processes of GCL, respectively. Extensive experiments have verified

the effectiveness and flexibility of the CTAug framework.

Our current implementations are limited to𝑘-core/truss cohesion

properties, while many other types of properties are also crucial in

practice. For instance, the average shortest path length is usually

small for real-world social graphs such as Facebook [42]; then, it

is reasonable to keep a small average shortest path length when

augmenting social graphs. In the future, we will explore how to

incorporate more graph properties into GCL procedures in a unified,

flexible, and extensible manner.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Graph Contrastive Learning with Cohesive Subgraph Awareness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based Community Search: a Truss-

equivalence Based Indexing Approach. Proc. VLDB Endow. 10 (2017), 1298–1309.
[2] Mohammed Ali Al-garadi, Kasturi Dewi Varathan, and Sri Devi Ravana. 2017.

Identification of influential spreaders in online social networks using interaction

weighted K-core decomposition method. Physica A-statistical Mechanics and Its
Applications 468 (2017), 278–288.

[3] Md Altaf-Ul-Amine, Kensaku Nishikata, Toshihiro Korna, Teppei Miyasato, Yoko

Shinbo, Md Arifuzzaman, Chieko Wada, Maki Maeda, Taku Oshima, Hirotada

Mori, et al. 2003. Prediction of protein functions based on k-cores of protein-

protein interaction networks and amino acid sequences. Genome Informatics 14
(2003), 498–499.

[4] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).
[5] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient enumeration

of maximal k-plexes. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 431–444.

[6] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,

Alex J Smola, and Hans-Peter Kriegel. 2005. Protein function prediction via

graph kernels. Bioinformatics 21, suppl_1 (2005), i47–i56.
[7] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein.

2022. Improving graph neural network expressivity via subgraph isomorphism

counting. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 1
(2022), 657–668.

[8] Phil Brown and Junlan Feng. 2011. Measuring User Influence on Twitter Using

Modified K-Shell Decomposition. In The Social Mobile Web.
[9] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can graph

neural networks count substructures? Advances in neural information processing
systems 33 (2020), 10383–10395.

[10] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National security agency technical report 16, 3.1 (2008).
[11] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub)

graph isomorphism algorithm for matching large graphs. IEEE transactions on
pattern analysis and machine intelligence 26, 10 (2004), 1367–1372.

[12] Jean-Pierre Eckmann and Elisha Moses. 2002. Curvature of co-links uncovers

hidden thematic layers in the World Wide Web. Proceedings of the National
Academy of Sciences of the United States of America 99 (2002), 5825 – 5829.

[13] Christos Giatsidis, Dimitrios M Thilikos, and Michalis Vazirgiannis. 2011. Evalu-

ating cooperation in communities with the k-core structure. In 2011 International
conference on advances in social networks analysis and mining. IEEE, 87–93.

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. In International
conference on machine learning. PMLR, 1263–1272.

[15] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-

resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[16] Paul Holland and Samuel Leinhardt. 1971. Transitivity in Structural Models of

Small Groups. Small Group Research 2 (1971), 107 – 124.

[17] Hong Huang, Jie Tang, Lu Liu, JarDer Luo, and Xiaoming Fu. 2015. Triadic

closure pattern analysis and prediction in social networks. IEEE Transactions on
Knowledge and Data Engineering 27, 12 (2015), 3374–3389.

[18] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311–1322.

[19] Thomas N Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. NIPS
Workshop on Bayesian Deep Learning (2016).

[20] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[21] Maksim Kitsak, Lazaros K. Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,

Harry Eugene Stanley, and Hernán A. Makse. 2010. Identification of influential

spreaders in complex networks. Nature Physics 6 (2010), 888–893.
[22] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. 2019. Diffu-

sion improves graph learning. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems. 13366–13378.

[23] Yi-Xiu Kong, Gui-Yuan Shi, Rui-Jie Wu, and Yi-Cheng Zhang. 2019. k-core:

Theories and applications. Physics Reports 832 (2019), 1–32.
[24] Sihang Li, Xiang Wang, An Zhang, Ying Xin Wu, Xiangnan He, and Tat-Seng

Chua. 2022. Let Invariant Rationale Discovery Inspire Graph Contrastive Learn-

ing. In ICML.
[25] Lu Lin, Jinghui Chen, and Hongning Wang. 2023. Spectral Augmentation for

Self-Supervised Learning on Graphs. In The Eleventh International Conference on
Learning Representations.

[26] Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. 2022. Revisiting graph

contrastive learning from the perspective of graph spectrum. Advances in Neural
Information Processing Systems 35 (2022), 2972–2983.

[27] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip Yu.

2022. Graph self-supervised learning: A survey. IEEE Transactions on Knowledge
and Data Engineering (2022).

[28] Robert J Mokken et al. 1979. Cliques, clubs and clans. Quality & Quantity 13, 2

(1979), 161–173.

[29] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric

Lenssen, Gaurav Rattan, and Martin Grohe. 2019. Weisfeiler and leman go neural:

Higher-order graph neural networks. In Proceedings of the AAAI conference on
artificial intelligence. 4602–4609.

[30] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank Citation Ranking : Bringing Order to the Web. In WWW 1999.
[31] Chengbin Peng, Tamara G. Kolda, and Ali Pinar. 2014. Accelerating Community

Detection by Using K-core Subgraphs. ArXiv abs/1403.2226 (2014).

[32] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph Representation Learning via Graphical

Mutual Information Maximization. In Proceedings of The Web Conference.
[33] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-

ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’14). 701–710.

[34] François Rousseau and Michalis Vazirgiannis. 2015. Main Core Retention on

Graph-of-Words for Single-Document Keyword Extraction. In ECIR.
[35] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An

API Oriented Open-source Python Framework for Unsupervised Learning on

Graphs. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM ’20). ACM, 3125–3132.

[36] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[37] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[38] Fan-Yun Sun, Jordon Hoffman, Vikas Verma, and Jian Tang. 2020. InfoGraph:

Unsupervised and Semi-supervised Graph-Level Representation Learning via

Mutual Information Maximization. In International Conference on Learning Rep-
resentations.

[39] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial Graph

Augmentation to Improve Graph Contrastive Learning. In NeurIPS.
[40] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip

Isola. 2020. What Makes for Good Views for Contrastive Learning?. In Advances
in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,

M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 6827–6839.

[41] Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra.

2022. Augmentations in graph contrastive learning: Current methodological

flaws & towards better practices. In Proceedings of the ACM Web Conference 2022.
1538–1549.

[42] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron A. Marlow. 2011.

The Anatomy of the Facebook Social Graph. ArXiv abs/1111.4503 (2011).

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[44] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Lio’, Yoshua Bengio,

and R. Devon Hjelm. 2019. Deep Graph Infomax. ArXiv abs/1809.10341 (2019).

[45] Jia Wang and James Cheng. 2012. Truss decomposition in massive networks.

Proceedings of the VLDB Endowment 5, 9 (2012), 812–823.
[46] Yingheng Wang, Yaosen Min, Xin Chen, and Ji Wu. 2021. Multi-view Graph

Contrastive Representation Learning for Drug-Drug Interaction Prediction. Pro-
ceedings of the Web Conference 2021 (2021).

[47] Duncan J. Watts and Steven H. Strogatz. 1998. Collective dynamics of ‘small-

world’ networks. Nature 393 (1998), 440–442.
[48] Lirong Wu, Haitao Lin, Cheng Tan, Zhangyang Gao, and Stan Z Li. 2021. Self-

supervised learning on graphs: Contrastive, generative, or predictive. IEEE
Transactions on Knowledge and Data Engineering (2021).

[49] Daniel R. Wuellner, Soumen Kumar Roy, and Raissa M. D’Souza. 2010. Resilience

and rewiring of the passenger airline networks in the United States. Physical
review. E, Statistical, nonlinear, and soft matter physics 82 5 Pt 2 (2010), 056101.

[50] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[51] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD international conference on knowledge discovery and
data mining. 1365–1374.

[52] Yihang Yin, Qingzhong Wang, Siyu Huang, Haoyi Xiong, and Xiang Zhang.

2022. AutoGCL: Automated Graph Contrastive Learning via Learnable View

Generators. In AAAI.
[53] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. 2021. Graph

contrastive learning automated. In International Conference on Machine Learning.
PMLR, 12121–12132.

[54] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Neural Information Processing Systems 33 (2020), 5812–5823.
[55] Fan Zhang, Ying Zhang, Lu Qin, W. Zhang, and Xuemin Lin. 2017. Finding

Critical Users for Social Network Engagement: The Collapsed k-Core Problem.

In AAAI.
[56] Shichang Zhang, Ziniu Hu, Arjun Subramonian, and Yizhou Sun. 2021. Motif-

Driven Contrastive Learning of Graph Representations. ArXiv abs/2012.12533

(2021).

[57] Hao Zhu and Piotr Koniusz. 2021. Simple Spectral Graph Convolution. In ICLR.
[58] Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. 2021. An Empirical Study of

Graph Contrastive Learning. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, Joaquin Vanschoren and Serena

Yeung (Eds.), Vol. 1. Curran Associates, Inc.

[59] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.

Deep graph contrastive representation learning. arXiv preprint arXiv:2006.04131
(2020).

[60] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.

Graph contrastive learning with adaptive augmentation. In Proceedings of the
Web Conference 2021. 2069–2080.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Graph Contrastive Learning with Cohesive Subgraph Awareness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A PROOFS FOR THEORETICAL ANALYSIS
(SEC. 4)

Theorem4.3. Suppose 𝑓 is aminimal sufficient encoder. If 𝐼 (G′
; G;𝑦)

increases, then 𝐼 (𝑓 (G);𝑦) will also increase.

Proof. We denote 𝑧 = 𝑓 (G), 𝑧′ = 𝑓 (G′). 𝑓 is sufficient, so

𝐼 (G; G′) = 𝐼 (G; 𝑧′) = 𝐼 (𝑧; G′).
𝐼 (𝑧; G) = 𝐻 (𝑧) (𝑧 is a function of G)

= 𝐼 (𝑧; G′) + 𝐻 (𝑧 |G′)
≥ 𝐼 (𝑧; G′) (𝐻 (𝑧 |G′) ≥ 0)

(16)

Because 𝑓 is a minimal sufficient encoder, 𝐼 (𝑧; G) will be mini-

mized to 𝐼 (𝑧; G′) and 𝐻 (𝑧 |G′) = 0 holds.

𝐼 (𝑧;𝑦) = 𝐼 (𝑧; 𝑧′;𝑦) + 𝐼 (𝑧;𝑦 |𝑧′) (17)

𝐼 (𝑧; 𝑧′;𝑦) = 𝐼 (𝑧; 𝑧′;𝑦; G) + 𝐼 (𝑧; 𝑧′;𝑦 |G)
= 𝐼 (𝑧;𝑦; (𝑧′; G)) + 0 (𝑧 is a function of G)
= 𝐼 (𝑧;𝑦; (G; G′)) (𝐼 (G; 𝑧′) = 𝐼 (G; G′))
= 𝐼 (𝑦; G; (𝑧; G′))
= 𝐼 (𝑦; G; (G; G′)) (𝐼 (G′

; 𝑧) = 𝐼 (G; G′))
= 𝐼 (𝑦; G; G′)

(18)

𝐼 (𝑧;𝑦 |𝑧′) = 𝐼 (𝑧;𝑦; G′ |𝑧′) + 𝐼 (𝑧;𝑦 |G′, 𝑧′)
= 𝐼 (𝑦; (𝑧; G′) |𝑧′) + 𝐼 (𝑧;𝑦 |G′) (𝑧′ is a function of G′)
= 𝐼 (𝑦; G; 𝑧′ |𝑧′) + 𝐼 (𝑧;𝑦 |G′) (𝐼 (𝑧; G′) = 𝐼 (G; 𝑧′))
= 0 + 𝐼 (𝑧;𝑦 |G′)
= 0 (𝐻 (𝑧 |G′) = 0)

(19)

Based on Eq. 17, 18 and 19, 𝐼 (𝑧;𝑦) = 𝐼 (𝑦; G; G′). As a result, the
increase of 𝐼 (G′

; G;𝑦) leads to the growth of 𝐼 (𝑓 (G);𝑦).
From another perspective, we can extend InfoMin principle [40]

to the graph field: the best-performing augmented graph should

contain as much task-relevant information while discarding as

much irrelevant information as possible. Formally, given the origi-

nal graphG and its downstream task label𝑦, the optimal augmented

graph G′
satisfies 𝐼 (G; G′) = 𝐼 (G;𝑦), which is called sweet spot.

If 𝐼 (𝑦; G; G′) increases, 𝐼 (G; G′) will be close to 𝐼 (G;𝑦) (because
their intersection is increasing), approaching sweet spot. So higher

𝐼 (𝑦; G; G′) indicates better-augmented graph G′
, i.e., 𝐼 (𝑓 (G);𝑦)

will increase. We come to the same conclusion.

□

Lemma A.1. Given that 𝑓 is a GNN encoder with learnable parame-
ters. Optimizing the loss function in Eq. 1 is equivalent to maximizing
𝐼 (𝑓 (G); 𝑓 (G′)), leading to the maximization of 𝐼 (𝑓 (G); G′).

Proof. Appendix F in [54] provides theoretical justification that

minimizing loss function Eq. 1 is equivalent to maximizing a lower

bound of the mutual information between the latent representa-

tions of two augmented graphs, and can be viewed as one way of

mutual information maximization between the latent representa-

tions. Consequently, the optimization of the loss function in Eq. 1

is equivalent to maximizing 𝐼 (𝑓 (G); 𝑓 (G′)).
Because 𝑓 (G) is a function of G,

𝐼 (𝑓 (G); G′) = 𝐼 (𝑓 (G); 𝑓 (G′); G′) + 𝐼 (𝑓 (G); G′ |𝑓 (G′))
= 𝐼 (𝑓 (G); 𝑓 (G′)) + 𝐼 (𝑓 (G); G′ |𝑓 (G′))

(20)

Thus,

𝐼 (𝑓 (G); 𝑓 (G′)) = 𝐼 (𝑓 (G); G′) − 𝐼 (𝑓 (G); G′ |𝑓 (G′)) (21)

While maximizing 𝐼 (𝑓 (G); 𝑓 (G′)), either 𝐼 (𝑓 (G); G′) increases
or 𝐼 (𝑓 (G); G′ |𝑓 (G′)) decreases. When 𝐼 (𝑓 (G); G′ |𝑓 (G′)) reaches
it minimum value of 0, 𝐼 (𝑓 (G); G′) will definitely increase. Hence,

the process of maximizing 𝐼 (𝑓 (G); 𝑓 (G′)) can lead to the maxi-

mization of 𝐼 (𝑓 (G); G′) as well.
□

Theorem 4.4. 𝑓1 is our proposed O-GSN encoder with 𝑘-core (𝑘 ≥ 2)
or 𝑘-truss (𝑘 ≥ 3) subgraphs considered in subgraph structures H , 𝑓2
is GIN (the default encoder). Then 𝐼 (𝑓1 (G);𝑦) > 𝐼 (𝑓2 (G);𝑦).

Proof. Our proposed O-GSN is extended from GSN.

Theorem 3.1 in [7] proves that if 𝐻 (∈ H) is any graph except for

star graphs, GSN is strictly more powerful
8
thanMPNN. Apparently,

𝑘-core (𝑘 ≥ 2) or 𝑘-truss (𝑘 ≥ 3) graphs satisfy this condition. Thus,

GSN is strictly more powerful than MPNN when 𝑘-core (𝑘 ≥ 2) or

𝑘-truss (𝑘 ≥ 3) subgraphs are considered inH .

Despite different training processes, the graph embedding infer-

ence processes are the same for O-GSN and GSN, i.e., taking graph

substructure features into consideration. Hence, O-GSN has the

same ability as GSN to differentiate certain graphs that GIN (as an

instance of MPNN) cannot differentiate [7]. That is, 𝑓1 can capture

more information of G than 𝑓2,

𝐻 (G) ≥ 𝐻 (𝑓1 (G)) > 𝐻 (𝑓2 (G)) (22)

𝑓1 (G) and 𝑓2 (G) are functions of G, so

𝐼 (𝑓1 (G); G) > 𝐼 (𝑓2 (G); G) (23)

𝐼 (𝑓1 (G); G) = 𝐼 (𝑓1 (G); G; G′) + 𝐼 (𝑓1 (G); G|G′)
= 𝐼 (𝑓1 (G); G′) − 𝐼 (𝑓1 (G); G′ |G) + 𝐼 (𝑓1 (G); G|G′)
= 𝐼 (𝑓1 (G); G′) + 𝐼 (𝑓1 (G); G|G′)

(24)

𝐼 (𝑓1 (G); G′) = 𝐼 (𝑓1 (G); G) − 𝐼 (𝑓1 (G); G|G′) (25)

In Eq. 24, because 𝑓1 (G) is a function of G, 𝐼 (𝑓1 (G); G′ |G) =

0. According to Lemma A.1, during the contrastive learning pro-

cess, our optimization objective is to maximize 𝐼 (𝑓1 (G); G′), so
𝐼 (𝑓1 (G); G|G′) is approaching its minimum value of 0. Hence,

𝐼 (𝑓1 (G); G) ≈ 𝐼 (𝑓1 (G); G′) (26)

Similarly,

𝐼 (𝑓2 (G); G) ≈ 𝐼 (𝑓2 (G); G′) (27)

Combining Eq. 23, 26 and 27, we get

𝐼 (𝑓1 (G); G′) > 𝐼 (𝑓2 (G); G′) (28)

8expressive power means the ability of the GNNmodel to capture and represent complex

patterns and information within a graph structure [50].

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

𝐼 (𝑓1 (G); G′) = 𝐼 (𝑓1 (G); G′
;𝑦) + 𝐼 (𝑓1 (G); G′ |𝑦)

= 𝐼 (𝑓1 (G);𝑦) − 𝐼 (𝑓1 (G);𝑦 |G′) + 𝐼 (𝑓1 (G); G′ |𝑦)
(29)

𝐼 (G′
; G|𝑦) = 𝐼 (𝑓1 (G); G′

; G|𝑦) + 𝐼 (G′
; G|𝑦, 𝑓1 (G))

≥ 𝐼 (𝑓1 (G); G′
; G|𝑦) (the non-negativity of 𝐼)

= 𝐼 (𝑓1 (G); G′ |𝑦) (𝑓1 (G) is a function of G)
(30)

According to Lemma A.1, our optimization objective is to max-

imize 𝐼 (𝑓1 (G); G′) in the contrastive learning process. Therefore,

𝐼 (𝑓1 (G);𝑦 |G′) approaches itsminimumvalue of 0 and 𝐼 (𝑓1 (G); G′ |𝑦)
is nearing its maximum value of 𝐼 (G′

; G|𝑦).

𝐼 (𝑓1 (G); G′) ≈ 𝐼 (𝑓1 (G);𝑦) + 𝐼 (G′
; G|𝑦) (31)

Similarly,

𝐼 (𝑓2 (G); G′) ≈ 𝐼 (𝑓2 (G);𝑦) + 𝐼 (G′
; G|𝑦) (32)

Combining Eq. 28, 31 and 32, we get

𝐼 (𝑓1 (G);𝑦) > 𝐼 (𝑓2 (G);𝑦) (33)

□

B EMPIRICAL ANALYSIS DETAILS (SEC. 4)
To validate the efficacy mechanism of CTAug empirically, we ini-

tially confirm the crucial significance of graph cohesion properties

for downstream tasks (e.g., graph classification). Subsequently, we

verify that CTAug’s topology augmentation enhancement module

can preserve the cohesion properties of the original graph to a

greater extent during graph augmentation. Finally, we validate that

the graph learning enhancement module ensures that the GNN

encoder also acquires the cohesion property information and incor-

porates it into graph embedding.

Effectiveness of Cohesion Properties. To verify the connec-

tion between cohesion properties and graph labels, we convert

cohesive subgraphs into graph features and train the same SVM

classifier as our graph classification evaluation experiments. To be

specific, the 𝑖-th 𝑘-core feature of a graph G is the number of nodes

in its 𝑖-core subgraph, and the 𝑖-th 𝑘-truss feature is the number of

nodes in its 𝑖-truss subgraph.

Table 6 presents the classification results of the above feature

construction method, considering cohesive subgraphs. It is evi-

dent that the inclusion of cohesive features leads to a substantial

enhancement in classification accuracy compared to random se-

lection, particularly in high-degree graphs like COLLAB, where
accuracy more than doubles. Consequently, we can deduce that co-

hesive properties exhibit a strong correlation with graph labels, so

incorporating these properties into our graph contrastive learning

process provides valuable priors.

Effectiveness of Module 1 (Topology Augmentation En-
hancement). Table 7 demonstrates that the node drop augmen-

tation of our CTAug method effectively preserves more nodes in

cohesive subgraphs and retains cohesion property in the augmented

graphs, compared with random node drop augmentation (used in

GraphCL). This aligns with the design goals of CTAug’s Module 1.

Effectiveness of Module 2 (Graph Learning Enhancement).
The ablation study in Table 3 (Sec. 5.4) shows that the removal of

Module 2 leads to a significant decrease in classification accuracy.

This observation validates that Module 2 effectively empowers the

GNN encoder to incorporate more cohesion information into the

graph embedding.

Conclusion. Our experimental findings confirm: (1) there is a

strong correlation between cohesion properties and downstream

tasks; (2) Module 1 of CTAug succeeds in producing cohesion-

preserving augmented graphs; (3) Module 2 enhances the capture

of cohesion properties during representation learning. Therefore,

CTAug effectively captures cohesion information of the original

graph and is poised to improve performance in downstream tasks.

C SUBSTRUCTURE SELECTION DETAILS FOR
O-GSN (SEC. 3.2.1)

We use the classic graphs generators of NetworkX to get a set of

substructures, such as cycle, clique, and path graphs, which are also

considered in the original GSN implementation [7]. Specifically, we

select cliques for our implementation in O-GSN, as they constitute

the majority of the 𝑘max-core/truss subgraphs in the datasets we

examined. For instance, in IMDB-B and IMDB-M, we observed that

over 80% of 𝑘max-core/truss subgraphs are cliques (where 𝑘max

represents the maximum 𝑘-core/truss subgraph). Similarly, in RDT-

B, the percentage of 𝑘max-core/truss subgraphs containing a clique

is larger than 75%. Our empirical analysis further confirms that

cliques outperform other substructures, and selecting 3/4/5 together

generally leads to better results compared to selecting only one of

them (Table 9).

D 𝑘max DISTRIBUTION FOR DATASETS
(SEC. 5.1)

Fig. 4 depicts the distribution of 𝑘max, the maximum 𝑘-core index,

for different datasets. We can observe that the IMDB-B/M and COL-
LAB datasets have higher degrees and 𝑘max values, indicating the

presence of more highly cohesive subgraphs. Therefore, we antici-

pate that CTAug may achieve better performance on these three

datasets.

E BASELINE METHODS DETAILS (SEC. 5.2)
• InfoGraph [38] maximizes the mutual information between

graph-level representations and different scales’ sub-structure-

level representations to learn graph embedding without graph

augmentations. We run InfoGraph with the PyGCL library.
9

• MVGRL [15] uses personalized PageRank on the original graph

to generate a diffusionmatrix as the augmented view for GCL.
10

• GraphCL [54] designs four types of graph augmentations (ran-

dom node dropping/edge perturbation/attribute masking/ran-

dom walk-based subgraph sampling) used for GCL. We run

GraphCL with the PyGCL library.

9
https://github.com/PyGCL/PyGCL

10
https://github.com/kavehhassani/mvgrl

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Graph Contrastive Learning with Cohesive Subgraph Awareness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 6: Accuracy (%) on graph classification with linear SVM classifier.

Input Feature Considering
Cohesion

Social Graphs (High Degree) Social Graphs (Low Degree) Biomedical Graphs

IMDB-B IMDB-M COLLAB AVG. RDT-B RDT-T AVG. ENZYMES PROTEINS AVG.

None (random selection) ✘ 50.60±5.62 33.27±2.79 32.48±3.06 38.78 50.20±3.08 50.03±0.39 50.12 14.17±2.81 48.43±5.08 31.30

𝑘-core node count ✔ 69.90±3.53 49.73±3.44 76.28±2.11 65.30 79.90±2.75 63.50±0.30 71.70 25.67±6.06 74.38±3.80 50.03

𝑘-truss node count ✔ 69.80±3.82 49.47±3.66 76.04±2.13 65.10 78.25±3.34 63.06±0.32 70.66 28.83±6.58 74.83±2.99 51.83

𝑘-core & 𝑘-truss node count ✔ 69.60±3.69 49.53±3.58 76.92±1.86 65.35 80.80±2.83 64.15±0.32 72.48 30.33±5.26 74.38±4.12 52.36

GraphCL embedding ✘ 71.48±0.44 48.11±0.60 72.36±1.76 63.98 91.69±0.70 77.44±0.03 84.57 32.83±2.05 74.32±0.76 53.58

CTAug-GraphCL embedding ✔ 76.60±1.02 51.12±0.57 81.72±0.26 69.81 92.28±0.33 77.48±0.01 84.88 39.17±1.00 74.10±0.33 56.64

Table 7: Proportion of cohesive subgraph nodes preserved in the augmented graph on average. We set node dropping probability
𝑝𝑑𝑟 = 0.2 and decay factor 𝜖 = 0.2.

Augmentation Property IMDB-B IMDB-M COLLAB RDT-B RDT-T ENZYMES PROTEINS AVG.

Random node drop
𝑘-core 0.801 0.799 0.802 0.800 0.800 0.800 0.799 0.800

𝑘-truss 0.803 0.801 0.800 0.800 0.800 0.801 0.798 0.800

CTAug node drop
𝑘-core 0.837 0.838 0.840 0.825 0.833 0.837 0.835 0.835

𝑘-truss 0.836 0.838 0.839 0.825 0.833 0.832 0.827 0.833

(a) IMDB-B (b) IMDB-M (c) COLLAB

(d) RDT-B (e) RDT-T (f) ENZYMES (g) PROTEINS

Figure 4: Histogram of 𝑘max (𝑘-core).

• JOAO [53] extends GraphCL by adaptively choosing the aug-

mentation operation. We re-implement JOAO based on PyGCL
for experimentation.

11

• AD-GCL [39] optimizes graph augmentations in an adversarial

way to give encoder the minimal sufficient information.
12

11
We also tried the code released by [53] in https://github.com/Shen-

Lab/GraphCL_Automated, but the results are worse than our re-implementation. So

we report the results with our re-implementation.

12
https://github.com/susheels/adgcl

• AutoGCL [52] builds learnable generative node-wise augmen-

tation policies for graph contrastive learning in an end-to-end

manner.
13

• RGCL [24] automatically discovers rationales as graph aug-

mentations.
14

13
https://github.com/Somedaywilldo/AutoGCL

14
https://github.com/lsh0520/RGCL

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 8: Relationship between classic substructures and 𝑘-
core/𝑘-truss.

Substructure 𝑘-core 𝑘-truss

𝑘-cycle 2-core /

𝑘-clique (𝑘 − 1)-core 𝑘-truss

𝑘-path 1-core /

𝑘-star 1-core /

𝑘-binomial-tree 1-core /

𝑘-nonisomorphic-trees 1-core /

Table 9: Substructure and 𝑘 selection (CTAug-GraphCL).

Substructure k IMDB-B IMDB-M AVG.

clique 3 75.82±0.43 50.65±0.52 63.24

clique 4 75.65±0.34 51.22±0.41 63.44

clique 5 75.10±0.37 50.53±0.22 62.82

clique 3,4,5 76.60±1.02 51.12±0.57 63.86

clique 4 75.65±0.34 51.22±0.41 63.44
cycle 4 74.18±0.47 49.17±0.45 61.68

star 3 70.45±1.13 48.98±0.68 59.72

path 4 67.25±0.43 47.80±0.64 57.53

binomial-tree 2 67.25±0.43 47.80±0.64 57.53

Table 10: Probabilistic topology augmentation behaviors of
existing GCL methods.

Method Aug. Operation Aug. Probability

GraphCL [54] randomly selected uniform

JOAO [53] min-max optimized uniform

AD-GCL [39] edge dropping adversarial learning

AutoGCL [52] node dropping generative learning

RGCL [24] node dropping rationale-based learning

Table 10 shows the comparison of augmentation operations and

probabilities of existing probabilistic GCL topology augmentation

methods.

F IMPLEMENTATION DETAILS FOR CTAUG
VARIANTS (SEC. 5.2)

Here, we clarify the implementation details of our methods in ex-

periments. We implement our method with Python 3.8 and PyTorch

1.12.0.

(1) CTAug-GraphCL. GraphCL [54] randomly selects an opera-

tion from T={node dropping, edge dropping, edge adding, random
walk-based sampling} and then performs the probabilistic augmenta-

tion in a uniform manner (e.g., every node has the same probability

of being removed). We fix the augmentation operation to node

dropping (with the default probability of 0.2), as node dropping

proves to be generally well across different datasets [24, 54]. The

default GNN encoder ofGraphCL, i.e., GIN [50], is then enhanced by

O-GSN to consider cohesive-substructure features. We implement

this method mainly based on PyGCL. The hidden dim is 128, and

the batch size is chosen from {16, 64} according to the size of the

graphs.

Table 11 presents the graph classification performance for differ-

ent 𝑓 functions in Eq. 7. Overall, there are no substantial differences

between different functions. We select 𝑓 (𝑥) = 𝑥2
in our implemen-

tation. We set the dropping probability decay factor 𝜖 through grid

search for each dataset. Table 12 shows the grid search results.

Table 11: Accuracy(%) on graph classification for different 𝑓
functions.

IMDB-B IMDB-M AVG.

GraphCL 71.48±0.44 48.11±0.60 59.80

+ CTAug (𝑓 (𝑥) = 𝑥) 76.85±1.60 50.98±0.62 63.92
+ CTAug

(
𝑓 (𝑥) =

√
𝑥
)

76.12±1.10 51.42±0.75 63.77

+ CTAug
(
𝑓 (𝑥) = 𝑥2

)
76.60±1.02 51.12±0.57 63.86

(2)CTAug-JOAO. InCTAug-JOAO, both node and edge-dropping
operations are kept. The usage of the node or edge-dropping is

determined by the optimization algorithm in JOAO [53]. Other

parameter settings are the same as CTAug-GraphCL.
(3) CTAug-MVGRL. We implement this framework mainly

based on MVGRL. We use GCN as the encoder, and the number of

hidden units is 128. The batch size is 64. The factor 𝜂 controlling

the degree to consider cohesive subgraphs in Eq. 11 is also set with

grid search on the specific dataset, and the grid search results are

shown on Table 12.

(4) CTAug-GRACE & GTAug-GCA. We implement this frame-

work based on GRACE and GCA. We select degree centrality as

the centrality measure, and the parameter settings are the same as

in the original GRACE [59] and GCA [60] papers. The dropping

probability decay factor 𝜖 is fixed at 1. The function 𝑓 in Eq. 7 is

instantiated as 𝑓 (𝑥) = 𝑥 .

It should be noted that for computational resource and perfor-

mance reasons, we only employ Module 1 for the CTAug-GraphCL
and CTAug-JOAO methods on the RDT-B dataset, as well as for the

CTAug-MVGRL method on the COLLAB, ENZYMES, and PROTEINS
datasets.

G PRE-COMPUTATION TIME (SEC. 5.3)
Table 13 presents the average pre-computation time for one graph.

For the computation of O-GSN features for high-degree graphs, it

takes up to a few seconds, while low-degree graphs only require

0.00𝑋 seconds. Calculating 𝑘-core and 𝑘-truss subgraphs typically

only takes 0.00𝑋 ∼ 0.0𝑋 seconds. We take 3-clique as substructure

to calculate O-GSN features for COLLAB, and we choose 3,4,5-clique
for other datasets.

H DATASETS AND BASELINES FOR NODE
CLASSIFICATION (SEC. 5.6)

For node classification, we conduct experiments on Coauthor-CS,
Coauthor-Physics and Amazon-Computers (Table 14).
• Coauthor-CS&Coauthor-Physics [37] are two co-authorship

graphs based on the Microsoft Academic Graph from the KDD

Cup 2016 challenge. In these graphs, nodes are authors; node

features represent paper keywords for each author’s papers;

edges reveal co-authorship relationships; class labels indicate

their most active research field.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Graph Contrastive Learning with Cohesive Subgraph Awareness Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 12: Specific factor values obtained by grid search.

Parameter IMDB-B IMDB-M COLLAB RDT-B RDT-T ENZYMES PROTEINS

𝜖 (CTAug-GraphCL) 0.2 0.4 0.2 0.4 0.2 0.4 0.8

𝜖 (CTAug-JOAO) 0.2 0.2 0.2 0.2 0.2 0.2 1.0

𝜂 (CTAug-MVGRL) 0.4 0.4 0.2 / / 0.6 0.8

Table 13: Average pre-computation time (seconds per graph).

Precomputation IMDB-B IMDB-M COLLAB RDT-B RDT-T ENZYMES PROTEINS

O-GSN features 5.357 3.868 4.355 0.005 0.001 0.002 0.003

𝑘-core subgraphs 0.001 0.001 0.015 0.007 0.000 0.001 0.001

𝑘-truss subgraphs 0.001 0.001 0.081 0.009 0.000 0.001 0.001

Table 14: Dataset statistics for node classification task.

Dataset #Nodes #Edges #Features #Classes Avg. Degree 𝑘max (𝑘-core) 𝑘max (𝑘-truss)

Coauthor-CS 18,333 81,894 6,805 15 8.93 19 20

Coauthor-Physics 34,493 247,962 8,415 5 14.38 18 12

Amazon-Computers 13,752 245,861 767 10 35.76 53 33

• Amazon-Computers [37] is a co-purchase relationship net-

work built based on Amazon, where nodes represent goods, and

two goods are connected if customers frequently buy them to-

gether. Each node has a bag-of-words feature (encoding product

reviews), and class labels indicate the product category.

We use eight representative baseline methods that learn node em-

bedding in an unsupervised manner. Node features are considered

in all the baselines.

• DeepWalk [33] uses local information obtained from random

walks to learn latent representations without supervision. Note

that the original DeepWalk does not consider node features.

To make a fair comparison, we concatenate a node’s Deep-
Walk-learned embedding and raw features together as a node’s

representation.

• GAE, VGAE [19] uses latent variables to learn representations

for graphs based on variational auto-encoders.

• DGI [44] maximizes the mutual information between patch

representations and high-level summaries of graphs.

• GMI [32] maintains the consistency of information between

the input and output of a graph neural encoder.

• MVGRL [15] contrasts encodings from first-order neighbors

and a graph diffusion.

• GRACE [59] generates two graph views by corruption and

learn node representations by maximizing the similarity be-

tween these two views’ node representations.

• GCA [60] augments the original graph adaptively by incorpo-

rating centrality priors (e.g., degree centrality).

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

15

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cohesive Subgraph
	2.2 Topology Augmentation in GCL

	3 The CTAug Framework
	3.1 Topology Augmentation Enhancement
	3.2 Graph Learning Enhancement
	3.3 Extension for Node Embedding Learning

	4 How CTAug Powers GCL?
	4.1 Topology Augmentation Enhancement
	4.2 Graph Learning Enhancement

	5 Experiments
	5.1 Datasets and Settings
	5.2 Methods
	5.3 Main Results
	5.4 Ablation Study
	5.5 Parameter Analysis
	5.6 Node Classification Results

	6 Conclusion and Limitations
	References
	A Proofs for Theoretical Analysis (Sec. 4)
	B Empirical Analysis Details (Sec. 4)
	C Substructure Selection Details for O-GSN (Sec. 3.2.1)
	D k Distribution for Datasets (Sec. 5.1)
	E Baseline Methods Details (Sec. 5.2)
	F Implementation Details for CTAug variants (Sec. 5.2)
	G Pre-computation Time (Sec. 5.3)
	H Datasets and Baselines for Node Classification (Sec. 5.6)

