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Abstract

Explainable Artificial Intelligence (XAI) methods focus on helping human users better un-
derstand the decision making of an AI agent. However, many modern XAI approaches are
not actionable to end users, particularly those without prior AI or ML knowledge. In this
paper, we generalize an XAI approach called Responsibility, which identifies the most re-
sponsible training instance for a particular model decision based on observing the model’s
training process. This instance can then be presented as an explanation: “this is what
the AI agent learned that led to that decision.” We present experimental results across a
number of domains and architectures, along with the results of a user study. Our results
demonstrate that Responsibility can help improve the performance of both human end users
and secondary ML models.

1 Introduction

Explainable Artificial Intelligence (XAI) refers to methods aimed at making AI systems more understandable
to human users (Biran & Cotton, 2017). While many such XAI approaches have been developed, a majority
of them make use of post-hoc analysis, attempting to induce an explanation from observing the behavior of a
final, trained model (Adadi & Berrada, 2018; Das & Rad, 2020; Schwalbe & Finzel, 2024). More broadly, it is
challenging to design XAI systems that provide explanations which are understandable to non-expert users
(Mohseni et al., 2021) and those that address these issues are often limited to a single application domain
such as image classification (Vilone & Longo, 2020; 2021). Thus, despite the large number of existing XAI
approaches, we still require novel, general methods that are understandable to non-experts.

In this paper, we investigate an XAI approach termed Responsibility1 that focuses on direct examination
of the training process rather than on post-hoc induction, motivated by a desire to answer the question:
“What did the AI agent/model learn that led to making that decision?” as well as to introduce an XAI
approach that is actionable in terms of giving users information to help them solve tasks. To accomplish this,
the approach detects the training example that is the most responsible for a model’s decision at inference
time. While there have been several prior methods attempting to identify the most influential training
samples (Koh & Liang, 2017; Ghorbani & Zou, 2019), they typically attempt to identify objective truths
of the training data, regardless of the final state of a model after a particular training process. Given the
stochastic nature of model training, the most influential training samples may not necessarily be the most
decisive. In comparison, Responsibility observes a particular training process to determine what instances
impacted the model during training and the kinds of impact they had. Thus, the focus here is on the effects
of a specific training run on a final model. This arguably allows the approach to more precisely answer the
aforementioned question than prior instance-based approaches.

In this work, we significantly expand on prior work that applied Responsibility for co-creative design using
a Reinforcement Learning agent (Khadivpour & Guzdial, 2020), by generalizing the approach with a more
formal definition. We demonstrate the ability to apply this formalization to a wider range of model archi-
tectures and tasks including image classification, text classification and image generation. Additionally, we

1Note that this is unrelated to and not to be confused with responsible AI, which provides guidance for the implementation
of AI approaches in organizations with a focus on fairness, transparency, accountability, and safety (Arrieta et al., 2020)
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evaluate the approach via a user study over an image classification task, comparing the approach to existing
XAI methods. We find that Responsibility can improve the performance of human and secondary models
compared to prior XAI approaches.

2 Related Work

Explainable AI (XAI) methods aim to make AI models, particularly deep neural networks (DNN), more
transparent and understandable. A majority of XAI approaches however have been limited to a particular
type of problem with a recent survey (Nauta et al., 2023) of 312 XAI articles finding that 63% focused on
classification tasks. Responsibility differs from such approaches as it is generalizable to different types of
deep learning problems.

A large amount of prior XAI work focuses on image classification and relies on the concept of saliency
in images (Itti et al., 1998). Saliency refers to each pixel’s unique quality in an image. Several gradient-
based methods have been used for explaining the predictions of DNNs (Simonyan et al., 2014; Sundararajan
et al., 2017; Shrikumar et al., 2017). In such methods, each gradient measures how much a change in each
input feature would impact the model’s predictions in a small neighborhood around the input. Like many
XAI approaches, these derive an explanation from a model after it is trained. In comparison, we focus on
observing the changes in the model during the training process. In focusing on training, Responsibility can be
viewed as falling under instance-based or example-based XAI methods, which study explainability through
the lens of the training data in ML contexts. ‘Example’ here refers to individual training datapoints. These
methods offer explanations by tracing the decisions of a model back to influential examples. One common
method is influence functions (Koh & Liang, 2017) which identify the training samples with the greatest
influence on a model’s output for a given input by simulating the effect of removing or altering a single
training sample on the model’s output. There are several such example-based methods (Yeh et al., 2018;
Feldman & Zhang, 2020; Hara et al., 2019; Ghorbani & Zou, 2019; Ilyas et al., 2022) however they typically
require training a large number of models to have reliable results, which can make them impractical for
large-scale or complex models (Akyürek et al., 2022). Some methods, such as those providing approximate
influence scores or gradient-based scoring (Pruthi et al., 2020; Chen et al., 2021; Schioppa et al., 2022; Park
et al., 2023), offer computational benefits by avoiding the need to retrain models. These approximations can
be less reliable, particularly when the relationship between training data and model predictions is highly
complex and nonlinear (Basu et al., 2020). Such approaches attempt to identify something objectively true
about the training set, in many cases approximating a leave-one-out training process, in which each instance
of the training data is left out and the model retrained from scratch. Responsibility instead focuses only
on the process by which the final weights of a specific model emerged, ignoring other alternative training
possibilities.

Classic XAI approaches for DNNs include class activation maps (CAMs) (Zhou et al., 2016; Selvaraju et al.,
2017) which highlight the discriminative regions of an image used by a convolutional network to predict the
class of the image. Other popular XAI methods for visualizing feature interactions and importance include
Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) which derive explanations by
training interpretable, surrogate models on local perturbations of predictions made by more complex, black
box models and SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017) which leverage Shapley
values to estimate the contribution made by features towards a certain prediction. We compare Responsibility
to these approaches in our human subject study.

The methods discussed above have been primarily designed for classification tasks. Extending these to
generative models can be challenging due to the absence of clear labels or definitive ground truth. Prior
work has looked at data influence in generative models such as GANs (Terashita et al., 2021), VAEs (Kong
& Chaudhuri, 2021), and diffusion models (Lin et al., 2024; Dai & Gifford, 2023; Georgiev et al., 2023; Zheng
et al., 2023). Responsibility differs from these model-specific approaches in terms of being applicable to both
discriminative and generative tasks.
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3 Responsibility

In this section, we define the Responsibility approach, which aims to identify the most responsible training
sample(s) for a particular decision made by a model. Responsibility is approximated as a quantifiable value
representing the influence of each training sample on the model’s learned behavior. It consists of three
steps: 1) Responsibility allocation, 2) activation identification and 3) Responsibility-activation mapping.
We describe each of these below.

3.1 Responsibility Allocation

This first step tracks the influence of training samples on weight updates. During training, the change in
each weight at index i, in each training step, is calculated as:

∆wi = w′
i − wi (1)

where wi and w′
i represent the weight at index i before and after a training step respectively. Each weight

wi is associated with a responsibility array R with size equal to the total number of training samples.
During training, each calculated weight change ∆wi,m associated with a sample m, is recorded in R at
the corresponding index of m. This accumulation of ∆wi,m values during training enables tracking the
cumulative influence of each sample m on each weight wi. The update to R for each weight wm is as follows:

Ri[m] += ∆wi,m (2)

where R is the responsibility array, m is the sample index in the training data and ∆wi,m is the contribution
of sample with index m to the change in weight wi. When training ends, Ri represents how much each
sample influenced the changes in weight wi during training. To allocate ∆wi to samples, we introduce a
proportional allocation method which accounts for the fact that different samples within a batch have varying
levels of influence on the weight change (Ruder, 2016). This method proportionally allocates Responsibility
by utilizing the loss function since it provides a reasonable approximation of the influence of a sample within
a batch by reflecting how well the model performs for each sample with a higher loss indicating that the
sample will have a larger influence on subsequent weight changes. Thus, using the loss allows estimating
each sample’s relative influence on the overall weight change. For each sample j in the batch, its influence
on ∆wi is calculated as follows:

∆wi,j = Lj

Lbatch
· ∆wi (3)

where Lj is the loss for the jth sample and Lbatch is the total loss for the batch. This proportionally divides
∆wi among all samples in the batch based on their individual losses, assigning more Responsibility to samples
with higher loss values. Each ∆wi,j then represents the contribution of jth sample of the batch to the overall
weight change. We add this ∆wi,j value to the index m of the responsibility array R as follows:

m = t ∗ b + j (4)

Ri[m] += ∆wi,j (5)

where t is the training step, b is the batch size and m is the sample index in the training data.

3.1.1 Responsibility Allocation Types

After training, the responsibility array Ri represents how much each training sample influenced the changes
in weight wi during training and can thus be used to identify the most influential samples for wi. There
are several ways to do this, each offering different perspectives to understand how training samples influence
model weights. In this paper, we consider the following allocation types:

Positive Allocation: respi,pos = arg max((Ri))
Negative Allocation: respi,neg = arg min((Ri))
Maximal Allocation: respi,max = arg max(abs(Ri))
Minimal Allocation: respi,min = arg min(abs(Ri))
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Positive and negative allocations could be useful in tasks like classification to pinpoint helpful or harmful
data points respectively. Alternatively, maximal allocation highlights the most influential samples overall,
regardless of polarity, making it useful for identifying key drivers of model behavior. Minimal allocation, in
contrast, may be applied to models like diffusion models to identify samples with negligible effects on noise
prediction i.e., samples that share the structure found at a particular step of the diffusion process.

3.2 Activation Identification

This step identifies the most critical weights of the network during inference. We start with a set of weights
W , which includes all weights in a particular network layer. The choice of layer is domain-specific and
depends on the target problem. From W , the goal is to identify a subset W ′ containing the most critical
weights during inference, which may include single or multiple weight(s). W ′ can be determined by inspecting
the activation of the layer: a = g(x · W ) where x is the input, W is the weight matrix, g is the activation
function and a is the activation. The most critical weights can then be selected based on the following
strategies, analogous to the Responsibility allocation types:

Positive Activations: argmax(a) → Wpos

Negative Activations: argmin(a) → Wneg

Maximal Activations: argmax(abs(a)) → Wmax

Minimal Activations: argmin(abs(a)) → Wmin

These enable analyzing the behavior of weights from various perspectives. Positive and negative activations
identify weights that most positively and negatively contribute to the output respectively, which might be
useful in classification tasks by helping identify training samples that led to correct/incorrect predictions.
On the other hand, maximal and minimal activations can help identify weights with the largest and smallest
influence on model behavior.

3.3 Responsibility-Activation Mapping

This combines the prior steps to approximate the training samples that had the most influence on the
most critical weights. For each weight, the most responsible training sample is determined using one of the
Responsibility allocation strategies. Then, one of the activation identification strategies is used to pinpoint
the most critical weights based on their activation values. The two are linked to identify the most responsible
samples M for each weight w within W ′. This enables drawing direct connections between individual training
samples and critical activations during inference.

4 Clarifying Experiments

In this section, we present experiments for improving a reader’s understanding of Responsibility. We use
MNIST (LeCun et al., 1998) and Fashion MNIST (Xiao et al., 2017) for these experiments due to their sim-
plicity. For most examples, we used LeNet-5 (LeCun et al., 1998) with its 61,706 trainable parameters as the
model, as it is simple but reasonably strong. We trained LeNet-5 and tracked the most responsible training
values across all layers, though we focus on the first and last layers in these examples. All Responsibility
values in this section were computed using the positive allocations and activations.

4.1 Responsibility Values

First, we compute the mean and standard deviation of the changes of the neurons of the final layer, for all
training data points. These values show how much each training data point is responsible for the changes
of each neuron during the training phase. The mean and standard deviation are 6.84e−10 and 3.36e−4,
respectively. The mean is very close to zero while the standard deviation is substantially higher. This
follows our intuition that the contribution of a single training data point in a large dataset is likely small.
The standard deviation demonstrates that some data points have extreme contribution values. This matches
our intuition that we can differentiate a small subset of individual training data points that have a large
impact on the final model, which supports the basic concept of Responsibility.
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4.2 Inter-class Responsibility

Figure 1: Inter-class Responsibility heatmap. Rows represent classes and columns represent the corresponding
neurons.

Next, we inspect the overall impact of particular classes in the training data in terms of the particular
neurons used for classification. We expect each training data instance alters all neurons of the last layer
during training phase, but each training data instance has a very different impact in terms of the degree of
change. We sum up these changes and separate them with respect to the labels of the training instances.
We plot this inter-class Responsibility in Figure 1. The rows represent training data classes and the columns
represent the neuron associated with a particular class (0-9 for MNIST). We anticipate that training data
points of the same class would have the largest impact on the neuron associated with predicting that class,
which Figure 1 supports. The maximum Responsibility values for each row and column appear on the
diagonal, indicating that training data of a particular class always causes the largest changes in neurons
representing the same class. We observe symmetrically low values between the digit pairs (3,5), (2, 7), (4,9),
and (7,9). As the two classes in each pair have similar appearances, this likely is due to competition between
them. That is, training data points representing the digit “5” decrease the values of the neuron associated
with predicting “3”, making it less likely for the model to predict “3” when given a 5. Therefore, by visualizing
Responsibility as in Figure 1, we obtain a visualization of the model’s training process. Specifically, we can
view darker and brighter cells as cases where the model was more often incorrect and correct respectively
during training.

4.3 Identifying Mislabeled Examples

Here, we investigate the utility of Responsibility for identifying mislabeled training data. We expect misla-
beled examples to be among the most responsible data points due to the fact that they should stand out as
distinct from other data points of the same class. By the most responsible data points, we mean training
samples which have the largest impact on the neurons of the first layer during training. We calculate this
impact by considering the absolute changes of the neurons in the first layer. We focus on the first layer over
the final layer here as we anticipate the majority of the discriminatory features to be found in the first layer.
We use 1000 randomly sampled images from Fashion MNIST to classify T-Shirts and Tops against Shirts.
We randomly flip the label for 10% of our training points. We require a simpler model for this example as
it involves retraining the neural network a considerable number of times and we also want to ensure that
the model would not be robust to mislabeled data. As such, we train a convolutional neural network with
one convolutional (8 kernels of size 3x3) and two fully connected layers (sizes of 128 and 2) on this noisy
dataset. We then order the 1000 training points both according to their Responsibility as well as randomly
to produce 2 sequences. We then iterate through both sequences, representing a manual check of each of
the 1000 datapoints. When we reach a particular datapoint, we correct its label if it was incorrect and then
retrain the model. Our goal would be to minimize the amount of manual checks required. Figure 2 visualizes
this process. The left graph gives the average test accuracy on the Fashion MNIST test set for our model at
each index for the Responsibility and Random sequences. The right graph gives the number of “flips” that
have been fixed or correct mislabels at each sequence. It is clear that using Responsibility we can identify
mislabeled data points sooner than with a random inspection. Thus, we can have a higher test accuracy in
early stages of data debugging using Responsibility.
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Figure 2: Impact of using Responsibility to inspect and correct mislabeled data in comparison to a random order.

4.4 Understanding Misclassified Examples

Figure 3: Four randomly selected test samples and their associated most responsible training instance.

Here, we consider how Responsibility can help us better understand classification errors. We again use
Fashion MNIST along with the same model as the prior experiment except with the final layer expanded to
10 classes. After training, we used the model to evaluate 600 of the test images, equally sampled across all
classes. Even with such a simple model, the total number of misclassified instances is only 70. We visualize
four of these 70 examples (left) and their most responsible training instance (right) in Figure 3. Notice that
the most responsible instances have similar appearances to the test instance even though they belong to
another class. Pairs (C) and (D) are particularly close, with nearly the same color and silhouette. Example
(A) in Figure 3 is one of seven pullovers misclassified as a coat. Of these seven, six share the same most
responsible training image. A similar pattern can be identified for the other three examples—(B) is one of
the seven shirts misclassified as a T-shirt, with five of these sharing the same most responsible image, (C)
represents an example of one of the three shirts misclassified as a pullover, with the given most responsible
training image being the same for all three and (D) represents one of the seven T-shirts misclassified as
a shirt. Its most responsible training instance is shared with five of these seven. This demonstrates how
Responsibility can give insight in terms of where our model fails and the kinds of classification problems it
struggles with. This could also help in removing training samples that might confuse or negatively impact a
model, and may also suggest that these examples could confuse humans as well. We performed an additional
experiment using LeNet-5 and MNIST to test the impact of different random seeds on the final Responsibility
values. Results can be found in the appendix.
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5 Classification Experiments

Since our goal with Responsibility is to improve human understanding, we performed an experiment to ap-
proximate this process using a secondary model, with the added goal of demonstrating the generalizability of
Responsibility by applying it to both image and text classification. The evaluation uses a classification model,
the actor, along with a secondary model, the critic, that attempts to predict the binary performance (right
or wrong) of the actor.2 This critic thus acts as a proxy for a human trying to improve their understanding
of the actor model. We can test the impact of including or excluding a variety of output XAI explanations
as part of the critic’s training data. If these explanations increase its accuracy, it can be seen as improving
its “understanding” of the actor, and may suggest that it could also improve human understanding. This
can be seen as a type of simulated user study (Nauta et al., 2023).

For evaluation, we start by splitting our datasets into training, validation, and test sets. We then train
the actor using the training set but do not try to achieve the best possible accuracy. In fact, it is best if
the actor has relatively low accuracy as long as it is consistent. This lets us best evaluate the impact of
different XAI explanations on the critic’s accuracy. Thus after training, there are samples in our validation
set that the actor could not classify correctly. We refer to these as incorrect validation instances. For the
critic, we would ideally like a balanced dataset, with an equal number of cases in which the actor is correct
and incorrect. Thus, we collect all the incorrect validation instances and sample an equal number of correct
validation instances. We do not attempt to sample based on the classes in the actor’s classification problem,
since we focus on the binary question for the critic of whether the actor is right or wrong. We call this new
dataset the baseline critic training set. This baseline set allows us to determine the accuracy of the critic
without any explanations. We can then employ various XAI approaches to produce visual explanations to
augment the data of this training set. We concatenate each baseline training set instance with its associated
XAI explanation. Notably, this only works when the XAI approach can output explanations appropriate as
model inputs. But given our focus on instance-based approaches, this is trivial. If we find an XAI approach
that improves critic accuracy, it may make it possible to improve the accuracy of the actor, representing a
direct benefit to the original model.

We perform evaluation on two problem domains: image classification using CIFAR-10 and sentiment classi-
fication using PL04. We use these datasets for the purposes of illustration and due to their common usage.
For both tasks, we compare Responsibility to a nearest neighbor (NN) approach, while also comparing to
influence functions (IF) (Koh & Liang, 2017) for the image classification task. For computing Responsibility
values, we use positive allocations and activations. We use the weights W of the last layer in the network
since this layer directly impacts the prediction. From W , we determine a subset of the most critical weights
W ′ as previously discussed. A potential concern for Responsibility is whether the most responsible training
instances capture the reasoning of the model, or if they simply represent the most similar training instance.
Thus we include the NN method for which, we consider each instance of the baseline critic training set,
identify the actor model’s predicted class for this instance, and find the training instance most similar to
the given baseline critic instance using mean squared error. This evaluation lets us determine comparatively
how helpful each approach is to the critic learning the behavior of the actor and approximates how much
each XAI approach would help an end-user understand and predict model behavior.

5.1 CIFAR-10

CIFAR-10 (Krizhevsky et al., 2009) is a popular image classification problem and dataset. We split the
dataset into 30K training, 20K validation and 10K test sets. For our actor, we used a 4-layer CNN with max
pooling and dropout, followed by 2 fully connected layers. We use ReLU throughout with a final softmax
layer. We train the model using crossentropy loss via an SGD optimizer, a learning rate of 1e-3 and a batch
size of 1. We train a second, simple 1-layer CNN as a critic. We use the same setup as the actor, except we
use the Adam optimizer with a learning rate scheduler decreasing from 1e-4 to 1e-5 and a batch size of 32.

Table 1 shows the performance metrics of our critics on the test set. The Responsibility critic outperforms
the other approaches by roughly 3% in this domain. This demonstrates a small but clear improvement over

2Note that despite the terminology, this is not an example of a reinforcement learning actor-critic method.
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NN, influence functions or no extra information (Baseline). Of particular interest is that the baseline without
extra information outperformed NN in terms of accuracy and precision. This suggests that NN is actively
harmful to the critic, which follows from the fact that it does not reflect any information from the actor
model outside of the predicted class. We note that the actor’s accuracy on the test set is only 60%. While
low for CIFAR-10, we expect this is due to the reduced training data. Further, as stated before, it was not
our goal to train a highly accurate model.

Responsibility IF NN Baseline
Accuracy 0.641 0.612 0.582 0.586
Precision 0.656 0.620 0.574 0.585
Recall 0.583 0.584 0.638 0.590
F1 Score 0.619 0.602 0.604 0.588

Table 1: CIFAR-10 domain performance metrics

Responsibility NN Baseline
Accuracy 0.747 0.626 0.686
Precision 0.762 0.804 0.722
Recall 0.974 0.661 0.658
F1 Score 0.855 0.725 0.689

Table 2: The PL04 domain performance metrics

5.2 PL04

To test the generalizeability of Responsibility, we also include the PL04 dataset in this experiment (Pang &
Lee, 2004). It consists of 2000 movie reviews equally divided into positive and negative sentiment classes. We
preprocessed the data by eliminating punctuation marks, non-characters, extra spaces, and single-lettered
words followed by lowercasing and lemmatization. We split our data into 1700 training, 150 validation, and
150 test sets, drawing equally from both classes for all splits. We used a CNN-LSTM architecture for both
the actor and the critic models based on (Camacho-Collados & Pilehvar, 2017). We again used a batch
size of 1 to simplify identification of the most responsible training instance. For validation, we compared
the performance to the original published results. We performed a 10-fold cross-validation and found that
we performed equivalently to the original work. We did not include influence functions as they were not
originally designed to work with text data.

Results are shown in Table 2. The Responsibility critic generally outperforms the others by roughly 10%. We
again note the same effect from CIFAR-10 where NN led to worse accuracy. However, NN does outperform
the other two approaches in precision. This may be due to there being only two classes, compared to the
ten of CIFAR-10. The Responsibility critic is much more consistent, with a far higher recall. Since PL04
only has two classes, we can treat the accuracy of the critic as roughly equivalent to its accuracy on the
actor’s classification task. This means that the critic marginally improves over the performance of the actor
(0.733 vs. 0.747). While this is a minor improvement, it demonstrates a further utility of Responsibility.
Compared to CIFAR-10, PL04 seems better suited to Responsibility. However, this may be due to dataset
size, models, and problem complexity (10 vs 2 classes). Thus, we do not think that the approach is generally
more suited to NLP problems and results mainly demonstrate that Responsibility can help an AI critic in
multiple domains. To test if this generalizes to human users, we performed a human subject study.

6 Human Subject Study

We ran a user study3 on Amazon Mechanical Turk (AMT) to compare Responsibility with prior XAI ap-
proaches. We chose AMT due to our focus on non-expert users and due to the number of subjects required
given the size of this study. We focused on the task of users guessing the prediction of an image classification
model which we chose as the majority of XAI work has focused on image classification (Nauta et al., 2023).
We asked users to predict the classification of the model as an approximation for how well users understood
the model’s behavior from the XAI explanation. We used four popular XAI approaches for classification
tasks: Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016), Shapley Additive
exPlanations (SHAP) (Lundberg & Lee, 2017), Grad-CAM (Selvaraju et al., 2017), and influence functions
(Koh & Liang, 2017). We chose these as they are general approaches with distinct visualizations. We fo-
cused on visualizations so that non-experts could differentiate between the explanations. We also included

3This study was reviewed and approved by a Research Ethics Board at < Redacted for Anonymity >
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Figure 4: XAI approaches in the user study along with Responsibility and the Nearest Neighbor baseline.

the Nearest Neighbor (NN) approach from the prior experiment. This was a strong baseline, essentially
informing the user of the correct class, but without any basis in what the model learned. For Responsibility,
we again used the positive allocations and activations.

Example visualizations of all approaches for a given test image are shown in Figure 4, with the input test
image on the left. The correct class is cat but the predicted class is dog. The Responsibility image appears
to clearly convey the predicted class, but may seem somewhat unusual or lacking similarity to the original
test image. However, the dark background of the Responsibility image shares some similarity with the
dark cat. Considering the LIME visualization, we can confirm that the model is paying attention to the
shared darkness between the two images. We found this type of shared characteristic common for the most
responsible instances compared to particular input images.

6.1 Dataset and model

We used VGG-16 (Simonyan & Zisserman, 2014) as the trained model for comparing the explanations
generated by the different methods. Unfortunately, many popular XAI image classification datasets have
too low of a resolution for meaningful non-expert human judgment. We thus constructed a novel dataset
by combining 5 image datasets with relatively high resolutions—Caltech-UCSD Birds-200-2011 (Wah et al.,
2011), CAT (Zhang et al., 2008), Stanford Dogs (Khosla et al., 2011), FGVC Aircraft (Maji et al., 2013),
and Stanford Cars (Krause et al., 2013). We trained VGG-16 as a classifier on these 5 image classes, using
the same training setup as in the CIFAR-10 evaluation in order to identify the responsible training instances.
For this study, we only used test images and their associated explanations.

6.2 Methodology

We employed a comparative evaluation due to the benefits of ranking evaluations in human subject studies
in comparison to rating evaluations (Martinez et al., 2014). Thus, each user was randomly assigned two
approaches. Since the users were non-experts, they were given a short tutorial on image classification
and XAI. They were then introduced to their two assigned approaches with two example test images (one
correct, one incorrect) and the associated explanations from both approaches. These introductory examples
were fixed, so all users assigned to the same approaches saw the same images and visualization. For the
main experiment, each user was given five images with the explanation visualizations of their two assigned
approaches. For each image, users were informed of the correct class and the model’s prediction. After these
initial five “training” examples, they were presented with five new “test” images along with the associated
explanation visualizations. However, for these five examples, users were not given the model’s predicted
class but instead asked to pick which of the five classes they thought the model predicted. The model’s
prediction could be correct or incorrect, and the users only had their experience and the pair of explanations
to guide their decision. Thus the first five examples acted as a training set and the second five acted as
a test set for the users. Finally, users were asked to rank the two explanations in terms of preference and
understandability.

Each user was guaranteed to see 10 unique test images, determined by their study ID, to minimize the
risk of measuring differences between particular images instead of between the XAI approaches. This also
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Resp. G-CAM LIME SHAP Infl. NN
More Understandable 59 59 50 36 46 50
More Preferred 53 59 45 47 42 51
Pair Accuracy 62.6 54.8 56.2 55.4 50.2 64.8
Pref. Accuracy 83.6 47.5 50.0 53.3 42.8 81.5

Table 3: Overview of the AMT study results.

ensured users could not collude on the correct model predictions. Each user also had an equal number of
instances in which the model was correct and incorrect spread randomly across their examples. Users were
given a maximum of 15 minutes, though all finished in under 10 minutes. Each user was paid 3 USD for
participating and an additional 0.2 USD for each correct answer for the second five examples to incentivize
them to guess correctly and to make use of the explanations.

6.3 Results

We collected results from 300 AMT workers, for a total of 3000 predictions, or 100 predictions for each
approach. We ran a MANOVA to determine whether the ordering of the approaches or any of the other
demographic information impacted any of the results and found no significant impact so we could safely
treat this data as coming from only 15 conditions: the 15 distinct pairs of XAI approaches. We thus had 20
users in each condition.

Results are shown in Table 3. “More Understandable” is the total number of times that particular approach
was chosen as more understandable by one of the 75 users who saw it. We found that Responsibility and
Grad-CAM were the two approaches most commonly chosen to be more understandable. Notably this is
summing data over all possible pairs of approaches. A paired Wilcoxon Mann Whitney-U test, chosen due
to a lack of a normal distribution, found that LIME was considered significantly more understandable than
SHAP, and Responsibility was considered more understandable than LIME (p < 0.005). However, there
was no significant difference between SHAP and Grad-CAM on understandability, suggesting that they were
too similar for users to differentiate. “More Preferred” indicates the number of times, out of the 75 users
who saw that approach, that the approach was overall preferred. Grad-CAM is the clear winner here with
Responsibility coming second. There are no significant differences in terms of overall preference. We also
looked at “Pair Accuracy”, the average accuracy taken across all five pairs that include each approach. We
use this due to the complexity of determining whether the user’s performance comes from one of the pair
of explanations presented or from a combination of both. NN outperforms all other approaches according
to this measure. This may seem trivial since NN explicitly informed the user of the model’s chosen class.
However, both Responsibility and influence functions also essentially informed the user of the model’s chosen
class (as in Figure 4). The only significant difference for this metric is that both Responsibility and NN
have significantly different Pair Accuracy compared to influence functions. We also include “Pref. Accuracy”
which is the average accuracy of the users when they indicated that the XAI approach in question was their
preference (“More Preferred”). Here, Responsibility takes the lead, with NN performing very similarly, and
all other approaches having a performance near chance. This may be due to users believing they understood
an explanation per the “Most Understandable” results, but not being able to identify the predicted class
from it. We note that influence functions should have performed well here but users seemed to have a harder
time understanding how the selected image related to the test instance.

Overall, these results suggest that Responsibility differs from existing XAI approaches, may be more beneficial
to human understanding and further supports our prior experiment, demonstrating that improving critic
accuracy does appear to approximate improving human accuracy.

6.4 Responsibility and NN Examples

Our first experiment’s results demonstrated Responsibility could be preferable when training a secondary
critic to predict the behavior of a primary actor across two domains, though the user study complicated
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Main Image Responsibility Image NN image

(a)

Main Image Responsibility Image NN Image

(b)

Table 4: Responsibility images compared to NN images.

this finding. While the NN visualizations actively harmed the performance of our critics, humans seemed to
benefit from them. These visualizations however were not ranked as more understandable than any other
method which suggests that the NN may have informed users of the correct class, without helping them
understand the model’s behavior. As an example of this effect, we show two examples in Table 4. In each,
we give a test input image from the study (“main”) and then the Responsibility image and the NN image.
Given that the NN image used a pixel-to-pixel comparison, we found that it typically shared background
pixels with the input image. For example, in the top example, the NN image has a blue-white background
with ripples as the input image has a blue-white image with curves from vehicle tires. In the bottom example,
there are many white pixels in the background of the input image and the NN image. In comparison, the
most responsible training instance tends to reflect particular features the model used when making a decision.
In the top example, the black and red wing matches the front bumper of the car while the black ears and
silhouette of the dog match those of the cat. Thus, we view these images as capturing the learned behavior
of the model.

7 Diffusion Model Experiment

To further demonstrate the generalizability of Responsibility outside of classification, we apply the approach
to diffusion models. Diffusion models are a powerful class of generative models that have shown remarkable
performance in image generation tasks (Song et al., 2020; Nichol et al., 2021; Rombach et al., 2022). These
models, introduced in (Sohl-Dickstein et al., 2015), are inspired by physical diffusion where particles gradually
spread from regions of high to low concentration. They operate by gradually refining random noise into
coherent, high-quality samples. Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) is one of
the foundational types of diffusion models, based on a U-Net architecture (Ronneberger et al., 2015) which
consists of an encoder and a decoder where the encoder gradually reduces the spatial dimensions and extracts
features, and the decoder upsamples these features to reconstruct the image. Given the sequential nature
of noise removal, our experiments focus on identifying the training samples most responsible for predicted
noise at each step in the generation process.

7.1 Architecture

We use a modified version of the architecture in (Ho et al., 2020) which in turn is based on the U-net
architecture from (Salimans et al., 2017). The model consists of multiple residual blocks, organized into
down-sampling (encoder), middle, and up-sampling (decoder) stages with more than 63 million trainable
parameters. The network accepts an image and a time step as inputs, with the time step guiding noise
removal for each denoising step. Each residual block consists of 2 convolutional layers with 3 × 3 kernels,
group normalization (Wu & He, 2018), and the swish activation function (Ramachandran et al., 2017),
followed by a skip connection (He et al., 2016). Each attention block consists of a group normalization layer,
followed by a dense layer to apply a self-attention mechanism (Vaswani, 2017).
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7.2 Dataset

For our experiments, we used the CelebA (Liu et al., 2015) dataset which consists of over 200K celebrity face
images and has been widely used in prior XAI research in diffusion models (Dai & Gifford, 2023; Zheng et al.,
2023; Lin et al., 2024). We also used the Oxford Flowers 102 dataset (Nilsback & Zisserman, 2008) which
contains 8,189 images across 102 flower categories and serves as a simpler domain for comparison, allowing
us to evaluate the generalizability of our findings across datasets. For CelebA, to reduce computational cost,
we used 32000 samples for training and for both datasets, we resized each image to 32 × 32 pixels.

7.3 Experiment Setup

When applied to diffusion models, Responsibility needs to be handled differently compared to classification
or regression tasks. Since the network’s output is noise to be subtracted from the input image, the output
itself is effectively the opposite of the desired final image. Therefore, we hypothesize that the training
samples derived from the minimal allocation may be more valuable compared with those derived from the
positive allocation, as they indicate the samples most responsible for improving the model’s noise prediction
accuracy. For our experiments, we focus on the weights W of the last convolutional layer in the diffusion
model since this layer directly impacts the network’s output. From W , we identify a subset W ′ that consists
of the most critical weights.

Due to the lack of a ground truth, we use image similarity as an approximation for explanation quality,
assessing how closely the most responsible samples resemble the generated image. Measuring the alignment
between generated images and responsible samples serves as an approximation of humans assessing similarity
based on shared visual features or structural patterns. We use two metrics: Structural Similarity Index
(SSIM) and Mean Squared Error (MSE). SSIM (Wang et al., 2004) is a statistical metric that captures how
structural patterns in one image align with those in another, making it useful for assessing generative models.
SSIM values range from -1 to 1, with values closer to 1 indicating higher similarity. MSE is a commonly
applied pixel-wise metric that focuses on individual pixels, by calculating the average squared difference
between corresponding pixels of two images. Lower values reflect higher similarity, as they indicate greater
alignment between the images. These metrics together provide a comprehensive assessment for whether the
most responsible samples align closely with generated images or deviate as expected. For our experiments,
we compared the Responsibility varieties against two baselines: nearest neighbor (NN) samples, derived as
before, and samples derived via influence functions where we approximated the influence of training samples
as outlined in (Charpiat et al., 2019). This calculates an influence score by determining the dot product
between the gradients of a test sample and the training sample. We do not use the original influence function
approximation (Koh & Liang, 2017) due to computational cost far exceeding the computation required for
Responsibility. Since this method requires true values to calculate the loss and then compute gradients,
we utilize test samples and reconstruct them using our diffusion model. By comparing these influential
samples with the identified responsible samples, we evaluate which set is more similar to the reconstructed
images. We focus on examining minimal and positive allocations. We reconstructed 20 randomly selected
test samples. To evaluate the similarity of the identified most responsible training samples to generated
images, we compare the Responsibility varieties against three baselines: nearest neighbor (NN) samples,
random samples from the training set and the most influential samples derived from influence functions.

7.4 CelebA Results

In this section, we present the results of our CelebA experiments, focusing on analyzing the performance of
our Responsibility variants. We examine minimal and positive allocations, which identify training samples
that caused the smallest absolute changes and maximum positive changes in weights respectively. In both
cases, we use different activation identification types to identify the responsible samples. Our focus is on
these two Responsibility allocations due to the interpretive value of these variants in the context of diffusion
models. For completeness, we also computed all other Responsibility variants for the CelebA dataset with
the results presented in the appendix. As anticipated, variants other than minimal and positive allocations
showed poor performance. Thus, we limit our comparative analysis to these two allocation types in the
subsequent sections.
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7.4.1 Minimal Allocations

Minimal allocations point to the samples that caused the smallest absolute changes in weights. We include all
four activation identification types to identify W ′ which can include single or multiple critical weights. The
number of critical weights varies for each generated sample, as it depends on the number of outliers in the
activation values. We calculate the similarity between our generated images and the responsible samples,
compared to random samples from the training set. Tables 5 and 6 summarize the performance of each
variant in terms of SSIM and MSE respectively.

Activation type
SSIM

Responsibility Random Nearest Neighbor

Multiple maximal 16.44 ± 0.35 13.91 ± 0.12 26.91 ± 0.31
Multiple minimal 15.12 ± 0.21 13.96 ± 0.14 18.14 ± 0.13
Multiple negative 13.88 ± 0.14 13.83 ± 0.18 27.73 ± 0.33
Multiple positive 16.44 ± 0.35 14.15 ± 0.18 26.91 ± 0.31
Single maximal 15.30 ± 0.21 14.06 ± 0.15 26.62 ± 0.32
Single minimal 15.02 ± 0.19 13.87 ± 0.12 20.52 ± 0.17
Single negative 14.29 ± 0.19 13.85 ± 0.16 27.95 ± 0.33
Single positive 16.63 ± 0.34 13.18 ± 0.14 27.47 ± 0.34

Table 5: SSIM comparison between minimal responsible, random, and nearest neighbor samples for CelebA dataset.

Activation type
MSE

Responsibility Random Nearest Neighbor

Multiple maximal 14.95 ± 0.12 16.05 ± 0.13 5.51 ± 0.02
Multiple minimal 15.08 ± 0.07 15.56 ± 0.08 9.33 ± 0.03
Multiple negative 15.44 ± 0.16 15.33 ± 0.17 5.30 ± 0.02
Multiple positive 14.95 ± 0.12 15.26 ± 0.09 5.51 ± 0.02
Single maximal 14.90 ± 0.14 15.16 ± 0.12 5.57 ± 0.02
Single minimal 15.13 ± 0.07 15.48 ± 0.08 7.81 ± 0.03
Single negative 15.43 ± 0.17 16.00 ± 0.13 5.22 ± 0.02
Single positive 14.64 ± 0.12 16.25 ± 0.12 5.37 ± 0.02

Table 6: MSE comparison between minimal responsible, random, and nearest neighbor samples for CelebA dataset.

We observe that across almost all Responsibility types, responsible samples yield higher similarity to the
generated images, as shown by the higher SSIM and lower MSE values for responsible samples compared to
random ones. We performed a t-test with the Bonferroni correction. Since we have 16 comparisons we calcu-
lated the corrected threshold as 0.05/16 = 0.003125. Using this correction, all the Responsibility variations
showed higher SSIM and lower MSE compared to the random samples, except from the multiple negative
activations that did not show a significant difference between two methods. Notably, the nearest neighbor
(NN) baseline shows significantly greater similarity compared to both methods. This is expected, as the
NN approach selects training samples based on their similarity to the generated images, directly considering
MSE. We further note that the values for random and NN differ across activation types. This is because
the number of unique responsible samples varies for each row, leading to differences in the corresponding
number of random and NN samples.

13



Under review as submission to TMLR

7.4.2 Positive Allocations

Positive allocations point to samples that had the maximum positive influence on weight changes. Similar
to the previous setup, we include all four types of activation identifications to identify a subset of weights
W ′, which can be a single or multiple critical weights. We calculate the similarity between our generated
images and the responsible samples. Tables 7 and 8 summarize the performance of each variant in terms of
SSIM and MSE respectively.

Activation type
SSIM

Responsibility Random Nearest Neighbor

Multiple maximal 11.99 ± 0.18 14.23 ± 0.15 26.84 ± 0.32
Multiple minimal 12.26 ± 0.07 14.08 ± 0.13 18.43 ± 0.14
Multiple negative 12.29 ± 0.05 14.73 ± 0.16 27.57 ± 0.31
Multiple positive 11.99 ± 0.18 14.12 ± 0.12 26.84 ± 0.32
Single maximal 12.16 ± 0.05 13.33 ± 0.10 26.57 ± 0.31
Single minimal 12.33 ± 0.06 13.97 ± 0.12 20.74 ± 0.17
Single negative 12.17 ± 0.06 14.92 ± 0.20 27.94 ± 0.33
Single positive 11.80 ± 0.16 14.38 ± 0.19 27.43 ± 0.34

Table 7: SSIM comparison between positive responsible, random, and nearest neighbor samples for CelebA dataset.

Activation type
MSE

Responsibility Random Nearest Neighbor

Multiple maximal 15.37 ± 0.11 15.29 ± 0.13 5.50 ± 0.02
Multiple minimal 15.58 ± 0.06 15.30 ± 0.08 9.09 ± 0.03
Multiple negative 13.82 ± 0.06 15.75 ± 0.14 5.32 ± 0.02
Multiple positive 15.37 ± 0.11 15.51 ± 0.10 5.50 ± 0.02
Single maximal 14.55 ± 0.06 15.86 ± 0.09 5.59 ± 0.02
Single minimal 15.56 ± 0.06 15.50 ± 0.08 7.71 ± 0.03
Single negative 13.81 ± 0.06 14.66 ± 0.06 5.22 ± 0.02
Single positive 15.61 ± 0.12 15.01 ± 0.11 5.36 ± 0.02

Table 8: MSE comparison between positive responsible, random, and nearest neighbor samples for CelebA dataset.

In contrast to minimal allocations, where responsible samples show a higher similarity to generated images
than random, these positive allocations typically show a lower similarity. Using the same corrected p-value
threshold, SSIM values were significantly lower for all the variations of Responsibility compared to the
random samples. This aligns with our expectations as the output of diffusion models is the opposite of
the desired final image; therefore, positive influences on weights should result in less resemblance to the
generated images. Although for MSE, while Responsibility variants show higher values in some cases, this is
not always the case. The NN baseline again shows the highest similarity, as it is explicitly designed to select
the most similar training samples to the generated images.

7.4.3 Visual Comparison

In this section, in lieu of a human subject study, we present examples of generated images and their cor-
responding most responsible samples. Figure 5 shows two handpicked generated images alongside their
responsible samples from minimal and positive allocations, as well as the NN samples. The responsible sam-
ples derived from minimal allocations demonstrate noticeable similarity to the generated images. In fact, in
one case, the responsible sample from the minimal allocation is also the NN sample, demonstrating that the
responsible samples can have a strong visual resemblance. The responsible samples derived from positive
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Figure 5: Two generated images using our diffusion model along with their responsible samples derived from minimal
and positive allocations along with the baseline nearest neighbor samples.

Figure 6: (a) shows examples of real samples from the test dataset. (b) shows reconstructed samples using the
diffusion model.

allocations are not visually similar to the generated images. This is consistent with our quantitative results
in Tables 7 and 8. The NN samples have smaller MSE values as that is how they are selected. However, this
similarity might be influenced by secondary factors such as the background rather than core factors such as
facial features. In contrast, the responsible samples from minimal allocations show a higher resemblance to
the generated images from our perspective.

7.5 Reconstruction Experiment Results

In this section, we present the results of an additional evaluation where rather than generate new samples
using our diffusion model, we instead reconstruct 20 randomly selected test samples. These along with their
reconstructions are shown in Figure 6.

7.5.1 Minimal Allocation

Table 9 summarizes the performance of each variant in terms of SSIM and MSE. Again, we performed a
t-test with the Bonferroni correction. Since we have eight tests this time, the p-value threshold is adjusted
as 0.05/8 = 0.00625. The SSIM values that are significantly larger and the MSE values that are significantly
smaller are highlighted in bold.

We observe that across all Responsibility types, responsible samples achieve significantly higher similarity
to the reconstructed images, as shown by the higher SSIM and lower MSE values for responsible samples
compared to samples derived from influence functions.
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Activation type
SSIM MSE

Resp IF Resp IF

Multiple maximal 18.73 ± 0.35 12.92 ± 0.13 13.94 ± 0.09 18.65 ± 0.12
Multiple minimal 14.23 ± 0.26 12.64 ± 0.14 17.15 ± 0.10 18.85 ± 0.42
Multiple negative 15.79 ± 0.34 12.75 ± 0.12 12.30 ± 0.13 18.93 ± 0.10
Multiple positive 18.73 ± 0.35 12.92 ± 0.13 13.94 ± 0.09 18.65 ± 0.12
Single maximal 17.36 ± 0.47 12.74 ± 0.13 12.35 ± 0.15 18.77 ± 0.11
Single minimal 14.29 ± 0.25 12.83 ± 0.34 17.09 ± 0.09 18.53 ± 0.11
Single negative 15.36 ± 0.52 12.75 ± 0.10 12.82 ± 0.18 19.15 ± 0.12
Single positive 19.00 ± 0.35 12.98 ± 0.15 13.64 ± 0.13 18.83 ± 0.11

Table 9: SSIM and MSE comparison between responsible samples and influence functions samples.

Activation type
SSIM MSE

Resp IF Resp IF

Multiple maximal 9.80 ± 0.19 12.83 ± 0.14 19.46 ± 0.18 18.67 ± 0.12
Multiple minimal 11.18 ± 0.11 12.73 ± 0.15 17.50 ± 0.09 18.69 ± 0.10
Multiple negative 9.78 ± 0.09 12.79 ± 0.12 14.36 ± 0.05 18.92 ± 0.11
Multiple positive 9.80 ± 0.19 12.83 ± 0.14 19.46 ± 0.18 18.67 ± 0.12
Single maximal 10.10 ± 0.08 12.76 ± 0.12 16.36 ± 0.15 18.64 ± 0.10
Single minimal 11.38 ± 0.12 12.54 ± 0.51 17.29 ± 0.06 18.35 ± 0.11
Single negative 9.97 ± 0.12 12.73 ± 0.10 13.99 ± 0.07 19.10 ± 0.12
Single positive 10.54 ± 0.22 12.98 ± 0.15 18.98 ± 0.23 18.87 ± 0.11

Table 10: SSIM and MSE comparison between responsible samples and influence functions samples.

7.5.2 Positive Allocations

Table 10 summarizes the results of each variant in terms of SSIM and MSE metrics using positive alloca-
tions. We again performed a t-test with the bonferroni corrected p-value threshold of 0.00625. Significantly
different values are highlighted in bold. As expected for diffusion models, we observe that positive allocation
Responsibility variants result in lower SSIM values for the reconstructed images compared to samples derived
from influence functions. However, the trends in MSE values are less consistent: in some cases, Responsibil-
ity variants exhibit lower MSE, while in others, they do not. This variability suggests that Responsibility
may identify samples with pixel values that closely match the reconstructed images (leading to lower MSE)
but lack the structural coherence or features necessary for high perceptual similarity, as measured by SSIM.

8 Conclusions

In this paper, we formally defined the XAI approach Responsibility and evaluated it across several model
architectures and domains. The approach improved the performance of a critic model at predicting the
behavior of an actor model, was considered by non-expert users to be more understandable than existing XAI
approaches, improved user accuracy relative to existing XAI methods and outperformed existing approaches
in terms of similarity for image generation tasks. Overall, we view Responsibility as a general XAI approach
with the capacity to benefit both humans and machines.
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A Appendix

A.1 Responsible Examples Across Different Seeds

One of our primary assumptions with Responsibility is that different training processes will lead to distinct
final models, and that XAI approaches should capture these differences. In this section, we identify Respon-
sibility data points obtained by training the LeNet-5 model on MNIST three times, each using a different
random seed. Figure 7 shows these Responsibility data points across the different seeds. For each of the
three images, the first rows give the most frequent training data points that make positive changes in the
output neurons, the second rows are the training data points which make the largest positive change in the
output neurons, the third rows are the most frequent training data points that make negative change in the
output neurons and the fourth rows are the training data points which make the largest negative change
in the output neurons. Thus, each figure has a total of forty images, corresponding to different ways of
measuring Responsibility for the ten final classification neurons of the model across three different random
seeds.

The first and second rows show that the data points with positive contributions tend to have the same labels
as the target labels. However, they also have unusual appearances. This matches prior instance-based results
in terms of helping to identify outliers in the training data. The third and fourth rows demonstrate that the
data points with the extreme negative contributions do not have the same labels as the target labels but
they closely resemble the target labels. While there are shared training instances across all three figures,
each also has a unique set. This suggests that Responsibility can capture differences in how each model was
trained.

A.2 Oxford Flowers Experiment Results

In this section, we present the results of our Oxford Flowers experiments, focusing on analyzing the perfor-
mance of our Responsibility variants as in Section 7.4.

A.2.1 Minimal Allocations

Tables 11 and 12 summarize the performance of each variant in terms of SSIM and MSE metrics, respectively.
We again ran a Bonferroni corrected t-test and observe that across all activation types except from single
and multiple minimal activations, responsible samples achieve significantly higher similarity to the generated
images, as shown by the higher SSIM and lower MSE values for responsible samples compared to random
ones. The nearest neighbor baseline again achieves the highest similarity for all variations, as expected.

A.2.2 Positive Allocations

Tables 13 and 14 summarize the performance of each variant in terms of SSIM and MSE metrics, respectively.
A Bonferroni-corrected t-test indicated no significant trend between Responsibility and random samples. In
some cases, Responsibility outperforms random samples, while in others, random samples perform better.
However, nearest neighbor samples consistently and significantly outperform both Responsibility and random
samples as we expected.

A.2.3 Visual Comparison

We also explore some examples of generated images and their corresponding most responsible samples from
the Oxford Flowers dataset. Figure 8 shows two hand selected generated images alongside their responsible
samples from minimal and positive allocations, as well as the nearest neighbor samples. As with CelebA, the
responsible samples derived from minimal allocations show a resemblance to the generated images, reflecting
the influence of these samples on the generation process. In contrast, we cannot see visual similarity between
the responsible samples derived from positive allocations and the generated images. The nearest neighbor
samples, as expected, are again the most visually similar to the generated images.
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(a) Seed 1

(b) Seed 2

(c) Seed 3

Figure 7: Responsible samples obtained via training on MNIST using three different random seeds.
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Activation type
SSIM

Responsibility Random Nearest Neighbor

Multiple maximal 2.31 ± 0.01 2.01 ± 0.01 6.66 ± 0.07
Multiple minimal 1.82 ± 0.01 1.91 ± 0.01 3.05 ± 0.01
Multiple negative 1.73 ± 0.02 1.60 ± 0.01 6.66 ± 0.08
Multiple positive 2.31 ± 0.01 1.89 ± 0.01 6.66 ± 0.07
Single maximal 2.17 ± 0.01 2.02 ± 0.01 6.61 ± 0.07
Single minimal 1.83 ± 0.01 1.99 ± 0.01 3.84 ± 0.03
Single negative 2.10 ± 0.02 1.74 ± 0.02 7.05 ± 0.09
Single positive 2.45 ± 0.02 1.65 ± 0.01 7.00 ± 0.09

Table 11: SSIM comparison between minimal responsible, random, and NN samples for Oxford Flowers dataset.

Activation type
MSE

Responsibility Random Nearest Neighbor

Multiple maximal 38.99 ± 0.65 44.54 ± 0.75 21.88 ± 0.32
Multiple minimal 43.19 ± 0.67 44.58 ± 0.62 33.99 ± 0.46
Multiple negative 40.13 ± 0.58 45.15 ± 0.78 21.71 ± 0.31
Multiple positive 38.99 ± 0.65 44.46 ± 0.83 21.87 ± 0.32
Single maximal 39.09 ± 0.63 43.95 ± 0.72 22.01 ± 0.32
Single minimal 43.49 ± 0.70 44.60 ± 0.70 30.00 ± 0.42
Single negative 40.31 ± 0.57 45.18 ± 0.61 21.13 ± 0.31
Single positive 38.68 ± 0.67 44.56 ± 0.72 21.23 ± 0.30

Table 12: MSE comparison between minimal responsible, random, and NN samples for Oxford Flowers dataset.

Figure 8: Two generated images using our diffusion model along with their responsible samples derived from minimal
and positive allocations. We also include the nearest neighbor samples, which are training samples most similar to
the generated image.

A.3 Maximal and Negative Allocation

Tables 15 and 16 summarize the performance of maximal and negative Responsibility allocations respectively,
in terms of SSIM and MSE values. We conducted t-tests with a Bonferroni corrected p-value threshold of
0.003125. The SSIM values that are significantly larger and MSE values that are significantly smaller are
highlighted bold in these tables.

We observe that across these Responsibility allocation types, there is no consistent trend in the similarity
between responsible samples and the generated images. In some cases, responsible samples achieve higher
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Activation type
SSIM

Responsibility Random Nearest Neighbor
Multiple maximal 2.03 ± 0.01 1.92 ± 0.01 6.65 ± 0.07
Multiple minimal 1.87 ± 0.01 1.97 ± 0.01 3.15 ± 0.01
Multiple negative 2.20 ± 0.01 2.14 ± 0.01 6.59 ± 0.07
Multiple positive 2.03 ± 0.01 2.08 ± 0.01 6.65 ± 0.07
Single maximal 1.90 ± 0.01 2.10 ± 0.01 6.63 ± 0.07
Single minimal 1.76 ± 0.01 1.97 ± 0.01 3.87 ± 0.03
Single negative 2.15 ± 0.02 1.93 ± 0.01 7.05 ± 0.09
Single positive 1.99 ± 0.02 1.98 ± 0.02 6.92 ± 0.09

Table 13: SSIM comparison between positive responsible, random, and NN samples for Oxford Flowers dataset.

Activation type
MSE

Responsibility Random Nearest Neighbor
Multiple maximal 46.37 ± 0.61 43.35 ± 0.59 21.95 ± 0.32
Multiple minimal 44.40 ± 0.70 44.39 ± 0.66 33.36 ± 0.46
Multiple negative 47.39 ± 0.77 45.09 ± 0.79 21.79 ± 0.31
Multiple positive 46.37 ± 0.61 43.55 ± 0.66 21.95 ± 0.32
Single maximal 48.02 ± 0.63 45.39 ± 0.87 22.08 ± 0.32
Single minimal 44.66 ± 0.66 44.45 ± 0.63 29.81 ± 0.42
Single negative 48.34 ± 0.88 43.79 ± 0.69 21.16 ± 0.31
Single positive 46.45 ± 0.66 44.59 ± 0.77 21.29 ± 0.30

Table 14: MSE comparison between positive responsible, random, and NN samples for Oxford Flowers dataset.

Activation type
SSIM MSE

Resp Random Resp Random

Multiple maximal 14.38 ± 0.17 13.59 ± 0.20 16.63 ± 0.08 16.10 ± 0.11
Multiple minimal 11.87 ± 0.06 14.04 ± 0.13 15.68 ± 0.07 15.43 ± 0.08
Multiple negative 15.07 ± 0.24 13.06 ± 0.14 13.48 ± 0.16 15.48 ± 0.07
Multiple positive 14.38 ± 0.17 13.27 ± 0.16 16.63 ± 0.08 16.10 ± 0.14
Single maximal 14.91 ± 0.20 14.36 ± 0.17 15.02 ± 0.09 15.49 ± 0.09
Single minimal 11.79 ± 0.06 14.04 ± 0.12 15.73 ± 0.06 15.43 ± 0.07
Single negative 15.02 ± 0.24 13.71 ± 0.17 13.47 ± 0.16 16.26 ± 0.15
Single positive 14.33 ± 0.18 14.37 ± 0.19 16.89 ± 0.08 16.05 ± 0.13

Table 15: SSIM and MSE comparison between maximal allocation Responsibility samples and random samples.

similarity to the generated images, as indicated by higher SSIM and lower MSE values. However, in other
cases, random samples outperform responsible samples in similarity metrics. These inconsistent results
suggest that these Responsibility variants may select training samples similarly to random selection, rather
than identifying truly influential examples.
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Activation type
SSIM MSE

Resp Random Resp Random

Multiple maximal 13.67 ± 0.17 13.92 ± 0.20 15.26 ± 0.08 15.25 ± 0.09
Multiple minimal 13.59 ± 0.12 14.05 ± 0.13 14.91 ± 0.08 15.38 ± 0.06
Multiple negative 15.13 ± 0.21 12.66 ± 0.15 12.73 ± 0.15 16.44 ± 0.12
Multiple positive 13.67 ± 0.17 13.12 ± 0.08 15.26 ± 0.08 16.24 ± 0.09
Single maximal 14.51 ± 0.19 14.34 ± 0.11 13.96 ± 0.10 15.02 ± 0.07
Single minimal 13.50 ± 0.12 13.97 ± 0.13 15.12 ± 0.08 15.52 ± 0.08
Single negative 15.18 ± 0.23 13.18 ± 0.08 12.65 ± 0.15 15.12 ± 0.07
Single positive 13.65 ± 0.17 13.69 ± 0.19 15.42 ± 0.09 15.20 ± 0.06

Table 16: SSIM and MSE comparison between negative allocation Responsibility samples and random samples.

Figure 9: The Morai Maker interface, reproduced with permission from (Guzdial et al., 2019).

A.4 Explaining a Reinforcement Learning Agent

To further demonstrate the generality of Responsibility as an XAI approach, we include an example of a
Reinforcement Learning (RL) agent trained in the Morai Maker environment (Guzdial et al., 2019).

We include a visualization of the Morai Maker interface in Figure 9. It is a video game level editing tool, in
which a human user and an AI agent take turns making changes to a level based on the classic video game
Super Mario Bros. It was created for the purpose of testing human-computer interaction for video game level
editing. Two human subject studies have been run on the tool, which we refer to as “Study 1” and “Study
2”. More detail on both studies, the tool itself, and the backend AI agent can be found in (Guzdial et al.,
2019). For this work, we use data from the two studies to approximate the impact of applying Responsibility
to the backend RL agent.

We use Responsibility for tracking the training instances that maximally alter each neuron of the Deep Q
network described in (Guzdial et al., 2018). The difference is that rather than an image, a training instance
here represents one set of state, action, and reward values. A state here is a Super Mario Bros. level or an
in-progress level. We can associate each state, action, and reward value with the sequence of states, actions,
and rewards that represent the level design process, going from an initially blank level to a complete level.
Since the first convolutional layer is the layer that most directly reasons over the level structure, we make
use of most responsible training instances from this layer for these experiments. We give an example of the
most responsible state for a particular test state and agent action in Figure 10. On the left we have the the
current state and the AI agent’s action, adding the entities on the lower left to the top left state. On the
right we give a final level that the RL agent constructed with a human partner during training and the state
portion of the most responsible training instance. We consider the final level associated with a particular
most responsible state to be the “most responsible level”.
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Figure 10: An example of explaining an AI agent’s action by representing the most responsible state from the agent’s
training history. Similar regions are highlighted.

We require a baseline for comparison purposes in these experiments. Due to the lack of general, easily applied
RL XAI approaches, we make use of a baseline of 20 randomly selected states from the training history of
the RL agent. Thus, for each of the following experiments, when we employ our Responsibility approach we
identify the one most responsible training instance in comparison to these 20 randomly selected instances.
For computing Responsibility values, we use positive allocations and activations. This setup is designed to
put our approach at a disadvantage and make up for the weakness of a typical random baseline, since we
are comparing only one Responsibility instance to 20 random instances.

For comparison purposes, we require a metric that can compare two states- two levels for similarity. We have
the “Study 1” and “Study 2” data but did not run an extra human subject study due to lack of resources.
Thus we instead make use of a quantitative measure of similarity meant to approximate certain conditions
we might want to see in an explanation for two different use case. We desired a metric that detects local
overlaps between states. We wanted to base the metric on comparing sliding windows of each state, windows
which are not the same size as the first convolutional layer of our RL model, to capture some local structure
without biasing the metric too far towards our first convolutional layer. As a result, we found all 3x3 non-
empty patches for both input states. Then we counted the number of exact matches of these patches on
both sides, removing the matched ones from the pool since we wanted to count the same patches only once.
Finally, we divided the total number of the matched patches by the total number of unique patches in the
states. We refer to this metric as the local overlap ratio. A ratio of 0 represents no overlap between pairs of
states while a 1 represents an exact match.

We used this metric and the above baseline in two experiments—1) a “prediction experiment” to evaluate
the ability of Responsibility to help users predict the behavior of the model and 2) a “user labeling error
experiment” to evaluate the ability of Responsibility to help users avoid misunderstanding the model.

A.4.1 Prediction Experiment

In both “Study 1” and “Study 2”, the AI agent partner works with a number of different humans to design
Super Mario Bros. levels. In this first experiment we study if Responsibility can be used to help users
predict the behavior of the AI partner. For this, we used test sets from “Study 1” and “Study 2”. Each test
set is made up of a sequence of alternating human and AI actions, where each action is making changes to
an in-progress level. On each action, we examine the effect of presenting the most responsible level, the final
level associated with a most responsible training instance, to the human partner. In particular, we want to
determine how similar this most responsible level is to the level after the AI agent’s next action. If they are
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Test Set Most Responsible Level Random Levels
Study 1 0.4653 0.3841
Study 2 0.2880 0.2472

Table 17: Average local overlap ratio of the most responsible levels compared to random levels for both test sets.

more similar, this would indicate that the most responsible level would help a user better predict the AI
agent’s actions. We used the local overlap ratio and the random baseline described above.

We had 242 samples in the “Study 1” test set and 69 samples in the “Study 2” test set since “Study 1”
had roughly five times as many participants. Since we wanted to compare instances in which the AI agent
actually made some significant changes, we chose instances where the AI agent added more than 10 entities in
its next action. Thus we ended up with 38 and 46 instances from the first and second test sets, respectively.

Our approach outperforms the random baseline for 78.94% of the “Study 1” test instances and for 67.29% of
the “Study 2” test instances. The average of the local overlap ratios is shown in Table 17 (higher is better).
The minimum value here would be 0 for zero overlap and the maximum value would be 1 for complete overlap
between the AI agent’s next action and the most responsible level or the random levels. This normalization
means that even small differences in this metric represent large perceptual differences. For example, a 0.04
difference in the local overlap ratio between the most responsible level and the random levels indicates the
most responsible level has 20 more 3x3 non-empty overlaps. We expect that the reason that the “Study 2”
values are generally lower is that the second study had published level designers as participants rather than
novices, meaning that there was more varied behavior compared with “Study 1”.

A.4.2 User Labeling Error Experiment

For the second experiment, we focused on whether Responsibility could assist a user in better understanding
good and bad agent actions during the human-AI creation process. Specifically, during this process, a
human user might delete an addition made by the AI only to later add the same content back themselves.
Alternatively, a user could keep an addition by the AI at first, only to delete it later. We refer to these
instances as False-positive and False-negative decisions from the human user, respectively. If we could help
the user avoid making these kinds of decisions, it may streamline the level creation process. We anticipated
that one reason that users made these kinds of decisions was from a lack of context for the AI agent’s action.
Thus, if the user had an explanation they may not make these decisions.

We implemented an algorithmic way to determine false-positives and false-negatives among the two test sets
described in the previous experiment. We first find all user decisions in terms of deleting or keeping an
addition by the AI agent. Then we look at the level at the end of the user and the AI agent’s interaction. If
a deleted AI addition exists in the final level, it is counted as a false-negative (FN) example, and if a kept
addition does not exist in the final level, it is counted as a false-positive (FP) example. Once we discovered
all FN and FP examples, we found the state before associated content was added by the AI agent and named
it the Introduction-state (I-state). We found the state in which false-positivity or false-negativity occurred
(i.e. when a user re-added a FN or deleted a FP) and named it the Contradiction-state (C-state). Since
some change between the I-state and the C-state led to the user altering their decision, we wanted to see
some sign that presenting the most responsible level to the user could change their mind before they reached
the C-state. Thus, we compared these two states to find all the changes that the AI agent and human user
made and named this the Difference-state (D-state). We compared each D-state with the final generated
level derived from the most responsible training instance. We also compared each D-state with 20 other
randomly selected levels from the existing data as our random baseline. For the comparison, we used the
local overlap ratio as above. If Responsibility is more similar to the D-state than the Random baseline, we
will be able to say that there is some support that the most responsible level might help the user avoid FPs
and FNs in comparison to random levels.

We found 5 FN and 24 FP examples for the “Study 1” data and 5 FN and 54 FP examples for the “Study
2” data. We anticipate that “Study 2” had more FPs as the users were published level designers and so were
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more likely to have their own vision for the final level, making it more likely that they would eventually
delete the additions made by the AI, even if they kept them at first. For the first test set, our approach
outperformed the random baseline in 65.51% of the examples. The average of the local overlap ratio values
for our approach was 0.1717 which is more than the 0.1647 for the random levels. For the second test test,
our approach outperformed the baseline in 59.32% of the examples. The average of the local overlap ratio
values were 0.2665 and 0.2328 for the most responsible level and random levels, respectively. Again this
represents a large perceptual difference of roughly 15 more non-empty 3x3 overlaps.

Interestingly, our approach outperforms the random levels in all of the FN examples in the second test
set, compared with just 20% of FN in the first test set. Further, our approach performs around 1.5 times
better than the random levels in 15 of the FP examples in the second test set. This may suggest that
the Responsibility information would be especially helpful in terms of helping level design experts make
decisions more quickly. However, we note this is all approximation, and while this is a positive trend in
terms of the applicability of Responsibility to human-AI level design co-creation, a human subject study
would be required to confirm these results.
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