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ABSTRACT

A recent trend in text-to-speech synthesis (TTS) is to construct models capable
of generating naturalistic speech that adheres to a textual style prompt describ-
ing the speaker’s voice and speaking style. In this paper, we propose a crisper
definition of style-prompted TTS by categorizing style tags by how they can be
collected (automatic tags obtainable using signal processing tools e.g. low-pitched
and slow; demographic tags obtainable using speaker demographics e.g. male and
American accent; and abstract tags which need human-annotations e.g. authorita-
tive and awed) and what they represent (intrinsic tags inherent to speaker identity
e.g. gender, average pitch, texture; and situational tags specific to utterance-level
speaking styles e.g. emotion). Compared to previous work, we expand the space
of style prompts substantially by covering 47 abstract tags, 10 demographic tags
and 6 automatic tags. For abstract intrinsic tags, we annotate a subset of speak-
ers from the VoxCeleb (Nagrani et al., 2020) dataset. For abstract situational tags,
we leverage existing speaking-style-based datasets Expresso (Nguyen et al., 2023)
and EARS (Richter et al., 2024). We train a style-prompted TTS model based on
Parler-TTS (Lyth & King, 2024; Lacombe et al., 2024b) using these datasets and
find that our model outperforms baselines on speech-style consistency metrics.
Our collected dataset and model will be open-sourced.

1 INTRODUCTION

Text-to-speech systems that are controllable by natural language text style prompts a.k.a. style-
prompted TTS systems e.g. (Guo et al., 2022; Ji et al., 2024; Leng et al., 2023; Vyas et al., 2023;
Lacombe et al., 2024b; Jin et al., 2024) have been gaining prominence in the past few years. Rather
than providing control via a few seconds of reference speech (Peng et al., 2024; Wang et al., 2023)
exhibiting the desired style, these models allow users to do so via natural language instead, which
provides a more explicit, intuitive, and privacy-preserving control medium. Training these models
requires a dataset which has speech utterances annotated with natural language style prompts.

When humans describe speech speaking styles in natural language, they do so with a rich and di-
verse vocabulary spanning a wide range of style tags covering aspects like pitch, texture, emotion
and rhythm and more. We propose a crisper definition of style-prompted TTS that rigorously catego-
rizes style tags along two axes: the mechanism by which one can obtain tag annotations (automatic,
demographic and abstract tags) and what speech aspects the tag represents (intrinsic tags and situa-
tional tags). Based on an extensive survey of previous style-prompted TTS work (Section 2), we find
that existing work offers natural-language control over some, but not all of these categories, often
overlooking the importance of covering more abstract speech style tags that cannot be automatically
extracted. More importantly, the only current open-source model, Parler-TTS (Lyth & King, 2024;
Lacombe et al., 2024b) only supports automatic tags, which motivates the need for an open-source
model that can support all categories.

We create a list of 63 style tags consisting of 26 abstract intrinsic, 21 abstract situational, 10 demo-
graphic and 6 automatic tags covering a wide variety of speech styles. As described in Section 3,
to support all these tags, we collect abstract intrinsic human annotations for a subset of the Vox-
Celeb (Nagrani et al., 2020) dataset, creating StyledVoxCeleb. While not originally proposed for
style-prompted TTS, Expresso (Nguyen et al., 2023) and EARS (Richter et al., 2024) cover a rich
variety of abstract situational speaking styles and hence we reuse them for TTS. We finetune Parler-
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Figure 1: An overview of our data collection procedure.

TTS (Lacombe et al., 2024b; Lyth & King, 2024) on these datasets and find (Section 5) that our
model outperforms competitive baselines on speech-style consistency metrics.

In summary, our contributions are:

• We provide a crisper categorization of style tags and perform an extensive survey of prior
work based on this categorization.

• We create StyledVoxCeleb, a subset of the VoxCeleb (Nagrani et al., 2020) dataset an-
notated with abstract intrinsic style tags, reuse Expresso and EARS for TTS, and train
style-prompted TTS model that cover all categories of speech style tags.

• We demonstrate that training on our dataset pool results in improved performance on
speech-style consistency metrics, obtaining +0.1 in consistency MOS and +0.06 tag re-
call (metrics introduced in Section 4) as compared to the next best baseline.

We will open-source our model and collected data upon publication.

2 BACKGROUND AND MOTIVATION

We can describe speech styles with a rich and diverse vocabulary, capturing aspects such as pitch,
emotion, rhythm, speaking rate and more. We draw a distinction between intrinsic tags that are tied
to a speaker’s identity and persist across all utterances belonging to that speaker (e.g. average pitch
and vocal texture) and situational tags that describe the speaking style (e.g. emotion) of individual
utterances. 1 This distinction is important for deciding a data collection strategy; while intrinsic tags
can be annotated on a per-speaker basis, situational tags must be annotated on a per-utterance basis,
which is significantly more expensive. Furthermore, depending on how the tags can be collected,
we distinguish between abstract tags that are complex and require human annotations (e.g. clarity,
texture, emotion) , demographic tags obtainable from speaker demographics (e.g. gender and accent)
and automatic tags 2 that are obtainable via signal processing tools (e.g. pitch/F0, energy, speaking
rate). Abstract and automatic tags can be both intrinsic and situational, while demographic tags are
always intrinsic since they pertain to speaker demographics. In the rest of this paper, we classify
tags into four categories: abstract intrinsic, abstract situational, demographic and automatic tags
(combining intrinsic and situational automatic tags).

Style-prompted TTS should support a diverse space of speech style prompts, covering many tags
across all categories. We perform a comparison of prior work summarized in Table 1 and make
several observations. First, we notice that none of the previous datasets apart from AudioBox and

1Some tag categories can be both intrinsic and situational and need to be handled carefully; see Appendix A.
2While there exist automatic emotion classifiers (Ma et al., 2023) for a subset of emotions used by prior

work e.g. (Jin et al., 2024), we found that their quality on our datasets is unsatisfactory. In this work, we still
consider them to be abstract tags.
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Dataset Abst Dem Auto # Abst Open-Sourced
Intr Sit Data Model

PromptSpeech (Guo et al., 2022) ✗ ✓ ✓ ✓ 4 ✓ ✗
NLSpeech (Yang et al., 2023) ✗ ✓ ✓ ✓ ? ✗ ✗
PromptStyle (Liu et al., 2023) ✗ ✓ ✓ ✓ ? ✗ ✗
TextrolSpeech (Ji et al., 2024) ✗ ✓ ✓ ✓ 8 ✓ ✗
Coco-Nut (Watanabe et al., 2023) ✓ ✓ ✓ ✓ ? ✓ ✗
PromptTTS2 (Leng et al., 2023) ✗ ✗ ✓ ✓ 0 ✗ ✗
MEAD-TTS (Guan et al., 2024) ✗ ✓ ✓ ✓ 8 ✓ ✗
AudioBox (Vyas et al., 2023) ✓ ✓ ✓ ✓ ? ✗ ✗
ParlerTTS (Lacombe et al., 2024b) ✗ ✗ ✓ ✓ 0 ✓ ✓
LibriTTS-P (Kawamura et al., 2024) ✓ ✗ ✓ ✓ 44 ✓ ✗
SpeechCraft (Jin et al., 2024) ✗ ✓ ✓ ✓ 7 ✓ ✗
Ours ✓ ✓ ✓ ✓ 47 ✓ ✓

Table 1: A comparison of existing style-prompted TTS papers. The # Abst column denotes the
number of abstract tags in each dataset. We denote with the ? symbol those datasets whose abstract
tag count is unknown. To the best of our knowledge, only AudioBox and Coco-Nut cover all three
abstract tag categories. Of these, the AudioBox dataset is closed-source and Coco-Nut is only 8
hours long, making both unusable for training a TTS model. While LibriTTS-P (Kawamura et al.,
2024) has nearly as many tags as ours, it does not cover abstract situational tags.

Coco-Nut cover all categories. Both are unusable for training TTS models, since AudioBox is
closed-source and Coco-Nut is only 8 hours long. This motivates the need for a new, open-sourced
TTS model that can take handle tags from all categories, especially since the only open-source
model, Parler-TTS, does not support any abstract tags at all. Second, all of the datasets that support
abstract situational tags (emotions) only cover a maximum of 8 tags, motivating the need to sub-
stantially expand the space of abstract situational tags. Thirdly, while some of these datasets (e.g.
TextrolSpeech) start with a limited set of tags (e.g. automatically extracted pitch, speaking rate and
volume) and synthetically expand their style prompt vocabulary (e.g. by using LLMs to rewrite style
tags with synonyms) to better mimic how humans would describe speech styles, this does not add a
real signal to the dataset.

We resolve these issues by emphasizing our focus on a variety of abstract style tags that are difficult
to extract using automatic extractors, requiring human annotations. We manually create a list of
47 abstract tags (26 intrinsic, 21 situational) covering pitch, texture, clarity, volume and rhythm for
intrinsic and emotion and expressiveness for situational tags. Combined with 10 demographic tags
(2 gender, 8 accents) and 6 automatic tags (3 pitch levels and 3 speaking rate levels), we cover a total
of 63 tags; the full list is available in Appendix A. We set up 4 datasets aiming to target as many of
these 63 tags as possible, and describe their creation in Section 3.

3 DATASETS

3.1 DATA COLLECTION

We present an overview of our dataset collection procedure for each tag category in Figure 1. We
set up four datasets: (a) StyledVoxCeleb, a subset of the VoxCeleb (Nagrani et al., 2020) dataset
we annotate with abstract intrinsic tags, (b) Expresso (Nguyen et al., 2023) and EARS (Richter
et al., 2024), two existing expressive speech datasets whose speaking styles we remap to abstract
situational tags, and (c) a 150-hr subset of LibriTTS-R (Koizumi et al., 2023) we call LTTSR-150
annotated with demographic and automatic tags. We annotate StyledVoxCeleb, Expresso and EARS
with demographic and automatic tags as well. Preprocessing information for each dataset can be
found in Appendix C. Across all datasets, every audio clip’s style tag annotations are converted to
a natural language style prompt using a Mistral (Jiang et al., 2023) LLM prompted with a comma-
separated list of style tags and instructed to generate a style prompt (details in Appendix D). Every
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Dataset # Spkr # Utts. Dur.
StyledVoxCeleb 596 116k 256.08h
Expresso 4 16k 30.21h
EARS 107 15k 60.58h
LTTSR-150 2410 95k 178.52h

Table 2: Dataset statistics.

example in our datasets thus consists of (a) an audio clip, (b) a text style prompt generated from the
annotated style tags and (c) a text transcription.

ABSTRACT INTRINSIC TAGS We create the StyledVoxCeleb dataset by annotating a subset of
VoxCeleb (Nagrani et al., 2020) (a dataset consisting of natural, in-the-wild speech from YouTube
celebrity interviews with high speaker diversity spanning accents, ages and ethnicities) with abstract
intrinsic tags by hiring workers on Amazon Mechanical Turk. We apply this annotation to all utter-
ances spoken by that speaker. This data collection effort is complementary to prior work (Kawamura
et al., 2024) that collected such data for the LibriTTS-R (Koizumi et al., 2023) dataset. We show in
Section 5 that our dataset outperforms LibriTTS-P when evaluated for speech-style consistency.

Quality Control We provide a qualification task to Amazon Mechanical Turk workers to check
their ability to understand style tags. The task consists of 6 manually selected pairs of speech clips
where one exhibits a style and one doesn’t. We ask annotators to select which one exhibits the style
and keep only those 38 annotators that succeeded on at least 5 examples; details in Appendix E.

Collecting Annotations Given a speaker, we create a representative audio file consisting of mul-
tiple utterances (3 − 8 clips whose total duration is 20 − 40 seconds) concatenated together. We
provide this audio file, the speaker’s name and a list of our intrinsic speech style tags with defini-
tions (see Appendix A) to annotators on Amazon Mechanical Turk and ask them to write at least 3
distinct style tags. Our annotation UI can be viewed at Appendix E. For every celebrity, we collect
5 annotations. We observe that the annotations are very subjective and different annotators select
different tags for the same celebrity. Therefore, we keep only those tags that at least 2 annotators
agree on in our train and dev set, and only those that at least 3 annotators agree on in our test set.

Selecting Celebrities We expect famous or distinctive celebrities to be more familiar to annota-
tors. We select such a subset using three loose heuristics: (a) we parse an IMDb list of 163 celebrities
with distinctive voices 3 and find 39 in VoxCeleb, (b) we ask ChatGPT to name 300 celebrities with
distinctive voices and find 112 in VoxCeleb, and (c) we find Wikipedia pages for VoxCeleb celebrity
using the Python Wikipedia API 4 and select the top 200 celebrities by length of their Wikipedia
pages, assuming page length is a proxy for fame. Combining all three sources and accounting for
overlap, we obtain a list of 302 celebrities. After collecting annotations for these celebrities, we find
that the style tag distribution is imbalanced, with 12 tags 5 having fewer than 5000 annotated clips.
We use GPT-4 (OpenAI et al., 2024) to obtain a rough list of celebrities that are likely to have these
tags by instructing it to output a list of style tags that are associated with a celebrity’s voice (details
in Appendix D) for every celebrity in VoxCeleb. Since we can only provide the celebrity’s name
rather than the actual speech clip, GPT-4 needs to rely on its parametric knowledge base in order
to complete this task; while imperfect, it may still provide some signal towards which celebrities
to target. We select a maximum of 40 celebrities per tag, ending up with a list of 187 additional
celebrities to annotate (most tags have far fewer than 40 celebrities labelled by GPT-4). Finally, we
annotate 107 additional celebrities, resulting in a total of 596 celebrities for StyledVoxCeleb.

We split every speaker in StyledVoxCeleb into train (80%), dev (10%), and test (10%), ensuring that
there is no transcript overlap across splits.

3https://www.imdb.com/list/ls001839542/
4https://github.com/martin-majlis/Wikipedia-API
5lisp, hushed, pitchy, staccato, monotonous, punctuated, vocal fry, guttural, singsong, soft, stammering,

shrill
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ABSTRACT SITUATIONAL TAGS We reuse Expresso (Nguyen et al., 2023) and EARS (Richter
et al., 2024), two existing expressive speech datasets that consist of speakers acting out various
emotions and speaking styles. Expresso contains 4 speakers while EARS contains 107. We filter
out neutral and non-speaking utterances in both datasets, lightly preprocess them (details in Ap-
pendix C) and then label each utterance by simply mapping the reading styles in each dataset to our
tag vocabulary (details in Table 6). For example, the projected style in Expresso gets mapped to the
tag loud. We split the Expresso dataset into train (80%), dev (10%), and test (10%), ensuring that
there is no transcript overlap across splits. Some utterances in EARS do not have emotion labels;
we place them all into the train set. We split the utterances that have emotion labels into train (80%),
dev (10%), and test (10%), ensuring overall that there is no transcript overlap across splits.

DEMOGRAPHIC AND AUTOMATIC TAGS We use either dataset metadata or GPT-4 for obtaining
accent and gender, and automatic signal processing tools for extracting pitch and speaking rate.
Following previous work (Lyth & King, 2024), we also extract the noise level of the audio (this is
not a style tag; rather, it aids the model to differentiate between clean and noisy speech). We extract
these tags for all 3 datasets: StyledVoxCeleb, Expresso and EARS. Additionally, we annotate a 150-
hr subset of the train split of the LibriTTS-R (Koizumi et al., 2023) dataset (along with its dev and
test sets) we call LTTSR-150 with gender, pitch, speaking rate and noise levels.

Gender and Accent For StyledVoxCeleb, we prompt GPT-4 with the name of the celebrity and
ask it to output the celebrity’s gender and accent. 6 The prompt and generation details are available
in Appendix D. We use dataset metadata for Expresso, EARS and LibriTTS-R (for EARS, we use
the ‘native language’ column of the dataset as a proxy for accent).

Pitch, Speaking Rate and Noise Levels We use the Dataspeech (Lacombe et al., 2024a) library
to label our datasets with pitch, speaking rate, and noise levels. For pitch, we use PENN 7 using
default hyperparameters and compute the mean pitch across all utterances of a given speaker. Then,
we apply gender-dependent thresholds to label each speaker with low-pitched (male: < 115.7 Hz,
female: < 141.6 Hz), high-pitched (male: > 149.7 Hz, female > 184.5 Hz) or medium-pitched
(male: 115.7 Hz < x < 149.7 Hz, female: 141.6 Hz < x < 184.5 Hz); these thresholds are
gender-dependent since humans perceive male speakers to have lower pitch than female speakers on
average. For speaking rate, we use g2p 8 to convert the text transcription to phoneme transcriptions
and then use the number of phonemes per second (PPS) as the speaking rate. We apply thresholds to
label each utterance with slow (< 11.5 PPS), fast (> 19.1 PPS) and measured (11.5 PPS < x < 19.1
PPS). Finally, for noise levels, we use the signal-to-noise ratio (SNR) extracted using Brouhaha 9 and
use Parler-TTS (Lacombe et al., 2024b)’s noise bins to assign each utterance one of the following
noise tags: very noisy, quite noisy, slightly noisy, moderate ambient sound, slightly clear, quite clear,
very clear.

3.2 DATASET STATISTICS

We report dataset statistics for each dataset we setup (StyledVoxCeleb, Expresso, EARS and the
LibriTTS-R subset LTTSR-150) combining train, dev and test splits in Table 2. We report the
distribution of each accent tag in Figure 2 and abstract tags in Figure 3. The distribution of gender
tags is 56.6% male, 43.4% female, of pitch tags is 21.4% low-pitched, 41.5% medium-pitched and
37.05% high-pitched, and of speaking rate tags is 12.6% slow, 75.7% measured and 11.6% fast.

4 EXPERIMENTAL SETUP

We use the Parler-TTS (Lyth & King, 2024; Lacombe et al., 2024b) model as our backbone for all
experiments. Parler-TTS is a style-prompted TTS model trained on 45K hours of data, consisting of
the English split of Multilingual Librispeech (Pratap et al., 2020) and LibriTTS-R (Koizumi et al.,
2023) annotated with automatic style tags.

6We manually verified a subset of the generated metadata and found it to be of high quality.
7https://github.com/interactiveaudiolab/penn
8https://github.com/roedoejet/g2p
9https://github.com/marianne-m/brouhaha-vad
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Model Architecture The crux of Parler-TTS is an autoregressive decoder speech language model
that generates DAC (Kumar et al., 2023) audio tokens. To condition on text transcripts, the text
transcript is tokenized using the Flan-T5 (Chung et al., 2022) tokenizer, passed through a linear
embedding layer, and prepended to the input sequence of the decoder. To condition on the text
style prompt, the text encoder, a frozen Flan-T5 model, maps the text style prompt to a sequence of
hidden-state representations that are attended to via cross-attention layers in the decoder.

Training We initialize our model with the parler-tts/parler-tts-mini-v1 open-
source checkpoint and use the official Parler-TTS 10 library to finetune on the training splits of
the 4 datasets we set up; StyledVoxCeleb, Expresso, EARS and LTTSR-150. We train on 4 NVIDIA
A40 GPUs with a batch size of 8 and 2 gradient accumulation steps. We train for 9 epochs with a
non-warmup cosine learning rate scheduler, a peak learning rate of 0.00008 and a weight decay of
0.01.

Inference We perform inference runs using the default Parler-TTS generation hyperparameters
(temperature 1.0, repetition penalty 1.0, 2580 total tokens). Since autoregressive TTS is prone to
decoding instabilities, we attempt to mitigate this by retrying inference a maximum of 3 times,
stopping when the WER between the ASR transcript of the generated sample and the input text
(using the same setup as our WER evaluation metric) falls below 20 or choosing the sample with the
lowest WER out of the 3 generated samples.

4.1 EVALUATION DATASET

We start by combining the test splits of StyledVoxCeleb, Expresso, EARS and LibriTTS-R. For each
tag in our tag vocabulary, we find a maximum of 5 clips that have been annotated with that tag and
select them for inclusion in our evaluation dataset. For each clip, we refer to this tag as its tag of
interest. We randomly select pitch and speaking rate with a 50% probability for inclusion along with
the tag of interest, gender, noise level and then generate a style prompt from these tags for use in
evaluation. Our final evaluation dataset consists of 298 clips.

4.2 EVALUATION METRICS

We use metrics that evaluate the speech clip for three desiderata: speech quality, content correctness
and speech-style consistency. For human evaluation metrics, we use annotators recruited on Amazon
Mechanical Turk; Appendix E contains details about our annotation user interfaces and annotation
costs. For every human evaluation metric, we collect 3 human annotation scores per test dataset
item. We report the mean and 95% confidence intervals of the MOS scores (Ribeiro et al., 2011).

Speech Quality Following previous work (Vyas et al., 2023; Kawamura et al., 2024), we compute
a Naturalness MOS metric where each human annotator is provided speech clips and asked to rate
its naturalness and realisticity (human-likeness) on 5-point Likert scales.

Content Correctness We report a WER metric that computes the Word Error Rate (WER) be-
tween (a) the ASR transcript of the speech clip and (b) the input transcript, after applying a text
normalizer to both texts. We use the distil-whisper/distil-large-v2 (Gandhi et al., 2023) model for
ASR, and Whisper11 for text normalization.

Speech-Style Consistency Following Kawamura et al. (2024) and Ji et al. (2024), we report a
Consistency MOS metric where each human annotator is provided a speech clip and the input style
prompt and asked to rate the consistency between the two on a 5-point Likert scale.

In addition, we report fine-grained tag-level evaluation. Instead of evaluating adherence to the whole
style prompt (e.g., A woman’s speech is delivered slowly with a high-pitched tone, expressing dis-
gusted emotions, in a clear and quiet environment), we ask annotator to select style tags they hear.
For example, for the same example, annotator might select female, disgusted as pronounced style.

10https://github.com/huggingface/parler-tts
11https://github.com/huggingface/transformers/blob/main/src/

transformers/models/whisper/english_normalizer.py
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For each tag, we compute its recall (fraction of instances in which the relevant tag was selected by
the annotator), and report the average tag recall as well as per-category average tag recall.

For two automatic tag types (pitch and speaking rate), we further report an Accuracy score. We
run the generated speech clip through the same pitch and speaking rate extractors used to build our
datasets to obtain predicted style tags. We use the style prompt’s gender to decide which pitch bins
to use and label each generated utterance individually, rather than speaker-level mean aggregation
used for building the datasets. We compute the speaking rate from the phoneme sequence obtained
from the ASR transcript of the generated speech. We then compare the predicted tags pitch with the
desired tags in the input style prompt, giving a score of 1 if the labels match and 0 otherwise.

4.3 BASELINES

Due to the absence of open-source style-prompted TTS models other than Parler-TTS, all our base-
lines finetune Parler-TTS on different datasets with the same training and inference setup as ours.

Init. This is the Parler-TTS model that we initialize all models with.

+LTTSR We finetune Parler-TTS on the LibriTTS-R (Koizumi et al., 2023) dataset. We extract
gender tags using dataset metadata and automatic tags using our signal processing pipeline for ex-
tracting pitch, speaking rate and noise levels. While Parler-TTS is already trained on LibriTTS-R, it
uses different binning thresholds for pitch and speaking rate; this baseline ablates that mismatch.

+LTTSP,Exp,EARS We finetune Parler-TTS on a combination of existing datasets that cover all
tag categories: Expresso and EARS for abstract situational tags and LibriTTS-P (Kawamura et al.,
2024) which annotates the LibriTTS-R dataset with abstract intrinsic tags. LibriTTS-P provides 3
annotations (each consisting of a list of style tags) per speaker and each style tag optionally has one
of two qualifiers (slightly and very) that indicates the strength of the style tag. We preprocess the
annotations by removing tags with the slightly qualifier and remapping some style tags to those in
our vocabulary (see Appendix C). For each clip in the dataset, we select one of the three annota-
tions corresponding to its speaker at random and combine with automatic tags extracted using our
pipeline. This baseline ablates the use of LibriTTS-P versus our StyledVoxCeleb dataset.

5 RESULTS

Model Cons. MOS ↑ Tag Recall ↑ Accuracy % ↑
All Intr Sit Dem Auto Pitch Rate

GT 3.76± 0.57 0.62 0.56 0.62 0.74 0.70 56.52 93.24

Init. 3.14± 0.44 0.25 0.23 0.16 0.28 0.59 62.73 77.01
+LTTSR 3.15± 0.47 0.26 0.20 0.19 0.33 0.58 73.91 66.21
+LTTSP,Exp,EARS 3.19± 0.31 0.30 0.24 0.29 0.26 0.60 72.67 75.00

Ours 3.29± 0.40 0.36 0.29 0.29 0.52 0.61 72.05 75.68

Table 3: Speech-Style Consistency results comparing various baseline models and ours. We report
the mean and 95% confidence intervals for Consistency MOS. Tag recalls are averaged across all
tags (All) and broken down by each tag category (Intr. is abstract intrinsic, Sit. is abstract situational,
Demo. is demographic and Auto. is automatic). We find that our model outperforms baselines at
consistency MOS and overall Tag Recall.

Speech-Style Consistency Table 3 reports model performance along various metrics that aim to
evaluate how well the generated speech adheres to the provided text style prompt. The consis-
tency MOS ranges from 1 − 5, the tag recall from 0 − 1 and the accuracies from 0 − 100%. Our
model achieves the highest consistency MOS score, verified by running a paired bootstrap signifi-
cance test comparing the two highest MOS scores (ours and the +LTTSP,Exp,EARS baseline) that
finds the difference is statistically significant with a p-value of 0.004. Furthermore, the Tag Recall
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Model NMOS ↑ WER ↓
GT 3.94± 0.42 8.10

Init. 3.05± 0.25 4.91
+LTTSR 3.12± 0.20 4.75
+LTTSP,Exp,EARS 2.99± 0.18 6.33

Ours 2.80± 0.16 9.12

Table 4: Speech Quality and Content Correctness results. We report the mean and 95% confidence
intervals for Naturalness MOS.

scores provide a more finegrained understanding of model performance. We outperform all base-
lines, including the LTTSP,Exp,EARS baseline on intrinsic tags, showing the benefits of training
on StyledVoxCeleb versus LibriTTS-P. Since both our model and the LTTSP,Exp,EARS baseline
is trained on Expresso and EARS, we match performance on situational tags, but outperform other
baselines, demonstrating the benefits of training with Expresso and EARS. Additionally, our model
outperforms on demographic tags as well due to the presence of a rich diversity of accents in Styled-
VoxCeleb. When automatic tags (pitch and speaking rate) are evaluated via automatic accuracy
scores, we find that the baselines trained without any abstract tags (Init. and +LTTSR) slightly out-
perform our model by about 2%. However, all models perform similarly at automatic tags when
evaluated using tag recall, showing that humans do not exhibit strong preferences between models
when evaluating pitch or speaking rate. We note that the ground truth pitch accuracy is unusually
low because of a mismatch between how pitch is computed during evaluation versus dataset con-
struction: the pitch is computed on an utterance-level basis during evaluation, while it was obtained
on a speaker-level basis when constructing the style prompt in the dataset.

Speech Quality and Content Correctness Table 4 compares the naturalness and content correct-
ness of the generated speech across models. We find that the models trained without any abstract tags
(+LTTSR and Init.) widely outperform our model and the +LTTSP,Exp,EARS baseline on both nat-
uralness and WER. Training on LibriTTS-P, Expresso and EARS, despite being clean, high-quality
audio data worsens both WER and naturalness. We hypothesize this is due to the introduction of
speaking styles that are harder to transcribe and the relatively small scale of the Expresso and EARS
data. Furthermore, training on StyledVoxCeleb (Ours) worsens it further, which we hypothesize is
due to the presence of noisier in-the-wild speech (VoxCeleb) in our training data, which introduces
speech artifacts in the generated speech. This is a limitation of the audio quality and size of our
dataset, which we expect will be mitigated as we scale our dataset to more speakers (for example,
Voicecraft (Peng et al., 2024), a voice cloning TTS model trains on large-scale, in-the-wild noisy
data and achieves low Word Error Rates). The WER of Init. and LTTSR is substantially lower than
the ground truth; this is likely because both models are trained on read audiobook data which is
easier for humans and ASR systems to understand.

6 RELATED WORK

Style-Prompted Text-to-Speech Models Table 1 already compares several existing style-
prompted text-to-speech papers with respect to our tag categorizations. PromptTTS (Guo et al.,
2022), one of the first papers to introduce style-prompted TTS, consists of 4 emotions and automatic
tags and is trained on a synthetic emotion dataset; PromptTTS2 (Leng et al., 2023), a successor fo-
cuses on an improved model architecture. Other emotion-focused work includes InstructTTS (Yang
et al., 2023), PromptStyle (Liu et al., 2023) and MEAD-TTS (Guan et al., 2024) which focus on
collecting or annotating emotional data using human voice actors or annotators. TextrolSpeech (Ji
et al., 2024) also focuses on emotion by collating several existing emotion classification datasets
for use for style-prompted TTS. Recently, Parler-TTS (Lacombe et al., 2024b; Lyth & King, 2024),
AudioBox (Vyas et al., 2023) and SpeechCraft (Jin et al., 2024) proposed scaling up style-prompted
TTS to a much larger pool of data; while Parler-TTS and SpeechCraft did so solely using automatic
tagging pipelines, AudioBox used a combination of automatically tagged data and internally anno-
tated stylistic datasets to train the model. LibriTTS-P (Kawamura et al., 2024) explores abstract
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intrinsic tag annotations by annotating speakers in LibriTTS-R (Koizumi et al., 2023). Other rele-
vant, contemporaneous style-prompted TTS work includes Chen et al. (2024); Zhu et al. (2024);
Yamamoto et al. (2024).

Style Control for other Speech Tasks Recent work has explored natural language style prompts
for tasks other than TTS. DreamVoice (Hai et al., 2024), like LibriTTS-P, annotates LibriTTS-R
with abstract intrinsic tags, but for the task of voice conversion. The contemporaneous VCTK-
RVA (Sheng et al., 2024) annotates the VCTK dataset with intrinsic tags for training a speech editing
system that conditions on a style prompt instruction.

7 CONCLUSION

We propose a crisper definition of speech style tags, categorizing into abstract intrinsic, abstract
situational, demographic and automatic tags. We use this to substantially expand the space of style
prompts by supporting 63 total tags. Emphasizing the importance of abstract tags, we collect intrin-
sic tag human annotations for a subset of speakers in the VoxCeleb (Nagrani et al., 2020) dataset to
create StyledVoxCeleb, and reuse Expresso (Nguyen et al., 2023) and EARS (Richter et al., 2024)
for situational tags. We train style-prompted TTS models based on Parler-TTS (Lacombe et al.,
2024b; Lyth & King, 2024) that show improved performance on speech-style consistency metrics
compared to competitive baselines, while they underperform baselines on speech quality and content
correctness metrics.

8 LIMITATIONS

Expensive human annotation Our dataset collection strategy relies on expensive, slow human
annotation for abstract intrinsic and situational tags. While it is significantly cheaper to annotate
intrinsic tags on a speaker level rather than situational tags on an utterance level, it is unclear how
to substantially and cheaply scale either type of annotation. Future work could potentially look
into using synthetic data augmentation (Défossez et al., 2024) for automatically expanding existing
annotated datasets.

Noisy data While VoxCeleb is beneficial as it has a high diversity of speakers and is sourced
from a more realistic, in-the-wild speech domain, it negatively affects model performance when
evaluated for speech quality and content correctness due to inherent background noise in a majority
of its utterances. While this affects our models that are trained on a subset of VoxCeleb, we expect
that scaling to more speakers will mitigate this issue to some extent.

Language coverage We limit our current experiments to English data; there is a lot of potential
to expand style-prompted TTS to more languages, both in terms of the language of the utterance
and the language of the style prompt. Some work (Jin et al., 2024; Yamamoto et al., 2024) explores
other languages like Chinese and Japanese in addition to English for style-prompted TTS.
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A LIST OF SPEECH STYLE TAGS

This is the list of tags we consider:

• Intrinsic:
– Abstract:

* Pitch: Shrill, Nasal, Deep.
* Texture: Silky, Husky, Raspy, Guttural, Vocal-fry.
* Clarity: Crisp, Slurred, Lisp, Stammering.
* Volume: Booming, Authoritative, Loud, Hushed, Soft.
* Rhythm: Pitchy, Flowing, Monotonous, Staccato, Punctuated, Hesitant,

Singsong, Enunciated.
– Demographic:

* Gender: Male, Female.
* Accent: American, British, Scottish, Canadian, Australian, Irish, Indian, Ja-

maican.
– Automatic:

* Pitch Levels: High-pitched, Medium-pitched, Low-pitched.
• Situational:

– Abstract:
* Emotion: Enthusiastic, Happy, Angry, Saddened, Awed, Calm, Anxious, Dis-

gusted, Scared, Confused, Bored, Sleepy, Pained, Guilt, Sarcastic, Sympathetic,
Admiring, Desirous.

* Expressiveness: Animated, Laughing, Passive, Whispered.
– Automatic:

* Speaking Rate Levels: Fast, Measured, Slow.

We note that our datasets contain more accent tags than those shown here, but these 8 accents are
most represented in our datasets, and hence we evaluate on only these accents (accent distribution of
our datasets can be viewed at Figure 2 Some tag categories like volume, speaking rate and rhythm
can span both intrinsic and situational; however, we collect data for volume with intrinsic human
annotations, and automatically obtain speaking rate tags on an utterance-by-utterance basis i.e. in a
situational manner. Therefore, we place them in their respective intrinsic or situational categories.
We collect all rhythm tags with intrinsic annotations, and place them in the intrinsic category; how-
ever, 2 rhythm tags (singsong, enunciated are also present in our situational datasets which we also
use. The manually written definitions for each style tag can be found in Table 5.

B DATASET STATISTICS

We report dataset statistics for accent distribution in Figure 2 and abstract tags distribution in Fig-
ure 3.

C DATASET PREPROCESSING

For all datasets, we convert audio from their original format to the .wav format, apply loudness
normalization using SoX and PyDub 12 such that the peak volume of each audio is −0.1 dB, and
discard all audios shorter than 2 s or longer than 30 s. If an utterance does not come with ground
truth transcripts, we synthesize transcripts using the Whisper (Radford et al., 2022) large-v3
ASR model. We describe dataset-specific preprocessing below:

12https://sourceforge.net/projects/sox/, https://github.com/jiaaro/pydub
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Attribute Description

High-pitched A voice with a distinctly high frequency.
Shrill A high-pitched, piercing, and sharp voice.
Nasal A whiny voice that sounds like someone is speaking through their nose.
Medium-pitched A voice with a medium frequency that is neither very high or low-pitched.
Low-pitched A voice with a distinctly low frequency.
Deep A low-pitched, resonant, rich voice.
Silky A smooth, pleasant and soothingly soft voice.
Husky A slightly rough, low voice that conveys a gritty texture.
Raspy A rough, grating, somewhat harsh voice.
Guttural A deep, throaty, gravelly voice.
Vocal-fry A creaky, breathy voice that occurs when vocal cords flutter and produce a sizzling, popping sound

at ends of sentences.
American A voice with an American accent.
British A voice with a British accent.
Scottish A voice with a Scottish accent.
Canadian A voice with a Canadian accent.
Australian A voice with a Australian accent.
Irish A voice with an Irish accent.
Indian A voice with an Indian accent.
Jamaican A voice with an Jamaican accent.
Male A male voice, often having a lower pitch.
Female A female voice, often having a higher pitch.
Booming A loud, resonant, commanding, powerful voice.
Authoritative A confident, clear voice with a tone that conveys expertise and assurance.
Loud A voice with a high volume.
Hushed A soft, quiet, low-volume voice typically used to convey intimacy or secrecy.
Soft A gentle, low-volume, calm and soothing voice typically used to convey subtlety.
Whispered A breathy, low-volume voice typically used to speak discreetly.
Crisp A clear, distinct, articulate voice.
Slurred An unclear, difficult-to-understand voice that blends together sounds and words.
Lisp A speech pattern that involves difficulty in speaking certain consonants e.g. ’s’ and ’z’ are spoken

with a ’th’ sound.
Stammering A voice with pauses, repetitions and prolongations of words that disrupt the speech flow.
Singsong A melodious voice that rises and falls in a musical manner.
Pitchy A jarring, somewhat unstable voice that often strays from the correct pitch.
Flowing A clear, coherent, seamless and easy-to-understand voice.
Monotonous A dull, flat voice whose pitch, tone and speed remains constant throughout.
Staccato A disjointed, unclear voice with breaks in-between syllables or words.
Punctuated An engaging voice with clear, deliberate pauses that emphasize key words.
Enunciated A voice that clearly and precisely articulates words, with each syllable distinctly pronounced.
Fast speed A rapidly speaking, quick voice with few pauses.
Measured speed A controlled, deliberate voice that has an even tone and a moderate speed.
Slow speed A voice with a slower speaking rate.
Hesitant An uncertain, tentative voice, often marking a lack of confidence, reluctance or confusion.
Enthusiastic A lively, energetic, positive voice that conveys excitement and interest in the topic being discussed.
Happy A warm, positive and joyful voice.
Angry A raised voice that conveys anger, frustration or displeasure, characterized by raised volume and

emphatic speech patterns.
Saddened A voice with a low, subdued, and unenergetic tone that conveys distress, disappointment or sadness.
Awed A voice that conveys the speaker’s admiration, wonder or reverance of something the speaker appre-

ciates.
Calm A calm, gentle and serene voice that conveys the speaker’s relaxed and peaceful emotion.
Anxious A voice that conveys nervousness and anxiety, often marked by rapid or jittery speech patterns.
Disgusted A intonated voice that conveys repulsion and disgust by appropriately altering its pitch and rhythm.
Scared A shaky, rapid voice that reflects the speaker’s anxiety or fear.
Confused A voice characterized by indecision and a lack of clarity, often marked by hesitance.
Bored A voice, often monotonous, that indicates lack of enthusiasm and disinterest.
Sleepy A soft, slow, low-energy voice that indicates tiredness.
Pained A voice characterized by a strained, trembling tone that indicates sorrow or anguish.
Guilt A voice that carries a wavering, hesitant tone that hints at discomfort or regret.
Sarcastic A speaking style that is characterized by a distinct tone of irony that suggests that the speaker’s

intention is to mock or convey contempt.
Sympathetic A gentle, compassionate voice that reassures and seeks to empathize with the listener.
Admiring An appreciative, positive and complimentary manner of speaking.
Desirous An emotional voice that conveys deep longing or desire.
Animated A energetic, heightened voice characterized by varied intonations or emotional intensity.
Laughing A voice with intermittent sounds of laughter conveying amusement and joy.
Passive A tentative, subdued and uninterested voice.

Table 5: Manually written style tag definitions.
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Figure 2: Accent distribution across datasets.

Figure 3: Histogram of abstract tag distribution across datasets.

C.1 STYLEDVOXCELEB

We combine the VoxCeleb1 and VoxCeleb2 datasets. We apply a noise removal model, Voice-
fixer (Liu et al., 2021) to all audios, since we observed that a significant proportion of VoxCeleb
data is noisy (the median SNR for VoxCeleb data is 31.76 dB computed by Brouhaha (Lavechin
et al., 2023); compare to 59.49, 50.42 and 61.70 for Expresso, EARS and LibriTTS-R respectively).
We then run a language identification model Lingua 13 over the transcripts and only keep those ex-
amples whose transcripts are identified as English text and discard celebrities with fewer than 10
English audio clips.

13https://github.com/pemistahl/lingua-py

15

https://github.com/pemistahl/lingua-py


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C.2 EXPRESSO

The Expresso dataset consists of 4 voice actors speaking various utterances in different speaking
styles. We discard the default, narration and non-verbal speaking styles, since they do not exhibit
the situational tags we are interested in. Since some of the data is in the form of long freeform dual-
channel conversations between two voice actors, we use the Voice Activity Detection data provided
by the dataset to splice the long conversation into two channels and VAD-segmented chunks, so that
we can use each chunk as an utterance. We then remap each speaking style to our tag vocabulary as
described in Section C.4.

C.3 EARS

The EARS dataset consists of 107 speaking enacting various speaking styles. We discard the long
freeform examples as they are not labelled with speaking styles. We also discard interjection, nonver-
bal and vegetative speaking styles since they do not contain natural speech. We remap the speaking
styles in the rest of the data to our tag vocabulary as described in Section C.4.

C.4 TERM REMAPPING

We remap terms in the Expresso, EARS, and LibriTTS-P datasets to terms in our vocabulary using
the mapping in Table 6.

Original Term Mapped Term(s) Original Term Mapped Term(s)
feminine female awe awed
halting stammering bored bored, passive
tensed anxious desire desirous, animated
relaxed calm projected loud
powerful authoritative fearful scared
muffled slurred amusement happy
masculine male distress anxious, scared
fluent flowing disappointment saddened, passive
weak hushed realization awed
sharp crisp amazement awed
reassuring sympathetic disgust disgusted
lively enthusiastic fear scared
cool calm anger angry
happy happy, animated adoration admiring
laughing laughing, animated confusion confused
sad saddened interest enthusiastic
whisper whispered serenity calm
singing singsong contentment calm, passive
angry angry, animated sadness saddened
desire desirous extasy happy
interest enthusiastic pain pained
serenity calm cuteness happy
contentment calm, passive relief calm, passive
sadness saddened pride admiring
loud loud embarrassment anxious
whisper whispered

Table 6: Terms in existing datasets remapped to terms in our vocabulary.
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D LLM PROMPTING

D.1 IMPERFECTLY LABELLING CELEBRITIES WITH STYLE TAGS

We use the gpt-4-0125-preview version of GPT-4 via the OpenAI API with the default hy-
perparameters (temperature 1.0, top-p 1.0, maximum 2048 tokens). We prompt it with the name of
the celebrity and ask it to output a list of style tags associated with the celebrity’s voice with the
following prompt template:

Given the name of a famous celebrity or actor, you must retrieve
your knowledge about that celebrity's voice and map the voice
to a subset of speech style attribute labels provided to you.
Here is the list of speech style attribute types you should
pay attention to, along with attribute labels for each type:

↪→

↪→

↪→

↪→

<attributes>
- **Pitch:** Shrill, Nasal, Deep.
- **Texture:** Silky, Husky, Raspy, Guttural, Vocal-fry.
- **Volume:** Booming, Authoritative, Loud, Hushed, Soft.
- **Clarity:** Crisp, Slurred, Lisp, Stammering.
- **Rhythm:** Singsong, Pitchy, Flowing, Monotonous, Staccato,

Punctuated, Enunciated, Hesitant.↪→

</attributes>

Your task is to associate the celebrity with a subset of these
attributes, taking into account how the celebrity always
sounds like. Only use the attributes that are extremely
salient to the celebrity's voice i.e. their unique speech
styles. Don't create any new attributes because you will fail
the task if you do so.

↪→

↪→

↪→

↪→

↪→

The celebrity is {name}. First generate a paragraph of around 5
sentences, within <description> tags, using your knowledge,
that describes the salient attributes of {name}'s voice. Then,
within <attribute> tags, generate a list of comma-separated
speech style attributes, from the above attributes list, that
saliently apply to {name}. Use the following format:

↪→

↪→

↪→

↪→

↪→

<description>
(Description goes here)
</description>
<attribute>
(Comma-separated list of attributes)
</attribute>

D.2 EXTRACTING GENDER AND ACCENT

We use the gpt-4-0125-preview version of GPT-4 via the OpenAI API with the default hyper-
parameters (temperature 1.0, top-p 1.0, maximum 2048 tokens). We prompt it with the name of the
celebrity and ask it to output the celebrity’s gender and accent with the following prompt template:

Tell me the accent and the gender of {name} formatted as
Accent: <accent>
Gender: <gender>

D.3 GENERATING STYLE PROMPTS

We use the Mistral-7B-Instruct-v0.2 LLM (Jiang et al., 2023) to generate prompts via the Dataspeech
library with a per-device batch size of 32 and sample with a temperature of 0.6, a top-p of 1.0 with
a maximum 256 new tokens. We prompt the model with a comma-separated list of style tags and
instruct it to generate a style prompt with the following prompt:
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An audio sample of a person's speech can be described in several
ways using descriptive keywords. These keywords may include
demographic data about the person (e.g. gender, name, accent)
and voice characteristics (e.g. related to pitch, gender,
texture and rhythm, volume, clarity, speaking rate, emotion,
expressiveness).

↪→

↪→

↪→

↪→

↪→

You will be provided several keywords that describe the speech
sample. Your task is to create a simple text description using
the provided keywords that accurately describes the speech
sample. Ensure that the description remains grammatically
correct, easy to understand, and concise. You can rearrange
the keyword order as necessary, and substitute synonymous
terms where appropriate. After you are provided the keywords,
generate only the description and do not output anything else.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

An example is provided below.
female, confused, hesitant, slightly noisy environment

Description: A woman's speech sounds confused and hesitant,
recorded in a slightly noisy environment.↪→

Now, generate a description for the following example:
{all_tags_str}

Description:

E HUMAN ANNOTATION: DETAILS

E.1 ANNOTATION DETAILS

We recruit Amazon Mechanical Turk workers certified as Verified workers with a minimum approval
rate of 98% and at least 500 successful HITs. We perform a qualification task using 6 pairs of
manually selected clips from VoxCeleb or Expresso where one clip exhibits a style (one of deep,
whispered, scared, slurred, high-pitched, enunciated) and the other doesn’t, and select those 38
annotators that succeed in finding the right clip for at least 5 of the 6 pairs. We use this pool
of annotators for our data collection. For evaluation metrics, we use all Verified workers with a
minimum approval rate of 98% and at least 500 successful HITs rather than just our pool of 38
workers for faster evaluation turnaround. We pay annotators $9/hr.

E.2 ANNOTATION USER INTERFACES

We display the annotation UIs for qualification task in Figure 4, crowdsourcing abstract intrinsic
style tag annotations in Figure 5, speech quality evaluation in Figure 6, and speech-style consistency
evaluation in Figure 7.
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Figure 4: Annotation UI for selecting qualified annotators.

Figure 5: Annotation UI for crowdsourcing abstract intrinsic style tag annotations.
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Figure 6: Annotation UI for collecting Naturalness Mean Opinion Score ratings.
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Figure 7: Annotation UI for collecting Consistency Mean Opinion Score and Tag Recall ratings.
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