Under review as a conference paper at ICLR 2025

ARTI-PG: A PROCEDURAL TOOLBOX TO SYNTHESIZE
LLARGE-SCALE AND DIVERSE ARTICULATED OBJECTS
WITH RICH ANNOTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The acquisition of substantial volumes of 3D articulated object data is expen-
sive and time-consuming, and consequently the scarcity of 3D articulated object
data becomes an obstacle for deep learning methods to achieve remarkable per-
formance in various articulated object understanding tasks. Meanwhile, pairing
these object data with detailed annotations to enable training for various tasks is
also difficult and labor-intensive to achieve. In order to expeditiously gather a sig-
nificant number of 3D articulated objects with comprehensive and detailed annota-
tions for training, we propose Articulated Object Procedural Generation toolbox,
a.k.a. Arti-PG toolbox. Arti-PG toolbox consists of i) descriptions of articulated
objects by means of a generalized structure program along with their analytic cor-
respondence to the objects’ point cloud, ii) procedural rules about manipulations
on the structure program to synthesize large-scale and diverse new articulated ob-
jects, and iii) mathematical descriptions of knowledge (e.g. affordance, semantics,
etc.) to provide annotations to the synthesized object. Arti-PG has two appealing
properties for providing training data for articulated object understanding tasks: 1)
objects are created with unlimited variations in shape through program-oriented
structure manipulation, ii) Arti-PG is widely applicable to diverse tasks by easily
providing comprehensive and detailed annotations. Arti-PG now supports the pro-
cedural generation of 26 categories of articulate objects and provides annotations
across a wide range of both vision and manipulation tasks, and we provide exhaus-
tive experiments which fully demonstrate its advantages. We will make Arti-PG
toolbox publicly available for the community to use. More details, analysis and
discussions are provided in technical appendices.

1 INTRODUCTION

Articulated objects, comprised of rigid segments interconnected by joints that enable translation
and rotation movements, play an important role in daily life. Learning to understand articulated
objects is an essential topic in a wide range of research areas, including computer vision, robotics
and embodied Al In the current data-driven era, the availability of a large amount of training data
has become indispensable for the successful implementation of deep neural networks to understand
articulated objects.

Common 3D articulated object data acquisition methods are either designing 3D CAD models by
artists (Chang et al. [2015; | Xiang et al.l [2020) or scanning real-world objects using scanners (Liu
et al., 2022)'| both of which have huge demands on time and money. Furthermore, comprehensive
and detailed annotations are required for these object data to support training in various articulated
object understanding tasks, which are also challenging to obtain. As a result, the issue of data
scarcity is observed across different tasks supported by existing datasets (Mo et al.,[2019; |Liu et al.,
2022), limiting the power of deep neural networks to comprehensively analyze and model articulated
objects. Given that prior research has examined little on how to mitigate this issue, it remains a
pressing problem that requires attention.

"Here, we discuss about how the data are created from scratch, since it is usually unavailable to collect data
from the Internet for novel categories in real-world applications.

Under review as a conference paper at ICLR 2025

In this paper, we propose Articulated Object Procedural Generation toolbox (Arti-PG toolbox) as
a solution to this issue, which aids in expeditiously gathering a significant number of 3D articulated
objects with rich annotations. Arti-PG is developed based on the idea of procedural generation
(Togelius et al.l 2014)), referring to synthesizing data with generalized procedural rules.

Inspired by research in visual cognition and brain science (Habel & Eschenbachl 2006; [Ullman)
2000; Palmer1 & Gauthier, 2004} |Biederman, (1987), we assume that a 3D object can be properly
described as the combination of a macro spatial structure and micro geometric details. By first
describing an articulated object’s spatial structure as generalized programs and geometric details
as point-wise correspondence between the object’s point cloud and structure, novel 3D articulated
objects can be synthesized in two steps: i) create a variation of the structure via the application of
randomized mathematical rules to the programs, and ii) recover the geometric details according to
the point-wise correspondence. Subsequently, we are able to automatically assign annotations to
the synthesized objects using mathematical descriptions defined upon the structure programs. Such
annotated synthesized objects can then be used to enrich the training set for various tasks, facilitating
network training.

Therefore, we construct the Arti-PG toolbox with three components: i) structure programs of artic-
ulated objects along with their correspondence to the objects’ point cloud, ii) procedural rules for
structure program manipulation, and iii) mathematical descriptions of knowledge (e.g. affordance,
semantics, efc.) for annotations. Arti-PG now supports 26 categories of articulate objects that are
most commonly seen and provides different kinds of knowledge for a wide range of tasks. Users
can easily use the codes in the toolbox to synthesize large-scale and diverse articulated objects with
rich annotations to train their models.

Our procedural approach has the following appealing properties. 1) Program-oriented Structure
Manipulation: Training set can be significantly enriched by synthesizing objects with unlimited
variations in shape through alterations of the structure program. Such alterations can be automati-
cally generated via randomized mathematical rules. 2) Analytic Label Alignment: Comprehensive
and detailed annotations of various types can be mathematically defined in the structure program,
after which they can be analytically aligned with the synthesized object.

Benefiting from these properties, Arti-PG holds advantages in terms of the diversity of generated
objects, applicability to a wide range of tasks and effectiveness in solving data scarcity. Compared
to data augmentation methods which also increase the diversity of training data but cannot freely
assign labels to them and hence are limited to specific tasks, Arti-PG is applicable in different tasks
and therefore distinguishes itself from conventional data augmentation methods.

We have collected a total number of 3096 3D articulated objects across 26 categories with complex
shapes from influential and open-source datasets (Yi et al.,2016; Mo et al.| |2019; [Xiang et al., 2020)
to evaluate our approach. In the following sections, we will fully demonstrate the mechanism of
our approach and further showcase the superiority of Arti-PG through evaluations from both vision
and robotic aspects: part segmentation, part pose estimation, point cloud completion and object
manipulation.

2 BACKGROUND AND MOTIVATION

2.1 ARTICULATED OBJECT DATASETS

The enormous advancement of machine learning is accompanied by the vigorous development of
large-scale datasets across various modalities. Although large datasets (Chang et al.l 2015} [Deitke
et al} 2023} Lin et al.| 2015]) have appeared in research areas such as images and rigid shapes, it is
much more costly and laborious to acquire articulated object data as well as annotations for various
articulated object understanding tasks (Liu et al., 2022; |Xiang et al.| [2020; Wang et al., |2019).
Therefore, there are not many large-scale articulated object datasets that have been proposed (Jiang
et al.l 2022; Mao et al., 2022 Wang et al.,|2019; Liu et al., 2022; Xiang et al., [2020). One of the
most commonly used dataset, PartNet-Mobility |Xiang et al.|(2020), offers 2,346 object models from
46 common indoor object categories, about only 50 objects per category on average. All the object
models are collected from 3D Warehouse, a 3D model library containing CAD models of real world
brands promoting products designed by experts.

Under review as a conference paper at ICLR 2025

2.2 ARTICULATED OBJECT UNDERSTANDING TASKS

Articulated objects play an important role in human daily life and understanding these objects is
crucial for machine intelligence to perceive and interact with them. To fully understand articulated
objects, a series of vision and manipulation tasks have been studied.

Vision Tasks. Part segmentation, part pose estimation and point cloud completion are three impor-
tant vision tasks for articulated object understanding. Part segmentation (Qi et al., 2017a3bj |(Guo
et al.| [2021;Zhao et al., 2021)), which is one of the most fundamental tasks, assigns a semantic label
to each point of the object. Part pose estimation (Geng et al.,|2023}; |Liu et al., |2023)) involves query-
ing the 7-dimensional transformation of detected parts on the object, including the scale, rotation
and location of the parts. In these tasks, it is critical to have a good understanding of the spatial
structure of an object. On the other hand, point cloud completion aims to estimate the complete
shape of objects from partial observations (Yuan et al.,[2018;[Tchapmi et al., 2019;|Wen et al.,[2020;
Xiang et al.,2022)), which pays more attention on the geometric details.

Manipulation Tasks. Articulated object manipulation is a set of various tasks focusing on how
an embodied agent properly interacts with articulated objects (Geng et al., 2023} Mo et al., 2021}
Wang et al., 2022} Ning et al., 2024)). For example, Where2Act (Mo et al.|[2021)) proposed to predict
per-pixel action likelihoods and proposals for manipulation. Where2Explore (Ning et al.,|2024) pro-
posed a few-shot learning framework for articulated object manipulation that measures affordance
similarity across categories to migrate affordance knowledge to novel objects. GAPartNet (Geng
et al., |2023) released a dataset with semantic and affordance labels and proposed a manipulation
pipeline by leveraging the concept of actionable parts. The success rate of manipulation using these
proposals largely depends on the understanding of affordances on articulated objects.

In this paper, we will conduct exhaustive experiments on the four listed tasks to comprehensively
evaluate the quality of our synthetic training data in terms of spatial structure, geometric details and
annotations, and also demonstrate the wide applicability of our approach.

2.3 SCARCITY OF TRAINING DATA IN ARTICULATED OBJECT RESEARCH

In the era of deep learning, a sufficient amount of training data is crucial for neural networks to
achieve remarkable performance. However, in the field of articulated object research, the scarcity
of training data remains a major obstacle for various articulated object understanding tasks. The
challenge in object acquisition is one of the major reasons for data scarcity. When collecting 3D
articulated object data of novel categories, common practices would be to design CAD models or
scan real-world objects, both of which can be costly and time-consuming. Specifically, design-
ing one CAD model from scratch would generally require a specialized artist to spend more than
2 hours while the corresponding fees can exceed $100 (Liu et al.,2022). On the other hand, for
scanning objects, the high expenses associated with acquiring the scanner and numerous real-world
objects, including high-value items like washing machines, also cannot be neglected. Meanwhile,
the difficulties in data annotation further restrict the applicability of existing object data. Generally,
manually annotating a 3D shape involves viewing it on a 2D screen, which would require the anno-
tator to constantly change viewing angles to complete the annotation. Furthermore, some types of
annotations such as affordances for manipulation are extremely complicated to manually annotate
(Mo et al.| 2021), resulting in few existing datasets available for affordance labels. Apart from the
above points, it is also challenging to comprehensively label an articulated object to support a wide
range of tasks, such as semantics, 6-dof pose, grasp pose, efc.

Unfortunately, few researchers have focused their attention on directly addressing the data scarcity
problem. Yet some previous studies on data augmentation (Chen et al. [2020; [Li1 et al., |2020; [Kim
et al., 2021; [Lee et al., [2021) can be applied in this context to alleviate the impact of data scarcity,
leveraging their power to enhance the diversity of training data and prevent models from overfitting.
For example, PointMixup (Chen et al., 2020) proposed a technique of interpolation between existing
point clouds. PointWOLF (Kim et al., 2021) applied smoothly varying non-rigid deformations to
the point clouds for diverse and realistic augmentations. However, this line of works cannot provide
additional annotations for the augmented data unless they already exist in the original data, which
restricts the augmented data to specific object modeling tasks.

Under review as a conference paper at ICLR 2025

Geometric Detail via) Spatial Structure Described in Program Form
Point-wise Correspondence ("o0y = Hollowcuboid(eR*, R, € R?); AR B A
. door_inner = Cylinder(door_inner_size € R**, door_inner_offset € R?, door_rotation € R); c ":R;‘ G35
door_middle = InclineRing(door_inner_size € R**, door_outer_size € R*®, 5 ’
door_inner_offset € R?, door_rotation € R); door = Door{ s
door_outer = Ring(door_outer_size € R*®, door_rotation€ R); door_inner_size & m&:s,
. N door_outer_size € R*?,
= Trapezoidal(eR*?, ER?); door_rotation€ R,
button_1 = Cuboid(button_1_size € R**, button_1_offset € R?); door_inner_offset € R?;
button_2 = Cuboid(button_2_size € R*®, button_2_offset € R); b - panal{
button_3 = Cuboid(button_3_size € R*®, button_3_offset € R?); eR*, €R?,
button_sizes € R*?, button_offsets € R?,
Connect(door_inner, door_middle, Fixed); Connect(door_middle, door_outer, Fixed); button_nume Nj
Connect(door_outer, , Revolute); Connect(b , Fixed); c;n"ect(mr‘ revolute);
Connect(button_1, , Prismatic); Connect(button_2, , Prismatic); Connect(s , fixed);
1\Connect(button73, , Prismatic);) _sglobal_offsete R?; global_rotation € R?; J)
(@) (b) © (D)

Figure 1: a. The point cloud of a washing machine. A small area of its door surface is zoomed in
for a clear view of geometric details. b. Describing the object with spatial structure (bottom) and
geometric details (top). The brown arrows concretely represent point-wise correspondence between
points of the structure and the real point clouds. ¢. Naive program description of the structure in (b).
The correspondence between the program and structure is indicated by the same color. Elementary
primitive templates are in black font (e.g. Cylinder) and instances of elementary primivies are in
colored font (e.g. door_inner). d. Program description of the structure in (b) via advanced primitive
template. Advanced primitive templates are in black font (e.g. Body) and instances of advanced
primitives are in colored font (e.g.).

3 ARTI-PG: METHODOLOGY

3.1 OVERVIEW

The research in visual cognition and brain science (Humphreys et al., [1999; Habel & Eschenbach)
2006; \Ullman, [2000; [Palmer1 & Gauthier, [2004; Biedermanl (1987; [Hummel & Biederman, |1992)
shows that the perceptual recognition of objects by human is conceptualized to be a process in which
the spatial properties of the object are segmented into an arrangement of simple geometric primitives
such as cuboids and spheres. Inspired by this point of view, we assume that an object in 3D space
can be properly represented with a macro spatial structure and its micro geometric details. Fig. [I]
gives a brief illustration.

The macro spatial structure of an object includes aspects of the geometric primitives and the con-
nectivity relationships among them. By describing the primitives as i) specific shapes along with
corresponding geometric parameters and ii) their connectivity relationships as relative constraints
in DoF (degree of freedom), the structure of an object can be represented quantitatively. Then we
can further consider the micro geometric details as shape deformation on the geometric primitives
within the macro structure.

Intuitively, each primitive can be perceived as a class template which creates shape instances with
specific parameters, and the connectivity relationships can be defined as binary descriptors given two
shape instances. Based on this observation, we formulate the structure of an object as a program-like
representation in our implementation, where generalized geometric primitives and common connec-
tivity relationships are mathematically defined. To formulate the deformation for the geometric
details, we find the point-wise correspondence between the object’s point cloud and the points on
each primitive’s surface and describe the deformation as the transformation of each pair of points,
drawing inspiration from the idea in BPS (Prokudin et al., 2019).

After representing an object with its structure program and geometric details as aforementioned,
infinite new objects with unlimited variations in shape can be synthesized through i) alterations of
the program via generalized procedural rules and ii) recovering the geometric details according to
the point-wise correspondence. Given that the entire program is mathematically defined, we can
easily describe different types of annotations on the program using mathematical descriptions and
analytically align them to the synthesized objects. In this manner, numerous new objects with rich
annotations can be effortlessly obtained.

In the following sections, we first introduce how to represent an object asset with a structure program
and geometric details in Sec.[3.2]and Sec. [3.3] and then demonstrate the procedural generation rules

Under review as a conference paper at ICLR 2025

in Sec. [3.4] and Sec.[3.5] Finally, Sec. [3.6] shows the process of label alignment. Please refer to
Appendix and [H| for comprehensive implementations and discussions of technical details.

3.2 PROGRAM DESCRIPTION OF SPATIAL STRUCTURE

In our approach, the spatial structure of an object, including parameterized geometric primitives and
connectivity relationships, is described in program form. Considering that each type of geometric
primitive represents a group of shapes that share the same properties, we design each geometric
primitive as a single class template, whose constructor depicts its general geometric properties. By
assigning corresponding parameters, the constructor will instantiate a specific shape of this primitive.
The parameters include intrinsic ones describing the geometric attributes like height and radius of
a cylinder, and extrinsic ones like positions and orientations of the whole shape. The connectivity
relationship, as the other component in the structure program, is designed as a binary descriptor. It
describes how two shape instances are physically connected, by imposing mathematical constraints
between them which reduce the total DoF. Fig. [T}c provides an example of a program description
for the spatial structure in Fig. [T}b.

Class templates of elementary primitives, like cuboid and cylinder, are initially designed from
scratch. Observing that common real-world objects within a category often exhibit a consistent hier-
archy in structure (Ullman, 2000; Mo et al., 2019; Wang et al., [2011)), we further introduce advanced
primitive templates to capture the structural regularities of components in a high-level hierarchy of
an object category.

An advanced primitive template is constructed based on a set of elementary primitives with specific
spatial layouts and their connectivity relationships. We additionally introduce discrete intrinsic pa-
rameters in an advanced template to describe regular repetitions of certain elementary primitives.
Given that there are naturally different types of structural regularities for high-level hierarchical
components, we present multiple advanced primitive templates with various designs to cover the
diversity. After introducing advanced primitives in the structure program, the program can better
reflect the arrangement and relations between shape parts and be more concise, see Fig. [T}d.

To efficiently and effectively obtain the structure program of a real object, we have elaborately de-
signed a user-friendly structure program annotation system for guidance. Due to space limitations,
we introduce the structure program annotation system in Appendix [E] and provide a video demon-
stration in the supplementary material.

3.3 GEOMETRIC DETAIL VIA POINT-WISE CORRESPONDENCE

After the macro spatial structure of the object is properly represented, we discuss how to formulate
the micro geometric details in this section. We describe the geometric details with a set of point-
wise correspondences between the structure and the object which depict a 3D deformation on point
clouds. By applying the deformation to the point cloud of the structure, we will get a new point
cloud that fully represents the object.

Specifically, let X = {x; € R3|i € [1,n]} be the point cloud uniformly sampled from the visible
surface of the shape described by the structure progra Y = {y; € R3i € [1,m]} be the point
cloud of the object itself. Our goal is to find a deformation AX = {Ax; € R3|i € [1,n]} from X
to Y with minimum cost, written by

1n
SRRV
min n;\l i |2 0

st. Vie[l,n], x;+Ax; €Y
where Ax; is the correspondence vector for point x;, and x; + Ax; indicates which point in Y
corresponds to x;. Inspired by BPS (Prokudin et al., 2019), Eq. [I] can be solved as

AX = {Ax; = argmin ||x; —y;l|l2 —x; | € [1,n]} 2)
yi€Y

Here the points are analytically bounded to the geometric primitives, that is, the positions of the points are
all analytic functions of the structure’s parameters. For example, the position of a point on a sphere in its local
coordinate system can be calculated as (7 sin 6 cos ¢, r sin € sin ¢, r cos 0), where 7 is radius and 6, ¢ are the
polar and azimuthal angles respectively.

Under review as a conference paper at ICLR 2025

Then we can use X' = {x]...,x},} to denote the geometric details on the structure representation
where x; = x; + Ax;

0 DS
(a)

> \3
P

(c

&

\) =
Q R
)\ Py w=w,
(b1) (b2) (b3)
1 1

[E—
N
- >

R

Figure 2: Fig. I illustrates examples of structure manipulation. I-(a): The original structure. I-
(b1-b3): Structures after being manipulated by CPA, DPA, APA respectively. I-(c): Structure after
being manipulated by the combination of three alterations. Fig. II shows examples of mapping
between points in CPA (a), DPA (b) and correspondence between elementary primitives in APA (c).
In II-(a) and II-(b), points are analytically bounded to the primitive with parameterized coordinate
representation. II-(c) depicts correspondence between elementary primitives by the same colors,
such as silver bracket in both globes.

3.4 PROGRAM-ORIENTED STRUCTURE MANIPULATION

So far, we have discussed how to represent a given object with our structure program and geometric
details. In this section, we delve into the process of manipulating the original structure of a given
asset to create diverse new structures. We design generalized procedural rules which encompass dif-
ferent perspectives of the structure program’s alterations, including continuous parameters, discrete
parameters and advanced primitives. Fig.[2]illustrates examples of new structures after manipulation.

Continuous Parameter Alteration (CPA). Apply random perturbations to the continuous param-
eters of primitives in the structure program. Some of the continuous parameters are automatically
adapted rather than being perturbed due to constraints imposed by connectivity relationships. Such
constraints ensure the generated structure to be stable and valid, meaning that there are no primitive
collisions or floating elements. As shown in Fig. 2}-(b1), the sizes of primitives and the angles
between them are perturbed in this process.

Discrete Parameter Alteration (DPA). Apply random changes to the discrete parameters of ad-
vanced primitives within a reasonable range. This will vary the total amount of elementary geomet-
ric primitives in the structure program and thereby change the complexity of the whole structure.
As shown in Fig. 2}H-b2, the number of arc sides on the USB body and legs of the globe base are
increased through DPA.

Advanced Primitive Alteration (APA). Randomly replace an advanced primitive with another that
represents the same hierarchical component. This will significantly diversify the structure of syn-
thesized objects. We let the replacement primitive inherit the overall dimensions of the replaced one
so that it stays in proportion to other primitives in the structure. Additionally, APA will also make
random alterations on the existence of non-essential high-level hierarchical components. As shown
in the example of Fig.[2H-b3, the rotated cap and the rounded rectangle body in the original USB are
manipulated into a detached cap and a round tailed body. The bracket of the globe becomes more
complex and the legged base is altered to a ring base.

We adopt the procedural rules in the order of APA, DPA, CPA with the aim of creating a wide
variety of new structures. Considering that the randomness introduced in these procedural rules may
lead to the occurrence of extreme parameters, the shape described by the structure program with
such extreme parameters will occasionally deviate from physical laws to some extent, e.g. collision
between two primitives. To this end, we design an exception handling module to verify the validity
of the structure program. This module will monitor the alternation process and automatically locate
and adjust the erroneous parameters. In Appendix [H] we provide detailed examples of ‘globe base’
to better demonstrate structure manipulation with more details.

3Note that the points in X is one-to-one correspondent to the points in X, hence they are also analytically
bounded to the geometric primitives.

Under review as a conference paper at ICLR 2025

3.5 RECOVERY OF GEOMETRIC DETAILS

Now we discuss how to recover the geometric details for a new structure by migrating the geometric
details from the original object. Intuitively, given that the geometric details are analytically bounded
to the geometric primitives in a structure as discussed in Sec. [3.3] the migration can be carried out
by finding the mapping between points from surfaces of the original and the new structures, i.e.
before and after the three kinds of alterations. 1) CPA: Since the surface points are analytically
bounded to the primitives, the mapping is automatically built according to the primitives’ parame-
ters. 2) DPA: As the value of discrete parameter reduces, primitives are removed and the mapping
can be ignored. Oppositely, primitives are added via replication and the mapping is automatically
built among the repeated primitives. 3) APA: We assign correspondence between the elementary
primitives in the original and altered advanced primitives based on their hierarchical consistency, to
simplify the mapping from the advanced primitive level to the elementary primitive level. If two cor-
responding elementary primitives belong to the same template, their mapping is built as discussed
in CPA. Otherwise, their mapping is built by map projection techniques (Snyder, |1987), Examples
are provided in Fig. P}HL

After finding the mapping, there are two issues that should be further dealt with. i) Only the points on
visible surfaces are covered by geometric details in the original object. Noticing that some points on
the invisible surfaces of the original structure may become visible after structure modification, these
invisible points should also be covered by geometric details. Therefore, we complete the geometric
details separately for each elementary primitive, by duplicating the visible points to invisible areas
based on the properties of the primitive’s local geometric patterns such as translational and rotational
symmetry. ii) The geometric details in Eq. 2] are in the world coordinate system, which implies that
they cannot be directly used for migration as the normal direction of mapped points may be changed.
To this end, we transform each Ax; to a new vector AX; relative to the point normal at x;.

Finally, we recover the geometric details for the new structure by i) assigning relative geometric
details (i.e. {A%;}) to the points on the visible surface of the new structure according to the mapping,
and ii) transforming the relative geometric details back to the world coordinate system according to
the point normal.

3.6 ANALYTIC LABEL ALIGNMENT

As described in previous texts, we are able to synthesize a new object according to the altered
structure program and geometric details, and each point of the new object is analytically bounded
to the geometric primitives in the structure program. Taking advantage of this property, we can
analytically align knowledge labels to the object’s point cloud.

Specifically, we assign the labels onto the geometric primitives using functions defined on parame-
ters of the primitives. This allows for the automatic labeling of spatial structures when they change
with the variation of parameters. Fig. [3|shows examples of labeling on structures, including the cen-
ter of ring handles, the outer edge of doors and the rim on knobs, these labels provide affordances
for interaction. Then, through the point-wise correspondence of geometric details, the labels on the
structures can be further automatically propagated to the point clouds of generated objects. Fol-
lowing such approach, we are able to synthesize a wide array of labeled objects without additional
human effort.

4 ARTI-PG: TOOLBOX

Following our Arti-PG methodology, we construct the Arti-PG toolbox to facilitate the community
easily and expeditiously synthesizing large-scale articulated object data for training using our ap-
proach. The toolbox consists of three important components: i) Off-the-shelf primitive templates
for each object category, and also abundant structure program descriptions and point-wise corre-
spondences for different articulated objects; ii) Procedural programs for structure manipulation, as
well as codes for geometric detail recovery; iii) Programs of different kinds of knowledge definition
along with the codes for analytic label alignment on procedurally generated objects.

Particularly, our toolbox now covers 26 categories of articulated objects which are widely used in
vision and manipulation tasks (Xiang et al.l |2020; [Mo et al., 2021} |Zhao et al., |2021)), along with

Under review as a conference paper at ICLR 2025

Figure 3: Illustrations of analytically assigning labels on spatial structures of various categories
with functions (described in mathematical formulas, the coordinate center is indicated by the arrow,
zoom in for a clear view). We take affordable areas that are reasonable to interact with the object as
examples of labels. a. edge of microwave door. b. lower half of handle (we can still represent such
area with same parameters and functions even if the handle is rotated). ¢. area between supporting
parts on the handle and the top rim of cap knob. d. the top rim of cap knob and the center of kettle
ring handle.

structure program descriptions of 2133 objects from Mo et al.| (2019); [Xiang et al.| (2020) which
contain complex spatial structures, available for diverse procedural generation results.

With the codes and data in the toolbox, it is very easy for users to synthesize new articulated objects,
by i) applying the codes for structure program manipulations to structure descriptions of certain
objects, ii) performing the codes for geometric detail recovery according to the point-wise corre-
spondence of the objects, and iii) conducting analytic label alignment with programs of different
kinds of knowledge definition. The purpose of us proposing Arti-PG toolbox is to help researchers
effortlessly acquire a large amount of well-annotated data to meet their research needs in specific
applications about articulated objects.

5 EXPERIMENTS

We thoroughly evaluate the effectiveness of our approach in synthesizing high-quality and richly-
annotated articulated objects for training deep neural networks in both vision and manipulation tasks.
The vision tasks include part segmentation, part pose estimation and point cloud completion. The
manipulation tasks focus on guiding an embodied agent to properly interact with articulated objects.

From widely-used datasets (Yi et al., 2016 Mo et al.| 2019} Xiang et al.| [2020), we gather 3096 ar-
ticulated objects spanning over 26 categories with varying structures to support the evaluation across
the aforementioned tasks. We only use the objects in Arti-PG toolbox for procedural generation that
are in the training set for all these tasks.

Representative approaches for each task (Zhao et al., 2021} | Xiang et al.,[2022; Mo et al., [2021}; Ning
et al.l 2024} |Geng et al.l 2023) including state-of-the-art are adopted as baselines to evaluate the
improvement achieved after being assisted by our synthesized data and annotations. The training is
conducted on randomly synthesized new objects and stops when the training loss converges. In the
following sections, we present the main results and analysis for each task. Please refer to Appendix[F|
for more details, results, comparisons and discussions of our experiments, and Appendix [G| for
visualizations of our synthesized objects.

5.1 VISION TASKS

In this part, we first introduce details about the experiments on three important vision tasks, part
segmentation, part pose estimation and point cloud completion, and then discuss about the results of
these experiments together.

Part Segmentation. We follow the part definition proposed by [Mo et al.|(2019); Xiang et al.| (2020)
as the ground truth labels for part segmentation, and obtain the part labels for our synthesized train-
ing objects by first assigning each primitive in the structure program its part label, and then prop-
agating such labels to the objects’ point cloud. We uniformly sample 2048 points as input. We
take the classical and widely-used PointTransformer (Zhao et al., [2021) as baseline network, and
compare our approach with PointWOLF (Kim et al.| 2021}, a point cloud augmentation technique

Under review as a conference paper at ICLR 2025

developed for the task. Mean accuracy (mAcc) and mean IoU (mloU) are adopted as evaluation
metrics following the baseline.

Part Pose Estimation. For this task, we refer to NPCS from GAPartNet (Geng et al., [2023) as the
baseline, and report metrics including rotation error (R,), translation error (T%), scale error (Se), 3D
mloU, (5°, 5cm) accuracy (As) and (10°, 10cm) accuracy (A1) following the baseline. The ground
truth part pose for our synthesized training objects is obtained by calculating the transformation from
the reference coordinate system to the part’s coordinate system.

Point Cloud Completion. Following Yuan et al.| (2018)); Xiang et al.|(2022), we uniformly sample
16384 points from each object in both training and test sets as the complete point clouds and then
acquire partial point clouds by back projecting the complete shapes into 8 different partial views.
2048 points are sampled from each partial point cloud as input. We use SnowFlakeNet (Xiang et al.,
2022) as a strong baseline network for evaluation and adopt the Chamfer Distance (CD) between the
completed point cloud and the ground truth as metric.

Main Results. The main results of the three vision tasks are reported in Tab. [} Remarkable per-
formance improvements over the baselines are achieved for all tasks under all metrics, with notable
improvements of approximately 10% in metrics such as CD, T, and S.. As these metrics together
reflect the understanding of articulated objects in terms of both spatial structure and geometric de-
tails, prominent performance on all these metrics indicates that the objects synthesized by our ap-
proach possess high quality in both aspects. The comparison with data augmentation technique
PointWOLF is also shown in Tab. [I] which demonstrates two benefits of our approach: i) synthe-
sized objects are more effective to improve a model’s performance, and ii) our approach is widely
applicable to various tasks.

Table 1: Experimental results of part segmentation, part pose estimation and point cloud completion.
Impr. denotes the improvement of Arti-PG over the baseline in absolute value.

Tasks Segmentation Part Pose Estimation Completion
Methods mAce(%) T | mIoU(%) T | Re(®°) | | Te(cm)] | Se(cm)] | mIoU(%) 1 | A5(%) 1 [A10(%) T | CD(x10~%cm)]
X 89.5 74.5 11.0 0.043 0.025 44.1 24.8 51.9 11.3
Arti-PG 91.3 79.4 10.5 0.039 0.022 48.3 25.9 53.0 10.4
Impr. 1.8 4.9 0.5 0.004 0.003 4.2 11 1.1 0.9
PointWOLF 89.7 75.8 - - - - - - -

5.2 MANIPULATION TASKS

We now report the performance of manipulation baselines, namely Where2Act (Mo et al.l [2021),
GAPartNet (Geng et al.| 2023)), and state-of-the-art Where2Explore (Ning et al., [2024), after using
our synthesized data for training. Particularly, the training of Where2Act and Where2Explore rely
on affordance labels which are not provided in an articulated object dataset. As a compromise, they
explore the affordance labels of an object according to the outcome of simulated interactions, which
may result in inaccurate and noisy labels due to imperfections of the simulator. In comparison,
when training these frameworks on our synthesized data, we use the high-quality and well-defined
affordance labels obtained according to Sec.[3.6] instead of estimating affordances with simulation.
As the success of manipulation largely depends on how well a model understands the affordances of
the target articulated object, these experiments will substantially prove the quality of the annotations
provided by our approach.

Experiment Settings. A total of 15 representative categories of objects among PartNet-Mobility
(Xiang et al.| [2020) are used in experiments. Following Mo et al.| (2021]), we have removed those
that are too small or do not make sense for single-gripper manipulation. A full list of the specific
tasks on these objects is provided in Appendix [F] Tab. [8] which can be categorized into two general
action types: pushing and pulling. We follow the baselines for the environment settings and action
settings, see Appendix [F| Success rate is used as the evaluation metric.

Main Results. Tab. 2| highlights great improvements after incorporating our synthesized data for
training these baselines, especially for Pull-Where2Explore whose improvement reaches 28%. As
Where2Act (Mo et al. 2021), Where2Explore (Ning et al., 2024) and GAPartNet (Geng et al.,
2023) respectively rely on affordance and part pose labels for training, these results demonstrate the

Under review as a conference paper at ICLR 2025

remarkable capability of our approach to provide high-quality annotations of various types including
different kinds of affordable areas and part poses.

Table 2: Experimental results of manipulation tasks
over the baseline in absolute value.

. Impr. denotes the improvement of Arti-PG

Action Type Methods Where2Act Where2Explore GAPartNet

X 21.47/7.6 25.9/9.3 26.6/12.9

Push / Pull Arti-PG 26.4/9.2 32.8/11.9 33.5/16.5
Impr. 50/16 69/26 69/3.6

5.3 ABLATION STUDY

Contribution Analysis. Arti-PG consists of procedural rules in two aspects, structure manipulation
and geometric detail recovery. Tab. [3] provides ablative results about the contribution of these two
aspects in the aforementioned tasks. Generally, both aspects contribute to the improvement of all
the tasks. In specific, the impact of structure manipulation is more pronounced in part segmentation
and part pose estimation while the influence of geometric detail recovery is more prominent to
point cloud completion, and their contributions are balanced in more comprehensive tasks, namely
manipulation. This finding is consistent with the structure and geometric details biases in these
tasks.

Structure Manipulation Rules. We further investigate the contribution of the three kinds of struc-
ture manipulation rules in Tab. |4} As stronger manipulation rules are introduced progressively, the
performance of the networks gradually improves, indicating that these rules can effectively increase
the diversity of the synthesized object structures and thus bring better coverage of samples in the
test set.

Table 3: Contribution analysis of structure manipulation (M) and geometric details recovery (R).

Tasks Segmentation Part Pose Estimation Completion Manipulation
Methods mAcce(%) T mloU(%) 1 mloU(%) 1 As(%) 1 CD(x10%cm)] push ssr(%) t pull ssr(%) t
X 89.5 74.5 44.1 24.8 11.328 214 7.6
M 90.6 76.7 47.0 25.3 11.105 25.6 8.7
M+R 91.3 794 48.3 25.9 10.408 26.4 9.2
Table 4: Ablation study on three kinds of structure manipulation rules.
Tasks Segmentation Part Pose Estimation Completion Manipulation
Methods mAcc(%) 1 mloU(%) mloU(%) 1 As (%) 1 CD(x 10 %cm)]. push ssr(%) T pull ssr(%) 1
X 89.5 74.5 44.1 24.8 11.328 21.4 7.6
CPA 90.2 76.5 475 25.5 10.961 21.8 79
DPA + CPA 90.8 79.0 47.7 25.5 10.510 225 8.4
All 91.3 79.4 48.3 25.9 10.408 26.4 9.2

6 CONCLUSION

In this paper, we introduce Arti-PG toolbox, a procedural generation toolbox aids in synthesizing
numerous and diverse 3D articulated objects associated with rich annotations, in order to deal with
the data scarcity issue in various articulated object understanding tasks. The novelties of Arti-PG are
threefold. First, we propose a program description for macro spatial structure and a point-wise cor-
respondence representation for micro geometric details to mathematically represent the object asset.
Second, we design generalized procedural rules to synthesize new objects by first creating a variation
of the structure via manipulating the structure program, and then recovering the geometric details
according to the point-wise correspondence. Third, we demonstrate how to automatically obtain a
wide array of labels for the synthesized objects with analytic label alignment. We comprehensively
evaluate the effectiveness of Arti-PG toolbox on four representative object understanding tasks from
both vision and robotic aspects, and the experiments suggest the superiority of our approach.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Irving Biederman. Recognition-by-components: a theory of human image understanding. Psycho-
logical review, 94(2):115, 1987.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas Mensink, Pascal Mettes, Pengwan Yang,
and Cees GM Snoek. Pointmixup: Augmentation for point clouds. In Computer Vision—-ECCV
2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part III 16,
pp- 330-345. Springer, 2020.

daerduoCarey (Kaichun Mo). partnet anno system. https://github.com/daerduoCarey/
partnet_anno_system, 2019.

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati,
Alan Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, Eli VanderBilt, Aniruddha
Kembhavi, Carl Vondrick, Georgia Gkioxari, Kiana Ehsani, Ludwig Schmidt, and Ali Farhadi.
Objaverse-x1: A universe of 10m+ 3d objects. arXiv preprint arXiv:2307.05663, 2023.

Haoran Geng, Helin Xu, Chengyang Zhao, Chao Xu, Li Yi, Siyuan Huang, and He Wang. Gapartnet:
Cross-category domain-generalizable object perception and manipulation via generalizable and
actionable parts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7081-7091, June 2023.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7:187-199, 2021.

Christopher Habel and Carola Eschenbach. Abstract structures in spatial cognition. Foundations of
Computer Science: Potential—Theory—Cognition, pp. 369-378, 2006.

John E Hummel and Irving Biederman. Dynamic binding in a neural network for shape recognition.
Psychological review, 99(3):480, 1992.

Glyn W Humphreys, Cathy J Price, and M Jane Riddoch. From objects to names: A cognitive
neuroscience approach. Psychological research, 62:118-130, 1999.

Hanxiao Jiang, Yongsen Mao, Manolis Savva, and Angel X Chang. Opd: Single-view 3d openable
part detection. In European Conference on Computer Vision, pp. 410-426. Springer, 2022.

Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee, Seong Jae Hwang, and Hyunwoo J Kim.
Point cloud augmentation with weighted local transformations. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 548-557, 2021.

Dogyoon Lee, Jacha Lee, Junhyeop Lee, Hyeongmin Lee, Minhyeok Lee, Sungmin Woo, and
Sangyoun Lee. Regularization strategy for point cloud via rigidly mixed sample. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15900-15909,
2021.

Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu. Pointaugment: an auto-augmentation
framework for point cloud classification. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 6378-6387, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollar. Microsoft coco: Common objects
in context, 2015.

Jiayi Liu, Ali Mahdavi-Amiri, and Manolis Savva. Paris: Part-level reconstruction and motion

analysis for articulated objects. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 352-363, 2023.

11

https://github.com/daerduoCarey/partnet_anno_system
https://github.com/daerduoCarey/partnet_anno_system

Under review as a conference paper at ICLR 2025

Liu Liu, Wenqgiang Xu, Haoyuan Fu, Sucheng Qian, Qiaojun Yu, Yang Han, and Cewu Lu. Akb-48:
A real-world articulated object knowledge base. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 14809-14818, June 2022.

Yongsen Mao, Yiming Zhang, Hanxiao Jiang, Angel Chang, and Manolis Savva. Multiscan: Scal-
able rgbd scanning for 3d environments with articulated objects. Advances in neural information
processing systems, 35:9058-9071, 2022.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao
Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object
understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhinav Gupta, and Shubham Tulsiani.
Where2act: From pixels to actions for articulated 3d objects. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6813-6823, 2021.

Chuanruo Ning, Ruihai Wu, Haoran Lu, Kaichun Mo, and Hao Dong. Where2explore: Few-shot
affordance learning for unseen novel categories of articulated objects. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Thomas J Palmeri and Isabel Gauthier. Visual object understanding. Nature Reviews Neuroscience,
5(4):291-303, 2004.

Sergey Prokudin, Christoph Lassner, and Javier Romero. Efficient learning on point clouds with
basis point sets. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2019.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652-660, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017b.

John Parr Snyder. Map projections—A working manual, volume 1395. US Government Printing
Office, 1987.

Lyne P Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian Reid, and Silvio Savarese. Topnet:
Structural point cloud decoder. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 383-392, 2019.

Julian Togelius, Noor Shaker, and Mark J Nelson. Procedural content generation in games: A
textbook and an overview of current research. Togelius N. Shaker M. Nelson Berlin: Springer,
2014.

Shimon Ullman. High-level vision: Object recognition and visual cognition. MIT press, 2000.

Xiaogang Wang, Bin Zhou, Yahao Shi, Xiaowu Chen, Qinping Zhao, and Kai Xu. Shape2motion:
Joint analysis of motion parts and attributes from 3d shapes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8876-8884, 2019.

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng, and Yueshan
Xiong. Symmetry hierarchy of man-made objects. In Computer graphics forum, volume 30, pp.
287-296. Wiley Online Library, 2011.

Yian Wang, Ruihai Wu, Kaichun Mo, Jiaqi Ke, Qingnan Fan, Leonidas Guibas, and Hao Dong.
AdaAfford: Learning to adapt manipulation affordance for 3d articulated objects via few-shot
interactions. European conference on computer vision (ECCV 2022), 2022.

Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu. Point cloud completion by skip-attention
network with hierarchical folding. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 1939-1948, 2020.

12

Under review as a conference paper at ICLR 2025

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN: A
simulated part-based interactive environment. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Peng Xiang, Xin Wen, Yu-Shen Liu, Yan-Pei Cao, Pengfei Wan, Wen Zheng, and Zhizhong Han.
Snowflake point deconvolution for point cloud completion and generation with skip-transformer.
1IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(5):6320-6338, 2022.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1-12, 2016.

Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert. Pcn: Point completion
network. In 2018 international conference on 3D vision (3DV), pp. 728-737. IEEE, 2018.

Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 16259—16268,
2021.

13

Under review as a conference paper at ICLR 2025

We provide comprehensive appendices for better understanding of our paper and offer more evidence
to prove the effectiveness of our approach. The appendices are organized as follows: Appendix
first provide specific technical details and discussions about the implementation of Arti-PG.
Then, more experimental results and analysis are presented in Appendix [F]and visualizations of our
synthesized objects are shown in Appendix [GI We further take the object category of ‘Globe’ as
an example to demonstrate how our approach is implemented in Python in Appendix [H] Finally,
we discuss about additional advantages behind our design, current limitations and further work in
Appendix

A ARCHITECTURE AND OPERATING PRINCIPLES OF STRUCTURE PROGRAM

In Sec. we introduced an example of a washing machine to show our design of the structure
program and how to use it to describe the spatial structure of an articulated object. Here we pro-
vide another example to more clearly demonstrate the architecture and operating principles behind
the program description of the object structure (in this case, the structure of a sliding window with
two prismatic panels) step by step. This shows a better view of technical details such as the prim-
itive composition of an object, how connectivity relationships work between primitives, and how
advanced primitives are built upon elementary ones. For the rest of this section, we use two types of
fonts, namely monospaced and italic, to indicate primitive instances and primitive class templates
respectively.

OBJECT STRUCTURE: Let’s start from the top row in Fig. 4] where the structure of the object
is resolved into four components, frame and window_1-3, and all these windows are connected
to frame. Particularly, window_2 is in a fixed connection and window_1/window_3 are in a
prismatic connection. For fixed connection, we restrict the relative translations and rotations be-
tween window_2 and frame to specific values. To implement the prismatic connection, we set the
translation of window_1/window_3 along the x-axis free within the length of frame and restrict
the other relative translations and rotations between window_1/window_3 and frame.

Frame: Frame is described with the primitive rectangular_tube and its corresponding parameters.

Window_1-3: window_1-3 are instantiated from an advanced primitive of window, consisting
of a window base and optional handles. The window base is described with a concave_cuboid
elementary primitive and the handle is a handle advanced primitive, and the two components are
connected with fixed connection. A discrete parameter is used to indicate the number of handles.
Through the window advanced primitive, we can use concave_cuboid with different parameters and
handle_1-2 to describe window_1-3. Specifically, the number of handles is 0 for window_2
and 1 for the rest. This also shows that the same primitive templates implemented with different
parameters result in various structures.

Handle_1-2: handle_1-2 are instantiated from an advanced primitive of handle, whose
three components are all cuboid elementary primitives, and are instantiated into handle_top,
handlemiddle and handle_bottomin this case to construct both handle_1-2. The connec-
tion between handle_top and handle_middle is a fixed connection. Since handle_middle
plays arole of a revolute joint, we connect handle bottom with handle_middle by restricting
their relative translations and rotations with the exception of the rotational freedom along the joint’s
axis of revolution. Together with these primitives and connectivity relationships between them, we
get an advanced primitive template that describes a handle. By assigning specific parameters to the
advanced primitive template, we are able to describe handle_1-2.

14

Under review as a conference paper at ICLR 2025

‘MOpUIM B JO wei3oid a1njonns oyl JO 21njoIydIy 4 2In3Ly

((((((
[600°0°cT0 090" 0]= [s€0 0‘szo 09z0 0l= [see e s90 0 ere 0l= [600 0°cTO 0 9z0 0]= [s€e"0°sze 09z 0]= [see 0590 0 ore 0l=
2z15 doy aTpuey 9ZTS OTppPTIW aTpuey 9zTS Wo0330q aTpuey 9z1s do3 arpuey 9ZTS ATPPTW ITpuUeRyY 9z15 W0330q aTpuURY
)proqn>)pr0gn>)progn>)progn))progny)pr0gn>
= doy aTpuey ‘ = 2TppTW aTpuey = wWo330q aTpuey = doy aTpuey ‘ = JTPPTIW ITpuey = wo3}30q aTpuey
SATITWTJId AJejuswatl AATITUWTJd AJejusuwarl B AATITWTJd AJejudwarl AATITWTJd Auejuawar3l AATITWTJd AJejuawarl o AATITWTJd Auejuauwatrl
L 1 J L]

f.06=UOTaE3047 2 edTaTpURY @6=U0TIE30Y fp=uorieloiTJued aTpuRy 7T === =TT ===—=~

== 1 = a2 ’ =UOTIeI0Y 1 1
£{azrs doy atpuey ! Ny v et Gl U (¢{az1s " do3y arpue 1 0=10%
s 9o 000°0 070 0- ‘000" 0]= 000°0°090°0- ‘000°0]= cafacT T fanc - r UL -0070°0- ‘008" 8]= +6990°0- ‘008 0l= 1
_ }doy aTpuey=doy ! [f.ww&o [; uawto “ [sze*e st 1T 00s "0]= EReTEr e “ [e00°0 070" 0 8sywwu¢o 1 [eee 0090 0 sosuww. o !
f{azTs aTppTW aTpuRy “ i t wlm sz:ﬂ mwﬂu ¢{azTs aTppTU aTpURY i 1 33 “
= = 1 Sve°e‘eze 10L9°0]= X -
o TR Ly antonss G B e (santonss T
i w___ouuonlm%:mgusm " T asouuonlo:u:m: * .wamuﬁ..lwav:n:])prognyanpouoy ?Nwmonwwwm“%_mw“muem “ N pjioniod atpuey N eTPPTRIeTEtE :
: U= STPPTW 3TPURY oy atpuey ! - — - F 5 ~ do3™: '
= 1 = 3 3 3 - TPPTU BTPURY 03 apuey
_/1)a1pupH=g"oTpuey |)323uu0d ||)300uu0) | € SSet8/z7sset8/1 sset!)27pupH=T"aTpuey “)393uu0) _")3d0uu0) |
3 R T S P S
AATITWTJId PIdUBAPY SATITWTIG AJejuauarl SATITWTJd Paduenpy bbb
((
T=unu"aTpuRy T=unu~aTpuey
£{uot3ezou 3ued atpuey STTTTTEETETTEETEETTES ¢{uor3erou 3ued atpuey STTTTTTTTTTITTTTTT TN .
€az1s doy aTpuey | H faz1s"do3 aTpuey | \ [000" 0000 0]=
faz1s”aTppTU BTPURY “ 1 (€azTS aTppIW aTpURY ! ' wwmto.gw:i.msmt
faz1s wo330q aTpuey | [0e0-0 000 0 066" 0]= | @=unu”sTpuey faz1s W0330q 2 TpUERY | | ooe‘e‘e00 0 ss8'0-1= | leso-eoze "t vz -z]=
Yz oTpuRY=37pUDH 1 195330 1 £aUON=27pupH }1 aTpURY=37pUDH | T 395430 | OIS Jdaudy auedt
¢{9215 JuuT Sssers "] ¢{9215 JauuT ssers ¢{az15 usuuT Sserd H [I [ece 0 sy T vee z]=
£3z1s” Ja3no sserd I (paxt4 " €2z1S Ja3no sserd ! fazis uaino ssers I (paxT4 “ |z1s Lmu;oamsmt
e sserd=sso19 ! ‘g-ssers 1 | Yz sser8=ssp19 W ssers=ssorp ! “I“ssers i)agnpapynl U032y
YMopuM=¢ MOpUTM | <z aTpuey)3dauuo) | | YMOpUIM=Z MOPUTM YMopuIH=T MOpUTM | T aTpuey)3d3uu0) | = aueds
N e e e ” N e e e e I—
AATITWTJd PIdUBApPY - SATITWTJd PadueApy SATITWTJd PIdueApy AATITWTJd Auejuawar3
fuotriejoa Teqor8 13s3jo Teqord
£(oT3RWSTUd owed) ‘€ MOPUTM)3I3UU0)
f(paxtT4 ‘owedy ‘Z Moputm)3dauuo)d
£(oT3RWSTUd “Pues) T MOPUTM)3D3UUO) JE JE
O 3¢ D e e e e
{3z1s Wo130q aTpuURY £3ZTS STPPTW STpuey 1 " (] 1
2275 do3 aTpuey fuoTielou jJed BTpuey fwnu STpuey}z STpPuUBY = ITPUDH 1 " L '
¢{az15 uauuT sseT8 fazTs uaino sserS}e sserd = ssp 0 0 . 0 4
\. {ez1 ERSsEl : T Wm_ov_:\w i mlzommﬂx ! . [zz0'0000°0099"01= ! lj=mm . [270°0-000°0%000°0]= | | [770"0°000" 0 085 0-]= | x
! 1 WA] I 395330 |, 395330 | 395440 i
n [1
fauoN = a7pubH) < <A 1| ¢
| 1 1 1 1
\ | ¢{az1s JuauuT sseT8 fazrs uaino sserS}z ssers = sspyo | ?UWHW_MH n mnwwmu 1 Auwpm“ﬂ”“ |
= 7 [— _ N _ [1
Ymopuy = 7 sov:mﬂ _, €€TMOpUTM)323UuU0) | _, €z MoputM)3d3uu0) | _, €1 MoputM)3d3uuo) |
€ e T T N . .

f{oz15W0130q BTpPURY f3ZTS STPPTW STpuey STttt STTTTTTTTTTTTTTTT T
€715 doy aTpuBY fUOTIEI04 JJed aTpuBy funuTaTpuey}T STPURY = 27PUDH
T TPuERY T Tpuey TPuey, Tpuey 7P
¢{az1s yauur sseT8 fazrs uaino sser3}T sserd = ssp)9
YMopuiM = T MopuTm
€(395440 JaUUT BWeJ €IZTS JBUUT BWeJ) £3ZTS JIINO BWEUS)aWDJ] = dwed)

15

Under review as a conference paper at ICLR 2025

B POINTS ON GEOMETRIC PRIMITIVES

An important property of the geometric primitive is that each point on the primitive can be ana-
lytically described by mathematical functions, as discussed in footnote [2] of the main body. This
property is crucial for the appearance representation and the label alignment process. In the footnote
we give an example of a sphere, and here we further provide another example of a cuboid for better
understanding. In this example, we assume that i) the center is at the origin and the orientations in
terms of L, H, W are aligned with the x, y, z-axes respectively in a cuboid primitive, and ii) y-axis

points upward. Then, all the points on its top surface can be analytically described by (a L, %H , BW)

with a, 5 € [—%, %} A certain point on its top surface can also be designated by assigning specific

value to «, 3, e.g. one of the corners can be represented by assigning both « and 3 as %

C EXAMPLE OF COMPLETING GEOMETRIC DETAILS

As mentioned in Sec. [3.5] there may be invisible points on the structure that are not covered by
geometric details, and we deal with this issue by completing the geometric details separately for each
elementary primitive according to its geometric property like translational and rotational symmetry.
Here, we provide an example of such process on primitive cuboid.

We first assume that i) the center of the cuboid is at the origin and the orientations in terms of
L, H, W are aligned with the x, y, z-axes respectively, and ii) U is the set of all points on the primi-
tive’s surface and V C U is the set of all visible points. For an invisible point p = (z,y,2) € U-V,
points that obey translational and rotational symmetry with p compose a point set S, written as

SEEEE

We select a point ¢ € V for each p under following rules: i) ¢ is close enough to some point in S
IseS, |lg—s|ly <e 4)

where € is a threshold, and ii) adjacent ps should search for their corresponding ¢s in the same

symmetric manner. Then, we can duplicate the appearance vector of ¢ to p. Finally, we apply a

linear interpolation algorithm to fill the remaining holes if they exist and a filtering algorithm to
make the appearance smoother. Fig. [5] gives a common case that results in invisible points in the

T
contact surface of the lower cuboid, and we show one of the choices which adopts s = [—y] to
—z

migrate geometric details to these points.

T

(@ (b) © (@)

Figure 5: Example of completing geometric details for invisible points. a. A common case where
two cuboids are stacked and the contact surface is invisible. b. The lower cuboid where the top right
rectangular blue area indicates invisible area. ¢. One possible way to complete the geometric details
on the invisible area is to migrate visible points w.r.z. axis symmetry along the red line. Black points
on the top right are invisible points sampled on the cuboid surface. Green and red spheres show the
searching area of corresponding points. Zoom in for a clear view. d. The result of completion.

16

Under review as a conference paper at ICLR 2025

D MORE EXAMPLES OF LABEL ALIGNMENT

Here we give more examples of automatically aligning labels onto synthesized objects, taking ad-
vantage of the analytic property.

Part Semantics. The structure of an object is represented with a series of elementary geometric
primitives in our program description. Since the elementary primitives typically serve as the founda-
tional components in an object’s hierarchy, we can obtain part semantics for each point by assigning
a label to each elementary primitive (more specifically, all the points on it).

Grasp Poses. Please refer to Fig. [6]for details.

(b)

Figure 6: Illustration of analytically aligning grasp poses. (a) We first label a grasp pose of the
primitive, i.e. a torus segment in this example, by transforming the gripper from its initial pose
(M) to a proper grasp pose (M) using the mathematical expression below. Here the major radius R
is the distance from the center of the tube to the center of the torus, the minor radius 7 is the radius of
the tube, and 0 is the segment angle. R, denotes the transformation matrix for rotation around axis
* T denotes the transformation matrix for translation. (b) With the grasp pose aligned to the torus
segment, a synthesized kettle is automatically labelled with this affordance when the torus segment
is used in the structure as a handle.

E DETAILS OF STRUCTURE PROGRAM ANNOTATION SYSTEM

We have elaborately designed a user-friendly annotation system to efficiently and effectively ob-
tain the structure program of a real object. It is a web-based system, allowing users to easily
access it through a browser. The system is designed as a one-way question-answering workflow,
where users are tasked to determine the primitives and specify their parameters for a given object.
During annotation, real-time renderings of the structural program as well as the target object it-
self are shown on the web page in a synchronous way for reference. We also show a mixed view
of the two renderings for better comparison. We provide a video demonstration of the system in
anno_system_videos/system_demo.mp4 of supplementary material. Some of our codes are bor-
rowed from PartNet Anno System (daerduoCarey |(Kaichun Mo)).

In practice, we invite first-year undergraduate students to assist us in the annotation process, since it
just requires high-school level math skills. For reference, the average annotation time for an object
is about 6 mins. To demonstrate the annotation process in detail, we provide a video of annotation
footage featuring three volunteers in anno_system_videos/anno_footage.mp4 in supplementary ma-
terial. This shows that the system is user-friendly and efficient in obtaining structure programs.

F MORE DETAILS ON EXPERIMENTS

Vision Experiment Settings. Here we provide more details for vision tasks settings. In Tab. [3]
we give the detailed statistics of our dataset in terms of train and test set sizes. For part segmenta-
tion, besides PointTransformer (Zhao et al.| (2021))) as the baseline mentioned in the main body, we

17

Under review as a conference paper at ICLR 2025

further introduce the classical PointNet++ (Q1 et al.| (2017a))) as another baseline to further demon-
strate our approach’s effectiveness. PointNet++ is an efficient and effective network which serves
as the backbone of many 3D frameworks. For part pose estimation, we follow GAPartNet (Geng
et al.| (2023)) for data preparation. Specifically, we render RGB-D images of articulated objects in
SAPIEN simulator (Xiang et al.| (2020))) with annotations, variate collected data by using random
camera poses and joint poses and finally gather 20000 points as input. The position and orientation
of parts are defined in the Normalized Part Coordinate Space (NPCS). Specifically, each detectable
part is reduced to a standard orientation and normalized within a unit ball. We use batch sizes from
16 to 64 for different tasks, depending on the default settings of baseline models. We use Adam
optimizer with learning rate = 0.001 and weight decay = 0.0001 to optimize the network parameters.

Table 5: Detailed statistics of the data split on vision tasks.

Split Bottle Box Bucket Display Door | Eyeglasses | Globe | Kettle

Train 64 18 18 50 24 43 40 18

Test 400 10 18 904 12 22 20 10
KitchenPot | Laptop | Lighter | Microwave | Pen Pliers Fridge Safe

Train 15 48 18 6 32 10 30 20

Test 10 405 10 10 16 14 14 10

Scissors Stapler | Switch | TrashCan | USB Washing | Window
Train 32 13 47 37 20 7 35
Test 15 10 23 19 31 10 18

More Vision Task Results. We provide part segmentation and point cloud completion results for
each object category in detail in Tab. [] as well as a new part segmentation baseline PointNet++.
Since part pose estimation is not a category-level task, we do not provide per category results of this
task. For both tasks and all the baselines, our approach is able to provide significant improvement
across all the object categories. Further, our approach surpasses the data augmentation approach
PointWOLF in the segmentation task for almost all categories, especially for categories with more
delicate structures, e.g. Pliers and USB. This can be attributed to Arti-PG’s capability of synthesizing
structures with a wide range of variety while ensuring their validity, whereas PointWOLF, augment-
ing based on random local transformations that may potentially harm the structural integrity of such
delicate objects, begins to show negative impacts on the performance. These results provide more
comprehensive evidence of the superiority of our approach.

Manipulation Experiment Settings. As shown in Tab. [/} we conduct our experiment on 15 rep-
resentative categories of objects. We would like our evaluation to reflect the ability to understand
articulated object structures and detect affordances on articulated objects rather than delicate tra-
jectory planning. Hence we have removed objects that are either too small (e.g. Pen, USB) or do
not make sense for a single-gripper to manipulate (e.g. Bottle, Scissors). This practice follows the
baseline (Mo et al.|(2021)).

We adapt the SAPIEN (Xiang et al. (2020)) simulator as the interaction environment for manipu-
lation tasks. For each interaction simulation, we initially place an object in the SAPIEN simulator
at the center of the scene. The joint pose of the object has a 50% chance of being at the closed
state (e.g. a closed door) and a 50% chance of being at the open state with random motion (e.g.
a half open closet). The whole scene is observed through an RGB-D camera with known intrinsic
parameters, which stares at the center of the object and is positioned at the upper hemisphere with a
random azimuth [0°,360°) and a random altitude [30°,60°]. A Franka Panda Flying gripper with 2
fingers is used to interact with the object.

For Where2Act (Mo et al| (2021))) and Where2Explore (Ning et al.| (2024))), the per-pixel action
likelihoods and action proposals are acquired by the networks. We select the pixel with the maximum
action likelihood as the target and adopt the orientation and movement direction of the gripper given
by the action proposal at this point. GAPartNet (Geng et al.| (2023))) detects actionable parts with
their poses on objects. The gripper orientation and movement direction are acquired based on the

18

Under review as a conference paper at ICLR 2025

Table 6: Per category experimental results on part segmentation and completion. Impr. denotes the
improvement of Arti-PG over the baseline in absolute value.

gel\t/[vitt)rrilz Method Bot | Box | Buc | Dis | Door | Eye | Glb | Ket | Pot | Ltp | Lit | Wav
X 954 1954 1963|939 | 779 | 965 | 959 | 89.7 | 90.3 | 96.8 | 92.3 | 82.8

Arti-PG 96.6 | 97.2 | 98.5 | 96.4 | 78.1 | 97.1 | 96.9 | 939 | 958 | 97.1 | 93.8 | 90.3

Impr. 12 |18 | 22 | 25 | 02 | 06 | 1.0 | 42 | 55 | 03 | 15 | 74

Point- PointWOLF || 96.8 | 96.2 | 92.6 | 953 | 77.5 | 96.3 | 95.5 | 90.5 | 91.1 | 96.8 | 92.7 | 87.2
Transformer Pen | PIi Fri | Safe | Sci Stp | Swi | Can | USB | WM | Win | AVG
mAcc(%)T X 857 [740 | 94.1 [928 [90.5 [799 | 845 | 922 | 82.6 | 91.6 | 872 [89.5
Arti-PG 87.6 | 752 | 943 | 94.6 | 90.6 | 82.8 | 85.0 | 92.7 | 82.8 | 92.1 | 91.6 | 91.3

Impr. 19 12 102 | 18 | 01 |29 |05 |05)| 02| 05) 44 | 18

PointWOLF || 86.5 | 71.4 | 94.1 | 943 | 90.5 | 77.5 | 89.5 | 92.1 | 80.1 | 91.2 | 87.6 | 89.7

Bot | Box | Buc | Dis | Door | Eye | Glb | Ket | Pot | Ltp | Lit | Wav

X 75.1 [9377 [485 | 81.9 | 52.1 [929 | 855 | 88.7 | 928 | 87.7 | 72.5 | 745

Arti-PG 82.7 | 96.4 | 49.8 | 84.0 | 56.0 | 94.1 | 94.2 | 93.5 | 97.6 | 88.8 | 84.1 | 81.1

Point- Ampr. 76 | 27 | 13 | 21 | 39 | 12 | 87 | 48 | 47 | 10 | 116 | 6.6
Transformer PointWOLF || 82.2 94‘.7 49.3 82.5 59.§ 93.9 87‘? 89.5 | 93.6 | 884 | 73.1 | 749
mloU(%)] Pen | PIi Fri | Safe | Sci Stp | Swi | Can | USB | WM | Win | AVG
X 659 | 75.6 | 61.3 | 86.8 | 565 | 743 | 71.0 | 72.7 | 87.6 | 482 | 682 | 745

Arti-PG 66.6 | 88.5 | 649 | 89.0 | 61.5 | 83.5 | 71.8 | 82.9 | 88.6 | 53.3 | 73.0 | 794

Impr. 07 1129} 36 | 22 | 50 | 92 | 08 | 102 | 10 | 51 | 08 | 49

PointWOLF || 65.7 | 82.8 | 62.6 | 87.5 | 60.8 | 70.7 | 72.4 | 71.6 | 81.9 | 47.9 | 704 | 75.8

Bot | Box | Buc | Dis | Door | Eye | Glb | Ket | Pot | Ltp | Lit | Wav

X 955937981 [91.0] 81.0 | 97.4 [88.0 | 87.5 | 92.1 | 965 | 91.6 | 86.5

Arti-PG 95.6 | 95.8 | 98.6 | 94.6 | 824 | 975 | 959 | 93.2 | 96.0 | 97.2 | 93.8 | 89.8

Impr. 01 21|05 |36 | 14 |01 |79 57| 39 |07) 22| 33

Pointnet+ PointWOLF || 95.5 94._3 98._4 92.5 | 81 3 97.9 89.Q 89.2 | 92.8 | 97.0 | 91 5 87.9
mAce(%) 1 Pen | Pl Fri | Safe | Sci Stp | Swi | Can | USB | WM | Win | AVG
X 88.4 1689 (929 [904 | 884 | 788 | 845|912 | 80.8 | 91.4 | 822 | 88.6

Arti-PG 89.4 | 69.5 | 93.1 | 91.7 | 90.0 | 79.5 | 88.9 | 92.3 | 82.3 | 92.6 | 838.8 | 90.8

Impr. 10 | 06 | 02 | 13 | 1.6 | 07 | 45 | 1.1 | 15 | 12 | 6.6 | 2.0

PointWOLF || 88.5 | 68.5 | 93.0 | 90.1 | 90.3 | 80.2 | 854 | 91.2 | 80.6 | 91.6 | 83.2 | 89.1

Bot | Box | Buc | Dis | Door | Eye | Glb | Ket | Pot | Ltp | Lit | Wav

X 719 [837 [548 | 61.1 | 51.6 | 93.8 [77.0 | 59.5 | 84.4 | 83.0 | 60.0 | 67.3

Arti-PG 731 | 89.7 | 57.2 | 77.3 | 563 | 943 | 91.2 | 788 | 90.0 | 834 | 674 | 74.5

Impr. 13 | 60 | 24 | 162 | 47 | 05 | 142|193 | 56 | 04 | 74 | 7.2

Pointnet++ PointWOLF || 73.0 | 86.1 | 553 | 64.4 | 514 | 95.1 | 78.0 | 60.8 | 84.7 | 833 | 59.6 | 70.3
mloU(%)1 Pen Pli Fri | Safe | Sci Stp | Swi | Can | USB | WM | Win | AVG
X 69.4 | 60.7 | 587 [635 [62.1 | 61.7 | 47.1 | 69.7 | 732 | 557 | 62.1 | 66.6

Arti-PG 71.6 | 67.5 | 60.7 | 66.5 | 66.7 | 63.4 | 59.7 | 784 | 76.4 | 66.6 | 74.9 | 73.3

Impr. 22 | 68 | 20 | 30 | 46 | 17 | 126 87 | 32 | 109 | 128 | 67

PointWOLF || 68.9 | 59.3 | 60.2 | 62.8 | 653 | 63.2 | 51.2 | 70.0 | 69.0 | 57.7 | 64.8 | 67.5

Bot | Box | Buc | Dis | Door | Eye | GlIb | Ket | Pot Ltp Lit | Wav

X 97 | 146 | 144 | 94 8.6 51 [182 194 | 176 | 94 | 86 | I58

Arti-PG 9.6 | 14.0 | 13.0 | 9.3 8.5 51 (17.0 | 19.0 | 164 | 7.1 | 7.2 | 133

SnowflakeNet Impr. 01 | 06 | 1.4 | 0.1 0.1 00 | 1.2 | 04 1.2 23 14 2.5
CD(x10™%)] Pen | Pl Fri | Safe | Sci Stp | Swi | Can | USB | WM | Win | AVG
X 47 1 65 | 89 [152] 5.0 96 | 136] 127] 89 [162 | 69 | IL3

Arti-PG 47 | 53 | 88 | 122 | 4.6 84 (136 | 12.0 | 80 | 16.0 | 53 | 104

Impr. 00 | 12] 01 | 30] 04 |12] 00|07] 09 | 02| 16 | 09

part pose, namely we turn the gripper in an orientation suitable for grasping and move the gripper
toward/away from the target part.

Tab. |8|lists specific manipulation tasks on our objects. The tasks can be generally categorized into
pushing and pulling. Specifically, for pushing tasks, a closed gripper is initially placed 0.05m away
from the target along the movement direction, then moves forward with a longer distance in order
to push the target. For pulling tasks, an open gripper is placed 0.05m away from the target along
the movement direction, then moves forward to the target with 0.045m and closes itself to grasp the
target. The gripper subsequently moves back to the start point to pull the target.

Detailed Manipulation Results. We provide manipulation results for each object category in de-
tail in Tab. 0] Further, video demonstrations for manipulation in both simulation and real world
environment are provided in experiment_videos in supplementary material.

19

Under review as a conference paper at ICLR 2025

Table 7: Detailed statistics of the data split on manipulation tasks.

Train Cats Box Door Faucet Kettle Microwave

Train 20 23 65 22 9
Test 8 12 19 7 3

Fridge Storage Switch | TrashCan | Window
32 270 53 52 40
11 75 17 17 18

Test Cats || Bucket | KitchenPot | Safe Table Washing
Test 36 23 29 95 16

Table 8: List of specific tasks in manipulation. The tasks can be generally categoried into pushing

and pulling.
Category Tasks
Box Push/Pull Lid
Bucket Push/Pull Handle
Door Push Door; Push/Pull Door via Handle
Faucet Push/Pull Switch
Fridge Push Door; Push/Pull Door via Handle
Kettle Push/Pull Handle
KitchenPot Push/Pull Handle; Pull Lid
Microwave Push Door; Push/Pull Door via Handle
Safe Push Door; Push/Pull Door via Handle
StorageFurniture | Push Door; Push/Pull Door via Handle; Push/Pull Drawer via Handle
Switch Push/Pull Switch
Table Push Door; Push/Pull Door via Handle; Push/Pull Drawer via Handle
TrashCan Push/Pull Lid
WashingMachine Push Door; Push/Pull Door via Handle; Push Lid
Window Push Window; Push/Pull Window via Handle

Amount of Available Data. To fully demonstrate the potential of our approach in the data scarcity
scenario, we further conduct ablation studies by gradually reducing the number of real objects in the
training set from 100% to 1% (at least 1 object in each category for training). Results in Fig.
suggest that more benefits can be yielded by Arti-PG on a smaller training set, i.e. the data scarcity
issue is more prominent.

Table 9: Per category experimental results on manipulation. All values are percentage sample suc-
cess rate. Impr. denotes the improvement of Arti-PG over the baseline in absolute ssr.

Network || Task | Method || Box | Buc | Door | Fau Fri Ket | Mic | Pot | Safe | Sto | Swi | Tab | Tra | Was | Win || AVG
X 258 | 82 | 341 [279322237 [358] 62 | 98 [329]280 210 19.0 | 13.0| 159 | 214

push | Arti-PG || 32.8 | 12.3 | 38.0 | 29.1 | 37.3 | 29.1 | 404 | 7.1 | 13.5 | 36.1 | 31.5 | 30.6 | 21.2 | 18.1 | 20.9 || 26.4

W2A Impr. 70 | 41 | 39 | 12 | 51 | 54 | 46 | 09 | 37 | 32 | 35 | 96 | 22 | 51 | 50 || 50
X 34 1 6.1 4.7 5552 [30]60 36 |56 [I107] 91 [I05] 55 59 [33 7.6

pull | Arti-PG || 45 | 7.9 65 |11.1 | 57 | 50 | 80 | 5.0 | 57 |11.7 | 98 | 126 | 63 | 74 | 4.0 9.2

Impr. 11)18 | 18 | 56 | 05 |20 | 20 | 14 | 01) 10 | 07 | 21 | 08 | 1.6 | 07 || 1.6

x 38.0 | 152] 395 | 319 | 46.8 | 21.5 | 36.8 | 10.8 | 13.9 | 379 | 23.8 | 242 | 30.3 | 169 | 17.0 || 259

push | Arti-PG || 40.5 | 20.4 | 45.0 | 34.0 | 47.2 | 28.3 | 44.1 | 15.7 | 16.0 | 43.9 | 27.7 | 37.2 | 40.0 | 20.5 | 24.0 || 32.8

W2E Impr. 25 |52 | 55 |21 |04 |68 |73 |49 |21)60)39 |130]97] 36| 70| 69
X 66 [94 88 70 [125] 53 [75] 62 [92 [109[11.8] 107 [11.8] 45 | 25 93

pull | Arti-PG || 85 | 159 | 13.3 | 11.3 | 145 | 89 | 129 | 12.7 | 11.3 | 12.2 | 143 | 109 | 16.1 | 8.7 | 3.6 11.9

Impr: 19 | 65 | 45 | 43 | 20 | 36 | 54 | 65 | 21 | 13 | 25 | 02 | 43 | 42 | 11 || 26

x 417 | 255 | 479 | 18.0 | 451 | 344 | 371 | 19.0 | 93 | 388 | 19.1 | 248 | 25.0 | 14.8 | 15.6 || 26.6

push | Arti-PG || 43.2 | 35.0 | 52.1 | 31.0 | 52.8 | 39.6 | 40.4 | 23.1 | 13.7 | 41.2 | 31.7 | 34.9 | 31.8 | 18.3 | 24.3 || 335

GA Impr: 15 |95 | 42 |130| 77 | 52 | 33 | 41 | 44 | 24 | 126 | 10.1 | 68 | 35 | 87 || 69
X I0.T]170] 123 | 67 [139 [106 [109 [6.8 [93 [166 [II.T [163 | 9.0 | 79 | 2.6 129

pull | Arti-PG || 11.3 | 264 | 14.0 | 7.0 | 16.5 | 15.1 | 16.0 | 14.1 | 104 | 19.3 | 12.1 | 20.8 | 10.3 | 10.1 | 4.7 16.5

Impr: 12 | 94 | 17 | 03 |26 |45 |51 |73 | 11 |27 |10 |45 | 13 | 22 | 21 || 36

20

Under review as a conference paper at ICLR 2025

Part Segmentation, mAcc (%) Part Segmentation, mloU (%)
100 20
—e— baseline —e— baseline
—e— Arti-PG —— Arti-PG
9% 80
88 \\\) \
82 60
76 50
70 40
100 70 50 30 10 1 100 70 50 30 10 1
Training Set Portions (%) Training Set Portions (%)
Point Cloud Completion, CD (x 10~*) Part Pose Estimation, mloU (%) Part Pose Estimation, As (%)
26.0 50 30
—e— baseline —e baseline —e— baseline
—e— Arti-PG —e— Arti-PG —e— Arti-PG
22.4 a5 25
18.8 40 20
15.2 35 15
11.6 30 10
8.0 25 5
100 70 50 30 10 1 100 70 50 30 10 1 100 70 50 30 10 1
Training Set Portions (%) Training Set Portions (%) Training Set Portions (%)

Figure 7: Performance of both baseline and Arti-PG on various tasks with respect to changes in the
portions of available data. The results are reported on average across all categories.

Results with Sufficient Training Data. Although we focus on solving the data scarcity issue, we
would like to demonstrate that our approach also works in scenarios with sufficient training data.
We pick Bottle, Display and Laptop where enough data are available. We re-split the training and
test sets of these categories to construct two settings for this experiment: sufficient training data
and scarce training data. The data split is reported in Tab. where the same 100 data are used
for the test. We evaluate our approach in both settings across part segmentation and point cloud
completion tasks with mean accuracy (mAcc), mean IoU (mloU) and Chamfer Distance (CD) as
metrics. Tab.|l1| demonstrates the results, which suggest that our approach is still effective with a
large number of training data.

Table 10: Data split for sufficient training data and scarce training data scenario.

Setting | Bottle | Display | Laptop
Sufficient Train Data 364 854 353
Scarce Train Data 64 50 48
Test Data 100 100 100

Table 11: Experimental results of part segmentation and point cloud completion on two settings:
sufficient training data and scarce training data.

. Sufficient Train Data Scarce Train Data

Task Metric Method Bottle | Display [Laptop [Bottle | Display | Laptop

X 95.8 96.0 97.1 94.3 93.8 95.4

mAcc(%) T Arti-PG || 96.9 96.5 97.4 95.5 95.5 96.5

Segmentation Impr. L1 05 0.3 12 17 L1
X 80.8 88.5 84.1 70.8 75.9 83.4

mloU(%) 1 Arti-PG || 83.8 88.8 85.6 80.6 80.6 84.9

Impr. 3.0 0.3 15 9.8 4.7 15

X 7.369 | 8.942 7.443 | 10.079 | 9.671 9.289

Completion | CD(x10"%cm)] | Arti-PG || 6.187 | 8.752 6.637 | 9.012 9.312 8.117
Impr. 1.182 | 0.190 0.806 1.067 0.359 1.172

21

1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

Under review as a conference paper at ICLR 2025

G VISUALIZATIONS OF SYNTHESIZED OBJECTS

Here, we provide substantial illustrations of synthesized objects from 26 categories in
Fig.[8} [0} [I0} [TT]and[I2} This demonstrates that our approach is capable of synthesizing high-quality
3D articulated objects with considerable diversity in both structure and appearance.

L
“ i

(d) - Display

oWl
d oo

(e) - Door

-
-
4

mEE A4
E 44
m 14
E At

rch"] -;:i .'f" - e @ - ~\.'*l' '-r'i ’\lfii \1'1'
QW">\)'&=¢ f-““aic\ﬁ W P g

(f) - Eyeglasses

Figure 8: Various categories of objects synthesized by Arti-PG. Part I.

22

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220

Under review as a conference paper at ICLR 2025

() - Lighter

Figure 9: Various categories of objects synthesized by Arti-PG. Part II.

23

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

Under review as a conference paper at ICLR 2025

—<

- ;=<<: — e e, K el e o W
(o) - Pliers

(p) - Refrigerator

i 4 au
dadaaun
Jadusus
Jddesuay

4
4 X
4
A
4
4

(r) - Scissors

Figure 10: Various categories of objects synthesized by Arti-PG. Part III.

24

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

Under review as a conference paper at ICLR 2025

a‘))QQahaa
))>Aa=a=—$
d
¥

(s) - Stapler
J UuJd dasesadu
W EaEg s s

(t) - StorageFurniture

AR e

S P T e Rl W

dliddadia

Figure 11: Various categories of objects synthesized by Arti-PG. Part I'V.

25

S - Y

Under review as a conference paper at ICLR 2025

B
E
E
-

N]] e

(2) - Window

Figure 12: Various categories of objects synthesized by Arti-PG. Part V.

H IMPLEMENTATION OF STRUCTURE PROGRAMS IN PYTHON

In this section, we show the implementation of the structure programs in Python and provide detailed
explanations, taking ‘Globe’ as an example. For simplicity, we omit ancillary codes like “converting
List type to numpy.ndarray type”. Our codes for all object categories will be made publicly
available.

H.1 ELEMENTARY PRIMITIVES

Base Class. First, we implement the base class for elementary primitives. It mainly contains the
offset and rotation of an elementary primitive. The elementary primitive can be further moved in 3D
space through functions like t ranslate and rotate.

class Elementary Primitive:
def _ init_ (
self,
offset=[0, 0, 0],
rotation=[0, 0, 0]

mon

:param offset: pose parameters for the elementary primitive's
— 1initial position.

:param rotation: pose parameters for the elementary primitive's
— 1Initial rotation in Euler angles.

mmn

self.offset = offset

self.rotation = rotation

self.structure = None # Mesh

def translate(self, offset):

mon

Translate the primitive according to the given values.
mmn

self.structure.translate (offset)

def rotate(self, rotation):
mmn

Rotate the primitive (around the origin) according to the given

— values.
mmnn

26

Under review as a conference paper at ICLR 2025

self.structure.rotate (rotation)

Example - Cylinder. Below we show the codes for class cylinder as an elementary primitive.
During initialization, it registers the parameters R, h and creates a mesh of the cylinder.

class Cylinder (Elementary_Primitive):
def _ init_ (
self, R, h,
offset=[0, 0, 07,
rotation=[0, 0, 0]

mon

:param R: radius of the cylinder

:param h: height of the cylinder

:param offset: offset (x, y, z) of the cylinder

:param rotation: rotation of the cylinder, represented via Euler
— angles (x, y, z)

mon

super().__init__ (offset, rotation)

self.R = R

self.h = h

self.structure = create_mesh
'cylinder',

radius=R, height=h,
offset=offset,
rotation=rotation

Example - Cuboid. We further provide the codes for class cuboid as another example of an ele-
mentary primitive, whose implementation is similar to that of the cylinder.

class Cuboid(Elementary_Primitive):
def _ init_ (
self, sizes,
offset=[0, 0, 07,
rotation=[0, 0, 0]

mmn

:param sizes: 3-dimensional sizes (x, y, z) of the cuboid
:param offset: offset (x, y, z) of the cuboid

:param rotation: rotation of the cuboid, represented via Euler
— angles (x, y, z)

mon

super () .__init__ (offset, rotation)

self.sizes = sizes

self.structure = create_mesh (
'cuboid’',

sizes=sizes,
offset=o0ffset,
rotation=rotation

H.2 ADVANCED PRIMITIVES

Base Class. For advanced primitives, we also implement the base class first. Besides the prim-
itive’s offset and rotation in 3D space, there are additional key functions. The functions cpa
and dpa correspond to the first two procedural rules introduced in Sec. [3.4] i.e. CPA and DPA.
The functions get _general_info and inherit_param_from together enable one advanced
primitive to inherit features like overall dimensions from another during APA. And the function
handle_exceptions is responsible for detecting and adjusting erroneous parameters of the

27

[I R - N S T

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

O N N

Under review as a conference paper at ICLR 2025

primitive and ensuring the structure’s validity. Please refer to the following example for their imple-
mentations.

class Advanced Primitive:

def

def

def

def

def

def

def

__init_ (

self,
offset=[0, 0, 07,
rotation=[0, 0, 0]

mmmn

:param offset: pose parameters for the advanced primitive's
— Iinitial position.

:param rotation: pose parameters for the advanced primitive's
— Initial rotation in Euler angles.

mmomn

self.offset = offset

self.rotation = rotation

self.structure_dict = {} # A registry for all the elementary
— primitives involved in the advanced primitive

make_structure (self) :
pass

translate(self, offset):

mon

Translate the primitive according to the given values.

mn

for structure in self.structure_dict.values() :
structure.translate (offset)

rotate(self, rotation):
mmn

Rotate the primitive (around the origin) according to the given
— values.

mon

for structure in self.structure_dict.values():
structure.rotate (rotation)

cpa(self):
pass

dpa (self) :
pass

get_general_info(self):
pass

@classmethod

def

def

inherit_param_from(self, general_info_dict):
pass

handle_exceptions (self):
pass

Example - GlobeBase_Star. Below we give the implementation of a specific advanced primitive,
i.e. the globe base in the style of a star, which is shown in Fig.[I3] In the __init__ function, we
declare attributes and functions and register the parameters.

class GlobeBase_Star (Advanced_Primitive) :
default_parameters = {

'stanchion_sizes': ...,
'leg_sizes': ...,

28

I T I S R

= 3

20
21

22
23
24
25
26
27
28
29
30

31
32

Under review as a conference paper at ICLR 2025

}

def _ init_ (self,

stanchion_sizes, leg_sizes,
leg_tilt_angle, central_rotation,
number_of_legs,

offset=[0, 0, 0], rotation=[0, 0, 0]

super().__init__ (offset, rotation)
self.stanchion_sizes = stanchion_sizes
self.leg_sizes = leg_sizes
self.leg_tilt_angle = leg_tilt_angle
self.central_rotation = central_rotation
self.number_of_legs = number_of_legs

self.offset = offset
self.rotation = rotation
self.handle_exceptions ()
self.make_structure ()

In function make_structure we give the detailed steps of constructing the structure. Note that
the connectivity relationships between the elementary primitives are already implicitly embedded in
the process. Fig. [[3]illustrates the structure and the effects of different parameters.

Continue Above
def make_structure(self):

stanchion_offset = [

0,
-self.stanchion_sizes[1] / 2,
0
]
stanchion_rotation = [
0,
self.central_rotation,
0,
]
self.structure_dict['stanchion'] = Cylinder (self.stanchion_sizes,

— stanchion_offset, stanchion_rotation)

for leg_idx in range(self.number_of_legs):
central_rot = self.leg_sizes[2] / 2 =
< cos(self.leg_tilt_angle) x sin(2 = pi /
— self.number_of_legs » leg_idx)
tilt_adduction_x = self.leg_sizes([2] / 2 =*
— cos(self.leg_tilt_angle) * sin(central_rot)
tilt_adduction_z = self.leg_sizes([2] / 2 =*
— cos(self.leg_tilt_angle) * cos(central_rot)

offset_y = -self.stanchion_sizes[1l] + self.leg_sizes[l] / 2 -
— self.leg_sizes[2] * sin(self.leg_tilt_angle) / 2
offset_z = tilt_adduction_z % cos(self.central_rotation) +

— tilt_adduction_x * sin(self.central_rotation)
leg_1i_offset = |
tilt_adduction_z * sin(self.central_rotation) -
« tilt_adduction_x * cos(self.central_rotation)
offset_y,
offset_z,
]
leg_i_rotation = [
self.leg_tilt_angle,
—-central_rot,
0
1
self.structure_dict['leg %d' % leg_idx] =
— Cuboid(self.leg_sizes, leg_i_offset, leg_i_rotation)

self.rotate(self.rotation)

29

33
34

© ® N R WD —

22
23
24
25
26

27
28
29

N

Under review as a conference paper at ICLR 2025

self.translate(self.offset)

The function cpa applies perturbations to all the continuous parameters of the primitive, whereas
dpa changes the discrete parameters (e.g. the number of legs in this case). Both functions auto-
matically check for and correct the exceptions with the help of handle_exceptions, and then
update the structure with make_structure. Fig.[[3 also indicates examples of such alterations.
The function handle_exceptions operates by actively checking for parameter combinations
that could lead to collisions and adjusting erroneous parameters.

Continue Above

def

def

def

cpa (self):
apply_perturbation(self.stanchion_sizes)
apply_perturbation(self.leg_sizes)

self.handle_exceptions ()
self.make_structure ()

dpa (self) :

self.number_of_ slats = random_choice (
range (self.maximum_num_legs)

)

self.handle_exceptions ()

self.make_structure ()

handle_exceptions (self):
while self.leg_sizes[2] * sin(self.leg_tilt_angle) <
<« self.stanchion_sizes[0]:

increase_value(self.leg_sizes[2])

reduces_value (self.leg_tilt_angle)
gradually increase the sizes of the legs and reduce the tilt
— angle until they together broaden outer edge of legs to form
— a stable frame

while 2 * self.stanchion_sizes[0] > self.leg_sizes[0]:
increase_value(self.leg_sizes[0])
reduces_value (self.stanchion_sizes[0])
gradually increase the sizes of legs and reduce the radius of
— Stanchion until legs are not blocked by stanchion.

For APA, we introduce functions get _general_info and inherit_param_from. The origi-
nal primitive uses the former one to record its general information in a dictionary, which contains its
basic dimensions at a macro level. Then, the replacement primitive can receive the dictionary with
the latter one to determine its dimensions accordingly.

Continue Above
def get_general_info(self):

mnn

:return: A dictionary listing the general information of the
— primitive indexed by keywords. These keywords are shared
— among advanced primitives that represent a component at the

— same hierarchy
mmnm

general_info_dict = {
'outer_dimension_y' = self.stanchion_sizes[1] +
— self.leg_sizes[0] % cos(self.leg_tilt_angle)
'outer_radius' = self.leg_sizes[0] % sin(self.leg_tilt_angle)
'stanchion_radius' = self.stanchion_sizes[0]
'stanchion_height' = self.stanchion_sizes[1]
'leg_length' = self.legs_sizes[0]

30

20
21
22
23
24
25
26
27

28
29

30
31
32
33
34

35
36
37

Under review as a conference paper at ICLR 2025

}

return general_info_dict

@classmethod

def inherit_param_from(cls, general_info_dict):
mmn
Inherit key parameters from the general_info_dict of another
— advanced primitve

moon

begin with default parameters
inherited_parameters = copy.deepcopy (
cls.default_parameters

)

the height of the stiles are inherited if the other advanced
— primitive also features 'inner_dimension_y'
if 'stanchion_radius' in general_info_dict:
inherited_parameters|['stanchion_sizes'][0] =
— general_info_dict['stanchion_radius']

some parameters are calculated instead of directly inherited
if 'outer_radius' in general_info_dict \
and 'leg_length' in general_info_dict:
inherited_parameters['leg_tilt_angle'] =
— acos(general_info_dict['outer_ radius'] -
— general_info_dict['leg_length'])

return inherited_parameters
More advanced primitives for different types of the globe ball, bracket and base can be defined in a
similar way with essential parameters, constructors, functions such as cpa, dpa, efc.
stanchion_sizes (radius,height) leg_sizes (width,height,length)
X (0.05,0.15) (0.08,0.15) (0.05,0.25) (0.10,0.03,0.53) (0.25,0.03,0.53) (0.10,0.08,0.53) (0.10,0.03,0.35)
leg_tilt (angle) central_rotation (angle) leg_number (N)

(3 (15°) (e°) (27°) 3) @) (5)

A
A

z

A

Figure 13: Illustrations of the structure and the effects of different parameters for
GlobeBase_Star corresponding to its structure program. Each cell consists both the original
structure and structures with an altered parameter marked in red. These illustrations also indicate
examples of CPA and DPA.

H.3 OBIJECTS

Example - Globe. Now, we show the codes for globe as an example of representing objects with
structure programs. The __init__ function receives multiple configurations and then uses them to
initialize the components of the object. Each configuration is a dictionary that specifies a primitive
template and its parameters for a hierarchical component. As for structure manipulations, CPA and
DPA are implemented by directly invoking the corresponding functions of the object’s components.
For APA, we change the primitive of certain components and obtain its parameters with the help of
get_general_info and inherit_param_from as aforementioned. And similar to advanced
primitives, the function handle_exceptions is used to ensure the validity of the structure.

31

39
40
41

42
43
44
45

46

47
48
49
50
51
52
53

Under review as a conference paper at ICLR 2025

class Globe:
def __init__ (self, ball_cfg, bracket_cfg, base_cfqg):
mmn
:param ball_cfg:
:param bracket_cfg:
:param base_cfg: {
'cls': Advanced Primitive,
'param': Dict

}

mon

self.ball_structure =
self.bracket_structure
self.base_structure = eval (base_cfg['cls']) (x*base_cfg['param'])

def move_to_pose (rotation, offset):
self.ball_structure.rotate (rotation)
self.ball_structure.translate (offset)

def cpa(self):
self.ball_structure.cpal)
self.bracket_structure.cpa()
self.base_structure.cpal)

self.handle_exceptions ()

def dpa(self):
self.ball_structure.dpa/()
self.bracket_structure.dpa/()
self.base_structure.dpa ()

self.handle_exceptions ()

def apa(self):

new_pase_type = get_random_component_name ('globe', 'base') #

— Randomly select a new base type from the advanced primitives.

base_general_info = self.base_structure.get_general_info()

new_base_type_parameters = eval (new_base_type) .inherit_from(
base_general_info

)
self.base_structure = eval (new_base_type) (
**new_base_type_parameters

)

self.maintain_connectivity ()
self.handle_exceptions ()

I ADVANTAGES BEHIND THE DESIGN, LIMITATIONS AND FUTURE WORK

I.1 SCALABILITY OF DESIGNING PRIMITIVE TEMPLATES

Primitive templates are fundamental for Arti-PG, and we have already provided more than 200
templates in the toolbox to cover 26 categories of commonly seen articulated objects. We also find
that there may be users who want to customize their own templates to satisfy their needs, and here
we show how the elaborate design of primitive templates can mitigate the costs to create new ones.

32

Under review as a conference paper at ICLR 2025

As stated in Sec. [3.2] we propose a two-tier design of primitive templates. Elementary primitive
templates, representing the basic and general geometric shapes, are first defined from scratch. Then
advanced primitive templates can be defined upon elementary ones instead of from scratch, to rep-
resent the diverse structures of articulated objects. Therefore, 1) with pre-defined elementary ones,
scaling up the advanced ones is practically convenient at the program level, and 2) many advanced
templates are reusable across object categories (e.g. a template of handle can be used in window,
door, fridge, etc.), indicating that scaling up the number of object categories covered by Arti-PG is
also convenient. To take a step further, as the scale of advanced primitives goes larger, the scaling
of object categories can be easier.

We will make the primitive templates that we have already created publicly available in the Arti-PG
toolbox for researchers to use directly. If someone needs to define primitive templates for a new
category, he/she can leverage the ones we provided, avoiding the burden of designing from scratch.
We will also continue to extend our work to include more object categories and share the newly
defined primitive templates with the community, making our work stronger.

1.2 ADVANTAGES OVER COLLECTING AND ANNOTATING MORE REAL OBJECTS

To address the data scarcity issue of articulated objects, i.e. lack of both object data and annota-
tions for various articulated object understanding tasks, there are currently two possible ways: (1)
collecting and annotating more real objects (abbreviated as CARO), and (2) procedurally generating
objects (our approach). For CARO, the obstacles are i) collecting real articulated objects and ii)
providing different types of annotations for each object.

Regarding obstacle i), due to the complex structure of articulated objects, the object collection pro-
cess is difficult and time-consuming. For reference, the average time to collect a CAD articulated
object is more than 120 minutes and the cost is more than $100 (Liu et al.,|2022). The average time
to scan an articulated object is 20 minutes and an additional 15 minutes are needed to fix imperfect
meshes from the scan (Liu et al.| [2022} |Geng et al., 2023)). As scanning requires purchasing objects,
the cost can be high, especially for categories like electrical appliances and furniture (Liu et al.,
2022). Further, both collection practices require experts, i.e. who are capable of designing CAD
models, labeling the URDF or using a scanner (Liu et al., [2022)).

As for obstacle ii), given the large number of articulated object understanding tasks as stated in
Sec. many different types of annotations need to be annotated on these objects to enable training
for these tasks. For reference, the average time to annotate part semantics for a 3D object is about 8
minutes (Mo et al., 2019), and to annotate part pose is about 10 minutes (Geng et al., [2023)).

In summary, at least about an hour and tens of dollars are cost on average for only one object in
CARO. Therefore, CARO is expensive and time-consuming.

In our approach, the design of primitive templates and structure program annotation requires human
effort. The average time to design primitive templates to cover an object category is about 6 hours,
which is a once-and-for-all effort. Additionally, the structure program annotation step takes about 6
minutes per object. Further, as we will make these codes and data publicly available as a toolbox,
such efforts are free for users in the community. This substantially demonstrates the efficiency and
scalability of Arti-PG, as well as its superiority compared to CARO.

1.3 LIMITATIONS

In this paper we propose a novel and effective procedural approach for synthesizing articulated
objects for network training. However, despite the great variations in the structure of the synthesized
objects, there is still room for diversifying the geometric details. In addition, Arti-PG currently
focuses on 3D visual features and is not coupled with rgb features like color and texture. We will
take these points as our future work to better alleviate the data scarcity issue.

1.4 FUTURE WORK
Our current approach is an exploration in the context of scarcity of 3D articulated objects. We believe

that in the future, when 3D articulated objects are no longer scarce, abundant data will unleash
greater potential for using Arti-PG toolbox to generate object spatial structures. A possible way is

33

Under review as a conference paper at ICLR 2025

to first use a generative model to learn the distribution of parameters from the structure program
annotation of abundant real articulated objects, and then use the distribution to infer parameters of
the primitives to generate new instances. We will consider this as our future work. We will also
continue working on extending Arti-PG toolbox to more object categories and tasks.

34

	Introduction
	Background and Motivation
	Articulated Object Datasets
	Articulated Object Understanding Tasks
	Scarcity of Training Data in Articulated Object Research

	Arti-PG: Methodology
	Overview
	Program Description of Spatial Structure
	Geometric Detail via Point-wise Correspondence
	Program-Oriented Structure Manipulation
	Recovery of Geometric Details
	Analytic Label Alignment

	Arti-PG: Toolbox
	Experiments
	Vision Tasks
	Manipulation Tasks
	Ablation Study

	Conclusion
	Architecture and Operating Principles of Structure Program
	Points on Geometric Primitives
	Example of Completing Geometric Details
	More Examples of Label Alignment
	Details of Structure Program Annotation System
	More Details on Experiments
	Visualizations of Synthesized Objects
	Implementation of Structure Programs in Python
	Elementary Primitives
	Advanced Primitives
	Objects

	Advantages behind the Design, Limitations and Future Work
	Scalability of Designing Primitive Templates
	Advantages over Collecting and Annotating more Real Objects
	Limitations
	Future Work

