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ABSTRACT

Vision–Language–Action (VLA) models show promise in embodied reasoning,
yet remain far from true generalists—they often require task-specific fine-tuning,
incur high compute costs, and generalize poorly to unseen tasks. We propose
MetaVLA, a unified, backbone-agnostic post-training framework for efficient
and scalable alignment. MetaVLA introduces Context-Aware Meta Co-Training,
which consolidates diverse target tasks into a single fine-tuning stage while lever-
aging structurally diverse auxiliary tasks to improve in-domain generalization.
Unlike naive multi-task SFT, MetaVLA integrates a lightweight meta-learning
mechanism—derived from Attentive Neural Processes—to enable rapid adapta-
tion from diverse contexts with minimal architectural change or inference over-
head. On the LIBERO benchmark, MetaVLA with six auxiliary tasks outperforms
OpenVLA by up to 8.0% on long-horizon tasks, reduces training steps from 240K
to 75K, and cuts GPU time by ∼76%. These results show that scalable, low-
resource post-training is achievable—paving the way toward general-purpose em-
bodied agents. Code will be available.

1 INTRODUCTION

Recent years have seen rapid progress in embodied Vision–Language–Action (VLA) models, which
are typically pretrained from Vision–Language Models (VLMs) and adapted via supervised fine-
tuning (SFT) (Kim et al., 2024; 2025; Hung et al., 2025) or reinforcement learning (RL) (Zhang
et al., 2025; Li et al., 2025) to enable transfer to new embodiment tasks. In one line of work, a
pretrained VLA backbone is adapted to autoregressively and discretely decode action tokens, trained
on annotated demonstrations consisting of video or image observations paired with natural language
instructions (Kim et al., 2024; Brohan et al., 2022; 2023; O’Neill et al., 2024). In contrast, another
line of research represents output actions as continuous vectors, using techniques such as diffusion
policies or flow matching (Black et al., 2024; Intelligence et al., 2025a; NVIDIA et al., 2025).

Despite advances in new task adaptation, current VLAs are not yet true generalists—still far from
fully out-of-the-box usability and reliant on alignment through post-training (Zhou et al., 2025;
J. Wang, 2025; Huang et al., 2025b; Din et al., 2025; Guruprasad et al., 2025; Ma et al., 2025).
Compounding this, post-training remains practically constrained by benchmarks with low per-task
data. Current practice (Kim et al., 2024) fine-tunes each downstream task independently, increas-
ing overall training cost, hindering knowledge transfer across related tasks, and ultimately limiting
success rate. These task-specific schedules are often brittle: many gradient steps are required be-
fore stably meaningful action sequences emerge, raising the risk of poor generalization and slowing
adaptation to new task variants. For example, OpenVLA requires 240K training steps to fine-tune
across all four LIBERO suites (OpenVLA Team, 2024), while OpenVLA-OFT (Kim et al., 2025)
demands approximately 150K ˜500K steps, including both diffusion and non-diffusion parts. Long-
horizon tasks such as LIBERO-Long further dominate the training schedule and often become the
system bottleneck.

While recent work (Black et al., 2024; Intelligence et al., 2025a; Qu et al., 2025) has focused on
expanding datasets and exploring backbone architecture or training protocol innovations during pre-
training, we instead tackle it from an orthogonal perspective at the post-training stage. Our experi-
ments begin with a vanilla multi-task co-training setting: applying a standard SFT to a single model
across related in-domain tasks (i.e., the four LIBERO suites). Indeed, we observe a reduction in
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 4.4% Higher
Success Rate

68.75% Fewer Training Steps 🚀

(a) Higher success rate with fewer
training steps. MetaVLA achieves
a 4.4% higher average success rate
while requiring 68.75% fewer train-
ing steps compared to the OpenVLA
baseline on LIBERO benchmarks.
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(b) Stronger cross-task general-
ization with one single model.
OpenVLA requires training sep-
arate models for each task suite,
resulting in higher training costs
and poor cross-task performance.
In contrast, MetaVLA achieves
strong generalization across all
four suites with a single unified
model.
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(c) Faster convergence to
higher accuracy across all
target tasks. Comparison
of training accuracy between
MetaVLA and a baseline
multi-task SFT when auxiliary
tasks are added. MetaVLA
consistently converges to higher
accuracy across all LIBERO
suites, while the baseline under-
performs throughout training.

Figure 1: Three Key Merits of MetaVLA Compared to Baseline Approaches.

total GPU training hours and improved success rates, which naturally motivates us to raise a ques-
tion: can we introduce even more auxiliary tasks in the co-training to further boost VLA models?
Sadly, we find that naively adding auxiliary tasks with greater domain diversity slows convergence
and degrades performance. We attribute this surprise to the optimization instability arising from
heterogeneous distributions, where misalignments in both the feature space (e.g., camera views) and
action space (e.g., degrees of freedom) hinder the benefits of co-training.

Building on these ideas, we propose MetaVLA, a unified framework that fills a critical gap in
VLA post-training by intelligently introducing auxiliary tasks without incurring the inefficiencies of
per-task SFT or the performance drop of naive multi-task SFT. It introduces Context-Aware Meta
Co-Training, which jointly trains all target tasks with a unified model, improving adaptation by lever-
aging cross-task data through a context bank. The context bank is a memory-augmented mechanism
that contains auxiliary knowledge with domain diversities derived from Attentive Neural Processes
(ANP) (Kim et al., 2019) based on Meta-learning. This lightweight module injects out-of-domain
information gain without disrupting target optimization, enabling scalable and robust adaptation.
MetaVLA is maintenance-friendly, backbone-agnostic, and easily extends beyond SFT to training
paradigms like reinforcement learning. Figure 1 highlights three key advantages of MetaVLA over
existing approaches.

Experiments show that MetaVLA with six auxiliary tasks outperforms the OpenVLA baseline by
4.4% and multi-task SFT by 3.1% on average, with gains up to 8.0% on LIBERO-Long. It unifies
training into a single model, reducing steps from 240K to 75K and GPU time by 76%—from ∼100 to
∼24 hours. Despite its flexibility, the compact memory-augmented module adds only 0.3 ms/token
in latency. The following sections present our framework, setup, and results, showing how MetaVLA
boosts convergence, efficiency, and action reasoning. Our main contributions are as follows:

• We investigate an underexplored direction: improving post-training efficiency and gener-
alization ability through incorporating diverse auxiliary tasks with negligible optimization
overhead.

• We propose MetaVLA, a suite of plug-in module and training recipes that enables fast
and scalable adaptation with strong generalization. MetaVLA is engineering-friendly and
agnostic to backbone architectures and underlying training pipelines.

• We conduct comprehensive experiments to show that MetaVLA delivers superior perfor-
mance with significant efficiency gains by reducing model count and GPU training hours,
while preserving fast inference.
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2 RELATED WORK

2.1 VISION-LANGUAGE-ACTION MODELS

Recent advances in Vision–Language–Action (VLA) models have been driven by supervised fine-
tuning (SFT) of pretrained Vision–Language Models (VLMs) to map visual context and language in-
structions to action sequences—a stage we refer to as “pretraining” for VLA. These models are then
adapted via SFT (Kim et al., 2024; 2025; Hung et al., 2025) or reinforcement learning (RL) (Zhang
et al., 2025; Li et al., 2025) to unseen embodied tasks.

One line of work adapts pretrained VLA backbones to autoregressively decode discrete action to-
kens (Kim et al., 2024; Brohan et al., 2022; 2023; O’Neill et al., 2024), while another represents
actions as continuous vectors using techniques like diffusion policies and flow matching (Black
et al., 2024; Intelligence et al., 2025a; NVIDIA et al., 2025). For backbone design, recent studies
explore alternatives such as Qwen2.5-VL (Bai et al., 2025; Qu et al., 2025; Hung et al., 2025). In
parallel, efforts like EO-1 (Qu et al., 2025) introduce interleaved Vision-Text-Action training for-
mats, while CoT-VLA (Zhao et al., 2025), OneTwoVLA (Lin et al., 2025) and ThinkAct (Huang
et al., 2025a) incorporate reasoning data into training. Efficiency-focused works aim to improve
VLA training through better tokenization or streamlined architectures (Pertsch et al., 2025; Reuss
et al., 2025).

However, these approaches trade performance for costly pretraining interventions and meticulous
data curation—an impractical strategy in resource-constrained or democratized settings. Moreover,
achieving meaningful gains often requires careful design (Driess et al., 2025), incurring high hu-
man overhead. In contrast, our method operates entirely at the post-training stage, is orthogonal
to existing techniques, and agnostic to both backbones and training pipelines—enabling seamless
integration into various pretrained models and training recipes, including SFT and RL.

2.2 MULTI-TASK CO-TRAINING

Co-training across tasks has long been used to improve generalization (Doersch & Zisserman, 2017;
Zhang & Yang, 2021), scalability (Devlin et al., 2019; Sun et al., 2020; McLean et al., 2025), and
data efficiency (Aghajanyan et al., 2021; Crawshaw, 2020). More recently, it has shown strong suc-
cess in LLMs and VLMs. GPT-2 (Radford et al., 2019), for example, leverages diverse pretraining
sources (e.g., web pages, Wikipedia, news) for broad generalization. LLaVA (Liu et al., 2023b), a
pioneering open-source VLM, uses multitask fine-tuning for multimodal alignment across conver-
sation, captioning, and reasoning tasks. This trend continues in models like Qwen-3 (Yang et al.,
2025), which expands co-training diversity by incorporating code, textbooks, and multilingual data
across both pretraining and post-training. Similarly, Molmo and Pixmo (Deitke et al., 2024) pro-
vide detailed ablations on co-training with varied data sources, demonstrating the benefits of task
and domain diversity. These advances highlight co-training as a key driver of performance in both
pretraining and post-training stages.

Despite its effectiveness, co-training remains less explored in VLA, especially at post-training stage.
While recent works (Kim et al., 2024; Team et al., 2024; Kim et al., 2025; Hung et al., 2025; Reuss
et al., 2025) co-train during VLA pretraining, they afterwards still rely on task-specific fine-tuning
for downstream adaption, missing the benefits of shared task structure for better generalization. This
results in duplicated model checkpoints, costly maintenance, high total training steps and thus longer
total GPU training hours. A few efforts have taken multi-task co-training for post adaption, but they
are not free lunch. π0 (Black et al., 2024) and π0.5 (Intelligence et al., 2025a), require prohibitively
expensive pretraining, while EO-1 (Qu et al., 2025) incurs high inference latency.

In contrast, our method systematically explores efficient task-shared adaptation in the post-training
stage. It introduces a plug-and-play meta-learning module that enables scalable integration of un-
seen auxiliary tasks, enriching target learning with diverse signals. The approach is backbone-
agnostic and streamlines efficient generalization across tasks, achieving strong performance gains
via a lightweight, maintenance-friendly co-training paradigm.
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Figure 2: MetaVLA Architecture. VLA backbone married with Context-Aware Meta Co-Training
Framework, where the context memory bank is composed of both in-domain target tasks and out-
of-domain auxiliary tasks. We further detail the definitions of variables in Section 3.2.1.

2.3 META-LEARNING

Meta-learning enables models to quickly adapt to new tasks, often using diverse contextual data and
through episodic training (Finn et al., 2017; Koch, 2015; Santoro et al., 2016; Ravi & Larochelle,
2016). Attentive Neural Processes (ANP) (Kim et al., 2019), an amortized meta-learners inspired by
Gaussian Processes, learn a distribution over functions conditioned on both global prior and target-
specific latent vectors via attention mechanism (Vaswani et al., 2023). ANP is well-suited for VLA
due to its task-invariance, selective attention to relevant demonstrations, and avoidance of direct
context optimization during adaptation. These properties simplify cross-domain training, enhance
stability, and enable scalability—crucial for leveraging auxiliary data effectively, as shown in later
results.

3 METHOD

3.1 TASK DEFINITION AND BACKBONE SELECTION

Our goal is to develop an efficient one-for-all VLA post-training paradigm capable of adapting to
diverse novel tasks—unseen during pretraining.

Specifically, we adopt the LIBERO (Liu et al., 2023a) benchmark as our set of target tasks and use
OpenVLA (Kim et al., 2024) as the backbone. Nevertheless, our method is backbone-agnostic and
can be seamlessly integrated with other pretrained VLA models. See Section 4.1 for further details.

3.2 METAVLA

MetaVLA employs a Context-Aware Meta Co-Training approach that jointly trains on all in-domain
suites with a single model, while leveraging contextual demonstrations through meta-learning. We
formalize this mechanism by showing how Action-ANP offers a principled way to aggregate and
condition on heterogeneous context data, using it to enhance stability during co-training across task
suites.

3.2.1 ARCHITECTURE

To improve convergence and generalization in low-data task adaptation, we base our architecture
on Attentive Neural Processes (ANP) (Kim et al., 2019)—a meta-learner inspired by Gaussian Pro-
cesses that models a distribution over functions conditioned on both context and target representa-
tions. These latent codes capture global and task-specific semantics, aggregated via self-attention
and cross-attention, respectively.

By attending to both current target data and related contextual data with ANP, the context data are
aggregated and encoded into two separate branches: (1) a deterministic representation that captures
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target task dependent information by attending target tasks to context tasks; (2) a stochastic global
representation that models information independent of target task based on context distribution.
These two representations offer the model a referable demonstration for the current prediction.

We introduce a compact module, Action-ANP, integrated into the Llama2 (Touvron et al.,
2023) action decoder. Following the original ANP formulation, Action-ANP first applies self-
attention (Vaswani et al., 2023) across context examples to extract a global prior, which is then fused
with target queries through cross-attention (Vaswani et al., 2023) to form task-aware hybrid represen-
tations. Formally, given the target feature xT , contextual feature-action pairs (xCi, yCi) ∈ (xC , yC),
Action-ANP models the conditional distribution of functions over target action yT given global and
task-specific observations:

p(yT |xT ,xC ,yC) :=

∫
p(yT |xT , rT , z) q(z |̄sC) dz (1)

Here, rCi ∈ rC and sCi ∈ sC are per-context representations aggregated from all contexts data
pairs (xC , yC) through self-attention. rT is the cross-attention output of query xT with context keys
xCi and values rCi. s̄C is the mean of all sCi, while z is a stochastic latent drawn from the approx-
imate posterior q(z |̄sC) computed over the context. During training, an additional condensed target
representation s̄T is produced by the same self-attention and mean process as for s̄C , with ground
truth pair (xT , yT ). By reparameterizing the Gaussian latent z, the training objective maximizes a
variational lower bound:

log p(yT |xT ,xC ,yC) ≥ Eq(z|sT )[log p(yT |xT , rT , z)]−DKL(q(z |̄sT ) ∥ q(z |̄sC)) (2)

This formulation enables MetaVLA to reconstruct target actions, regularized by a KL divergence
that prevents the target distribution from drifting too far from the context distribution.

Unlike standard ANP, which uses smaller-scale neural networks, we integrate a pretrained Llama-
2 (Touvron et al., 2023) backbone from OpenVLA. Action-ANP generates both stochastic and de-
terministic contextual latent vectors, which are concatenated with the Llama hidden states before
the final output layer. The combined representations are then passed through the LM head to pro-
duce output logits, enabling end-to-end training via standard Llama decoding. See Figure 2 for an
overview of the framework. We further summarize the symbols and definitions in Table 7.

3.2.2 DATA BANKS

In our setup, there are two data banks: context bank and target bank.

For context bank, which acts as an external memory, it’s composed of both in-domain tasks, which
are four LIBERO suites in our case, and auxiliary tasks. For in-domain tasks, the four LIBERO
suites (Liu et al., 2023a) are split into non-overlapped context sets and target sets. For auxiliary
tasks, we choose the large collection of partially open-sourced GR00T data (NVIDIA et al., 2025).
A unified context bank then aggregates context sets from in-domain datasets and selected tasks from
the auxiliary data. Details about auxiliary task selection will be discussed in Section 3.3.

The target data bank contains only the target sets of in-domain tasks—in our case, the task sets across
all four LIBERO suites. Unlike standard VLA SFT, which trains a separate model for each suite,
our meta co-training strategy trains a single model across all target suites, improving scalability,
generalization, and efficiency.

3.2.3 TRAINING PROTOCOLS

To ensure broad contextual coverage, we refresh the context set every K training steps. Specifically,
at each multiple of K, we randomly sample bC examples from each context task’s dataset, keeping
bC consistent across tasks for simplicity. We set K = 200 to balance training speed and decoding
quality, and choose bC = 32 to optimize memory usage and performance. An ablation study on bC

is provided in Section 4.4.2.

3.3 AUXILIARY TASKS SELECTION

5
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LIBERO

Front View, 7 DoF, Single Arm Side View, 7 DoF, Single Arm Front View, 14 DoF, Two Arms

Auxiliary Training Data

Figure 3: Comparison between auxiliary tasks and LIBERO
evaluation benchmark. LIBERO tasks use third-person front-
view images and 7-DoF actions for a single-arm robot. In con-
trast, our auxiliary data from GR00T introduces variation through
side-view observations and a two-arm robot with 14-DoF ac-
tions. MetaVLA benefits from this data diversity, while Open-
VLA struggles with the domain mismatch.

To enhance context diversity and
strengthen meta-learning, we in-
troduce an auxiliary task se-
lection mechanism. Specifi-
cally, we incorporate the GR00T
dataset (NVIDIA et al., 2025;
NVIDIA, 2025) into the context
bank for two key reasons. First,
GR00T is entirely unseen dur-
ing OpenVLA pretraining, mak-
ing it a valuable source of ad-
ditional information gain. Sec-
ond, it offers partial domain rel-
evance to LIBERO while differ-
ing structurally—striking a bal-
ance between familiarity and di-
versity.

LIBERO tasks feature a Franka
Emika Panda arm with a gripper
and primarily use front-facing camera views. In contrast, selected GR00T tasks include bimanual
manipulation using front views and single-arm manipulation with side views only. These variations
are intentionally chosen to test the robustness and generalization ability of MetaVLA. An example of
task difference among these tree types is showing in Figure 3, and more examples are in Section A.2.

Unlike Zhao et al. (2025), which carefully select tasks highly similar to LIBERO, our method is
less strict in data varieties in the context bank, and more robust to the diversity of auxiliary tasks
which we believe would introduce higher freedom for a more scalable adaption training framework.
Experimental results show that MetaVLA, equipped with this multi-task co-training setup, achieves
higher success rates and faster convergence across all LIBERO suites compared to vanilla SFT-based
co-training. Ablation study on the effect of auxiliary task selection is presented in Section 4.4.3.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

We evaluate our method against previous works on the LIBERO benchmark (Liu et al., 2023a), a
Franka Emika Panda single arm simulation-based benchmark with four different task suites. The
benchmark aims to evaluate the model’s capability of generalizing to variations of the 500 expert
demonstrations across 10 tasks provided for each task suite. LIBERO-Goal leaves objects and
layouts unchanged, and varies by final task goals; LIBERO-Spatial keeps the objects and tasks un-
changed, while re-arranging the layout; LIBERO-Object uses the same layout environment, while
changing the object types; LIBERO-Long (also known as LIBERO-10) consists of long horizon
tasks with a mixture of different distribution shifts above. Our method co-trains a single model for
all four suites with up to 6 heterogeneous auxiliary tasks with panda gripper robots from GR00T
dataset (NVIDIA, 2025), a simulation dataset consisting of different robots and task types, More
details are discussed in Section 3.2.2, 3.3, and A.2. We follow prior work (Kim et al., 2024; In-
telligence et al., 2025b) and adopt Success Rate (SR) as our evaluation metric. Thanks to efficient
co-training, our method requires only ∼24 hours to fine-tune across all four LIBERO suites using 8
A100 80GB GPUs. We use OpenVLA (Kim et al., 2024) as our backbone due to its completeness,
maturity, and robust open-source codebase and evaluation pipeline, which has been widely adopted
in the academic community.

To ensure fair comparison, we re-evaluate the OpenVLA baselines in the LIBERO simulation envi-
ronment using the four single-task fine-tuned models from Hugging Face (OpenVLA Team, 2024),
and adopt these as our baselines. Due to hardware variance and stochasticity, our results may slightly
differ from the originally reported values (OpenVLA Contributors, 2024). All the reported results
on LIBERO are evaluated on one 24GB RTX-4090 GPU.

6
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Model Training Steps Goal (%) Spatial (%) Object (%) Long (%) Average (%)
π0.5 (Intelligence et al., 2025b) 30K 98.0 98.8 98.2 92.4 96.9
Diffusion Policy (Chi et al., 2023) - 68.3 78.3 92.5 50.5 72.4
ATM (Wen et al., 2023) - 77.8 68.5 68.0 39.3 63.4
TraceVLA (Zheng et al., 2025) - 75.1 84.6 85.2 54.1 74.8
OpenVLA (Kim et al., 2024) 240K 76.2 84.7 87.0 51.8 74.9

SFT-4LIBERO

75K

77.8 84.8 87.4 54.7 76.2
SFT-4LIBERO+1single+1bimanual 59.7 68.0 65.2 30.0 55.7
SFT-4LIBERO+3single 24.6 16.8 9.7 1.5 13.2
SFT-4LIBERO+5single+1bimanual 15.2 5.6 12.0 1.6 8.6
SFT-4LIBERO+5single+1bimanual 187.5K 23.4 16.7 13.6 4.4 14.5

MetaVLA-Pretrained-Context-ONLY

75K

74.4 85.4 85.4 52.3 74.4
MetaVLA (ours) 78.9 88.5 88.5 55.3 77.8
MetaVLA+Stochastic (ours) 78.9 88.9 88.5 53.0 77.3
MetaVLA+1single+1bimanual (ours) 78.5 89.0 87.4 59.0 78.5
MetaVLA+3single (ours) 78.0 88.0 87.2 59.7 78.2
MetaVLA+5single+1bimanual (ours) 78.7 89.9 88.9 59.8 79.3

Table 1: Success rate comparison with prior methods. All MetaVLA variants are single models
trained for 75K steps. MetaVLA (ours) uses only LIBERO suites in the context bank without the
stochastic module, while MetaVLA+Stochastic (ours) includes it. Method+NSingle+Mbimanual
includes N single arm and M bimanual (two arms) auxiliary tasks described in Section 3.3. SFT-
4LIBERO is a single-model baseline trained with vanilla multi-task SFT across all suites. OpenVLA
(top) comprises four Hugging Face models fine-tuned separately on LIBERO using the OpenVLA-
7B backbone, totaling roughly 240K steps. MetaVLA with six auxiliary tasks surpasses OpenVLA
by 4.4% and SFT-4LIBERO by 3.1% on average, with even larger gains on LIBERO-Long (8.0%
and 5.1%, respectively).

4.2 EFFECT OF VANILLA MULTI-TASK SFT

As shown in Table 1, adding auxiliary tasks to vanilla multi-task SFT (SFT-4LIBERO+auxiliary
tasks) consistently degrades performance. The degradation worsens as more tasks are added, sug-
gesting the model struggles with domain shifts and fails to converge. Training convergence curves in
Figure 5 further corroborate this finding. One possible factor is reduced training steps per task. For
instance, in SFT-4LIBERO+5single+1bimanual trained for 75K steps, per-task steps drop from
18.75K (in SFT-4LIBERO) to 7.5K. To test this, we increase training to 187.5K steps. While perfor-
mance improves slightly, it remains well below MetaVLA—with or without auxiliary tasks. Further-
more, as shown in Figure 6, training curves at 187.5K steps across all three metrics—Accuracy, Im-
itation Loss, and L1 Loss—signal its suboptimal adaptation. This supports our view that MetaVLA
scales more robustly, leveraging auxiliary data without encountering optimization instability. A
more rigorous proof of this view is left to future work due to computational constraints.

4.3 EFFECT OF CONTEXT-AWARE META CO-TRAINING

As shown in Table 1, MetaVLA—with or without auxiliary tasks—outperforms all baselines, in-
cluding OpenVLA baseline and SFT-4LIBERO, across all LIBERO tasks and on average. With
six auxiliary tasks, it improves over OpenVLA by 4.4% and SFT-4LIBERO by 3.1%, notably on
LIBERO-Long, with gains of 8.0% and 5.1%, respectively. Moreover, MetaVLA reduces model
count to one and cuts training steps from 240K to 75K. Examples of success cases are demonstrated
in Section A.6.

4.4 ABLATION STUDY

4.4.1 EFFECT OF DIFFERENT BACKBONE

To validate MetaVLA’s effectiveness in various backbones, we assessed MetaVLA variants on
NORA (Hung et al., 2025), a 3B Qwen2.5-VL-based (Bai et al., 2025) VLA model. We selected
NORA-Long (Deep Cognition and Language Research (DeCLaRe) Lab, 2025) variant as the base
model because it provides a stronger LIBERO performance baseline than NORA. To ensure fair
comparison, we re-evaluate the NORA-Long baselines in the LIBERO simulation environment using
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Model Goal Spatial Object Long Average
NORA-Long (Hung et al., 2025) 85.4 90.5 95.0 70.6 85.4
NORA-Long-SFT-4LIBERO 87.0 92.5 94.0 75.5 87.3
NORA-Long-SFT-4LIBERO+5single+1bimanual 73.6 79.5 75.2 37.2 66.4
MetaVLA-NORA-Long (ours) 90.8 96.2 96.5 77.8 90.3
MetaVLA-NORA-Long+5single+1bimanual (ours) 93.8 95.8 97.2 80.2 91.8

Table 2: Success rate comparison of applying MetaVLA variants to NORA-Long. NORA-
Long-SFT-4LIBERO is a single-model baseline trained with vanilla multi-task SFT across all suites
using NORA-Long. NORA-Long comprises four Hugging Face models fine-tuned separately on
LIBERO using the NORA-Long backbone. Without auxiliary tasks, MetaVLA-NORA-Long sur-
passes NORA-Long by 4.9%, and exceeds NORA-Long-SFT-4LIBERO by 3.0%. Adding auxil-
iary tasks further pushes the average success rate to 91.8%, achieving the highest performance in
LIBERO-Goal, Object, and Long.

the four single-task fine-tuned models from Hugging Face (Deep Cognition and Language Research
(DeCLaRe) Lab, 2025), and adopt these as our baselines.

As shown in Table 2, without auxiliary data, MetaVLA outperforms NORA-Long by 4.9% on av-
erage and NORA-Long-SFT-4LIBERO by 3.0%. When auxiliary tasks are incorporated, the av-
erage success rate further improves by 6.4% compared to NORA-Long. For more challenging
suites—Goal and Long—the improvements are 8.4% and 9.6%, respectively. Moreover, consistent
with results using the OpenVLA backbone, MetaVLA-NORA-Long+5single+1bimanual signifi-
cantly outperforms its native SFT counterpart, NORA-Long-SFT-4LIBERO+5single+1bimanual,
by 25.4%. The training convergence curves on accuracy and loss in Figure 10 further bolster the
stronger stability of MetaVLA during training as more diverse tasks are added. Together, these
results demonstrate MetaVLA’s backbone-agnostic capability.

4.4.2 EFFECT OF CONTEXT BATCH SIZE

As shown in Figure 4, success rate increases monotonically with batch size under our setting. A
relatively small context batch size of 32 yields the best performance, which doesn’t introduce extra
overhead to memory footprint. A detailed table is shown in Table 6 in Appendix.
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Figure 4: Left: Per-suite LIBERO success rate across varying context batch sizes. OpenVLA
refers to the four Hugging Face baseline models, each fine-tuned individually on LIBERO using
the OpenVLA-7B backbone, while SFT-4LIBERO is a single-model baseline trained with vanilla
multi-task SFT across all suites. For each suite, success rate increases monotonically with context
batch size. Right: Average success rate across LIBERO suites with varying context batch sizes.
OpenVLA denotes the four Hugging Face models baselines fine-tuned individually on LIBERO with
the OpenVLA-7B backbone, while SFT-4LIBERO is a single-model baseline trained with vanilla
multi-task SFT across all suites. bc indicates the context batch size. Larger context batches consis-
tently yield higher average success rates.

4.4.3 EFFECT OF AUXILIARY TASK SELECTION

As shown in Table 1, MetaVLA outperforms its SFT-4-LIBERO counterparts across all three auxil-
iary task settings, demonstrating robust generalization to variations in camera views, action spaces,
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and the number of context tasks. These results highlight a promising opportunity to scale up the
context bank.

4.4.4 EFFECT OF PARAMETER SIZE CHANGE

To rule out the possibility that performance gains stem solely from increased parameter size, we
conduct an ablation in which the architecture remains unchanged, but the context bank is replaced
to include only tasks—bridge orig and fractal20220817 data—both part already included in the
OpenVLA pretraining dataset (OpenVLA Contributors, 2024). The result, denoted as MetaVLA-
Pretrained-Context-ONLY in Table 1, shows a significant drop across all LIBERO suites compared
to MetaVLA. This suggests that the performance boost is not simply due to increased parameter size,
but rather stems from the full design portfolio along with the integration of exotic auxiliary tasks
that enrich the context with diverse and informative signals.

4.4.5 EFFECT OF MULTI-TASK CO-TRAINING MECHANISM

To assess the impact of task-shared co-training, we replace MetaVLA’s full target set (all four
LIBERO suites) with a single suite at a time. For simplicity, we adopt a frugal context bank con-
taining only the four LIBERO suites without auxiliary tasks—matching the setup in Table 1 for
MetaVLA. Under this setting, we train four models independently via SFT, one per suite, using
the same total training steps (240K) as OpenVLA (OpenVLA Team, 2024). We refer to this con-
figuration as MetaVLA-EACH. For evaluation, we report results for both OpenVLA baselines and
MetaVLA-EACH at 240K (final step) and 120K (mid-training) to highlight the earlier convergence
benefits of MetaVLA.

Results in Table 3 reveal three key findings: (1) MetaVLA-EACH outperforms the Hugging Face
OpenVLA baselines (OpenVLA Team, 2024) at final steps; (2) it achieves higher success rates
earlier in training across all suites; and (3) on complex suites (Goal, Long), performance continues
to improve, while simpler ones (Spatial, Object) converge earlier—suggesting that task diversity
benefits more challenging tasks.

These findings highlight the effectiveness of Action-ANP within a scalable, memory-based meta-
learning framework. However, compared to full MetaVLA (Table 1), MetaVLA-EACH sacrifices
unified generalization and training efficiency, requiring four models and more compute (120K vs.
75K steps).

Method Total Steps Steps Goal Steps Spatial Steps Object Steps Long

OpenVLA-120K (Kim et al., 2024) 120K 30K 71.4 10K 81.2 30K 85.8 50K 44.4
MetaVLA-EACH-120K 120K 30K 76.4 10K 86.1 30K 89.0 50K 55.4
OpenVLA-240K (Kim et al., 2024) 240K 60K 76.2 50K 84.7 50K 87.0 80K 51.8
MetaVLA-EACH-240K 240K 60K 77.4 50K 85.8 50K 88.5 80K 55.8

Table 3: MetaVLA-EACH: Per-suite success rates across LIBERO. OpenVLA denotes the four
baseline models fine-tuned separately for each LIBERO suite, released on Hugging Face and trained
for 240K total steps. OpenVLA-120K follows the same setup but with 120K steps. MetaVLA-
EACH-120K and MetaVLA-EACH-240K are our models trained separately per suite for 120K and
240K steps, respectively, without co-training. Thanks to the Action-ANP design, all MetaVLA-
EACH variants outperform their OpenVLA counterparts with fewer steps. For Goal and Long,
performance continues to improve at 240K steps, indicating stronger learning potential.

4.4.6 EFFECT OF STOCHASTIC LEARNING

As shown in the ELBO bound equation 2, Action-ANP jointly optimizes a reconstruction loss and
a KL divergence term. In Table 1, MetaVLA+Stochastic includes this stochastic regularization,
while MetaVLA does not. The stochastic variant improves performance on the Spatial suite, per-
forms comparably on Goal and Object, but underperforms on Long. Since the KL term encourages
proximity between context and target distributions—an assumption that may not hold in more com-
plex settings—we hypothesize that the greater domain shift in Long tasks leads to this performance
drop. In contrast, the deterministic variant, which relies solely on reconstruction loss, provides more
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precise modeling, making it more effective for challenging tasks. For this reason, the stochastic
module is disabled in all other MetaVLA experiments for practicality.

4.5 EFFICIENCY DISCUSSION

We evaluate all tasks using one RTX-4090 GPU with batch inference. Our method added slightly
more trainable parameters to the original architecture due to its lightweight property, which only
increases inference latency by 0.3 ms/token, shown in Figure 9 in Appendix. Moreover, it reduces
total GPU training time by 76%—from ∼100 to ∼24 hours—by cutting training steps from 240K to
75K. It also consolidates four task-specific models into a single one, streamlining deployment and
improving maintenance efficiency.

4.6 WHY DOES OUR METHOD WORK?

Multi-task co-training promotes knowledge sharing across related in-domain tasks, while Action-
ANP leverages diverse auxiliary data to boost target performance and mitigate optimization instabil-
ity from domain shifts. As shown in Figure 5, MetaVLA consistently outperforms naive multi-task
SFT across all three convergence metrics—Accuracy, Imitation Loss, and L1 Loss. The first two
assess the quality of generated discrete tokens, while L1 Loss measures the resulting continuous
actions for robot execution. These results demonstrate both the effectiveness and stability of our
approach.

In Section 4.4.2, we observe a monotonic performance gain with larger context batch sizes, and in
Section 4.4.3, a steady improvement with more diverse auxiliary tasks. While we do not exhaust all
combinations due to memory and compute constraints, these trends suggest the potential of Context
Scaling—increasing batch size and task diversity in the context bank may further enhance target-task
performance. Moreover, given MetaVLA’s robustness to context diversity, augmenting the context
bank with web-scale data—previously explored only at the pretraining stage (Black et al., 2024;
Intelligence et al., 2025a; Qu et al., 2025)—may offer additional benefits. We leave this to future
work.

5 CONCLUSION

We presented MetaVLA, a framework that addresses the inefficiencies and brittleness of current
VLA post-training pipelines. By introducing Context-Aware Meta Co-Training, MetaVLA inte-
grates auxiliary tasks without destabilizing optimization, achieving superior convergence speed, ef-
ficiency, and generalization. MetaVLA is lightweight, plug-and-play, and backbone-agnostic, mak-
ing it easy to extend beyond supervised fine-tuning to reinforcement learning or hybrid pipelines.
Empirical results on LIBERO show consistent gains over both per-task fine-tuning and naive multi-
task SFT, while significantly reducing training cost and model count. Looking forward, we envision
extending MetaVLA to broader backbones and wider benchmarks, incorporating web-scale mul-
timodal data, and deploying on real robots. We hope this work inspires future research toward
efficient, scalable, and truly generalist embodied VLA systems.
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outikov. Flower: Democratizing generalist robot policies with efficient vision-language-action
flow policies, 2025. URL https://arxiv.org/abs/2509.04996.

Adam Santoro, Sergey Bartunov, Matthew M. Botvinick, Daan Wierstra, and Timothy P. Lill-
icrap. Meta-learning with memory-augmented neural networks. In International Conference
on Machine Learning, 2016. URL https://api.semanticscholar.org/CorpusID:
6466088.

Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to
share for efficient deep multi-task learning, 2020. URL https://arxiv.org/abs/1911.
12423.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
trajectory modeling for policy learning. arXiv preprint arXiv:2401.00025, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Yu Zhang and Qiang Yang. A survey on multi-task learning, 2021. URL https://arxiv.org/
abs/1707.08114.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment,
2025. URL https://arxiv.org/abs/2411.19309.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
Qianli Ma, Song Han, Chelsea Finn, Ankur Handa, Ming-Yu Liu, Donglai Xiang, Gordon Wet-
zstein, and Tsung-Yi Lin. Cot-vla: Visual chain-of-thought reasoning for vision-language-action
models, 2025. URL https://arxiv.org/abs/2503.22020.

Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
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A APPENDIX

A.1 TRAINING CONVERGENCE

Figure 5 presents Training Accuracy, Imitation Loss (cross-entropy over generated discrete action
tokens), and L1 Loss (on the transformed continuous actions) for three auxiliary task settings: 1sin-
gle+1bimanual, 5single+1bimanual, and 3single. In all cases, MetaVLA consistently converges to
higher performance across all three metrics.

Figure 5: Training convergence comparison for models trained with 75K steps. Training Ac-
curacy, Imitation Loss, and L1 Loss are compared between MetaVLA variants and SFT-4LIBERO
under different auxiliary-task settings. All MetaVLA variants consistently converges to superior per-
formance across all three metrics, while SFT-4LIBERO fails to adapt effectively—highlighting the
robustness and scalability of our approach.

A.2 CONTEXT TASK DETAILS

We use the LIBERO dataset (Liu et al., 2023a) as both target and context tasks, and
GR00T (NVIDIA, 2025) as auxiliary context tasks only. A detailed breakdown of the datasets is
provided in Table 4. Example tasks from LIBERO and GR00T are visualized in Figures 7 and 8,
respectively.
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Figure 6: Training convergence of MetaVLA with six auxiliary tasks (one bimanual and five
single-arm) trained with 187.5K steps. All three metrics—Accuracy, Imitation Loss, and L1
Loss—converge to suboptimal levels.

Dataset Tasks

LIBERO (Liu et al., 2023a)

LIBERO-Goal
LIBERO-Spatial
LIBERO-Object
LIBERO-Long

GR00T (NVIDIA, 2025)

bimanual panda gripper.Threading
single panda gripper.CoffeeServeMug

single panda gripper.OpenDrawer
single panda gripper.PnPCabToCounter

single panda gripper.PnPCounterToMicrowave
single panda gripper.TurnSinkSpout

Table 4: Summary of datasets and tasks used in the experiments.

A.3 MODEL ARCHITECTURE AND TRAINING DETAILS

Model Architecture We build on OpenVLA-7B (Kim et al., 2024) as the base model, integrating
Action-ANP, a lightweight, memory-based meta-learning module. In Action-ANP, global prior rep-
resentations are encoded via self-attention, while cross-attention (Vaswani et al., 2023) fuses target
and context to produce a final hybrid latent representation. Each attention block is followed by Layer
Normalization and a final MLP projection.

Training Settings We trained all MetaVLA variants with LoRA (Hu et al., 2021) on 8 A100-80
GB GPUs with 75K training steps, taking approximately 24 GPU hours, using 8 x 80GB VRAM.
Training hyperparameters are in Table 5.

Hyperparameter Value
Shuffle Buffer Size 100000
FlashAttention-2 Enabled

LoRA Rank 32
LoRA Dropout 0.0

Total Batch Size 128
Gradient Accumulation Steps 1

Learning Rate 5e-4
Context Batch Size 32

Action-ANP Latent Dimension 2048

Table 5: Training Hyperparameters. Total batch size is computed as 16 samples per GPU across
8 GPUs. Context batch size refers to the batch size used for each individual context task.
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LIBERO-Spatial

LIBERO-Goal

Turn on the 
stove

Pick up the black 
bowl on the 

wooden cabinet 
and place it on 

the plate

Put the yellow 
and white mug in 

the microwave 
and close it

Pick up the 
alphabet soup 
and place it in 

the basket

LIBERO-Object

LIBERO-Long

Figure 7: LIBERO examples. Each suite example includes a frame from the primary camera view
together with its task instruction.
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bimanual_panda_gripper.Threading

Pick the thread 
and insert it into 

the ring

Open the right 
drawer

Pick the corn 
from the counter 

and place it in 
the microwave

Turn the sink 
spout to the right

Pick the lime 
from the cabinet 
and place it on 

the counter

Pick the mug 
from under the 
coffee machine 
dispenser and 
place it on the 

counter

single_panda_gripper.CoffeeServeMug

single_panda_gripper.PnPCabToCountersingle_panda_gripper.OpenDrawer

single_panda_gripper.PnPCounterToMicrowave single_panda_gripper.TurnSinkSpout

Figure 8: GR00T examples. Each task example includes a frame from the primary camera view
paired with its task instruction.
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A.4 EXPERIMENT DETAILS

A.4.1 INFERENCE EFFICIENCY

Our method is engineering-friendly and computationally lightweight. We measure both token
throughput and latency of the model end-to-end, on one 24GB RTX-4090 GPU against Open-
VLA (OpenVLA Contributors, 2024). All environments and packages are kept the same through-
out the experiment to ensure fair comparison. Our efficiency results are shown in Figure 9. Our
Action-ANP module introduces approximately 5.5% more latency compared to OpenVLA, making
MetaVLA an ideal practical choice for achieving a higher success rate.
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Figure 9: Efficiency Metrics. Our lightweight module only adds negligible overhead to inference
cost, making MetaVLA practical for deployment and usage.

A.4.2 EFFECT OF CONTEXT BATCH SIZE

Table 6 shows the success rates of MetaVLA across different LIBERO tasks using different context
batch sizes. The performance scales up as we introduce more contextual data.

Method Goal Spatial Object Long Average

OpenVLA (OpenVLA Contributors, 2024) 76.2 84.7 87.0 51.8 74.9
SFT-4LIBERO 77.8 84.8 87.4 54.7 76.2
MetaVLA(bC = 4) 75.0 82.2 85.0 50.4 73.2
MetaVLA(bC = 8) 75.4 85.5 86.8 51.4 74.8
MetaVLA(bC = 16) 76.8 87.8 88.0 54.3 76.7
MetaVLA(bC = 32) 78.9 88.5 88.5 55.3 77.8

Table 6: Effect of different context batch sizes across different LIBERO task suites.

A.4.3 EFFECT OF DIFFERENT BACKBONE

Figure 10 shows Training Accuracy and Imitation Loss for 5 single and 1 bimanual auxiliary tasks
when using NORA-Long (Hung et al., 2025) backbone. MetaVLA consistently converges to higher
performance across both metrics compared to vanilla SFT, proving that our observation on Open-
VLA (OpenVLA Contributors, 2024) is also true under another backbone.

A.5 SYMBOLS AND DEFINITIONS

We summarize all the symbols used in our MetaVLA architecture in Table 7

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 10: Training convergence comparison for NORA-Long backbone with and without
MetaVLA after adding 5 single and 1 bimanual auxiliary tasks. Training Accuracy and Im-
itation Loss are compared between MetaVLA variants and baseline SFT-4LIBERO under 5sin-
gle+1bimanual co-training settings. Without MetaVLA, vanilla SFT with auxiliary tasks fails to
adapt effectively, while proposed MetaVLA consistently achieves better accuracy and lower loss
throughout the training.

Symbol Name Definition
xT Target feature Encoded input feature for target queries.
yT Target action Action corresponding to target query xT .
xC Context features Encoded input features for context queries.
yC Context actions Action corresponding to context query xC .
(xCi, yCi) Context pair i A single feature–action pair from the context bank.
rCi Deterministic context rep. Self-attention rep. for context pair i.
rT Deterministic target rep. Cross-attention rep. of xT attending to {xCi}.
sCi Stochastic context rep. Self-attention rep. used to compute latent posterior.
s̄C Mean stochastic context rep. Averaged stochastic rep. over all context rep. {sCi}.
s̄T Mean stochastic target rep. Averaged stochastic rep. over all target rep. {sTi}.
z Latent variable Stochastic latent sampled from approximate posterior.
q(z |̄sC) Context posterior Approx. posterior over z conditioned on context.
q(z |̄sT ) Target posterior Training posterior used for variational objective.
p(yT |xT , rT , z) Decoder likelihood Conditional distribution predicting target actions.
DKL(·∥·) KL divergence Regularizer aligning target and context posteriors.

Table 7: Symbol table for Action-ANP and MetaVLA. rep. is abbreviation for representation.

A.6 SUCCESS CASES IN LIBERO SIMULATION

Figures 11, 12, 13, and 14 demonstrate example execution sequences of MetaVLA successfully
completing one task from each LIBERO suite in its simulation: Goal, Spatial, Object, and Long.

A.7 LLM USAGE

We used LLM to aid and polish writing.
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Figure 11: MetaVLA Execution Sequence Example on LIBERO-Goal. Instruction: Open the
middle drawer of the cabinet
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Figure 12: MetaVLA Execution Sequence Example on LIBERO-Spatial. Instruction: Pick up
the black bowl between the plate and the ramekin and place it on the plate
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Figure 13: MetaVLA Execution Sequence Example on LIBERO-Object. Instruction: Pick up
the cream cheese and place it in the basket
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Figure 14: MetaVLA Execution Sequence Example on LIBERO-Long. Instruction: Put the
black bowl in the bottom drawer of the cabinet and close it
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