
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ARTI-PG: A PROCEDURAL TOOLBOX TO SYNTHESIZE
LARGE-SCALE AND DIVERSE ARTICULATED OBJECTS
WITH RICH ANNOTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The acquisition of substantial volumes of 3D articulated object data is expen-
sive and time-consuming, and consequently the scarcity of 3D articulated object
data becomes an obstacle for deep learning methods to achieve remarkable per-
formance in various articulated object understanding tasks. Meanwhile, pairing
these object data with detailed annotations to enable training for various tasks is
also difficult and labor-intensive to achieve. In order to expeditiously gather a sig-
nificant number of 3D articulated objects with comprehensive and detailed annota-
tions for training, we propose Articulated Object Procedural Generation toolbox,
a.k.a. Arti-PG toolbox. Arti-PG toolbox consists of i) descriptions of articulated
objects by means of a generalized structure program along with their analytic cor-
respondence to the objects’ point cloud, ii) procedural rules about manipulations
on the structure program to synthesize large-scale and diverse new articulated ob-
jects, and iii) mathematical descriptions of knowledge (e.g. affordance, semantics,
etc.) to provide annotations to the synthesized object. Arti-PG has two appealing
properties for providing training data for articulated object understanding tasks: i)
objects are created with unlimited variations in shape through program-oriented
structure manipulation, ii) Arti-PG is widely applicable to diverse tasks by easily
providing comprehensive and detailed annotations. Arti-PG now supports the pro-
cedural generation of 26 categories of articulate objects and provides annotations
across a wide range of both vision and manipulation tasks, and we provide exhaus-
tive experiments which fully demonstrate its advantages. We will make Arti-PG
toolbox publicly available for the community to use. More details, analysis and
discussions are provided in technical appendices.

1 INTRODUCTION

Articulated objects, comprised of rigid segments interconnected by joints that enable translation
and rotation movements, play an important role in daily life. Learning to understand articulated
objects is an essential topic in a wide range of research areas, including computer vision, robotics
and embodied AI. In the current data-driven era, the availability of a large amount of training data
has become indispensable for the successful implementation of deep neural networks to understand
articulated objects.

Common 3D articulated object data acquisition methods are either designing 3D CAD models by
artists (Chang et al., 2015; Xiang et al., 2020) or scanning real-world objects using scanners (Liu
et al., 2022)1, both of which have huge demands on time and money. Furthermore, comprehensive
and detailed annotations are required for these object data to support training in various articulated
object understanding tasks, which are also challenging to obtain. As a result, the issue of data
scarcity is observed across different tasks supported by existing datasets (Mo et al., 2019; Liu et al.,
2022), limiting the power of deep neural networks to comprehensively analyze and model articulated
objects. Given that prior research has examined little on how to mitigate this issue, it remains a
pressing problem that requires attention.

1Here, we discuss about how the data are created from scratch, since it is usually unavailable to collect data
from the Internet for novel categories in real-world applications.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this paper, we propose Articulated Object Procedural Generation toolbox (Arti-PG toolbox) as
a solution to this issue, which aids in expeditiously gathering a significant number of 3D articulated
objects with rich annotations. Arti-PG is developed based on the idea of procedural generation
(Togelius et al., 2014), referring to synthesizing data with generalized procedural rules.

Inspired by research in visual cognition and brain science (Habel & Eschenbach, 2006; Ullman,
2000; Palmeri & Gauthier, 2004; Biederman, 1987), we assume that a 3D object can be properly
described as the combination of a macro spatial structure and micro geometric details. By first
describing an articulated object’s spatial structure as generalized programs and geometric details
as point-wise correspondence between the object’s point cloud and structure, novel 3D articulated
objects can be synthesized in two steps: i) create a variation of the structure via the application of
randomized mathematical rules to the programs, and ii) recover the geometric details according to
the point-wise correspondence. Subsequently, we are able to automatically assign annotations to
the synthesized objects using mathematical descriptions defined upon the structure programs. Such
annotated synthesized objects can then be used to enrich the training set for various tasks, facilitating
network training.

Therefore, we construct the Arti-PG toolbox with three components: i) structure programs of artic-
ulated objects along with their correspondence to the objects’ point cloud, ii) procedural rules for
structure program manipulation, and iii) mathematical descriptions of knowledge (e.g. affordance,
semantics, etc.) for annotations. Arti-PG now supports 26 categories of articulate objects that are
most commonly seen and provides different kinds of knowledge for a wide range of tasks. Users
can easily use the codes in the toolbox to synthesize large-scale and diverse articulated objects with
rich annotations to train their models.

Our procedural approach has the following appealing properties. 1) Program-oriented Structure
Manipulation: Training set can be significantly enriched by synthesizing objects with unlimited
variations in shape through alterations of the structure program. Such alterations can be automati-
cally generated via randomized mathematical rules. 2) Analytic Label Alignment: Comprehensive
and detailed annotations of various types can be mathematically defined in the structure program,
after which they can be analytically aligned with the synthesized object.

Benefiting from these properties, Arti-PG holds advantages in terms of the diversity of generated
objects, applicability to a wide range of tasks and effectiveness in solving data scarcity. Compared
to data augmentation methods which also increase the diversity of training data but cannot freely
assign labels to them and hence are limited to specific tasks, Arti-PG is applicable in different tasks
and therefore distinguishes itself from conventional data augmentation methods.

We have collected a total number of 3096 3D articulated objects across 26 categories with complex
shapes from influential and open-source datasets (Yi et al., 2016; Mo et al., 2019; Xiang et al., 2020)
to evaluate our approach. In the following sections, we will fully demonstrate the mechanism of
our approach and further showcase the superiority of Arti-PG through evaluations from both vision
and robotic aspects: part segmentation, part pose estimation, point cloud completion and object
manipulation.

2 BACKGROUND AND MOTIVATION

2.1 ARTICULATED OBJECT DATASETS

The enormous advancement of machine learning is accompanied by the vigorous development of
large-scale datasets across various modalities. Although large datasets (Chang et al., 2015; Deitke
et al., 2023; Lin et al., 2015) have appeared in research areas such as images and rigid shapes, it is
much more costly and laborious to acquire articulated object data as well as annotations for various
articulated object understanding tasks (Liu et al., 2022; Xiang et al., 2020; Wang et al., 2019).
Therefore, there are not many large-scale articulated object datasets that have been proposed (Jiang
et al., 2022; Mao et al., 2022; Wang et al., 2019; Liu et al., 2022; Xiang et al., 2020). One of the
most commonly used dataset, PartNet-Mobility Xiang et al. (2020), offers 2,346 object models from
46 common indoor object categories, about only 50 objects per category on average. All the object
models are collected from 3D Warehouse, a 3D model library containing CAD models of real world
brands promoting products designed by experts.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 ARTICULATED OBJECT UNDERSTANDING TASKS

Articulated objects play an important role in human daily life and understanding these objects is
crucial for machine intelligence to perceive and interact with them. To fully understand articulated
objects, a series of vision and manipulation tasks have been studied.

Vision Tasks. Part segmentation, part pose estimation and point cloud completion are three impor-
tant vision tasks for articulated object understanding. Part segmentation (Qi et al., 2017a;b; Guo
et al., 2021; Zhao et al., 2021), which is one of the most fundamental tasks, assigns a semantic label
to each point of the object. Part pose estimation (Geng et al., 2023; Liu et al., 2023) involves query-
ing the 7-dimensional transformation of detected parts on the object, including the scale, rotation
and location of the parts. In these tasks, it is critical to have a good understanding of the spatial
structure of an object. On the other hand, point cloud completion aims to estimate the complete
shape of objects from partial observations (Yuan et al., 2018; Tchapmi et al., 2019; Wen et al., 2020;
Xiang et al., 2022), which pays more attention on the geometric details.

Manipulation Tasks. Articulated object manipulation is a set of various tasks focusing on how
an embodied agent properly interacts with articulated objects (Geng et al., 2023; Mo et al., 2021;
Wang et al., 2022; Ning et al., 2024). For example, Where2Act (Mo et al., 2021) proposed to predict
per-pixel action likelihoods and proposals for manipulation. Where2Explore (Ning et al., 2024) pro-
posed a few-shot learning framework for articulated object manipulation that measures affordance
similarity across categories to migrate affordance knowledge to novel objects. GAPartNet (Geng
et al., 2023) released a dataset with semantic and affordance labels and proposed a manipulation
pipeline by leveraging the concept of actionable parts. The success rate of manipulation using these
proposals largely depends on the understanding of affordances on articulated objects.

In this paper, we will conduct exhaustive experiments on the four listed tasks to comprehensively
evaluate the quality of our synthetic training data in terms of spatial structure, geometric details and
annotations, and also demonstrate the wide applicability of our approach.

2.3 SCARCITY OF TRAINING DATA IN ARTICULATED OBJECT RESEARCH

In the era of deep learning, a sufficient amount of training data is crucial for neural networks to
achieve remarkable performance. However, in the field of articulated object research, the scarcity
of training data remains a major obstacle for various articulated object understanding tasks. The
challenge in object acquisition is one of the major reasons for data scarcity. When collecting 3D
articulated object data of novel categories, common practices would be to design CAD models or
scan real-world objects, both of which can be costly and time-consuming. Specifically, design-
ing one CAD model from scratch would generally require a specialized artist to spend more than
2 hours while the corresponding fees can exceed $100 (Liu et al., 2022). On the other hand, for
scanning objects, the high expenses associated with acquiring the scanner and numerous real-world
objects, including high-value items like washing machines, also cannot be neglected. Meanwhile,
the difficulties in data annotation further restrict the applicability of existing object data. Generally,
manually annotating a 3D shape involves viewing it on a 2D screen, which would require the anno-
tator to constantly change viewing angles to complete the annotation. Furthermore, some types of
annotations such as affordances for manipulation are extremely complicated to manually annotate
(Mo et al., 2021), resulting in few existing datasets available for affordance labels. Apart from the
above points, it is also challenging to comprehensively label an articulated object to support a wide
range of tasks, such as semantics, 6-dof pose, grasp pose, etc.

Unfortunately, few researchers have focused their attention on directly addressing the data scarcity
problem. Yet some previous studies on data augmentation (Chen et al., 2020; Li et al., 2020; Kim
et al., 2021; Lee et al., 2021) can be applied in this context to alleviate the impact of data scarcity,
leveraging their power to enhance the diversity of training data and prevent models from overfitting.
For example, PointMixup (Chen et al., 2020) proposed a technique of interpolation between existing
point clouds. PointWOLF (Kim et al., 2021) applied smoothly varying non-rigid deformations to
the point clouds for diverse and realistic augmentations. However, this line of works cannot provide
additional annotations for the augmented data unless they already exist in the original data, which
restricts the augmented data to specific object modeling tasks.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

body = HollowCuboid(body_size ∈ ℝ+𝟑
, hole_size ∈ ℝ+𝟑

, hole_offset ∈ ℝ𝟐);

door_inner = Cylinder(door_inner_size ∈ ℝ+𝟑
, door_inner_offset ∈ ℝ𝟐, door_rotation ∈ ℝ);

door_middle = InclineRing(door_inner_size ∈ ℝ+𝟑
, door_outer_size ∈ ℝ+𝟑

,

 door_inner_offset ∈ ℝ𝟐, door_rotation ∈ ℝ);

door_outer = Ring(door_outer_size ∈ ℝ+𝟑
, door_rotation ∈ ℝ);

panel_plane = Trapezoidal(panel_size ∈ ℝ+𝟒
, panel_offset ∈ ℝ𝟑);

button_1 = Cuboid(button_1_size ∈ ℝ+𝟑
, button_1_offset ∈ ℝ𝟐);

button_2 = Cuboid(button_2_size ∈ ℝ+𝟑
, button_2_offset ∈ ℝ𝟐);

button_3 = Cuboid(button_3_size ∈ ℝ+𝟑
, button_3_offset ∈ ℝ𝟐);

Connect(door_inner, door_middle, Fixed); Connect(door_middle, door_outer, Fixed);

Connect(door_outer, body, Revolute); Connect(panel_plane, body, Fixed);

Connect(button_1, panel_plane, Prismatic); Connect(button_2, panel_plane, Prismatic);

Connect(button_3, panel_plane, Prismatic);

body = Body(

 body_size ∈ ℝ+𝟑
, hole_size ∈ ℝ+𝟑

,
 hole_offset ∈ ℝ𝟐;
);
 door = Door{

 door_inner_size ∈ ℝ+𝟑
,

 door_outer_size ∈ ℝ+𝟑
,

 door_rotation ∈ ℝ,
 door_inner_offset ∈ ℝ𝟐;
 };
 panel = Panal{

 panel_size ∈ ℝ+𝟒
, panel_offset ∈ ℝ𝟑,

 button_sizes ∈ ℝ+𝟑
, button_offsets ∈ ℝ𝟐,

 button_num ∈ ℕ;
 };
 Connect(door, body, revolute);
 Connect(panel, body, fixed);
 global_offset ∈ ℝ𝟑; global_rotation ∈ ℝ𝟑;

(𝒂) (𝒃) (𝒄) (𝒅)

Spatial Structure Described in Program FormGeometric Detail via
Point-wise Correspondence

Figure 1: a. The point cloud of a washing machine. A small area of its door surface is zoomed in
for a clear view of geometric details. b. Describing the object with spatial structure (bottom) and
geometric details (top). The brown arrows concretely represent point-wise correspondence between
points of the structure and the real point clouds. c. Naive program description of the structure in (b).
The correspondence between the program and structure is indicated by the same color. Elementary
primitive templates are in black font (e.g. Cylinder) and instances of elementary primivies are in
colored font (e.g. door inner). d. Program description of the structure in (b) via advanced primitive
template. Advanced primitive templates are in black font (e.g. Body) and instances of advanced
primitives are in colored font (e.g. body).

3 ARTI-PG: METHODOLOGY

3.1 OVERVIEW

The research in visual cognition and brain science (Humphreys et al., 1999; Habel & Eschenbach,
2006; Ullman, 2000; Palmeri & Gauthier, 2004; Biederman, 1987; Hummel & Biederman, 1992)
shows that the perceptual recognition of objects by human is conceptualized to be a process in which
the spatial properties of the object are segmented into an arrangement of simple geometric primitives
such as cuboids and spheres. Inspired by this point of view, we assume that an object in 3D space
can be properly represented with a macro spatial structure and its micro geometric details. Fig. 1
gives a brief illustration.

The macro spatial structure of an object includes aspects of the geometric primitives and the con-
nectivity relationships among them. By describing the primitives as i) specific shapes along with
corresponding geometric parameters and ii) their connectivity relationships as relative constraints
in DoF (degree of freedom), the structure of an object can be represented quantitatively. Then we
can further consider the micro geometric details as shape deformation on the geometric primitives
within the macro structure.

Intuitively, each primitive can be perceived as a class template which creates shape instances with
specific parameters, and the connectivity relationships can be defined as binary descriptors given two
shape instances. Based on this observation, we formulate the structure of an object as a program-like
representation in our implementation, where generalized geometric primitives and common connec-
tivity relationships are mathematically defined. To formulate the deformation for the geometric
details, we find the point-wise correspondence between the object’s point cloud and the points on
each primitive’s surface and describe the deformation as the transformation of each pair of points,
drawing inspiration from the idea in BPS (Prokudin et al., 2019).

After representing an object with its structure program and geometric details as aforementioned,
infinite new objects with unlimited variations in shape can be synthesized through i) alterations of
the program via generalized procedural rules and ii) recovering the geometric details according to
the point-wise correspondence. Given that the entire program is mathematically defined, we can
easily describe different types of annotations on the program using mathematical descriptions and
analytically align them to the synthesized objects. In this manner, numerous new objects with rich
annotations can be effortlessly obtained.

In the following sections, we first introduce how to represent an object asset with a structure program
and geometric details in Sec. 3.2 and Sec. 3.3, and then demonstrate the procedural generation rules

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

in Sec. 3.4 and Sec. 3.5. Finally, Sec. 3.6 shows the process of label alignment. Please refer to
Appendix A-E and H for comprehensive implementations and discussions of technical details.

3.2 PROGRAM DESCRIPTION OF SPATIAL STRUCTURE

In our approach, the spatial structure of an object, including parameterized geometric primitives and
connectivity relationships, is described in program form. Considering that each type of geometric
primitive represents a group of shapes that share the same properties, we design each geometric
primitive as a single class template, whose constructor depicts its general geometric properties. By
assigning corresponding parameters, the constructor will instantiate a specific shape of this primitive.
The parameters include intrinsic ones describing the geometric attributes like height and radius of
a cylinder, and extrinsic ones like positions and orientations of the whole shape. The connectivity
relationship, as the other component in the structure program, is designed as a binary descriptor. It
describes how two shape instances are physically connected, by imposing mathematical constraints
between them which reduce the total DoF. Fig. 1-c provides an example of a program description
for the spatial structure in Fig. 1-b.

Class templates of elementary primitives, like cuboid and cylinder, are initially designed from
scratch. Observing that common real-world objects within a category often exhibit a consistent hier-
archy in structure (Ullman, 2000; Mo et al., 2019; Wang et al., 2011), we further introduce advanced
primitive templates to capture the structural regularities of components in a high-level hierarchy of
an object category.

An advanced primitive template is constructed based on a set of elementary primitives with specific
spatial layouts and their connectivity relationships. We additionally introduce discrete intrinsic pa-
rameters in an advanced template to describe regular repetitions of certain elementary primitives.
Given that there are naturally different types of structural regularities for high-level hierarchical
components, we present multiple advanced primitive templates with various designs to cover the
diversity. After introducing advanced primitives in the structure program, the program can better
reflect the arrangement and relations between shape parts and be more concise, see Fig. 1-d.

To efficiently and effectively obtain the structure program of a real object, we have elaborately de-
signed a user-friendly structure program annotation system for guidance. Due to space limitations,
we introduce the structure program annotation system in Appendix E and provide a video demon-
stration in the supplementary material.

3.3 GEOMETRIC DETAIL VIA POINT-WISE CORRESPONDENCE

After the macro spatial structure of the object is properly represented, we discuss how to formulate
the micro geometric details in this section. We describe the geometric details with a set of point-
wise correspondences between the structure and the object which depict a 3D deformation on point
clouds. By applying the deformation to the point cloud of the structure, we will get a new point
cloud that fully represents the object.

Specifically, let X = {xi ∈ R3|i ∈ [1, n]} be the point cloud uniformly sampled from the visible
surface of the shape described by the structure program2, Y = {yi ∈ R3|i ∈ [1,m]} be the point
cloud of the object itself. Our goal is to find a deformation ∆X = {∆xi ∈ R3|i ∈ [1, n]} from X
to Y with minimum cost, written by

min
∆X

1

n

n∑
i=1

||∆xi||2

s.t. ∀i ∈ [1, n], xi +∆xi ∈ Y

(1)

where ∆xi is the correspondence vector for point xi, and xi + ∆xi indicates which point in Y
corresponds to xi. Inspired by BPS (Prokudin et al., 2019), Eq. 1 can be solved as

∆X = {∆xi = argmin
yj∈Y

||xi − yj ||2 − xi | i ∈ [1, n]} (2)

2Here the points are analytically bounded to the geometric primitives, that is, the positions of the points are
all analytic functions of the structure’s parameters. For example, the position of a point on a sphere in its local
coordinate system can be calculated as (r sin θ cosϕ, r sin θ sinϕ, r cos θ), where r is radius and θ, ϕ are the
polar and azimuthal angles respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Then we can use X ′ = {x′
1...,x

′
n} to denote the geometric details on the structure representation

where x′
i = xi +∆xi

3.

(𝒂) (𝒃) (𝒄)(𝒂) (𝒃𝟏) (𝒄)(𝒃𝟐) (𝒃𝟑)

Ⅰ Ⅱ

𝑳 = 𝑳𝟏,
𝑯 = 𝑯𝟏,
𝑾 = 𝑾𝟏

𝑳 = 𝑳𝟐,
𝑯 = 𝑯𝟐,
𝑾 = 𝑾𝟐

size = (𝑳, 𝑯, 𝑾)

• (-
𝟏

𝟒
𝑳,

𝟏

𝟐
𝑯,

𝟏

𝟓
𝑾)

• (-
𝟑

𝟏𝟎
𝑳, −

𝟑

𝟐𝟓
𝑯,

𝟏

𝟐
𝑾)

• (
𝟑

𝟏𝟎
𝑳,

𝟏

𝟐
𝑯, −

𝟑

𝟐𝟓
𝑾)

Figure 2: Fig. I illustrates examples of structure manipulation. I-(a): The original structure. I-
(b1-b3): Structures after being manipulated by CPA, DPA, APA respectively. I-(c): Structure after
being manipulated by the combination of three alterations. Fig. II shows examples of mapping
between points in CPA (a), DPA (b) and correspondence between elementary primitives in APA (c).
In II-(a) and II-(b), points are analytically bounded to the primitive with parameterized coordinate
representation. II-(c) depicts correspondence between elementary primitives by the same colors,
such as silver bracket in both globes.

3.4 PROGRAM-ORIENTED STRUCTURE MANIPULATION

So far, we have discussed how to represent a given object with our structure program and geometric
details. In this section, we delve into the process of manipulating the original structure of a given
asset to create diverse new structures. We design generalized procedural rules which encompass dif-
ferent perspectives of the structure program’s alterations, including continuous parameters, discrete
parameters and advanced primitives. Fig. 2 illustrates examples of new structures after manipulation.

Continuous Parameter Alteration (CPA). Apply random perturbations to the continuous param-
eters of primitives in the structure program. Some of the continuous parameters are automatically
adapted rather than being perturbed due to constraints imposed by connectivity relationships. Such
constraints ensure the generated structure to be stable and valid, meaning that there are no primitive
collisions or floating elements. As shown in Fig. 2-I-(b1), the sizes of primitives and the angles
between them are perturbed in this process.

Discrete Parameter Alteration (DPA). Apply random changes to the discrete parameters of ad-
vanced primitives within a reasonable range. This will vary the total amount of elementary geomet-
ric primitives in the structure program and thereby change the complexity of the whole structure.
As shown in Fig. 2-I-b2, the number of arc sides on the USB body and legs of the globe base are
increased through DPA.

Advanced Primitive Alteration (APA). Randomly replace an advanced primitive with another that
represents the same hierarchical component. This will significantly diversify the structure of syn-
thesized objects. We let the replacement primitive inherit the overall dimensions of the replaced one
so that it stays in proportion to other primitives in the structure. Additionally, APA will also make
random alterations on the existence of non-essential high-level hierarchical components. As shown
in the example of Fig. 2-I-b3, the rotated cap and the rounded rectangle body in the original USB are
manipulated into a detached cap and a round tailed body. The bracket of the globe becomes more
complex and the legged base is altered to a ring base.

We adopt the procedural rules in the order of APA, DPA, CPA with the aim of creating a wide
variety of new structures. Considering that the randomness introduced in these procedural rules may
lead to the occurrence of extreme parameters, the shape described by the structure program with
such extreme parameters will occasionally deviate from physical laws to some extent, e.g. collision
between two primitives. To this end, we design an exception handling module to verify the validity
of the structure program. This module will monitor the alternation process and automatically locate
and adjust the erroneous parameters. In Appendix H, we provide detailed examples of ‘globe base’
to better demonstrate structure manipulation with more details.

3Note that the points in X ′ is one-to-one correspondent to the points in X , hence they are also analytically
bounded to the geometric primitives.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.5 RECOVERY OF GEOMETRIC DETAILS

Now we discuss how to recover the geometric details for a new structure by migrating the geometric
details from the original object. Intuitively, given that the geometric details are analytically bounded
to the geometric primitives in a structure as discussed in Sec. 3.3, the migration can be carried out
by finding the mapping between points from surfaces of the original and the new structures, i.e.
before and after the three kinds of alterations. 1) CPA: Since the surface points are analytically
bounded to the primitives, the mapping is automatically built according to the primitives’ parame-
ters. 2) DPA: As the value of discrete parameter reduces, primitives are removed and the mapping
can be ignored. Oppositely, primitives are added via replication and the mapping is automatically
built among the repeated primitives. 3) APA: We assign correspondence between the elementary
primitives in the original and altered advanced primitives based on their hierarchical consistency, to
simplify the mapping from the advanced primitive level to the elementary primitive level. If two cor-
responding elementary primitives belong to the same template, their mapping is built as discussed
in CPA. Otherwise, their mapping is built by map projection techniques (Snyder, 1987), Examples
are provided in Fig. 2-II.

After finding the mapping, there are two issues that should be further dealt with. i) Only the points on
visible surfaces are covered by geometric details in the original object. Noticing that some points on
the invisible surfaces of the original structure may become visible after structure modification, these
invisible points should also be covered by geometric details. Therefore, we complete the geometric
details separately for each elementary primitive, by duplicating the visible points to invisible areas
based on the properties of the primitive’s local geometric patterns such as translational and rotational
symmetry. ii) The geometric details in Eq. 2 are in the world coordinate system, which implies that
they cannot be directly used for migration as the normal direction of mapped points may be changed.
To this end, we transform each ∆xi to a new vector ∆x̂i relative to the point normal at xi.

Finally, we recover the geometric details for the new structure by i) assigning relative geometric
details (i.e. {∆x̂i}) to the points on the visible surface of the new structure according to the mapping,
and ii) transforming the relative geometric details back to the world coordinate system according to
the point normal.

3.6 ANALYTIC LABEL ALIGNMENT

As described in previous texts, we are able to synthesize a new object according to the altered
structure program and geometric details, and each point of the new object is analytically bounded
to the geometric primitives in the structure program. Taking advantage of this property, we can
analytically align knowledge labels to the object’s point cloud.

Specifically, we assign the labels onto the geometric primitives using functions defined on parame-
ters of the primitives. This allows for the automatic labeling of spatial structures when they change
with the variation of parameters. Fig. 3 shows examples of labeling on structures, including the cen-
ter of ring handles, the outer edge of doors and the rim on knobs, these labels provide affordances
for interaction. Then, through the point-wise correspondence of geometric details, the labels on the
structures can be further automatically propagated to the point clouds of generated objects. Fol-
lowing such approach, we are able to synthesize a wide array of labeled objects without additional
human effort.

4 ARTI-PG: TOOLBOX

Following our Arti-PG methodology, we construct the Arti-PG toolbox to facilitate the community
easily and expeditiously synthesizing large-scale articulated object data for training using our ap-
proach. The toolbox consists of three important components: i) Off-the-shelf primitive templates
for each object category, and also abundant structure program descriptions and point-wise corre-
spondences for different articulated objects; ii) Procedural programs for structure manipulation, as
well as codes for geometric detail recovery; iii) Programs of different kinds of knowledge definition
along with the codes for analytic label alignment on procedurally generated objects.

Particularly, our toolbox now covers 26 categories of articulated objects which are widely used in
vision and manipulation tasks (Xiang et al., 2020; Mo et al., 2021; Zhao et al., 2021), along with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

𝜽

𝒉 𝒘𝒅𝒐𝒐𝒓

𝒍𝒅𝒐𝒐𝒓

𝜽

𝒉

≡

𝒙 +
𝒘𝒅𝒐𝒐𝒓

𝟐
− 𝒘𝒅𝒐𝒐𝒓 cos 𝜽 = −𝜽(𝒛 − 𝒘𝒅𝒐𝒐𝒓 sin 𝜽)

𝒘𝒅𝒐𝒐𝒓 sin 𝜽 ≤ 𝒛 +
𝒍𝒅𝒐𝒐𝒓
𝟐

≤ 𝒘𝒅𝒐𝒐𝒓 sin 𝜽 + 𝒍𝒅𝒐𝒐𝒓 cos 𝜽

−
𝒉

𝟐
≤ 𝒚 ≤

𝒉

𝟐

𝒍𝒅𝒐𝒐𝒓

𝒘𝒅𝒐𝒐𝒓

𝒘
𝒍

𝒘
𝒍

𝑿

𝒀

𝒁

𝒉 𝑹𝟏

𝑹𝟐

≡ ቐ
𝒙𝟐 + 𝒛𝟐 = (𝑹𝟐 −

𝑹𝟐 − 𝑹𝟏

𝒉
𝒚)𝟐

𝟎 ≤ 𝒚 ≤ 𝒉

𝒉

𝒘

≡
𝒙 =

𝒘

𝟐
𝒐𝒓 𝒚 =

𝒉

𝟐

−
𝒍𝒊𝒏
𝟐

≤ 𝒛 ≤
𝒍𝒊𝒏
𝟐

𝒍𝒊𝒏
𝒍

𝑿
𝒀

𝒁

≡ ቐ
𝒙𝟐 + 𝒛𝟐 = (𝑹𝟐 −

𝑹𝟐 − 𝑹𝟏

𝒉
𝒚)𝟐

𝟎 ≤ 𝒚 ≤ 𝒉

𝒉
𝑹𝟏

𝑹𝟐

𝑿𝒀

𝒁

𝑹

𝜽

≡ ൝
𝒙𝟐 + (𝒚 − 𝑹𝐬𝐢𝐧𝜽)𝟐+(𝒛 − 𝑹𝐜𝐨𝐬𝜽)𝟐= 𝒓𝟐

𝜽 ≤ 𝟐𝟎°

(𝒂) (𝒃) (𝒄) (𝒅)

≡
𝒙 =

𝒘

𝟐
𝒐𝒓 𝒛 =

𝒍

𝟐

−
𝒉

𝟐
≤ 𝒚 ≤ 𝟎

𝒉

𝒍

𝒘

𝒉

𝒘

𝒍
𝟗𝟎°

𝒘

𝑿

𝒀

𝒁

𝒓

Figure 3: Illustrations of analytically assigning labels on spatial structures of various categories
with functions (described in mathematical formulas, the coordinate center is indicated by the arrow,
zoom in for a clear view). We take affordable areas that are reasonable to interact with the object as
examples of labels. a. edge of microwave door. b. lower half of handle (we can still represent such
area with same parameters and functions even if the handle is rotated). c. area between supporting
parts on the handle and the top rim of cap knob. d. the top rim of cap knob and the center of kettle
ring handle.

structure program descriptions of 2133 objects from Mo et al. (2019); Xiang et al. (2020) which
contain complex spatial structures, available for diverse procedural generation results.

With the codes and data in the toolbox, it is very easy for users to synthesize new articulated objects,
by i) applying the codes for structure program manipulations to structure descriptions of certain
objects, ii) performing the codes for geometric detail recovery according to the point-wise corre-
spondence of the objects, and iii) conducting analytic label alignment with programs of different
kinds of knowledge definition. The purpose of us proposing Arti-PG toolbox is to help researchers
effortlessly acquire a large amount of well-annotated data to meet their research needs in specific
applications about articulated objects.

5 EXPERIMENTS

We thoroughly evaluate the effectiveness of our approach in synthesizing high-quality and richly-
annotated articulated objects for training deep neural networks in both vision and manipulation tasks.
The vision tasks include part segmentation, part pose estimation and point cloud completion. The
manipulation tasks focus on guiding an embodied agent to properly interact with articulated objects.

From widely-used datasets (Yi et al., 2016; Mo et al., 2019; Xiang et al., 2020), we gather 3096 ar-
ticulated objects spanning over 26 categories with varying structures to support the evaluation across
the aforementioned tasks. We only use the objects in Arti-PG toolbox for procedural generation that
are in the training set for all these tasks.

Representative approaches for each task (Zhao et al., 2021; Xiang et al., 2022; Mo et al., 2021; Ning
et al., 2024; Geng et al., 2023) including state-of-the-art are adopted as baselines to evaluate the
improvement achieved after being assisted by our synthesized data and annotations. The training is
conducted on randomly synthesized new objects and stops when the training loss converges. In the
following sections, we present the main results and analysis for each task. Please refer to Appendix F
for more details, results, comparisons and discussions of our experiments, and Appendix G for
visualizations of our synthesized objects.

5.1 VISION TASKS

In this part, we first introduce details about the experiments on three important vision tasks, part
segmentation, part pose estimation and point cloud completion, and then discuss about the results of
these experiments together.

Part Segmentation. We follow the part definition proposed by Mo et al. (2019); Xiang et al. (2020)
as the ground truth labels for part segmentation, and obtain the part labels for our synthesized train-
ing objects by first assigning each primitive in the structure program its part label, and then prop-
agating such labels to the objects’ point cloud. We uniformly sample 2048 points as input. We
take the classical and widely-used PointTransformer (Zhao et al., 2021) as baseline network, and
compare our approach with PointWOLF (Kim et al., 2021), a point cloud augmentation technique

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

developed for the task. Mean accuracy (mAcc) and mean IoU (mIoU) are adopted as evaluation
metrics following the baseline.

Part Pose Estimation. For this task, we refer to NPCS from GAPartNet (Geng et al., 2023) as the
baseline, and report metrics including rotation error (Re), translation error (Te), scale error (Se), 3D
mIoU, (5◦, 5cm) accuracy (A5) and (10◦, 10cm) accuracy (A10) following the baseline. The ground
truth part pose for our synthesized training objects is obtained by calculating the transformation from
the reference coordinate system to the part’s coordinate system.

Point Cloud Completion. Following Yuan et al. (2018); Xiang et al. (2022), we uniformly sample
16384 points from each object in both training and test sets as the complete point clouds and then
acquire partial point clouds by back projecting the complete shapes into 8 different partial views.
2048 points are sampled from each partial point cloud as input. We use SnowFlakeNet (Xiang et al.,
2022) as a strong baseline network for evaluation and adopt the Chamfer Distance (CD) between the
completed point cloud and the ground truth as metric.

Main Results. The main results of the three vision tasks are reported in Tab. 1. Remarkable per-
formance improvements over the baselines are achieved for all tasks under all metrics, with notable
improvements of approximately 10% in metrics such as CD, Te, and Se. As these metrics together
reflect the understanding of articulated objects in terms of both spatial structure and geometric de-
tails, prominent performance on all these metrics indicates that the objects synthesized by our ap-
proach possess high quality in both aspects. The comparison with data augmentation technique
PointWOLF is also shown in Tab. 1, which demonstrates two benefits of our approach: i) synthe-
sized objects are more effective to improve a model’s performance, and ii) our approach is widely
applicable to various tasks.

Table 1: Experimental results of part segmentation, part pose estimation and point cloud completion.
Impr. denotes the improvement of Arti-PG over the baseline in absolute value.

Tasks Segmentation Part Pose Estimation Completion
Methods mAcc(%) ↑ mIoU(%) ↑ Re(

◦) ↓ Te(cm)↓ Se(cm)↓ mIoU(%) ↑ A5(%) ↑ A10(%) ↑ CD(×10−4cm)↓
× 89.5 74.5 11.0 0.043 0.025 44.1 24.8 51.9 11.3

Arti-PG 91.3 79.4 10.5 0.039 0.022 48.3 25.9 53.0 10.4
Impr. 1.8 4.9 0.5 0.004 0.003 4.2 1.1 1.1 0.9

PointWOLF 89.7 75.8 - - - - - - -

5.2 MANIPULATION TASKS

We now report the performance of manipulation baselines, namely Where2Act (Mo et al., 2021),
GAPartNet (Geng et al., 2023), and state-of-the-art Where2Explore (Ning et al., 2024), after using
our synthesized data for training. Particularly, the training of Where2Act and Where2Explore rely
on affordance labels which are not provided in an articulated object dataset. As a compromise, they
explore the affordance labels of an object according to the outcome of simulated interactions, which
may result in inaccurate and noisy labels due to imperfections of the simulator. In comparison,
when training these frameworks on our synthesized data, we use the high-quality and well-defined
affordance labels obtained according to Sec. 3.6, instead of estimating affordances with simulation.
As the success of manipulation largely depends on how well a model understands the affordances of
the target articulated object, these experiments will substantially prove the quality of the annotations
provided by our approach.

Experiment Settings. A total of 15 representative categories of objects among PartNet-Mobility
(Xiang et al., 2020) are used in experiments. Following Mo et al. (2021), we have removed those
that are too small or do not make sense for single-gripper manipulation. A full list of the specific
tasks on these objects is provided in Appendix F Tab. 8, which can be categorized into two general
action types: pushing and pulling. We follow the baselines for the environment settings and action
settings, see Appendix F. Success rate is used as the evaluation metric.

Main Results. Tab. 2 highlights great improvements after incorporating our synthesized data for
training these baselines, especially for Pull-Where2Explore whose improvement reaches 28%. As
Where2Act (Mo et al., 2021), Where2Explore (Ning et al., 2024) and GAPartNet (Geng et al.,
2023) respectively rely on affordance and part pose labels for training, these results demonstrate the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

remarkable capability of our approach to provide high-quality annotations of various types including
different kinds of affordable areas and part poses.

Table 2: Experimental results of manipulation tasks. Impr. denotes the improvement of Arti-PG
over the baseline in absolute value.

Action Type Methods Where2Act Where2Explore GAPartNet

Push / Pull
× 21.4 / 7.6 25.9 / 9.3 26.6 / 12.9

Arti-PG 26.4 / 9.2 32.8 / 11.9 33.5 / 16.5
Impr. 5.0 / 1.6 6.9 / 2.6 6.9 / 3.6

5.3 ABLATION STUDY

Contribution Analysis. Arti-PG consists of procedural rules in two aspects, structure manipulation
and geometric detail recovery. Tab. 3 provides ablative results about the contribution of these two
aspects in the aforementioned tasks. Generally, both aspects contribute to the improvement of all
the tasks. In specific, the impact of structure manipulation is more pronounced in part segmentation
and part pose estimation while the influence of geometric detail recovery is more prominent to
point cloud completion, and their contributions are balanced in more comprehensive tasks, namely
manipulation. This finding is consistent with the structure and geometric details biases in these
tasks.

Structure Manipulation Rules. We further investigate the contribution of the three kinds of struc-
ture manipulation rules in Tab. 4. As stronger manipulation rules are introduced progressively, the
performance of the networks gradually improves, indicating that these rules can effectively increase
the diversity of the synthesized object structures and thus bring better coverage of samples in the
test set.

Table 3: Contribution analysis of structure manipulation (M) and geometric details recovery (R).

Tasks Segmentation Part Pose Estimation Completion Manipulation
Methods mAcc(%) ↑ mIoU(%) ↑ mIoU(%) ↑ A5(%) ↑ CD(×10−4cm)↓ push ssr(%) ↑ pull ssr(%) ↑

× 89.5 74.5 44.1 24.8 11.328 21.4 7.6
M 90.6 76.7 47.0 25.3 11.105 25.6 8.7

M + R 91.3 79.4 48.3 25.9 10.408 26.4 9.2

Table 4: Ablation study on three kinds of structure manipulation rules.

Tasks Segmentation Part Pose Estimation Completion Manipulation
Methods mAcc(%) ↑ mIoU(%) ↑ mIoU(%) ↑ A5(%) ↑ CD(×10−4cm)↓ push ssr(%) ↑ pull ssr(%) ↑

× 89.5 74.5 44.1 24.8 11.328 21.4 7.6
CPA 90.2 76.5 47.5 25.5 10.961 21.8 7.9

DPA + CPA 90.8 79.0 47.7 25.5 10.510 22.5 8.4
All 91.3 79.4 48.3 25.9 10.408 26.4 9.2

6 CONCLUSION

In this paper, we introduce Arti-PG toolbox, a procedural generation toolbox aids in synthesizing
numerous and diverse 3D articulated objects associated with rich annotations, in order to deal with
the data scarcity issue in various articulated object understanding tasks. The novelties of Arti-PG are
threefold. First, we propose a program description for macro spatial structure and a point-wise cor-
respondence representation for micro geometric details to mathematically represent the object asset.
Second, we design generalized procedural rules to synthesize new objects by first creating a variation
of the structure via manipulating the structure program, and then recovering the geometric details
according to the point-wise correspondence. Third, we demonstrate how to automatically obtain a
wide array of labels for the synthesized objects with analytic label alignment. We comprehensively
evaluate the effectiveness of Arti-PG toolbox on four representative object understanding tasks from
both vision and robotic aspects, and the experiments suggest the superiority of our approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Irving Biederman. Recognition-by-components: a theory of human image understanding. Psycho-
logical review, 94(2):115, 1987.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes, Pengwan Yang,
and Cees GM Snoek. Pointmixup: Augmentation for point clouds. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part III 16,
pp. 330–345. Springer, 2020.

daerduoCarey (Kaichun Mo). partnet anno system. https://github.com/daerduoCarey/
partnet_anno_system, 2019.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha
Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-xl: A universe of 10m+ 3d objects. arXiv preprint arXiv:2307.05663, 2023.

Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu, Li Yi, Siyuan Huang, and He Wang. Gapartnet:
Cross-category domain-generalizable object perception and manipulation via generalizable and
actionable parts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7081–7091, June 2023.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7:187–199, 2021.

Christopher Habel and Carola Eschenbach. Abstract structures in spatial cognition. Foundations of
Computer Science: Potential—Theory—Cognition, pp. 369–378, 2006.

John E Hummel and Irving Biederman. Dynamic binding in a neural network for shape recognition.
Psychological review, 99(3):480, 1992.

Glyn W Humphreys, Cathy J Price, and M Jane Riddoch. From objects to names: A cognitive
neuroscience approach. Psychological research, 62:118–130, 1999.

Hanxiao Jiang, Yongsen Mao, Manolis Savva, and Angel X Chang. Opd: Single-view 3d openable
part detection. In European Conference on Computer Vision, pp. 410–426. Springer, 2022.

Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee, Seong Jae Hwang, and Hyunwoo J Kim.
Point cloud augmentation with weighted local transformations. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 548–557, 2021.

Dogyoon Lee, Jaeha Lee, Junhyeop Lee, Hyeongmin Lee, Minhyeok Lee, Sungmin Woo, and
Sangyoun Lee. Regularization strategy for point cloud via rigidly mixed sample. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15900–15909,
2021.

Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu. Pointaugment: an auto-augmentation
framework for point cloud classification. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 6378–6387, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion
analysis for articulated objects. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 352–363, 2023.

11

https://github.com/daerduoCarey/partnet_anno_system
https://github.com/daerduoCarey/partnet_anno_system

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Liu Liu, Wenqiang Xu, Haoyuan Fu, Sucheng Qian, Qiaojun Yu, Yang Han, and Cewu Lu. Akb-48:
A real-world articulated object knowledge base. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14809–14818, June 2022.

Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel Chang, and Manolis Savva. Multiscan: Scal-
able rgbd scanning for 3d environments with articulated objects. Advances in neural information
processing systems, 35:9058–9071, 2022.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao
Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object
understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhinav Gupta, and Shubham Tulsiani.
Where2act: From pixels to actions for articulated 3d objects. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6813–6823, 2021.

Chuanruo Ning, Ruihai Wu, Haoran Lu, Kaichun Mo, and Hao Dong. Where2explore: Few-shot
affordance learning for unseen novel categories of articulated objects. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Thomas J Palmeri and Isabel Gauthier. Visual object understanding. Nature Reviews Neuroscience,
5(4):291–303, 2004.

Sergey Prokudin, Christoph Lassner, and Javier Romero. Efficient learning on point clouds with
basis point sets. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017b.

John Parr Snyder. Map projections–A working manual, volume 1395. US Government Printing
Office, 1987.

Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Savarese. Topnet:
Structural point cloud decoder. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 383–392, 2019.

Julian Togelius, Noor Shaker, and Mark J Nelson. Procedural content generation in games: A
textbook and an overview of current research. Togelius N. Shaker M. Nelson Berlin: Springer,
2014.

Shimon Ullman. High-level vision: Object recognition and visual cognition. MIT press, 2000.

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. Shape2motion:
Joint analysis of motion parts and attributes from 3d shapes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8876–8884, 2019.

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng, and Yueshan
Xiong. Symmetry hierarchy of man-made objects. In Computer graphics forum, volume 30, pp.
287–296. Wiley Online Library, 2011.

Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qingnan Fan, Leonidas Guibas, and Hao Dong.
AdaAfford: Learning to adapt manipulation affordance for 3d articulated objects via few-shot
interactions. European conference on computer vision (ECCV 2022), 2022.

Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu. Point cloud completion by skip-attention
network with hierarchical folding. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1939–1948, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
simulated part-based interactive environment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
Snowflake point deconvolution for point cloud completion and generation with skip-transformer.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):6320–6338, 2022.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point completion
network. In 2018 international conference on 3D vision (3DV), pp. 728–737. IEEE, 2018.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 16259–16268,
2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We provide comprehensive appendices for better understanding of our paper and offer more evidence
to prove the effectiveness of our approach. The appendices are organized as follows: Appendix
A-E first provide specific technical details and discussions about the implementation of Arti-PG.
Then, more experimental results and analysis are presented in Appendix F and visualizations of our
synthesized objects are shown in Appendix G. We further take the object category of ‘Globe’ as
an example to demonstrate how our approach is implemented in Python in Appendix H. Finally,
we discuss about additional advantages behind our design, current limitations and further work in
Appendix I.

A ARCHITECTURE AND OPERATING PRINCIPLES OF STRUCTURE PROGRAM

In Sec. 3.2, we introduced an example of a washing machine to show our design of the structure
program and how to use it to describe the spatial structure of an articulated object. Here we pro-
vide another example to more clearly demonstrate the architecture and operating principles behind
the program description of the object structure (in this case, the structure of a sliding window with
two prismatic panels) step by step. This shows a better view of technical details such as the prim-
itive composition of an object, how connectivity relationships work between primitives, and how
advanced primitives are built upon elementary ones. For the rest of this section, we use two types of
fonts, namely monospaced and italic, to indicate primitive instances and primitive class templates
respectively.

OBJECT STRUCTURE: Let’s start from the top row in Fig. 4, where the structure of the object
is resolved into four components, frame and window 1-3, and all these windows are connected
to frame. Particularly, window 2 is in a fixed connection and window 1/window 3 are in a
prismatic connection. For fixed connection, we restrict the relative translations and rotations be-
tween window 2 and frame to specific values. To implement the prismatic connection, we set the
translation of window 1/window 3 along the x-axis free within the length of frame and restrict
the other relative translations and rotations between window 1/window 3 and frame.

Frame: Frame is described with the primitive rectangular tube and its corresponding parameters.

Window 1-3: window 1-3 are instantiated from an advanced primitive of window, consisting
of a window base and optional handles. The window base is described with a concave cuboid
elementary primitive and the handle is a handle advanced primitive, and the two components are
connected with fixed connection. A discrete parameter is used to indicate the number of handles.
Through the window advanced primitive, we can use concave cuboid with different parameters and
handle 1-2 to describe window 1-3. Specifically, the number of handles is 0 for window 2
and 1 for the rest. This also shows that the same primitive templates implemented with different
parameters result in various structures.

Handle 1-2: handle 1-2 are instantiated from an advanced primitive of handle, whose
three components are all cuboid elementary primitives, and are instantiated into handle top,
handle middle and handle bottom in this case to construct both handle 1-2. The connec-
tion between handle top and handle middle is a fixed connection. Since handle middle
plays a role of a revolute joint, we connect handle bottom with handle middle by restricting
their relative translations and rotations with the exception of the rotational freedom along the joint’s
axis of revolution. Together with these primitives and connectivity relationships between them, we
get an advanced primitive template that describes a handle. By assigning specific parameters to the
advanced primitive template, we are able to describe handle 1-2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

Under review as a conference paper at ICLR 2025

A
d
v
a
n
c
e
d

P
r
i
m
i
t
i
v
e

w
i
n
d
o
w
_
1
=
W
i
n
d
o
w
(

G
l
a
s
s
=
g
l
a
s
s
_
1
{

g
l
a
s
s
_
o
u
t
e
r
_
s
i
z
e
;

g
l
a
s
s
_
i
n
n
e
r
_
S
i
z
e
}
;

H
a
n
d
l
e
=
h
a
n
d
l
e
_
1
{

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e
;

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e
;

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e
;

h
a
n
d
l
e
_
p
a
r
t
_
r
o
t
a
t
i
o
n
}
;

h
a
n
d
l
e
_
n
u
m
=
1

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

f
r
a
m
e

=

R
e
c
t
a
n
g
u
l
a
r
T
u
b
e
(

f
r
a
m
e
_
o
u
t
e
r
_
s
i
z
e

=
[
2
.
3
3
4
,
1
.
4
4
5
,
0
.
0
9
0
]

f
r
a
m
e
_
i
n
n
e
r
_
s
i
z
e

=
[
2
.
2
3
4
,
1
.
3
2
0
,
0
.
0
9
0
]

f
r
a
m
e
_
i
n
n
e
r
_
o
f
f
s
e
t

=
[
0
.
0
0
0
,
0
.
0
0
0
]

)

A
d
v
a
n
c
e
d

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
1
=
H
a
n
d
l
e
(

B
o
t
=
h
a
n
d
l
e
_
b
o
t
t
o
m
{

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e
}
;

M
i
d
=
h
a
n
d
l
e
_
m
i
d
d
l
e
{

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e
}
;

T
o
p
=
h
a
n
d
l
e
_
t
o
p
{

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e
}
;

h
a
n
d
l
e
_
p
a
r
t
_
r
o
t
a
t
i
o
n
=
0
°;

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

g
l
a
s
s
_
1
/
g
l
a
s
s
_
2
/
g
l
a
s
s
_
3

=

C
o
n
c
a
v
e
C
u
b
o
i
d
(

g
l
a
s
s
_
o
u
t
e
r
_
s
i
z
e

=
[
0
.
6
7
0
,
1
.
3
2
0
,
0
.
0
4
5
]

g
l
a
s
s
_
i
n
n
e
r
_
S
i
z
e

=
[
0
.
5
0
0
,
1
.
1
3
0
,
0
.
0
2
5
]

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
b
o
t
t
o
m

=

C
u
b
o
i
d
(

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e

=
[
0
.
0
4
0
,
0
.
0
6
5
,
0
.
0
0
5
]

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
m
i
d
d
l
e

=

C
u
b
o
i
d
(

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e

=
[
0
.
0
2
6
,
0
.
0
2
5
,
0
.
0
3
5
]

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
t
o
p

=

C
u
b
o
i
d
(

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e

=
[
0
.
0
2
6
,
0
.
0
1
3
,
0
.
0
0
9
]

)

C
o
n
n
e
c
t
(

h
a
n
d
l
e
_
m
i
d
d
l
e
,

h
a
n
d
l
e
_
b
o
t
t
o
m
,

r
e
v
o
l
u
t
e
)

O
f
f
s
e
t

=
[
0
.
0
0
0
,
-
0
.
0
2
0
,
0
.
0
0
0
]

R
o
t
a
t
i
o
n
=
0
°

C
o
n
n
e
c
t
(

h
a
n
d
l
e
_
t
o
p
,

h
a
n
d
l
e
_
m
i
d
d
l
e
,

f
i
x
e
d
)

O
f
f
s
e
t

=
[
0
.
0
0
0
,
-
0
.
0
6
0
,
0
.
0
0
0
]

C
o
n
n
e
c
t
(
h
a
n
d
l
e
_
1
,

g
l
a
s
s
_
1
,

f
i
x
e
d
)

O
f
f
s
e
t

=
[
-
0
.
8
7
5
,
0
.
0
0
0
,
0
.
0
0
0
]

A
d
v
a
n
c
e
d

P
r
i
m
i
t
i
v
e

w
i
n
d
o
w
_
2
=
W
i
n
d
o
w
(

G
l
a
s
s
=
g
l
a
s
s
_
2
{

g
l
a
s
s
_
o
u
t
e
r
_
s
i
z
e
;

g
l
a
s
s
_
i
n
n
e
r
_
S
i
z
e
}
;

H
a
n
d
l
e
=
N
o
n
e
;

h
a
n
d
l
e
_
n
u
m
=
0

)

C
o
n
n
e
c
t
(
w
i
n
d
o
w
_
1
,

f
r
a
m
e
,

P
r
i
s
m
a
t
i
c
)

O
f
f
s
e
t

=
[
-
0
.
5
8
0
,
0
.
0
0
0
,
0
.
0
2
2
]

C
o
n
n
e
c
t
(
w
i
n
d
o
w
_
2
,

f
r
a
m
e
,

F
i
x
e
d
)

O
f
f
s
e
t

=
[
0
.
0
0
0
,
0
.
0
0
0
,
-
0
.
0
2
2
]

C
o
n
n
e
c
t
(
w
i
n
d
o
w
_
3
,

f
r
a
m
e
,

P
r
i
s
m
a
t
i
c
)

O
f
f
s
e
t

=
[
0
.
6
6
0
,
0
.
0
0
0
,
0
.
0
2
2
]

f
r
a
m
e

=

F
r
a
m
e
(
f
r
a
m
e
_
o
u
t
e
r
_
s
i
z
e
;

f
r
a
m
e
_
i
n
n
e
r
_
s
i
z
e
;

f
r
a
m
e
_
i
n
n
e
r
_
o
f
f
s
e
t
)
;

w
i
n
d
o
w
_
1

=

W
i
n
d
o
w
(

G
l
a
s
s

=

g
l
a
s
s
_
1
{
g
l
a
s
s
_
o
u
t
e
r
_
s
i
z
e
;

g
l
a
s
s
_
i
n
n
e
r
_
S
i
z
e
}
;

H
a
n
d
l
e

=

h
a
n
d
l
e
_
1
{
h
a
n
d
l
e
_
n
u
m
;

h
a
n
d
l
e
_
p
a
r
t
_
r
o
t
a
t
i
o
n
;

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e
;

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e
;

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e
}
;

)
;

w
i
n
d
o
w
_
2

=

W
i
n
d
o
w
(

G
l
a
s
s

=

g
l
a
s
s
_
2
{
g
l
a
s
s
_
o
u
t
e
r
_
s
i
z
e
;

g
l
a
s
s
_
i
n
n
e
r
_
S
i
z
e
}
;

H
a
n
d
l
e

=

N
o
n
e
;

)
;

w
i
n
d
o
w
_
3

=

W
i
n
d
o
w
(

G
l
a
s
s

=

g
l
a
s
s
_
3
{
g
l
a
s
s
_
o
u
t
e
r
_
s
i
z
e
;

g
l
a
s
s
_
i
n
n
e
r
_
S
i
z
e
}
;

H
a
n
d
l
e

=

h
a
n
d
l
e
_
2
{
h
a
n
d
l
e
_
n
u
m
;

h
a
n
d
l
e
_
p
a
r
t
_
r
o
t
a
t
i
o
n
;

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e
;

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e
;

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e
}

)
;

C
o
n
n
e
c
t
(
w
i
n
d
o
w
_
1
,

f
r
a
m
e
,

P
r
i
s
m
a
t
i
c
)
;

C
o
n
n
e
c
t
(
w
i
n
d
o
w
_
2
,

f
r
a
m
e
,

F
i
x
e
d
)
;

C
o
n
n
e
c
t
(
w
i
n
d
o
w
_
3
,

f
r
a
m
e
,

P
r
i
s
m
a
t
i
c
)
;

g
l
o
b
a
l
_
o
f
f
s
e
t
;

g
l
o
b
a
l
_
r
o
t
a
t
i
o
n
;

𝑿

𝒀

𝒁

A
d
v
a
n
c
e
d

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
2
=
H
a
n
d
l
e
(

B
o
t
=
h
a
n
d
l
e
_
b
o
t
t
o
m
{

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e
}
;

M
i
d
=
h
a
n
d
l
e
_
m
i
d
d
l
e
{

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e
}
;

T
o
p
=
h
a
n
d
l
e
_
t
o
p
{

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e
}
;

h
a
n
d
l
e
_
p
a
r
t
_
r
o
t
a
t
i
o
n
=
9
0
°;

)

C
o
n
n
e
c
t
(

h
a
n
d
l
e
_
m
i
d
d
l
e
,

h
a
n
d
l
e
_
b
o
t
t
o
m
,

r
e
v
o
l
u
t
e
)

O
f
f
s
e
t

=
[
0
.
0
0
0
,
-
0
.
0
2
0
,
0
.
0
0
0
]

R
o
t
a
t
i
o
n
=
9
0
°

C
o
n
n
e
c
t
(

h
a
n
d
l
e
_
t
o
p
,

h
a
n
d
l
e
_
m
i
d
d
l
e
,

f
i
x
e
d
)

O
f
f
s
e
t

=
[
0
.
0
0
0
,
-
0
.
0
6
0
,
0
.
0
0
0
]

C
o
n
n
e
c
t
(
h
a
n
d
l
e
_
2
,

g
l
a
s
s
_
3
,

f
i
x
e
d
)

O
f
f
s
e
t

=
[
0
.
9
9
0
,
0
.
0
0
0
,
0
.
0
0
0
]

A
d
v
a
n
c
e
d

P
r
i
m
i
t
i
v
e

w
i
n
d
o
w
_
3
=
W
i
n
d
o
w
(

G
l
a
s
s
=
g
l
a
s
s
_
3
{

g
l
a
s
s
_
o
u
t
e
r
_
s
i
z
e
;

g
l
a
s
s
_
i
n
n
e
r
_
S
i
z
e
}
;

H
a
n
d
l
e
=
h
a
n
d
l
e
_
2
{

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e
;

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e
;

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e
;

h
a
n
d
l
e
_
p
a
r
t
_
r
o
t
a
t
i
o
n
}
;

h
a
n
d
l
e
_
n
u
m
=
1

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
b
o
t
t
o
m

=

C
u
b
o
i
d
(

h
a
n
d
l
e
_
b
o
t
t
o
m
_
s
i
z
e

=
[
0
.
0
4
0
,
0
.
0
6
5
,
0
.
0
0
5
]

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
m
i
d
d
l
e

=

C
u
b
o
i
d
(

h
a
n
d
l
e
_
m
i
d
d
l
e
_
s
i
z
e

=
[
0
.
0
2
6
,
0
.
0
2
5
,
0
.
0
3
5
]

)

E
l
e
m
e
n
t
a
r
y

P
r
i
m
i
t
i
v
e

h
a
n
d
l
e
_
t
o
p

=

C
u
b
o
i
d
(

h
a
n
d
l
e
_
t
o
p
_
s
i
z
e

=
[
0
.
0
2
6
,
0
.
0
1
3
,
0
.
0
0
9
]

)

Fi
gu

re
4:

A
rc

hi
te

ct
ur

e
of

th
e

st
ru

ct
ur

e
pr

og
ra

m
of

a
w

in
do

w
.

15

789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842

Under review as a conference paper at ICLR 2025

B POINTS ON GEOMETRIC PRIMITIVES

An important property of the geometric primitive is that each point on the primitive can be ana-
lytically described by mathematical functions, as discussed in footnote 2 of the main body. This
property is crucial for the appearance representation and the label alignment process. In the footnote
we give an example of a sphere, and here we further provide another example of a cuboid for better
understanding. In this example, we assume that i) the center is at the origin and the orientations in
terms of L,H,W are aligned with the x, y, z-axes respectively in a cuboid primitive, and ii) y+-axis
points upward. Then, all the points on its top surface can be analytically described by (αL, 1

2H,βW)
with α, β ∈ [− 1

2 ,
1
2]. A certain point on its top surface can also be designated by assigning specific

value to α, β, e.g. one of the corners can be represented by assigning both α and β as 1
2 .

C EXAMPLE OF COMPLETING GEOMETRIC DETAILS

As mentioned in Sec. 3.5, there may be invisible points on the structure that are not covered by
geometric details, and we deal with this issue by completing the geometric details separately for each
elementary primitive according to its geometric property like translational and rotational symmetry.
Here, we provide an example of such process on primitive cuboid.

We first assume that i) the center of the cuboid is at the origin and the orientations in terms of
L,H,W are aligned with the x, y, z-axes respectively, and ii) U is the set of all points on the primi-
tive’s surface and V ⊂ U is the set of all visible points. For an invisible point p = (x, y, z) ∈ U−V,
points that obey translational and rotational symmetry with p compose a point set S, written as

S =

{[
x
y
−z

]
,

[
x
−y
z

]
,

[
x
−y
−z

]
,

[−x
y
z

]
, · · ·

}
(3)

We select a point q ∈ V for each p under following rules: i) q is close enough to some point in S

∃s ∈ S, ∥q − s∥2 < ϵ (4)

where ϵ is a threshold, and ii) adjacent ps should search for their corresponding qs in the same
symmetric manner. Then, we can duplicate the appearance vector of q to p. Finally, we apply a
linear interpolation algorithm to fill the remaining holes if they exist and a filtering algorithm to
make the appearance smoother. Fig. 5 gives a common case that results in invisible points in the

contact surface of the lower cuboid, and we show one of the choices which adopts s =

[
x
−y
−z

]
to

migrate geometric details to these points.

(𝒂) (𝒃) (𝒄) (𝒅)

Figure 5: Example of completing geometric details for invisible points. a. A common case where
two cuboids are stacked and the contact surface is invisible. b. The lower cuboid where the top right
rectangular blue area indicates invisible area. c. One possible way to complete the geometric details
on the invisible area is to migrate visible points w.r.t. axis symmetry along the red line. Black points
on the top right are invisible points sampled on the cuboid surface. Green and red spheres show the
searching area of corresponding points. Zoom in for a clear view. d. The result of completion.

16

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

Under review as a conference paper at ICLR 2025

D MORE EXAMPLES OF LABEL ALIGNMENT

Here we give more examples of automatically aligning labels onto synthesized objects, taking ad-
vantage of the analytic property.

Part Semantics. The structure of an object is represented with a series of elementary geometric
primitives in our program description. Since the elementary primitives typically serve as the founda-
tional components in an object’s hierarchy, we can obtain part semantics for each point by assigning
a label to each elementary primitive (more specifically, all the points on it).

Grasp Poses. Please refer to Fig. 6 for details.

𝐌0

𝐌 = 𝐓 𝑅 sin
𝜋 − 𝜃

2
, 𝑟, 𝑅 cos

𝜋 − 𝜃

2
𝐑𝑌 𝜋 −

𝜃

2
𝐑𝑍 −

𝜋

2
𝐌𝟎

(a) (b)

𝐌

𝑿
𝒀

𝒁

Figure 6: Illustration of analytically aligning grasp poses. (a) We first label a grasp pose of the
primitive, i.e. a torus segment in this example, by transforming the gripper from its initial pose
(M0) to a proper grasp pose (M) using the mathematical expression below. Here the major radius R
is the distance from the center of the tube to the center of the torus, the minor radius r is the radius of
the tube, and θ is the segment angle. R∗ denotes the transformation matrix for rotation around axis
*, T denotes the transformation matrix for translation. (b) With the grasp pose aligned to the torus
segment, a synthesized kettle is automatically labelled with this affordance when the torus segment
is used in the structure as a handle.

E DETAILS OF STRUCTURE PROGRAM ANNOTATION SYSTEM

We have elaborately designed a user-friendly annotation system to efficiently and effectively ob-
tain the structure program of a real object. It is a web-based system, allowing users to easily
access it through a browser. The system is designed as a one-way question-answering workflow,
where users are tasked to determine the primitives and specify their parameters for a given object.
During annotation, real-time renderings of the structural program as well as the target object it-
self are shown on the web page in a synchronous way for reference. We also show a mixed view
of the two renderings for better comparison. We provide a video demonstration of the system in
anno system videos/system demo.mp4 of supplementary material. Some of our codes are bor-
rowed from PartNet Anno System (daerduoCarey (Kaichun Mo)).

In practice, we invite first-year undergraduate students to assist us in the annotation process, since it
just requires high-school level math skills. For reference, the average annotation time for an object
is about 6 mins. To demonstrate the annotation process in detail, we provide a video of annotation
footage featuring three volunteers in anno system videos/anno footage.mp4 in supplementary ma-
terial. This shows that the system is user-friendly and efficient in obtaining structure programs.

F MORE DETAILS ON EXPERIMENTS

Vision Experiment Settings. Here we provide more details for vision tasks settings. In Tab. 5,
we give the detailed statistics of our dataset in terms of train and test set sizes. For part segmenta-
tion, besides PointTransformer (Zhao et al. (2021)) as the baseline mentioned in the main body, we

17

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950

Under review as a conference paper at ICLR 2025

further introduce the classical PointNet++ (Qi et al. (2017a)) as another baseline to further demon-
strate our approach’s effectiveness. PointNet++ is an efficient and effective network which serves
as the backbone of many 3D frameworks. For part pose estimation, we follow GAPartNet (Geng
et al. (2023)) for data preparation. Specifically, we render RGB-D images of articulated objects in
SAPIEN simulator (Xiang et al. (2020)) with annotations, variate collected data by using random
camera poses and joint poses and finally gather 20000 points as input. The position and orientation
of parts are defined in the Normalized Part Coordinate Space (NPCS). Specifically, each detectable
part is reduced to a standard orientation and normalized within a unit ball. We use batch sizes from
16 to 64 for different tasks, depending on the default settings of baseline models. We use Adam
optimizer with learning rate = 0.001 and weight decay = 0.0001 to optimize the network parameters.

Table 5: Detailed statistics of the data split on vision tasks.

Split Bottle Box Bucket Display Door Eyeglasses Globe Kettle
Train 64 18 18 50 24 43 40 18
Test 400 10 18 904 12 22 20 10

KitchenPot Laptop Lighter Microwave Pen Pliers Fridge Safe
Train 15 48 18 6 32 10 30 20
Test 10 405 10 10 16 14 14 10

Scissors Stapler Switch TrashCan USB Washing Window
Train 32 13 47 37 20 7 35
Test 15 10 23 19 31 10 18

More Vision Task Results. We provide part segmentation and point cloud completion results for
each object category in detail in Tab. 6, as well as a new part segmentation baseline PointNet++.
Since part pose estimation is not a category-level task, we do not provide per category results of this
task. For both tasks and all the baselines, our approach is able to provide significant improvement
across all the object categories. Further, our approach surpasses the data augmentation approach
PointWOLF in the segmentation task for almost all categories, especially for categories with more
delicate structures, e.g. Pliers and USB. This can be attributed to Arti-PG’s capability of synthesizing
structures with a wide range of variety while ensuring their validity, whereas PointWOLF, augment-
ing based on random local transformations that may potentially harm the structural integrity of such
delicate objects, begins to show negative impacts on the performance. These results provide more
comprehensive evidence of the superiority of our approach.

Manipulation Experiment Settings. As shown in Tab. 7, we conduct our experiment on 15 rep-
resentative categories of objects. We would like our evaluation to reflect the ability to understand
articulated object structures and detect affordances on articulated objects rather than delicate tra-
jectory planning. Hence we have removed objects that are either too small (e.g. Pen, USB) or do
not make sense for a single-gripper to manipulate (e.g. Bottle, Scissors). This practice follows the
baseline (Mo et al. (2021)).

We adapt the SAPIEN (Xiang et al. (2020)) simulator as the interaction environment for manipu-
lation tasks. For each interaction simulation, we initially place an object in the SAPIEN simulator
at the center of the scene. The joint pose of the object has a 50% chance of being at the closed
state (e.g. a closed door) and a 50% chance of being at the open state with random motion (e.g.
a half open closet). The whole scene is observed through an RGB-D camera with known intrinsic
parameters, which stares at the center of the object and is positioned at the upper hemisphere with a
random azimuth [0°,360°) and a random altitude [30°,60°]. A Franka Panda Flying gripper with 2
fingers is used to interact with the object.

For Where2Act (Mo et al. (2021)) and Where2Explore (Ning et al. (2024)), the per-pixel action
likelihoods and action proposals are acquired by the networks. We select the pixel with the maximum
action likelihood as the target and adopt the orientation and movement direction of the gripper given
by the action proposal at this point. GAPartNet (Geng et al. (2023)) detects actionable parts with
their poses on objects. The gripper orientation and movement direction are acquired based on the

18

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

Under review as a conference paper at ICLR 2025

Table 6: Per category experimental results on part segmentation and completion. Impr. denotes the
improvement of Arti-PG over the baseline in absolute value.

Network
& Metric Method Bot Box Buc Dis Door Eye Glb Ket Pot Ltp Lit Wav

Point-
Transformer
mAcc(%)↑

× 95.4 95.4 96.3 93.9 77.9 96.5 95.9 89.7 90.3 96.8 92.3 82.8
Arti-PG 96.6 97.2 98.5 96.4 78.1 97.1 96.9 93.9 95.8 97.1 93.8 90.3

Impr. 1.2 1.8 2.2 2.5 0.2 0.6 1.0 4.2 5.5 0.3 1.5 7.4
PointWOLF 96.8 96.2 92.6 95.3 77.5 96.3 95.5 90.5 91.1 96.8 92.7 87.2

Pen Pli Fri Safe Sci Stp Swi Can USB WM Win AVG
× 85.7 74.0 94.1 92.8 90.5 79.9 84.5 92.2 82.6 91.6 87.2 89.5

Arti-PG 87.6 75.2 94.3 94.6 90.6 82.8 85.0 92.7 82.8 92.1 91.6 91.3
Impr. 1.9 1.2 0.2 1.8 0.1 2.9 0.5 0.5 0.2 0.5 4.4 1.8

PointWOLF 86.5 71.4 94.1 94.3 90.5 77.5 89.5 92.1 80.1 91.2 87.6 89.7

Point-
Transformer
mIoU(%)↑

Bot Box Buc Dis Door Eye Glb Ket Pot Ltp Lit Wav
× 75.1 93.7 48.5 81.9 52.1 92.9 85.5 88.7 92.8 87.7 72.5 74.5

Arti-PG 82.7 96.4 49.8 84.0 56.0 94.1 94.2 93.5 97.6 88.8 84.1 81.1
Impr. 7.6 2.7 1.3 2.1 3.9 1.2 8.7 4.8 4.7 1.0 11.6 6.6

PointWOLF 82.2 94.7 49.3 82.5 59.6 93.9 87.9 89.5 93.6 88.4 73.1 74.9
Pen Pli Fri Safe Sci Stp Swi Can USB WM Win AVG

× 65.9 75.6 61.3 86.8 56.5 74.3 71.0 72.7 87.6 48.2 68.2 74.5
Arti-PG 66.6 88.5 64.9 89.0 61.5 83.5 71.8 82.9 88.6 53.3 73.0 79.4

Impr. 0.7 12.9 3.6 2.2 5.0 9.2 0.8 10.2 1.0 5.1 0.8 4.9
PointWOLF 65.7 82.8 62.6 87.5 60.8 70.7 72.4 71.6 81.9 47.9 70.4 75.8

Bot Box Buc Dis Door Eye Glb Ket Pot Ltp Lit Wav

Pointnet++
mAcc(%)↑

× 95.5 93.7 98.1 91.0 81.0 97.4 88.0 87.5 92.1 96.5 91.6 86.5
Arti-PG 95.6 95.8 98.6 94.6 82.4 97.5 95.9 93.2 96.0 97.2 93.8 89.8

Impr. 0.1 2.1 0.5 3.6 1.4 0.1 7.9 5.7 3.9 0.7 2.2 3.3
PointWOLF 95.5 94.3 98.4 92.5 81.1 97.9 89.0 89.2 92.8 97.0 91.5 87.9

Pen Pli Fri Safe Sci Stp Swi Can USB WM Win AVG
× 88.4 68.9 92.9 90.4 88.4 78.8 84.5 91.2 80.8 91.4 82.2 88.6

Arti-PG 89.4 69.5 93.1 91.7 90.0 79.5 88.9 92.3 82.3 92.6 88.8 90.8
Impr. 1.0 0.6 0.2 1.3 1.6 0.7 4.5 1.1 1.5 1.2 6.6 2.0

PointWOLF 88.5 68.5 93.0 90.1 90.3 80.2 85.4 91.2 80.6 91.6 83.2 89.1

Pointnet++
mIoU(%)↑

Bot Box Buc Dis Door Eye Glb Ket Pot Ltp Lit Wav
× 71.9 83.7 54.8 61.1 51.6 93.8 77.0 59.5 84.4 83.0 60.0 67.3

Arti-PG 73.1 89.7 57.2 77.3 56.3 94.3 91.2 78.8 90.0 83.4 67.4 74.5
Impr. 1.3 6.0 2.4 16.2 4.7 0.5 14.2 19.3 5.6 0.4 7.4 7.2

PointWOLF 73.0 86.1 55.3 64.4 51.4 95.1 78.0 60.8 84.7 83.3 59.6 70.3
Pen Pli Fri Safe Sci Stp Swi Can USB WM Win AVG

× 69.4 60.7 58.7 63.5 62.1 61.7 47.1 69.7 73.2 55.7 62.1 66.6
Arti-PG 71.6 67.5 60.7 66.5 66.7 63.4 59.7 78.4 76.4 66.6 74.9 73.3

Impr. 2.2 6.8 2.0 3.0 4.6 1.7 12.6 8.7 3.2 10.9 12.8 6.7
PointWOLF 68.9 59.3 60.2 62.8 65.3 63.2 51.2 70.0 69.0 57.7 64.8 67.5

SnowflakeNet
CD(×10−4)↓

Bot Box Buc Dis Door Eye Glb Ket Pot Ltp Lit Wav
× 9.7 14.6 14.4 9.4 8.6 5.1 18.2 19.4 17.6 9.4 8.6 15.8

Arti-PG 9.6 14.0 13.0 9.3 8.5 5.1 17.0 19.0 16.4 7.1 7.2 13.3
Impr. 0.1 0.6 1.4 0.1 0.1 0.0 1.2 0.4 1.2 2.3 1.4 2.5

Pen Pli Fri Safe Sci Stp Swi Can USB WM Win AVG
× 4.7 6.5 8.9 15.2 5.0 9.6 13.6 12.7 8.9 16.2 6.9 11.3

Arti-PG 4.7 5.3 8.8 12.2 4.6 8.4 13.6 12.0 8.0 16.0 5.3 10.4
Impr. 0.0 1.2 0.1 3.0 0.4 1.2 0.0 0.7 0.9 0.2 1.6 0.9

part pose, namely we turn the gripper in an orientation suitable for grasping and move the gripper
toward/away from the target part.

Tab. 8 lists specific manipulation tasks on our objects. The tasks can be generally categorized into
pushing and pulling. Specifically, for pushing tasks, a closed gripper is initially placed 0.05m away
from the target along the movement direction, then moves forward with a longer distance in order
to push the target. For pulling tasks, an open gripper is placed 0.05m away from the target along
the movement direction, then moves forward to the target with 0.045m and closes itself to grasp the
target. The gripper subsequently moves back to the start point to pull the target.

Detailed Manipulation Results. We provide manipulation results for each object category in de-
tail in Tab. 9. Further, video demonstrations for manipulation in both simulation and real world
environment are provided in experiment videos in supplementary material.

19

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Under review as a conference paper at ICLR 2025

Table 7: Detailed statistics of the data split on manipulation tasks.

Train Cats Box Door Faucet Kettle Microwave
Train 20 23 65 22 9
Test 8 12 19 7 3

Fridge Storage Switch TrashCan Window
32 270 53 52 40
11 75 17 17 18

Test Cats Bucket KitchenPot Safe Table Washing
Test 36 23 29 95 16

Table 8: List of specific tasks in manipulation. The tasks can be generally categoried into pushing
and pulling.

Category Tasks
Box Push/Pull Lid

Bucket Push/Pull Handle
Door Push Door; Push/Pull Door via Handle

Faucet Push/Pull Switch
Fridge Push Door; Push/Pull Door via Handle
Kettle Push/Pull Handle

KitchenPot Push/Pull Handle; Pull Lid
Microwave Push Door; Push/Pull Door via Handle

Safe Push Door; Push/Pull Door via Handle
StorageFurniture Push Door; Push/Pull Door via Handle; Push/Pull Drawer via Handle

Switch Push/Pull Switch
Table Push Door; Push/Pull Door via Handle; Push/Pull Drawer via Handle

TrashCan Push/Pull Lid
WashingMachine Push Door; Push/Pull Door via Handle; Push Lid

Window Push Window; Push/Pull Window via Handle

Amount of Available Data. To fully demonstrate the potential of our approach in the data scarcity
scenario, we further conduct ablation studies by gradually reducing the number of real objects in the
training set from 100% to 1% (at least 1 object in each category for training). Results in Fig. 7
suggest that more benefits can be yielded by Arti-PG on a smaller training set, i.e. the data scarcity
issue is more prominent.

Table 9: Per category experimental results on manipulation. All values are percentage sample suc-
cess rate. Impr. denotes the improvement of Arti-PG over the baseline in absolute ssr.

Network Task Method Box Buc Door Fau Fri Ket Mic Pot Safe Sto Swi Tab Tra Was Win AVG

W2A

push
× 25.8 8.2 34.1 27.9 32.2 23.7 35.8 6.2 9.8 32.9 28.0 21.0 19.0 13.0 15.9 21.4

Arti-PG 32.8 12.3 38.0 29.1 37.3 29.1 40.4 7.1 13.5 36.1 31.5 30.6 21.2 18.1 20.9 26.4
Impr. 7.0 4.1 3.9 1.2 5.1 5.4 4.6 0.9 3.7 3.2 3.5 9.6 2.2 5.1 5.0 5.0

pull
× 3.4 6.1 4.7 5.5 5.2 3.0 6.0 3.6 5.6 10.7 9.1 10.5 5.5 5.9 3.3 7.6

Arti-PG 4.5 7.9 6.5 11.1 5.7 5.0 8.0 5.0 5.7 11.7 9.8 12.6 6.3 7.4 4.0 9.2
Impr. 1.1 1.8 1.8 5.6 0.5 2.0 2.0 1.4 0.1 1.0 0.7 2.1 0.8 1.6 0.7 1.6

W2E

push
× 38.0 15.2 39.5 31.9 46.8 21.5 36.8 10.8 13.9 37.9 23.8 24.2 30.3 16.9 17.0 25.9

Arti-PG 40.5 20.4 45.0 34.0 47.2 28.3 44.1 15.7 16.0 43.9 27.7 37.2 40.0 20.5 24.0 32.8
Impr. 2.5 5.2 5.5 2.1 0.4 6.8 7.3 4.9 2.1 6.0 3.9 13.0 9.7 3.6 7.0 6.9

pull
× 6.6 9.4 8.8 7.0 12.5 5.3 7.5 6.2 9.2 10.9 11.8 10.7 11.8 4.5 2.5 9.3

Arti-PG 8.5 15.9 13.3 11.3 14.5 8.9 12.9 12.7 11.3 12.2 14.3 10.9 16.1 8.7 3.6 11.9
Impr. 1.9 6.5 4.5 4.3 2.0 3.6 5.4 6.5 2.1 1.3 2.5 0.2 4.3 4.2 1.1 2.6

GA

push
× 41.7 25.5 47.9 18.0 45.1 34.4 37.1 19.0 9.3 38.8 19.1 24.8 25.0 14.8 15.6 26.6

Arti-PG 43.2 35.0 52.1 31.0 52.8 39.6 40.4 23.1 13.7 41.2 31.7 34.9 31.8 18.3 24.3 33.5
Impr. 1.5 9.5 4.2 13.0 7.7 5.2 3.3 4.1 4.4 2.4 12.6 10.1 6.8 3.5 8.7 6.9

pull
× 10.1 17.0 12.3 6.7 13.9 10.6 10.9 6.8 9.3 16.6 11.1 16.3 9.0 7.9 2.6 12.9

Arti-PG 11.3 26.4 14.0 7.0 16.5 15.1 16.0 14.1 10.4 19.3 12.1 20.8 10.3 10.1 4.7 16.5
Impr. 1.2 9.4 1.7 0.3 2.6 4.5 5.1 7.3 1.1 2.7 1.0 4.5 1.3 2.2 2.1 3.6

20

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

Under review as a conference paper at ICLR 2025

Part Segmentation, mAcc (%) Part Segmentation, mIoU (%)

Training Set Portions (%) Training Set Portions (%)

Point Cloud Completion, CD (× 𝟏𝟎−𝟒)

Training Set Portions (%) Training Set Portions (%) Training Set Portions (%)

Part Pose Estimation, mIoU (%) Part Pose Estimation, 𝑨𝟓 (%)

Figure 7: Performance of both baseline and Arti-PG on various tasks with respect to changes in the
portions of available data. The results are reported on average across all categories.

Results with Sufficient Training Data. Although we focus on solving the data scarcity issue, we
would like to demonstrate that our approach also works in scenarios with sufficient training data.
We pick Bottle, Display and Laptop where enough data are available. We re-split the training and
test sets of these categories to construct two settings for this experiment: sufficient training data
and scarce training data. The data split is reported in Tab. 10, where the same 100 data are used
for the test. We evaluate our approach in both settings across part segmentation and point cloud
completion tasks with mean accuracy (mAcc), mean IoU (mIoU) and Chamfer Distance (CD) as
metrics. Tab. 11 demonstrates the results, which suggest that our approach is still effective with a
large number of training data.

Table 10: Data split for sufficient training data and scarce training data scenario.

Setting Bottle Display Laptop
Sufficient Train Data 364 854 353

Scarce Train Data 64 50 48
Test Data 100 100 100

Table 11: Experimental results of part segmentation and point cloud completion on two settings:
sufficient training data and scarce training data.

Task Metric Method Sufficient Train Data Scarce Train Data
Bottle Display Laptop Bottle Display Laptop

Segmentation

mAcc(%) ↑
× 95.8 96.0 97.1 94.3 93.8 95.4

Arti-PG 96.9 96.5 97.4 95.5 95.5 96.5
Impr. 1.1 0.5 0.3 1.2 1.7 1.1

mIoU(%) ↑
× 80.8 88.5 84.1 70.8 75.9 83.4

Arti-PG 83.8 88.8 85.6 80.6 80.6 84.9
Impr. 3.0 0.3 1.5 9.8 4.7 1.5

Completion CD(×10−4cm)↓
× 7.369 8.942 7.443 10.079 9.671 9.289

Arti-PG 6.187 8.752 6.637 9.012 9.312 8.117
Impr. 1.182 0.190 0.806 1.067 0.359 1.172

21

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

Under review as a conference paper at ICLR 2025

G VISUALIZATIONS OF SYNTHESIZED OBJECTS

Here, we provide substantial illustrations of synthesized objects from 26 categories in
Fig. 8, 9, 10, 11 and 12. This demonstrates that our approach is capable of synthesizing high-quality
3D articulated objects with considerable diversity in both structure and appearance.

(b) - Bottle

(c) - Bucket

(d) - Display

(a) - Box

(e) - Door

(f) - Eyeglasses

Figure 8: Various categories of objects synthesized by Arti-PG. Part I.

22

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Under review as a conference paper at ICLR 2025

(i) - Kettle

(j) - KitchenPot

(k) - Laptop

(h) - Globe

(l) - Lighter

(g) - Faucet

Figure 9: Various categories of objects synthesized by Arti-PG. Part II.

23

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Under review as a conference paper at ICLR 2025

(p) - Refrigerator

(q) - Safe

(r) - Scissors

(o) - Pliers

(m) - Microwave

(n) - Pen

Figure 10: Various categories of objects synthesized by Arti-PG. Part III.

24

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

Under review as a conference paper at ICLR 2025

(x) – USB

(s) - Stapler

(u) - Switch

(w) - TrashCan

(t) - StorageFurniture

(v) - Table

Figure 11: Various categories of objects synthesized by Arti-PG. Part IV.

25

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

Under review as a conference paper at ICLR 2025

(y) - WashingMachine

(z) - Window

Figure 12: Various categories of objects synthesized by Arti-PG. Part V.

H IMPLEMENTATION OF STRUCTURE PROGRAMS IN PYTHON

In this section, we show the implementation of the structure programs in Python and provide detailed
explanations, taking ‘Globe’ as an example. For simplicity, we omit ancillary codes like “converting
List type to numpy.ndarray type”. Our codes for all object categories will be made publicly
available.

H.1 ELEMENTARY PRIMITIVES

Base Class. First, we implement the base class for elementary primitives. It mainly contains the
offset and rotation of an elementary primitive. The elementary primitive can be further moved in 3D
space through functions like translate and rotate.

1 class Elementary_Primitive:
2 def __init__(
3 self,
4 offset=[0, 0, 0],
5 rotation=[0, 0, 0]
6):
7 """
8 :param offset: pose parameters for the elementary primitive's

initial position.↪→
9 :param rotation: pose parameters for the elementary primitive's

initial rotation in Euler angles.↪→
10 """
11 self.offset = offset
12 self.rotation = rotation
13 self.structure = None # Mesh
14

15 def translate(self, offset):
16 """
17 Translate the primitive according to the given values.
18 """
19 self.structure.translate(offset)
20

21 def rotate(self, rotation):
22 """
23 Rotate the primitive (around the origin) according to the given

values.↪→
24 """

26

1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436

Under review as a conference paper at ICLR 2025

25 self.structure.rotate(rotation)
26

Example - Cylinder. Below we show the codes for class cylinder as an elementary primitive.
During initialization, it registers the parameters R, h and creates a mesh of the cylinder.

1 class Cylinder(Elementary_Primitive):
2 def __init__(
3 self, R, h,
4 offset=[0, 0, 0],
5 rotation=[0, 0, 0]
6):
7 """
8 :param R: radius of the cylinder
9 :param h: height of the cylinder

10 :param offset: offset (x, y, z) of the cylinder
11 :param rotation: rotation of the cylinder, represented via Euler

angles (x, y, z)↪→
12 """
13 super().__init__(offset, rotation)
14 self.R = R
15 self.h = h
16 self.structure = create_mesh(
17 'cylinder',
18 radius=R, height=h,
19 offset=offset,
20 rotation=rotation
21)
22

Example - Cuboid. We further provide the codes for class cuboid as another example of an ele-
mentary primitive, whose implementation is similar to that of the cylinder.

1 class Cuboid(Elementary_Primitive):
2 def __init__(
3 self, sizes,
4 offset=[0, 0, 0],
5 rotation=[0, 0, 0]
6):
7 """
8 :param sizes: 3-dimensional sizes (x, y, z) of the cuboid
9 :param offset: offset (x, y, z) of the cuboid

10 :param rotation: rotation of the cuboid, represented via Euler
angles (x, y, z)↪→

11 """
12 super().__init__(offset, rotation)
13 self.sizes = sizes
14 self.structure = create_mesh(
15 'cuboid',
16 sizes=sizes,
17 offset=offset,
18 rotation=rotation
19)
20

H.2 ADVANCED PRIMITIVES

Base Class. For advanced primitives, we also implement the base class first. Besides the prim-
itive’s offset and rotation in 3D space, there are additional key functions. The functions cpa
and dpa correspond to the first two procedural rules introduced in Sec. 3.4, i.e. CPA and DPA.
The functions get general info and inherit param from together enable one advanced
primitive to inherit features like overall dimensions from another during APA. And the function
handle exceptions is responsible for detecting and adjusting erroneous parameters of the

27

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490

Under review as a conference paper at ICLR 2025

primitive and ensuring the structure’s validity. Please refer to the following example for their imple-
mentations.

1 class Advanced_Primitive:
2 def __init__(
3 self,
4 offset=[0, 0, 0],
5 rotation=[0, 0, 0]
6):
7 """
8 :param offset: pose parameters for the advanced primitive's

initial position.↪→
9 :param rotation: pose parameters for the advanced primitive's

initial rotation in Euler angles.↪→
10 """
11 self.offset = offset
12 self.rotation = rotation
13 self.structure_dict = {} # A registry for all the elementary

primitives involved in the advanced primitive↪→
14

15 def make_structure(self):
16 pass
17

18 def translate(self, offset):
19 """
20 Translate the primitive according to the given values.
21 """
22 for structure in self.structure_dict.values():
23 structure.translate(offset)
24

25 def rotate(self, rotation):
26 """
27 Rotate the primitive (around the origin) according to the given

values.↪→
28 """
29 for structure in self.structure_dict.values():
30 structure.rotate(rotation)
31

32 def cpa(self):
33 pass
34

35 def dpa(self):
36 pass
37

38 def get_general_info(self):
39 pass
40

41 @classmethod
42 def inherit_param_from(self, general_info_dict):
43 pass
44

45 def handle_exceptions(self):
46 pass
47

Example - GlobeBase Star. Below we give the implementation of a specific advanced primitive,
i.e. the globe base in the style of a star, which is shown in Fig. 13. In the init function, we
declare attributes and functions and register the parameters.

1 class GlobeBase_Star(Advanced_Primitive):
2 default_parameters = {
3 'stanchion_sizes': ...,
4 'leg_sizes': ...,
5 ...

28

1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544

Under review as a conference paper at ICLR 2025

6 }
7 def __init__(self,
8 stanchion_sizes, leg_sizes,
9 leg_tilt_angle, central_rotation,

10 number_of_legs,
11 offset=[0, 0, 0], rotation=[0, 0, 0]
12):
13

14 super().__init__(offset, rotation)
15 self.stanchion_sizes = stanchion_sizes
16 self.leg_sizes = leg_sizes
17 self.leg_tilt_angle = leg_tilt_angle
18 self.central_rotation = central_rotation
19 self.number_of_legs = number_of_legs
20 self.offset = offset
21 self.rotation = rotation
22 self.handle_exceptions()
23 self.make_structure()
24

In function make structure we give the detailed steps of constructing the structure. Note that
the connectivity relationships between the elementary primitives are already implicitly embedded in
the process. Fig. 13 illustrates the structure and the effects of different parameters.

1 # Continue Above
2 def make_structure(self):
3 stanchion_offset = [
4 0,
5 -self.stanchion_sizes[1] / 2,
6 0
7]
8 stanchion_rotation = [
9 0,

10 self.central_rotation,
11 0,
12]
13 self.structure_dict['stanchion'] = Cylinder(self.stanchion_sizes,

stanchion_offset, stanchion_rotation)↪→
14 for leg_idx in range(self.number_of_legs):
15 central_rot = self.leg_sizes[2] / 2 *

cos(self.leg_tilt_angle) * sin(2 * pi /
self.number_of_legs * leg_idx)

↪→
↪→

16 tilt_adduction_x = self.leg_sizes[2] / 2 *
cos(self.leg_tilt_angle) * sin(central_rot)↪→

17 tilt_adduction_z = self.leg_sizes[2] / 2 *
cos(self.leg_tilt_angle) * cos(central_rot)↪→

18 offset_y = -self.stanchion_sizes[1] + self.leg_sizes[1] / 2 -
self.leg_sizes[2] * sin(self.leg_tilt_angle) / 2↪→

19 offset_z = tilt_adduction_z * cos(self.central_rotation) +
tilt_adduction_x * sin(self.central_rotation)↪→

20 leg_i_offset = [
21 tilt_adduction_z * sin(self.central_rotation) -

tilt_adduction_x * cos(self.central_rotation)↪→
22 offset_y,
23 offset_z,
24]
25 leg_i_rotation = [
26 self.leg_tilt_angle,
27 -central_rot,
28 0
29]
30 self.structure_dict['leg_%d' % leg_idx] =

Cuboid(self.leg_sizes, leg_i_offset, leg_i_rotation)↪→
31

32 self.rotate(self.rotation)

29

1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598

Under review as a conference paper at ICLR 2025

33 self.translate(self.offset)
34

The function cpa applies perturbations to all the continuous parameters of the primitive, whereas
dpa changes the discrete parameters (e.g. the number of legs in this case). Both functions auto-
matically check for and correct the exceptions with the help of handle exceptions, and then
update the structure with make structure. Fig. 13 also indicates examples of such alterations.
The function handle exceptions operates by actively checking for parameter combinations
that could lead to collisions and adjusting erroneous parameters.

1 # Continue Above
2 def cpa(self):
3 apply_perturbation(self.stanchion_sizes)
4 apply_perturbation(self.leg_sizes)
5 ...
6

7 self.handle_exceptions()
8 self.make_structure()
9

10 def dpa(self):
11 self.number_of_slats = random_choice(
12 range(self.maximum_num_legs)
13)
14 self.handle_exceptions()
15 self.make_structure()
16

17 def handle_exceptions(self):
18 while self.leg_sizes[2] * sin(self.leg_tilt_angle) <

self.stanchion_sizes[0]:↪→
19 increase_value(self.leg_sizes[2])
20 reduces_value(self.leg_tilt_angle)
21 # gradually increase the sizes of the legs and reduce the tilt

angle until they together broaden outer edge of legs to form
a stable frame

↪→
↪→

22

23 while 2 * self.stanchion_sizes[0] > self.leg_sizes[0]:
24 increase_value(self.leg_sizes[0])
25 reduces_value(self.stanchion_sizes[0])
26 # gradually increase the sizes of legs and reduce the radius of

stanchion until legs are not blocked by stanchion.↪→
27

28 ...
29

For APA, we introduce functions get general info and inherit param from. The origi-
nal primitive uses the former one to record its general information in a dictionary, which contains its
basic dimensions at a macro level. Then, the replacement primitive can receive the dictionary with
the latter one to determine its dimensions accordingly.

1 # Continue Above
2 def get_general_info(self):
3 """
4 :return: A dictionary listing the general information of the

primitive indexed by keywords. These keywords are shared
among advanced primitives that represent a component at the
same hierarchy

↪→
↪→
↪→

5 """
6 general_info_dict = {
7 'outer_dimension_y' = self.stanchion_sizes[1] +

self.leg_sizes[0] * cos(self.leg_tilt_angle)↪→
8 'outer_radius' = self.leg_sizes[0] * sin(self.leg_tilt_angle)
9 'stanchion_radius' = self.stanchion_sizes[0]

10 'stanchion_height' = self.stanchion_sizes[1]
11 'leg_length' = self.legs_sizes[0]

30

1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

Under review as a conference paper at ICLR 2025

12 ...
13 }
14 return general_info_dict
15

16 @classmethod
17 def inherit_param_from(cls, general_info_dict):
18 """
19 Inherit key parameters from the general_info_dict of another

advanced primitve↪→
20 """
21

22 # begin with default parameters
23 inherited_parameters = copy.deepcopy(
24 cls.default_parameters
25)
26

27 # the height of the stiles are inherited if the other advanced
primitive also features 'inner_dimension_y'↪→

28 if 'stanchion_radius' in general_info_dict:
29 inherited_parameters['stanchion_sizes'][0] =

general_info_dict['stanchion_radius']↪→
30

31 # some parameters are calculated instead of directly inherited
32 if 'outer_radius' in general_info_dict \
33 and 'leg_length' in general_info_dict:
34 inherited_parameters['leg_tilt_angle'] =

acos(general_info_dict['outer_radius'] -
general_info_dict['leg_length'])

↪→
↪→

35 ...
36 return inherited_parameters
37

More advanced primitives for different types of the globe ball, bracket and base can be defined in a
similar way with essential parameters, constructors, functions such as cpa, dpa, etc.

(0.05,0.15) (0.08,0.15) (0.05,0.25) (0.10,0.03,0.53) (0.25,0.03,0.53) (0.10,0.08,0.53) (0.10,0.03,0.35)

(3°) (15°) (0°) (27°) (3) (4) (5)

stanchion_sizes (radius,height) leg_sizes (width,height,length)

leg_tilt (angle) central_rotation (angle) leg_number (N)

𝑿

𝒀

𝒁

Figure 13: Illustrations of the structure and the effects of different parameters for
GlobeBase Star corresponding to its structure program. Each cell consists both the original
structure and structures with an altered parameter marked in red. These illustrations also indicate
examples of CPA and DPA.

H.3 OBJECTS

Example - Globe. Now, we show the codes for globe as an example of representing objects with
structure programs. The init function receives multiple configurations and then uses them to
initialize the components of the object. Each configuration is a dictionary that specifies a primitive
template and its parameters for a hierarchical component. As for structure manipulations, CPA and
DPA are implemented by directly invoking the corresponding functions of the object’s components.
For APA, we change the primitive of certain components and obtain its parameters with the help of
get general info and inherit param from as aforementioned. And similar to advanced
primitives, the function handle exceptions is used to ensure the validity of the structure.

31

1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706

Under review as a conference paper at ICLR 2025

1 class Globe:
2 def __init__(self, ball_cfg, bracket_cfg, base_cfg):
3 """
4 :param ball_cfg: ...
5 :param bracket_cfg: ...
6 :param base_cfg: {
7 'cls': Advanced_Primitive,
8 'param': Dict
9 }

10 """
11

12 self.ball_structure = ...
13 self.bracket_structure ...
14 self.base_structure = eval(base_cfg['cls'])(**base_cfg['param'])
15

16 def move_to_pose(rotation, offset):
17 self.ball_structure.rotate(rotation)
18 self.ball_structure.translate(offset)
19 ...
20

21 def cpa(self):
22 self.ball_structure.cpa()
23 self.bracket_structure.cpa()
24 self.base_structure.cpa()
25

26 self.handle_exceptions()
27

28 def dpa(self):
29 self.ball_structure.dpa()
30 self.bracket_structure.dpa()
31 self.base_structure.dpa()
32

33 self.handle_exceptions()
34

35 def apa(self):
36 ...
37

38 new_base_type = get_random_component_name('globe', 'base') #
Randomly select a new base type from the advanced primitives.↪→

39 base_general_info = self.base_structure.get_general_info()
40 new_base_type_parameters = eval(new_base_type).inherit_from(
41 base_general_info
42)
43 self.base_structure = eval(new_base_type)(
44 **new_base_type_parameters
45)
46

47 ...
48

49 self.maintain_connectivity()
50 self.handle_exceptions()
51

52 ...
53

I ADVANTAGES BEHIND THE DESIGN, LIMITATIONS AND FUTURE WORK

I.1 SCALABILITY OF DESIGNING PRIMITIVE TEMPLATES

Primitive templates are fundamental for Arti-PG, and we have already provided more than 200
templates in the toolbox to cover 26 categories of commonly seen articulated objects. We also find
that there may be users who want to customize their own templates to satisfy their needs, and here
we show how the elaborate design of primitive templates can mitigate the costs to create new ones.

32

1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

Under review as a conference paper at ICLR 2025

As stated in Sec. 3.2, we propose a two-tier design of primitive templates. Elementary primitive
templates, representing the basic and general geometric shapes, are first defined from scratch. Then
advanced primitive templates can be defined upon elementary ones instead of from scratch, to rep-
resent the diverse structures of articulated objects. Therefore, 1) with pre-defined elementary ones,
scaling up the advanced ones is practically convenient at the program level, and 2) many advanced
templates are reusable across object categories (e.g. a template of handle can be used in window,
door, fridge, etc.), indicating that scaling up the number of object categories covered by Arti-PG is
also convenient. To take a step further, as the scale of advanced primitives goes larger, the scaling
of object categories can be easier.

We will make the primitive templates that we have already created publicly available in the Arti-PG
toolbox for researchers to use directly. If someone needs to define primitive templates for a new
category, he/she can leverage the ones we provided, avoiding the burden of designing from scratch.
We will also continue to extend our work to include more object categories and share the newly
defined primitive templates with the community, making our work stronger.

I.2 ADVANTAGES OVER COLLECTING AND ANNOTATING MORE REAL OBJECTS

To address the data scarcity issue of articulated objects, i.e. lack of both object data and annota-
tions for various articulated object understanding tasks, there are currently two possible ways: (1)
collecting and annotating more real objects (abbreviated as CARO), and (2) procedurally generating
objects (our approach). For CARO, the obstacles are i) collecting real articulated objects and ii)
providing different types of annotations for each object.

Regarding obstacle i), due to the complex structure of articulated objects, the object collection pro-
cess is difficult and time-consuming. For reference, the average time to collect a CAD articulated
object is more than 120 minutes and the cost is more than $100 (Liu et al., 2022). The average time
to scan an articulated object is 20 minutes and an additional 15 minutes are needed to fix imperfect
meshes from the scan (Liu et al., 2022; Geng et al., 2023). As scanning requires purchasing objects,
the cost can be high, especially for categories like electrical appliances and furniture (Liu et al.,
2022). Further, both collection practices require experts, i.e. who are capable of designing CAD
models, labeling the URDF or using a scanner (Liu et al., 2022).

As for obstacle ii), given the large number of articulated object understanding tasks as stated in
Sec. 2.2, many different types of annotations need to be annotated on these objects to enable training
for these tasks. For reference, the average time to annotate part semantics for a 3D object is about 8
minutes (Mo et al., 2019), and to annotate part pose is about 10 minutes (Geng et al., 2023).

In summary, at least about an hour and tens of dollars are cost on average for only one object in
CARO. Therefore, CARO is expensive and time-consuming.

In our approach, the design of primitive templates and structure program annotation requires human
effort. The average time to design primitive templates to cover an object category is about 6 hours,
which is a once-and-for-all effort. Additionally, the structure program annotation step takes about 6
minutes per object. Further, as we will make these codes and data publicly available as a toolbox,
such efforts are free for users in the community. This substantially demonstrates the efficiency and
scalability of Arti-PG, as well as its superiority compared to CARO.

I.3 LIMITATIONS

In this paper we propose a novel and effective procedural approach for synthesizing articulated
objects for network training. However, despite the great variations in the structure of the synthesized
objects, there is still room for diversifying the geometric details. In addition, Arti-PG currently
focuses on 3D visual features and is not coupled with rgb features like color and texture. We will
take these points as our future work to better alleviate the data scarcity issue.

I.4 FUTURE WORK

Our current approach is an exploration in the context of scarcity of 3D articulated objects. We believe
that in the future, when 3D articulated objects are no longer scarce, abundant data will unleash
greater potential for using Arti-PG toolbox to generate object spatial structures. A possible way is

33

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Under review as a conference paper at ICLR 2025

to first use a generative model to learn the distribution of parameters from the structure program
annotation of abundant real articulated objects, and then use the distribution to infer parameters of
the primitives to generate new instances. We will consider this as our future work. We will also
continue working on extending Arti-PG toolbox to more object categories and tasks.

34

	Introduction
	Background and Motivation
	Articulated Object Datasets
	Articulated Object Understanding Tasks
	Scarcity of Training Data in Articulated Object Research

	Arti-PG: Methodology
	Overview
	Program Description of Spatial Structure
	Geometric Detail via Point-wise Correspondence
	Program-Oriented Structure Manipulation
	Recovery of Geometric Details
	Analytic Label Alignment

	Arti-PG: Toolbox
	Experiments
	Vision Tasks
	Manipulation Tasks
	Ablation Study

	Conclusion
	Architecture and Operating Principles of Structure Program
	Points on Geometric Primitives
	Example of Completing Geometric Details
	More Examples of Label Alignment
	Details of Structure Program Annotation System
	More Details on Experiments
	Visualizations of Synthesized Objects
	Implementation of Structure Programs in Python
	Elementary Primitives
	Advanced Primitives
	Objects

	Advantages behind the Design, Limitations and Future Work
	Scalability of Designing Primitive Templates
	Advantages over Collecting and Annotating more Real Objects
	Limitations
	Future Work

