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Abstract

Large reasoning models (LRMs) have demonstrated impressive capabilities in
complex problem-solving, yet their internal reasoning mechanisms remain poorly
understood. In this paper, we investigate the reasoning trajectories of LRMs from
an information-theoretic perspective. By tracking how mutual information (MI)
between intermediate representations and the correct answer evolves during LRM
reasoning, we observe an interesting MI peaks phenomenon: the MI at specific
generative steps exhibits a sudden and significant increase during LRM’s
reasoning process. We theoretically analyze such phenomenon and show that as
MI increases, the probability of model’s prediction error decreases. Furthermore,
these MI peaks often correspond to tokens expressing reflection or transi-
tion, such as “Hmm”, “Wait” and “Therefore,” which we term as the thinking
tokens. We then demonstrate that these thinking tokens are crucial for LRM’s
reasoning performance, while other tokens has minimal impacts. Building on
these analyses, we propose two simple yet effective methods to improve LRM’s
reasoning performance, by delicately leveraging these thinking tokens. Overall, our
work provides novel insights into the reasoning mechanisms of LRMs and offers
practical ways to improve their reasoning capabilities. The code is available at
https://github.com/ChnQ/MI-Peaks.

1 Introduction

The reasoning ability of large language models (LLMs) has emerged as one of their most powerful and
crucial capabilities [53, 21, 22]. By explicitly thinking through a question before providing an answer
and breaking down complex problems into multiple steps, LLMs have made impressive progress in
complex reasoning tasks, such as mathematics, programming, and logical inference [28, 60, 45, 7].
Understanding and improving LLMs’ reasoning ability represents a crucial pathway toward achieving
Artificial General Intelligence (AGI) [56, 52, 43].

By undergoing reasoning-intensive training on foundational LLMs, recent large reasoning models
(LRMs) such as OpenAI’s o1 [22], DeepSeek’s R1 [19], and QwQ [46] have demonstrated exceptional
reasoning capabilities, significantly pushing the boundaries of complex problem-solving. However,
despite recent advances, the mechanisms underlying these capabilities remain largely under-explored.
The internal dynamics of the reasoning process, as well as the influence of each intermediate step on
the final answer, are still largely a “black box.” While some research in the field of trustworthy AI
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Okay, so I have this problem here: Let 
a be a positive ... First, let me write 
down the equation again to make sure 
I have it right: ... Wait, is that right? 
Hmm, maybe I should double-check ... 
Now, combine all these terms: ... So, 
when a = 3, f(a) = 0, which would 
mean the cubic has a multiple root ...

Let � be a positive real number 
such that  a l l  the  roots  of  �3 +
��2 + �� + 1 = 0 are real. Find the 
smallest possible value of �.

(a) (b)

Figure 1: Illustration and analysis of the MI peaks phenomenon in LRM reasoning. (a) The left side
shows an example of an LRM performing a multi-step reasoning task. To investigate the underlying
reasoning mechanism, we compute the MI between the model’s representation at each step and the
golden answer. Interestingly, as shown on the right side, certain steps exhibit sudden and significant
increases in MI, which we refer to the MI peaks phenomenon. (b) Token distribution at MI peaks.
We further find that the tokens generated at these high-MI steps are often reflective or transitional
expressions such as “So,” “Hmm,” and “Wait.”

suggests the existence of "critical tokens" that directly impact the safety of the LLM’s answers [65,
29, 36], a natural question arises: are there critical reasoning steps or intermediate states that
significantly affect the final results in the reasoning process of LRMs?

In this paper, we explore this question from an information-theoretic [4, 27] perspective. Specifically,
given a question, we dynamically calculate the mutual information (MI) between the LRM’s repre-
sentation at each step of reasoning process and the golden answer (i.e., the ground-truth response),
observing how the MI evolves. Interestingly, we find that certain steps’ representations exhibit a
sudden and significant increase in MI with the golden answer. As shown in Figure 1(a), these
representations with MI peaks are sparse and occur non-uniformly throughout the reasoning process.
This suggests that at certain crucial reasoning steps, LRMs’ representation becomes highly informa-
tive about the correct answer. Naturally, this raises a question: are these MI peaks potentially related
to model’s reasoning performance? Theoretically, we provide preliminary insights into the MI peaks
phenomenon, demonstrating that as the cumulative MI between the representations and the golden
answer increases, the probability of LRM’s wrong prediction lowers. Furthermore, our experiments
show that the base models corresponding to these LRMs (e.g., LLaMA-3.1-8B [17]), does not exhibit
this MI Peaks phenomenon as clearly. These analyses suggest that the distinct MI peaks observed
during LRM reasoning are potentially stemming from the reasoning-intensive training, and may hold
a potential relationship with LRM’s advanced reasoning abilities.

This naturally leads to the question: what semantic roles do the representations at MI peaks play
during reasoning? Intriguingly, we find that these representations with MI peaks predominantly
correspond to tokens such as “Wait,” “Hmm,” “Therefore,” “So,” which typically express
reflectiveness, self-correcting, or transitions, as shown in Figure 1(b). Here, we refer to these
tokens with MI peaks as “thinking tokens”. Since these thinking tokens explicitly prompt the model
to reflect and reason, and their representations carry enriched information with the golden answer,
we hypothesize that these thinking tokens may play a critical role in the model’s reasoning ability.
To validate this hypothesis, we suppress the generation of these thinking tokens and observe how
the model’s reasoning performance changes. As shown in Figure 5, fully suppressing the generation
of these thinking tokens significantly harms the model’s reasoning performance, while randomly
suppressing the same number of tokens has little impact. This indicates that these thinking tokens are
indeed crucial to LRM’s reasoning ability.

Finally, drawing insights from the above analyses, we propose to improve the reasoning performance
of LRMs in two training-free ways. 1) By allowing the representations at MI Peaks to undergo
multiple iterations within the model, we propose a method called Representation Recycling (RR). RR
encourages the model to better exploit these informative representations. Experiments show that RR
consistently improves the LRMs’ reasoning performance across several benchmarks. For instance,
it improves the accuracy of DeepSeek-R1-Distill-LLaMA-8B by 20% relatively on AIME24. 2)
Motivated by our analysis of thinking tokens, we propose Thinking Token based Test-time Scaling
(TTTS). That is, when additional token budget remains, we force the model to continue reasoning
by begin with the thinking tokens. Experiments show that TTTS leads to steady performance
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Figure 2: The evolution trajectories of MI between each step’s representations and the golden answer
during the reasoning process in LRMs.

improvements as the token budget increases compared to the original LRMs. These applications
further demonstrate that our observations can offer new insights into enhancing the reasoning abilities
of LRMs.

2 Emergence of MI Peaks in LRMs’ Reasoning Trajectories

Despite the impressive reasoning capabilities demonstrated by recent LRMs such as DeepSeek’s
R1 series models [19] and Qwen’s QwQ [46], the underlying mechanisms driving these capabilities
remain poorly understood. In this section, we investigate the reasoning trajectories of LRMs from
an information-theoretic perspective. We begin by introducing the notations and preliminaries
(Section 2.1). In Section 2.2, we demonstrate the MI peaks phenomenon. We then provide theoretical
insights into this phenomenon in Section 2.3. Finally, we examine whether similar patterns emerge in
the corresponding non-reasoning LLMs of LRMs in Section 2.4.

2.1 Preliminaries

Extracting representations in LRM generation process. Given a data sample s “ px, yq, where
x is the input query and y denotes the corresponding golden answer, which consists of both the
intermediate chain-of-thought reasoning steps and the final solution. For a LLM M, when prompted
with x, it auto-regressively generates ŷ “ tŷ1, ŷ2, . . . , ŷT u, where T is the total number of tokens
and ŷt denotes the token produced at step t. To analyze the dynamic generation process, we collect
the hidden representation corresponding to each generated token. Let Al

ip¨q denote the representation
extraction function that extracts the representation of the i-th token at layer l of a LLM when given
an input. For simplicity, we omit the superscripts and subscripts on A. In this way, the representation
corresponding to the t-th generated token is denoted by ht “ A

`

Mpx, ŷătq
˘

, where ŷăt denotes
the subsequence of ŷ before the t-th token. Similarly, we also extract the representation of the gold
answer by feeding y into the LLM, e.g., hy “ A

`

Mpyq
˘

.

Estimating MI between each generated token and golden answer. After extracting the represen-
tation, we then measure the MI between each generated token’s representation ht and the golden
answer’s representation hy , obtaining a MI sequence: Irh1; hys, Irh2; hys, . . . , IrhT ; hys. In this
way, we observe how MI evolves, thus analyze the reasoning dynamics during LLM’s generation
process. Specifically, we follow [32, 38, 13] to use the Hilbert-Schmidt Independence Criterion
(HSIC) [18] to estimate MI [27, 35]. The formal definition of HSIC is stated in Definition 4, and we
provide more implementation details in Appendix B.
Definition 1 (Hilbert-Schmidt Independence Criterion (HSIC) [18]). HSIC is the Hilbert-Schmidt
norm of the cross-covariance operator between the distributions in Reproducing Kernel Hilbert Space
(RKHS). Formally:

HSICpX,Y q “EXYX1Y 1

“

kX
`

X,X 1
˘

kY
`

Y, Y 1
˘‰

` EXX1

“

kX
`

X,X 1
˘‰

EY Y 1

“

kY
`

Y, Y 1
˘‰

´2EXY

“

EX1

“

kX
`

X,X 1
˘‰

EY 1

“

kY
`

Y, Y 1
˘‰‰

,
(1)

where X 1, Y 1 are independent copies of X , Y , respectively, and kX , kY are kernel functions.
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Table 1: Statistical properties of MI peaks across different LRMs. Here, #MI Peaks and #All Steps
refer to the number of MI peaks and the total number of reasoning steps, respectively. Interval of MI
Peaks denotes the number of steps between two consecutive MI peaks.

Model #MI Peaks #All Steps Ratio of
MI Peaks

Max Interval
of MI Peaks

Min Interval
of MI Peaks

Avg Interval
of MI Peaks

DeepSeek-R1-Distill-Qwen-7B 2.57 507.97 0.0051 152.67 52.74 87.38
DeepSeek-R1-Distill-Llama-8B 24.54 511.03 0.0480 69.37 6.65 27.84
DeepSeek-R1-Distill-Qwen-14B 18.30 510.09 0.0359 85.50 5.33 31.09
DeepSeek-R1-Distill-Qwen-32B 10.82 511.22 0.0212 138.07 19.35 59.30
QwQ-32B 5.41 489.80 0.0110 167.85 19.35 66.53
DeepSeek-R1-Distill-Llama-70B 16.60 512.00 0.0324 93.03 6.77 34.71

2.2 Investigating LRM’s Reasoning Trajectories with MI

In this subsection, we track how the MI between each step’s representation and the gold answer
evolves, following the procedure in Section 2.1. Specifically, we conduct experiments on several pop-
ular LRMs of varying scales, including the DeepSeek-R1-Distill series [19] and QwQ-32B [46]. We
use the training split of the MATH dataset [20], which comprises 12k competition-level mathematics
problems, each accompanied by a detailed step-by-step solution.

Certain steps exhibit sudden and significantly increases in MI during the reasoning process of
LRMs. Figure 2 shows the MI evolution trajectories for one data sample during LRMs generation1.
Surprisingly, across all tested LRMs, we observe a consistent pattern: while most steps exhibit
relatively low and stable MI values as reasoning proceeds, certain steps’ MI suddenly and significantly
increases. We refer to these steps with abrupt increase in MI as the MI peaks. Formally, we define MI
peaks as follows:
Definition 2 (MI Peak). Given a MI sequence tmtu

T
t“1, let Q1, Q3 denote the 25-th percentile

(first quartile), and the 75-th percentile (third quartile) of the sequence, respectively. We then define
IQRpmq “ Q3 ´ Q1 as the inter-quartile range. In this way, we identify the set of MI peaks as

O “
␣

t : mt ą Q3 ` τ IQRpmq
(

,

where τ is a scale factor. Empirically, we set τ to 1.5 [48].

MI peaks are sparse and distribute non-uniformly throughout the total reasoning process. As
shown in Table 1, MI peaks occur quite sparsely in the reasoning processes of LRMs, accounting for
no more than 5% of all reasoning steps. Notably, for DeepSeek-R1-Distill-Qwen-7B, the MI peak
ratio is only 0.51%. Despite this sparsity, these MI peaks are scattered across the entire reasoning
trajectory, as illustrated in Figure 2. Moreover, the interval statistics reported in Table 1 indicate
that MI peaks do not occur at uniform intervals. Such a sparse and non-uniform distribution pattern
suggests that MI peaks may emerge opportunistically at key moments during reasoning.

2.3 Theoretical Insights: Higher MI Leads to Tighter Bounds on Prediction Error

In Section 2.2, our empirical exploration reveals the emergence of MI peaks in LRMs’ reasoning
trajectories, indicates that certain representations encode substantially rich information about the
gold answer. This raises a natural question: would such pattern be potentially related to the LRM’s
reasoning performance? In this subsection, we provide theoretical insights into this question, showing
that higher MI between the representations and the gold answer yields tighter lower and upper bounds
on the model’s prediction error.
Theorem 1. Consider a sequence of representations h1,h2, . . . ,hT during an LLM’s reasoning
process, where T denotes the number of total reasoning steps. Let y, ŷ denote the golden answer and
the LLM’s prediction answer, respectively. Define pe “ Prpŷ ‰ yq as the LLM’s prediction error
probability. Then the following inequality holds:

pe ě
1

log
`

|Y| ´ 1
˘

”

Hpyq ´

T
ÿ

j“1

I
`

y; hj | hăj

˘

´ Hbppeq

ı

, (2)

1Results for more examples and more LRMs are reported in Appendix D.
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(a) Deepseek-R1-Distill-Llama-8B and Llama-3.1-8B

(b) DeepSeek-R1-Distill-Qwen-14B and Qwen2.5-14B 

Figure 3: Comparison of MI trajectories between LRMs and their corresponding non-reasoning LLMs.

where |Y| is the size of the support of y, and Hbppeq denote the binary entropy of pe that defined by

Hbppeq “ ´pe log pe ´ p1 ´ peq logp1 ´ peq. (3)

Remark 1. Theorem 1 establishes a lower bound on the LLM’s prediction error pe. Intuitively, it
suggests that for an LLM to achieve a low error rate, its sequence of internal representations during
generation should capture more information about the golden answer. In other words, higher MI
throughout the generation trajectory may help lower model’s minimal achievable error. Note that, this
result be viewed as a modified application of Fano’s inequality [11], adapted to step-wise reasoning
by decomposing the mutual information along the trajectory.
Theorem 2. Following the notations in Theorem 1, the following inequality holds:

pe ď
1

2

”

Hpyq ´

T
ÿ

j“1

I
`

y; hj | hăj

˘

ı

. (4)

Remark 2. Theorem 2 provides an upper bound on the prediction error pe, which complements the
lower bound in Theorem 1. It demonstrates that a higher cumulative MI between the sequence of
representations and the golden answer leads to a tighter upper bound on LLM’s error probability.

Remark 3. In summary, Theorems 1 and 2 jointly suggest that, higher cumulative MI between
representations during reasoning and the golden answer leads to a tighter upper and lower bounds on
the model’s error probability. In other words, the model is more likely to arrive at the correct answer.
Notably, the presence of MI peaks can effectively increase this cumulative MI, thereby potentially
helping LLMs to perform more accurate reasoning.

2.4 Will Non-reasoning LLMs also Exhibit the MI Peaks Phenomenon?

Since the MI Peaks phenomenon is commonly observed in LRMs, would non-reasoning LLMs
(i.e., foundation LLMs not specifically strengthened for complex reasoning, such as Llama-3.1-
8B [17]) also exhibit similar behavior? To explore this question, we select the corresponding
non-reasoning counterparts of the DeepSeek-R1-Distill series models and follow the workflow
described in Section 2.1 to conduct experiments.

Metrics. To facilitate a quantitative comparison between LRMs and their corresponding base
models in terms of the properties of MI sequence tmtu

T
t“1 during reasoning, we adopt the following

metrics: (1) Mean: m̄ “ 1
T

řT
i“1 mi; (2) Standard deviation (Std): σm “

b

1
T

řT
i“1

`

mi ´ m̄
˘2

; (3)

AOM: AOM “ 1
|O|

ř

iPO
|mi´medianpmq|

IQRpmq
, where O is the set of MI peaks defined in Definition 2,

medianpmq is the median of the sequence tmtu
T
t“1. Specifically, Mean reflects the overall MI

magnitude, while the Std and AOM capture the degree of MI fluctuation.

Non-reasoning LLMs exhibit weaker and less pronounced MI peaks compared to LRMs. As
shown in Figure 3, while certain steps in non-reasoning LLMs’ reasoning process do exhibit increased
MI relative to the average, the increase is generally mild and lacks the sharp spikes observed in
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Table 2: Statistical comparison of MI sequences between LRMs and their corresponding non-
reasoning LLMs.

Metric Llama-3.1-8B Qwen2.5-Math-7B Qwen2.5-14B Qwen2.5-32B Llama-3.3-70B-Inst
Origin Reasoning Origin Reasoning Origin Reasoning Origin Reasoning Origin Reasoning

Mean 0.0863 0.1279 2.1971 3.3016 1.3128 3.3508 1.7669 4.0352 0.0400 0.0599

Std 0.0512 0.0707 0.8639 0.8936 0.4326 0.6703 0.5113 0.6036 0.0277 0.0484

AOM 3.3573 4.5176 2.6320 2.7541 2.6541 3.0820 2.5466 2.5998 2.4326 3.2866

Figure 4: Frequency distribution of tokens at MI peaks.

their LRM counterparts. Quantitatively, this observation is further supported by the Std and AOM
metrics reported in Table 2, which consistently indicate lower MI fluctuation and peak intensity in
non-reasoning LLMs. These findings suggest that the MI peak pattern may emerges from complex
reasoning enhanced training.

The overall MI in non-reasoning LLMs during the reasoning process is lower than their
corresponding LRMs. Figure 3 and the Mean metric in Table 2 intuitively and quantitatively validate
this observation, respectively. This indicates that after reasoning-intensive training, LRMs seems to
fundamentally encode more information relevant to correct reasoning within their representations at
each generation step. Furthermore, the presence of MI peaks in LRMs could contribute to raising
the overall MI throughout the reasoning trajectory. These observations provide partial empirical
support for the theoretical insights presented in Section 2.3, which indicate that higher MI between
representations and the golden answer correlates with a greater likelihood of generating a correct
response.

3 Thinking Tokens are Information Peaks in LLM Reasoning

In Section 2, we identify a distinctive phenomenon in LRMs’ reasoning trajectories: the emergence
of MI peaks. Then a natural follow-up question is: what semantic information is encoded in the
representations at these MI peaks? In this section, we investigate this question from a token-level
perspective. Specifically, in Section 3.1, we project the representations at MI peaks into the token
space and analyze the characteristics of the corresponding tokens. Then in Section 3.2, we design
experiments to assess the functional role of these tokens, demonstrating that they are crucial for
LRM’s reasoning performance, while other tokens have minimal impact.

3.1 Exploring MI Peak Representations in Token Space

Projecting representations to token space. To interpret the semantics of representations at MI peaks,
we decode these specific representations into the token space using LLM’s output head [50, 59, 15].
Specifically, for a representation ht, we first compute the corresponding token probability distribution,
and then employ a greedy decoding strategy to extract the token with the highest probability:

pt “ SoftmaxpWoutht ` bq, ẑt “ arg max
iPt1,...,V u

rptsi, (5)

where Wout P RV ˆd is the output projection matrix, b P RV is the bias vector, and V is the vocabulary
size. We apply the above decoding procedure to all representations at MI peaks across the evaluation
dataset. In this way, we analyze the empirical distribution over these decoding tokens, uncovering
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Figure 5: Impact of suppressing the generation of thinking tokens versus other tokens on LRMs’
reasoning performance.

patterns about what types of semantic tokens tend to correspond to these high-MI representations.
Specifically, we use the same models and dataset as described in Section 2.1 to conduct experiments.
For each model, we aggregate all decoded tokens at MI peaks across the dataset, and then compute
their frequency distribution for further analysis.

The tokens that appear at MI peaks are mostly connective words that express self-reflection or
transitions in LRM’s reasoning process. In Figure 4, we illustrate the top-30 tokens decoded at MI
peaks in DeepSeek-R1-Distill-LLaMA-8B, DeepSeek-R1-Distill-Qwen-14B and QwQ2. Interestingly,
we observe that the MI peak tokens in LRMs are predominantly logical markers and reflective
expressions such as “So”, “Hmm”, and “Wait”, which are commonly associated with pause, thinking,
or internal deliberation. Intuitively, tokens like “Hmm" and “Wait" often prompt the model to self-
reflect, consider alternative reasoning paths, etc. For example, we randomly extract responses
from LRMs where these tokens appear and observe the follow-up statements: “Wait, let me think
differently. Let’s denote...,” “Hmm, so I must have made a mistake somewhere. Let me double-check
my calculations. First, ...” This behavior aligns with prior work suggesting that such tokens can
motivate to perform multi-step reasoning and improve answer accuracy [19]. We provide more
discussions in Appendix C.

3.2 Tokens at MI Peaks are Critical to LRM’s Reasoning Performance

Here, we refer to those decoded high-MI tokens in Section 3.1 as thinking tokens. These thinking
tokens appear to play a dual role: (i) linguistically, they serve as discourse cues that encourage the
model to think or reflect; and (ii) in hidden space, their corresponding representations contain high MI
with the golden answer. Thus, we hypothesize that these thinking tokens may be critical to model’s
final reasoning results. In this subsection, we conduct experiments to validate this hypothesis.

Suppressing the generation of thinking tokens significantly impairs the reasoning performance
of LRMs, while suppressing other tokens has minimal effect. To investigate the role of thinking
tokens identified at MI peaks, we conduct a controlled intervention experiment. Specifically, during
inference with LRMs, we suppress the generation of a certain number of thinking tokens by setting
their generation probabilities to zero. As a comparison, we randomly suppress the same number of
non-thinking token. In this way, we evaluate the model’s performance on several math reasoning
benchmarks under different numbers of suppression tokens. As shown in Figure 5, suppressing
thinking tokens leads to a significant degradation in the model’s reasoning performance, while
suppressing non-thinking tokens has little to no effect (more discussions are provided in Appendix C).
This indicates that the thinking tokens indeed play a critical role in LRMs’ reasoning capabilities,
providing empirical support for our previous hypothesis.

4 Applications: Leveraging MI Peaks to Improve LRM Reasoning

Drawing insights from our previous analyses, we propose two simple yet effective techniques to
improve LRMs’ reasoning performance. In Section 4.1, we introduce a method that reuses internal
representations at MI peaks to allow the model to further exploit the information in latent space. In

2Results for the other models are provided in Appendix D.
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Section 4.2, we incorporate the thinking tokens into a test-time scaling scenario to improve model’s
reasoning accuracy.

4.1 Recycling High-MI Representations During Inference

The MI Peaks phenomenon analyzed in Section 2.2 suggests that some representations in LRMs’
reasoning process may encode particularly useful semantic information for reasoning. Motivated by
this, we propose a simple technique named Representation Recycling (RR). Intuitively, RR feeds the
representations at MI peaks back into the model, thereby allowing the model to process and exploit
these representations more thoroughly.

Method. Recall that each layer in an LLM typically consists of a Transformer block [49]. Given an
input, the forward computation flow through the layers of an LLM follows:

hℓ “ TFℓphℓ´1q, ℓ “ 1, . . . , L,

where hℓ is the output representation of the l-th transformer block TFℓp¨q, and L is the total
number of layers. To encourage deeper processing of a potentially important representation hℓ˚

at layer ℓ˚, we modify the forward computation by feeding it back into the same layer once more:
h1
ℓ˚ “ TFℓ˚ phℓ˚ q, instead of directly passing it to the next layer. Then, for layers ℓ ą ℓ˚, we

continue the forward pass as usual: h1
ℓ “ TFℓph

1
ℓ´1q. In this way, the above “recycling” operation

allows the model to reprocess the high-MI representations to further extract critical reasoning features.

Figure 6: Reasoning performance of the original
LRMs and our RR method across multiple math
benchmarks.

Experimental setup. To evaluate RR’s effective-
ness, we conduct experiments on three mathemat-
ical reasoning benchmarks using DeepSeek-R1-
Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-
7B. Since ground-truth answers are unavailable
during inference, we first record the thinking to-
kens using the training set of MATH dataset (as
introduced in Section 3.1), and then trigger RR
whenever the model generates one of these think-
ing tokens. We empirically set ℓ˚ to middle or
high layers of the LLMs, since previous studies
suggest that these layers tend to encode more se-
mantically rich content [6, 64, 38].

Results. As shown in Figure 6, RR consistently improves LRMs’ reasoning performance across
all benchmarks. In particular, RR yields a notable performance improvement on the AIME24 dataset,
which consists of challenging competition-level problems. This suggests that recycling the MI-peak
representations could help LRMs further unlock and leverage their inherent reasoning potential,
leading to better reasoning performance.

4.2 Test-Time Scaling with Thinking Tokens

With the diminishing returns of scaling laws in LLMs’ training stage, test-time scaling is becoming
an increasingly important paradigm for improving the reasoning performance of LRMs [13, 42, 54].
Prior studies have shown that LLMs’ reasoning performance can continue to improve as more
compute is allocated at inference time [22]. Inspired by prior work [33], we propose a simple yet
effective strategy called Thinking Token based Test-time Scaling (TTTS).

Method. Given the set of thinking tokens identified in Section 3.1, we filter out tokens with little
semantic content (e.g., punctuations and single characters, see Appendix B for more details) and
retain tokens like “So,” “Hmm,” which often indicate reflection, transition, or further thinking. Then
during inference, we append one of these thinking tokens to the end of the model’s initial output and
allow it to continue generating additional reasoning steps.

Experimental setup. We evaluate TTTS using LLaMA-8B on GSM8K, MATH500, and AIME24.
Specifically, we consider a controlled test-time scaling setting: given a LRM with an initial token
budget, we gradually increase the token generation budget and compare the model’s reasoning
performance with and without TTTS.

Results. As shown in Figure 7, under the same token budget, TTTS consistently outperforms
the original LRM on both GSM8K and MATH500. Notably, on GSM8K, the original LRM’s
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Method

Figure 7: Reasoning performance of TTTS and the original LRMs across multiple math benchmarks
under varying token budgets.

performance plateaus once the token budget exceeds 1024, whereas TTTS continues to yield
performance improvements as the token budget increases. On the harder AIME24 benchmark,
we observe that the original model’s performance saturates once the token budget reaches around
3000. In contrast, although TTTS underperforms slightly at some intermediate token budgets, its
performance continues to improve steadily and eventually surpasses the original model once the
budget exceeds 6144 tokens. These results suggest that as more inference-time resources become
available, TTTS could effectively prompt LRMs to further think, and stably improve the model’s
reasoning performance.

5 Related work

Reasoning in LLMs. LLMs have achieved significant advancements in understanding, particularly
for complex reasoning tasks [53, 28, 45, 61]. The development of multi-step reasoning frameworks
began with the chain-of-thought (CoT) paradigm [53], which introduces structured prompting to
formalize explicit intermediate reasoning steps. Surprisingly, this principle is further simplified
by [26], where the authors demonstrate that minimalist prompts (e.g., “Let us think step by step”)
could achieve comparable performance. Authors in [62] systematize problem decomposition via
least-to-most prompting hierarchies. This trajectory culminated in [60] formalizing reasoning as
tree-structured search processes, enabling backtracking and strategic exploration through explicit
state-space modeling. Refinement Strategies also address practical limitations. Wang et al. [51]
introduced self-consistency voting to mitigate output instability.

Information Theory in LLMs. Information theory [11] provides valuable theoretical basis for
analyzing the behavior of language models [23, 12, 34], with applications spanning numerous fields:
reasoning process diagnostics through quantification of unsupervised information gain [47], model
optimization via information bottleneck distillation [8], systematic behavior analysis capturing de-
pendency laws [9] and error propagation dynamics [13]. Recent extensions formalize synthetic
data generation through reverse-bottleneck metrics [14], demonstrating information theory’s ver-
satility in bridging theoretical insights with engineering practices. Ren and Liu [40] show that
Transformers exhibit an inductive bias toward lower-entropy representations when approximating
target distributions.

Critical Tokens in LLMs. Prior work has shown that a small set of “critical tokens” can dispro-
portionately affect an LLM’s behavior, prompting methods to identify them [31], quantify their
influence [16, 2], and mitigate their impact via selective training or pruning [30, 44]. Recent advances
in LLM safety alignment have increasingly focused on the pivotal role of potential critical tokens.
Zou et al. [65] propose a method to craft universal adversarial suffixes that induce aligned LLMs to
generate inappropriate content. Lin et al. [29] find that after alignment, tokens like “sorry,” “however,”
and “apolog” are learned by the model to prevent generating harmful outputs. Qi et al. [36] show that
simply forcing an unaligned LLM to begin its responses with certain safe tokens can significantly
improve the model’s safety.

6 Conclusion

In this work, we systematically investigate the reasoning mechanisms of LRMs through an
information-theoretic perspective. By tracking the MI evolution between intermediate represen-
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tations and the golden answer, we unveil an interesting MI peaks phenomenon. Further, we find
that these MI peaks predominantly correspond to thinking tokens (e.g., “Hmm,” “Wait,” “There-
fore”) that express self-reflection, logical transitions, or self-correction. Theoretically, we show
that higher cumulative MI correlates with tighter bounds on model error, offering insights to the
MI peaks phenomenon. Building on these analyzes, we introduce two simple, training-free meth-
ods—Representation Recycling (RR) and Thinking Token based Test-time Scaling (TTTS)—that
effectively improve LRMs’ reasoning performance. We hope our analyze could shed new light on
the internal structure of LRM reasoning and open up new directions for inference-time reasoning
enhancement.
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(a) Discovery of MI peaks: This is thoroughly explored in Sections 2.2–2.4, where the
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base models.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides complete assumptions and proofs for its theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details to reproduce its main experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will provide in the technical appendices and supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides critical test details necessary for full reproducibility.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We considered the errors present in the experimental data and multiple experi-
ments presented in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We write it in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We read and confirm the NeurIPS Code of Ethic carefully.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We write it in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models and datasets are publicly available and widely used in the commu-
nity, with no indication of sensitive or harmful content.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We write it in Appendix.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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Answer: [Yes]
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
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• For initial submissions, do not include any information that would break anonymity (if
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scientific rigorousness, or originality of the research, declaration is not required.
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Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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A Proofs and Definitions

A.1 Proof of Theorem 1

Theorem 1. Consider a sequence of representations h1,h2, . . . ,hT during an LLM’s reasoning
process, where T denotes the number of total reasoning steps. Let y, ŷ denote the golden answer and
the LLM’s prediction answer, respectively. Define pe “ Prpŷ ‰ yq as the LLM’s prediction error
probability. Then the following inequality holds:

pe ě
1

log
`

|Y| ´ 1
˘

”

Hpyq ´

T
ÿ

j“1

I
`

y; hj | hăj

˘

´ Hbppeq

ı

, (1)

where |Y| is the size of the support of y, and Hbppeq denote the binary entropy of pe that defined by

Hbppeq “ ´pe log pe ´ p1 ´ peq logp1 ´ peq. (2)

Proof. We first define an indicator random variable E “ 1tŷ ‰ yu, where E “ 1 if ŷ ‰ y, and
E “ 0 otherwise.

By the chain rule of entropy, we have:

Hpy | ŷq “HpE | ŷq ` Hpy | ŷ, Eq

“HpE | ŷq ` Hpy | ŷ, E “ 0qPrpE “ 0q ` Hpy | ŷ, E “ 1qPrpE “ 1q. (3)

Since E “ 0 indicates ŷ “ y, we have Hpy | ŷ, E “ 0q “ 0. And for HpE | ŷq, we have:

HpE | ŷq ď HpEq :“ Hbppeq. (4)

Thus, we can derive:

Hpy | ŷq ď Hbppeq ` peHpy | ŷ, E “ 1q. (5)

Since E “ 1 indicates ŷ ‰ y, the random variable y can take at most |Y| ´ 1 values given ŷ as
condition. Hence, we have [13]:

Hpy | ŷq ď Hbppeq ` pe log
`

|Y| ´ 1
˘

. (6)

Based on the definition of mutual information, we have:

Ipy; ŷq “ Hpyq ´ Hpy | ŷq. (7)

Combining Eq. (6) and Eq. (7) derives:

pe ě
1

log
`

|Y| ´ 1
˘

”

Hpyq ´ Ipy; ŷq ´ Hbppeq

ı

. (8)

Consider an LLM’s reasoning process, given the intermediate representations h1:T “

ph1,h2, . . . ,hT q, the output ŷ is computed as a function of these representations ŷ “ fph1:T q.
Thus, based on the Data Processing Inequality (DPI), we have:

Ipy; ŷq ď Ipy;h1:T q. (9)

Combining Eq. (8) and Eq. (9), and applying the chain rule of mutual information, we have:

pe ě
1

log
`

|Y| ´ 1
˘

”

Hpyq ´

T
ÿ

j“1

I
`

y; hj | hăj

˘

´ Hbppeq

ı

, (10)

which completes the proof.
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A.2 Proof of Theorem 2

Theorem 2. Following the notations in Theorem 1, the following inequality holds:

pe ď
1

2

”

Hpyq ´

T
ÿ

j“1

I
`

y; hj | hăj

˘

ı

. (11)

Proof. The output of a reasoning model ŷ can be formulated as a multi-class classification task with
predicted probabilities pi “ Prpŷ “ i | h1:T q. According to Bayesian decision theory[5] [63], the
conditional error probability is given by:

pe “ 1 ´ max
i

tPrpy “ i | h1:T qu. (12)

For binary classification (|Y| “ 2), we have:

mintp, 1 ´ pu ď
1

2
r´p log p ´ p1 ´ pq log p1 ´ pqs. (13)

Then take an expectation over p:

pe “ Eprmintp, 1 ´ pus ď
1

2
Epr´p log p ´ p1 ´ pq log p1 ´ pqs. (14)

So we derive:
pe ď

1

2
Eh1:T

rHpy | h1:T qs “
1

2
Hpy | h1:T q. (15)

This extends to multiclass problems through a recursive application (see Eq. (16)).

We prove the following inequality by mathematical induction that for any m-class discrete probability
distribution tp1, . . . , pmu:

pe “ 1 ´ max
i

tpiu ď
1

2
Hpp1, . . . , pmq. (16)

Base case (m “ 2): Direct verification using binary entropy function Eq. (13).

Inductive step: Assume validity for m classes. For m ` 1 classes, assume without loss of generality
pm`1 “ maxitpiu. Consider the merged distribution tp1, . . . , pm´1, pm ` pm`1u and apply:

1. The induction hypothesis:

1 ´ ppm ` pm`1q ď
1

2
Hpp1, . . . , pm´1, pm ` pm`1q. (17)

2. The grouping axiom [4]:

Hpp1, . . . , pm`1q “ Hpp1, . . . , pm`pm`1q`ppm`pm`1qH

ˆ

pm
pm ` pm`1

,
pm`1

pm ` pm`1

˙

. (18)

3. Binary entropy bound for the final term:

1 ´
pm`1

pm ` pm`1
ď

1

2
H

ˆ

pm
pm ` pm`1

,
pm`1

pm ` pm`1

˙

. (19)

Combining Eq. (17), Eq. (18) and Eq. (19) completes the induction:

1

2
Hpp1, . . . , pm`1q “

1

2
Hpp1, . . . , pm ` pm`1q `

1

2
ppm ` pm`1qH

ˆ

pm
pm ` pm`1

,
pm`1

pm ` pm`1

˙

ě 1 ´ ppm ` pm`1q ` ppm ` pm`1qp1 ´
pm`1

pm ` pm`1
q

“ 1 ´ pm`1

“ 1 ´ max
i

tpiu.

Thus, we have proved the Eq. (16).

24



Taking expectation over h1:T in Eq. (12) and applying the Eq. (16), we have

pe “ Eh1:T
r1 ´ max

i
tPrpy “ i|h1:T qus.

ď
1

2
Eh1:T

rHpy|h1:T qs

“
1

2
Hpy|h1:T q

“
1

2

«

Hpyq ´

T
ÿ

j“1

Ipy;hj | hăjq

ff

,

which completes the proof.

A.3 Definitions

Definition 3 (Mutual Information [4, 27]). Given two continuous random variables X and Y , the
mutual information is defined as:

IpX;Y q “

ż

Y

ż

X

ppx, yq log
ppx, yq

ppxqppyq
dxdy, (20)

where ppx, yq denotes the joint probability density function of X and Y ; ppxq, ppyq denotes the
marginal probability density functions of X and Y , respectively.

Definition 4 (Hilbert-Schmidt Independence Criterion (HSIC) [18]). HSIC is the Hilbert-Schmidt
norm of the cross-covariance operator between the distributions in Reproducing Kernel Hilbert Space
(RKHS). Formally:

HSICpX,Y q “EXYX1Y 1

“

kX
`

X,X 1
˘

kY
`

Y, Y 1
˘‰

` EXX1

“

kX
`

X,X 1
˘‰

EY Y 1

“

kY
`

Y, Y 1
˘‰

´2EXY

“

EX1

“

kX
`

X,X 1
˘‰

EY 1

“

kY
`

Y, Y 1
˘‰‰

,
(21)

where X 1, Y 1 are independent copies of X , Y , respectively, and kX , kY are kernel functions.

B Experimental Implementation Details

Practical implementation of HSIC. Due to the difficulty of accurately computing MI in high-
dimensional spaces [27, 35, 13], we employ the HSIC to estimate MI. Following [32, 38, 13], the
empirical HSIC from Definition 4 is computed as

HSICpX,Y q “
1

pn ´ 1q2
tr
`

KX HKY H
˘

, (22)

where KX and KY are kernel matrices with entries

KXij “ kXpxi, xjq, KYij “ kY pyi, yjq,

and H “ I ´ 1
n 11J is the centering matrix. Consistent with [32, 38, 13], we adopt the Gaussian

kernel to implement the kernel:

kpx,yq “ exp
´

´
}x ´ y}2

2σ2

¯

, (23)

where the bandwidth σ is selected by grid search over the range r50, 400s.

Datasets. 1) Evaluation of LRMs’ reasoning performance. We select three widely-used math
reasoning benchmarks to evaluate the reasoning capabilities of LRMs, ordering from easy to hard:
GSM8K [10], MATH500 [28], and AIME24 [1]. We adopt the evaluation framework provided by
Qwen2.5-Math [58]. To ensure the reproducibility of our results, we fix the temperature to 0 in all
experiments. 2) Observing the MI trajectories during LRMs’ reasoning process. We use the training
set of the MATH dataset [20]. Specifically, we randomly sample 100 instances to compute MI along
the reasoning trajectories.
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Figure 8: Frequency distribution of tokens at MI peaks for DeepSeek-R1-Distill-Qwen-7B, DeepSeek-
R1-Distill-Qwen-32B, and DeepSeek-R1-Distill-Llama-70B.

Models. We conduct experiments on DeepSeek’s R1 series models [19] and QwQ-32B [46]. For
DeepSeek’s R1 series models, we pair each LRM with its corresponding non-reasoning LLM
counterpart as follows: DeepSeek-R1-Distill-Qwen-7B and Qwen2.5-Math-7B [58], DeepSeek-R1-
Distill-Llama-8B and Llama-3.1-8B [17], DeepSeek-R1-Distill-Qwen-14B and Qwen2.5-14B [57],
DeepSeek-R1-Distill-Qwen-32B and Qwen2.5-32B [57], DeepSeek-R1-Distill-Llama-70B and
Llama-3.3-70B-Instruct [17]. As observed, all LRMs in the R1 series are trained from founda-
tion LLMs, except for DeepSeek-R1-Distill-Qwen-7B, which is trained from a math-specialized
LLM. As for QwQ-32B, existing public report [46] has not disclosed which specific LLM it was
trained from. All experiments are conducted on four NVIDIA A100 GPUs.

More implementation details. For all experiments involving MI computation, we extract the rep-
resentation from the last layer of the model. We concentrate on the last layer since higher layers
have been shown to encode more semantic content [64, 41] and the last layer directly influence the
model’s output text [37]. For TTTS in Section 4.2, to ensure that the model begins continuation
with semantically meaningful tokens, we filter out tokens with little semantic information, such as
punctuation, single characters, etc. In this way, the resulting token list is: [So, Let, Hmm, I,
Okay, First, Wait, But, Now, Then, Since, Therefore, If, Maybe, To]. All exper-
iments are conducted on four NVIDIA A100 GPUs.

C Discussions

Limitations. This work has several limitations. First, we analyze the MI dynamics of LRMs at the
token level. Alternative granularities such as dividing reasoning steps by semantic units or logical
steps may reveal additional insights. Second, while we observe the interesting MI peaks phenomenon
and provide insights into the reasoning mechanisms of LRMs, the underlying mechanisms that give
rise to these peaks remain underexplored. We leave a deeper analysis of their origin to future work.
We hope that our work will inspire further research along these directions and contribute to a deeper
understanding of the reasoning process in LRMs.

Broader impacts. This work contributes to a deeper understanding of the reasoning mechanisms
in LRMs. We first observe the MI peaks phenomenon during LRMs’ reasoning process, and then
propose two simple training-free methods to enhance LRMs’ reasoning performance based on the
findings. These analyzes may have positive impacts by making AI systems more transparent and
effective. However, there are also potential risks. If used carelessly, the same methods could be
applied to manipulate outputs or reinforce biased thinking patterns. It is important to consider these
concerns when applying our techniques and to encourage responsible use through further study and
monitoring.

Discussion on Tokens at MI Peaks. As shown in Figure 4 in the main text and Figure 8 in the
appendix, different LRMs exhibit slightly different token frequency patterns at MI peaks. For
models trained from foundation LLMs, i.e., DeepSeek-R1-Distill-Llama-8B, DeepSeek-R1-Distill-
Qwen-14B, DeepSeek-R1-Distill-Qwen-32B, and DeepSeek-R1-Distill-LLaMA-70B, the frequently
occurring tokens include So, Let, Hmm, The, and Okay. And for DeepSeek-R1-Distill-Qwen-7B,
which is trained from a math-specialized LLM, tokens such as So, The, Let, To, and, and Since
are more prominent. For QwQ-32B, tokens like To, the, we, and Let appear more frequently.
Semantically, these tokens commonly express reasoning-related functions such as initiating thinking
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Table 3: The AOM metric of MI sequences between LRMs and their corresponding non-reasoning
LLMs on GPQA and MedQA.

Model Type GPQA MedQA
Llama-3.1-8B Origin 3.5193 3.6337

Reasoning 4.0809 3.8436

Qwen2.5-14B Origin 2.7671 2.4355
Reasoning 2.9444 2.6281

(So, Hmm), logical transition (Since, Therefore), or discourse structuring (Let, Then, To), which
likely help facilitate the model’s continued reasoning. We hypothesize that the distribution of tokens
at MI peaks may be influenced by factors such as the nature of the foundation LLM, the reasoning-
intensive training paradigm, etc. We leave a deeper investigation of the relationship among MI-peak
token distributions, foundation LLM characteristics, reasoning-intensive training paradigms, and
model reasoning performance to future work.

Further discussion on thinking token suppression (Section 3.2, Figure 5). As shown in Figure 3.2,
while the overall trend indicates that LRMs’ reasoning performance degrades as more thinking
tokens are suppressed, the decline is not strictly monotonic. In some cases, performance improves
temporarily. We conduct an empirical analysis to better understand this phenomenon. Specifically,
we observe that when certain tokens are suppressed, the model tends to adopt alternative expressions
to convey similar meanings. For instance, when the generation of the token “Wait” is suppressed,
the model may instead produce phrases like “But wait”, which could lead to slight improvements in
performance. The observed performance fluctuations across different numbers of suppression tokens
further support that these thinking tokens play a critical role in LRMs’ reasoning capabilities.

Discussion on Theorem 1 and Token Length. In the main body, Theorems 1 and 2 are intended
to provide theoretical insights into the MI peaks phenomenon. Specifically, they suggest that when
the token length T is fixed, the presence of MI peaks may lead to a higher cumulative MI, and thus
potentially a lower error probability. This implication is also partially supported by the experimental
results in Figure 3. Therefore, Theorems 1 and 2 help establish a theoretical connection between the
MI peaks phenomenon and reasoning performance. However, the current formulation of Theorem 1
may be misinterpreted if extended to arbitrarily large T , as it does not explicitly account for the
natural limitations of reasoning in practice. First, there exists an upper bound on the total amount of
information that can be extracted from the input:

T
ÿ

j“1

Ipy;hj | hăjq “ Ipy;h1:T q ď min
␣

Hpyq, Hph1:T q
(

ď C,

where C is a constant. This bound reflects that increasing the number of reasoning steps cannot
provide unlimited additional information. Second, reasoning performance in practice does not
improve monotonically with longer sequences. As T increases, noise may accumulate, potentially
leading to performance degradation due to distraction or loss of coherence. To capture this effect,
Eq. (1) can be extended with an additional term `fpT, σq, where σ denotes the noise introduced
during step-wise reasoning. The function f can flexibly model different forms of error accumulation,
including super-linear [13], approximately linear [55], and more complex behaviors [3, 25]. Together,
these considerations provide a more faithful description of the relationship between cumulative MI,
reasoning length, and prediction error in practice.

D Additional Experimental Results

D.1 Additional Experiments on Other Reasoning Domains

To further examine the generality of the MI peaks phenomenon beyond mathematical reasoning, we ad-
ditionally conduct experiments on two reasoning-intensive benchmarks: GPQA [39] and MedQA [24].
We evaluate both DeepSeek-R1-Distill-Llama-8B and DeepSeek-R1-Distill-Qwen-14B,
along with their corresponding base models. The results in Table 3 show that the MI peaks phe-
nomenon consistently persists across these domains.
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Moreover, we examine the tokens corresponding to MI peaks. For GPQA, the set of tokens at MI
peaks largely overlaps with that obtained from the MATH dataset in the main text. For MedQA,
while common tokens such as “Let”, “So”, and “But” remain prominent, we also observe additional
tokens such as “Admin”, “Perform”, “She”, and “He”, which may reflect the specific characteristics
of the medical domain.

These additional experiments further support the generality of the MI peaks phenomenon, indicating
that it is not confined to mathematical problem-solving but also emerges in other domains that require
complex reasoning.

D.2 MI Peaks in LRMs

Figures 9–20 illustrate the MI trajectories of various LRMs across more data samples.
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Figure 9: MI trajectories of DeepSeek-R1-Distill-Llama-8B.
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Figure 10: (Continued) MI trajectories of DeepSeek-R1-Distill-Llama-8B.

30



0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 1

0 100 200 300 400 500
Reasoning Step

0

2

4

6

M
I V

al
ue

Sample 2

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 3

0 100 200 300
Reasoning Step

2

4

6

M
I V

al
ue

Sample 4

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 5

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 6

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 7

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 8

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 9

0 100 200 300 400 500
Reasoning Step

2

4

M
I V

al
ue

Sample 10

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 11

0 100 200 300 400 500
Reasoning Step

2

4

M
I V

al
ue

Sample 12

0 100 200 300 400 500
Reasoning Step

0

2

4

6

M
I V

al
ue

Sample 13

0 100 200 300 400
Reasoning Step

2

4

6

8

M
I V

al
ue

Sample 14

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 15

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 16

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 17

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 18

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 19

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 20

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 21

0 100 200 300 400 500
Reasoning Step

2

4

6

8

M
I V

al
ue

Sample 22

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 23

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 24

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 25

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 26

0 100 200 300 400
Reasoning Step

2

4

M
I V

al
ue

Sample 27

0 100 200 300 400 500
Reasoning Step

2

4

6
M

I V
al

ue
Sample 28

0 100 200 300 400 500
Reasoning Step

2

4

6

8

M
I V

al
ue

Sample 29

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 30

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 31

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 32

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 33

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 34

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 35

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 36

0 100 200 300 400 500
Reasoning Step

2

4

M
I V

al
ue

Sample 37

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 38

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 39

0 100 200 300 400 500
Reasoning Step

2

4

6

8

M
I V

al
ue

Sample 40

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 41

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 42

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 43

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 44

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 45

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 46

0 100 200 300 400 500
Reasoning Step

2

4

6

M
I V

al
ue

Sample 47

0 100 200 300 400 500
Reasoning Step

2

4

M
I V

al
ue

Sample 48

DeepSeek-R1-Distill-Qwen-7B

Figure 11: MI trajectories of DeepSeek-R1-Distill-Qwen-7B.
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Figure 12: (Continued) MI trajectories of DeepSeek-R1-Distill-Qwen-7B.
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Figure 13: MI trajectories of DeepSeek-R1-Distill-Qwen-14B.
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Figure 14: (Continued) MI trajectories of DeepSeek-R1-Distill-Qwen-14B.
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Figure 15: MI trajectories of DeepSeek-R1-Distill-Qwen-32B.
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Figure 16: (Continued) MI trajectories of DeepSeek-R1-Distill-Qwen-32B.
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Figure 17: MI trajectories of QwQ-32B.
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Figure 18: (Continued) MI trajectories of QwQ-32B.
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Figure 19: MI trajectories of DeepSeek-R1-Distill-Llama-70B.
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Figure 20: (Continued) MI trajectories of DeepSeek-R1-Distill-Llama-70B.
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