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ABSTRACT

Point cloud segmentation is an important topic in 3D understanding that has tradi-
tionally has been tackled using either the CNN or Transformer. Recently, Mamba
has emerged as a promising alternative, offering efficient long-range contextual
modeling capabilities without the quadratic complexity associated with Trans-
former’s attention mechanisms. However, despite Mamba’s potential, early ef-
forts have all failed to achieve better performance than the best CNN-based and
Transformer-based methods. In this work, we address this challenge by identi-
fying the key components of an effective and efficient point cloud segmentation
architecture. Specifically, we show that: 1) Spatial locality and robust contex-
tual understanding are critical for strong performance, and 2) Mamba features
linear computational complexity, offering superior data and inference efficiency
compared to Transformers, while still being capable of delivering strong contex-
tual understanding. Additionally, we further enhance the standard Mamba specif-
ically for point cloud segmentation by identifying its two key shortcomings. First,
the enforced causality in the original Mamba is unsuitable for processing point
clouds that have no such dependencies. Second, its unidirectional scanning strat-
egy imposes a directional bias, hampering its ability to capture the full context
of unordered point clouds in a single pass. To address these issues, we carefully
remove the causal convolutions and introduce a novel Bidirectional Strided SSM
to enhance the model’s capability to capture spatial relationships. Our efforts
culminate in a novel architecture named MEEPO that effectively integrates the
strengths of CNN and Mamba. MEEPO surpasses the previous state-of-the-art
method, PTv3, by up to +0.8 mIoU on multiple key benchmark datasets, while
being 42.1% faster and 5.53× more memory efficient. Our code will be released.

1 INTRODUCTION

Point cloud segmentation is an important topic in 3D understanding that has gained significant atten-
tion from the research community in recent years. Numerous neural network architectures have been
proposed for this task, with CNN-based and Transformer-based designs being the two most promi-
nent. Currently, Transformer-based methods consistently deliver the highest performance across
numerous benchmarks. Their success is frequently credited to the attention mechanism, which can
adequately capture and model context. However, the quadratic complexity of self-attention in Trans-
formers poses a significant challenge for point cloud processing, especially when handling a large
number of points. To address this, researchers have explored more efficient strategies, such as ag-
gressive downsampling (Zhao et al., 2021; Wu et al., 2022; Pan et al., 2021), efficient attention algo-
rithms (Yang et al., 2023), and windowed attention mechanisms (Wang, 2023; Lai et al., 2022; Wu
et al., 2024). While these methods help reduce computational costs, they achieve this at the expense
of valuable spatial and geometric information, potentially weakening the Transformer’s modeling
capability and hindering its contextual understanding of the point cloud (Shen et al., 2021).

Recently, State Space Models (SSMs) like Mamba (Lieber et al., 2024; Gu & Dao, 2024; Pióro
et al., 2024; Wang et al., 2024b) have emerged as a promising alternative to Transformers. These
models combine aspects of recurrent neural networks (Cho et al., 2014; Hochreiter & Schmidhuber,
1997) and convolutional neural networks (LeCun et al., 1989) within a framework rooted in classical
state space theory. Similar to Transformers, SSMs provide robust contextual modeling capabilities.
However, unlike Transformers, which scale quadratically with sequence length, SSMs scale linearly

1
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Figure 1: Performance and efficiency comparisons between our proposed method, MEEPO, and
other leading segmentation networks using the ScanNet and nuScenes dataset. By carefully com-
bining the strengths of existing architectures, MEEPO surpasses all previous leading methods while
using much lower latency and memory. Furthermore, it easily scales to scenes with a much larger
number of points and progressively improves performance as the input sequence length increases.

and maintain constant memory usage during inference. This efficiency makes SSMs particularly
advantageous for tasks that require handling extensive contexts.

Table 1: Performance and Latency Comparison
among representative Mamba-based, CNN-based
and Transformer-based networks on ScanNet.

case mIoU↑ latency↓
Point Mamba (Liu et al., 2024b) 75.7 280

OA-CNN (Peng et al., 2024) 76.1 141
PTv3 (Wu et al., 2024) (current best) 77.5 183

Although numerous early attempts have been
made to utilize SSMs for point cloud seg-
mentation (Liang et al., 2024b; Zhang et al.,
2024; Liu et al., 2024b), these efforts have been
largely discouraging, as their performance sig-
nificantly lags behind that of leading CNN-
based and Transformer-based models. As il-
lustrated in Tab. 1, the recently proposed Point
Mamba network (Liu et al., 2024b) not only incurs roughly twice the latency of the CNN-based
OA-CNN (Peng et al., 2024) and Transformer-based PTv3 (Wu et al., 2024) but also underperforms
them by 0.4 points and 2.2 points in mIoU on the ScanNet (Dai et al., 2017) validation dataset, re-
spectively. These shortcomings underscore the ongoing debate regarding the optimal architecture for
point cloud segmentation, leading to the pivotal question: What constitutes an efficient and effective
model architecture for point cloud segmentation?

In this work, we aim to provide valuable insights for the design of point cloud segmentation archi-
tectures. To achieve this, we conduct a preliminary analysis in Sec. 3 to examine the properties of
the three most popular architectures, namely the CNN-based, Transformer-based and Mamba-based
networks. Using the meta-architecture presented in Fig. 2, which seamlessly integrates different op-
erators from the CNN, Transformer and Mamba architectures, we compare these architectures across
three key dimensions: contextual understanding capability, local sensitivity, and network efficiency.
Our analysis reveals that while CNNs excel at local modeling, they lack the ability to capture broader
context. Transformers can adequately capture contextual information but are inefficient due to un-
necessary long-range attention and quadratic computational complexity. Mambas strike a balance
by efficiently providing essential contextual understanding with linear complexity. Given the dis-
tinct strengths and limitations of each architecture, we hypothesize that an integrated architecture
combining their best features could potentially yield a more powerful and efficient model.

Building on the insights gained, we systematically explore various block choices, placements, and
quantities within the previously proposed meta-architecture to determine the optimal arrangement.
Through this process, we identify the CNN-Mamba block as the optimal elementary block for our
architecture. As depicted in Fig. 6(a), the CNN-Mamba block comprises a sequential stack of sparse

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

convolution layers and Mamba modules. Notably, the Attention module is ultimately excluded
from the final architecture because the more efficient Mamba module can already provide sufficient
contextual understanding for this task.

With the macro-level design established, we turn our attention to the micro-level design, specifically
assessing whether the standard Mamba module, originally designed for sequential processing, is
suitable for point cloud segmentation. Our investigation shows that it is not. In particular, we
identify two major shortcomings of the standard Mamba module when applied to this task:

1. Loss of spatial information due to enforced causality: Mamba’s use of causal convo-
lutions introduces unnecessary artificial dependencies that can disrupt the inherent spatial
relationships in point cloud data, ultimately reducing its effectiveness for point cloud data.

2. Directional bias due to unidirectional scan: Mamba’s unidirectional scan strategy inher-
ently favors certain data points over others, creating a directional bias. This bias under-
mines its ability to fully grasp the context of unordered point clouds in a single pass.

To address these issues, we propose two corresponding improvements to the standard Mamba mod-
ule. Specifically, we 1) remove the causality constraint, and 2) incorporate a novel Bidirectional
Strided SSM to enhance its context and spatial understanding.

Our work culminates in MEEPO, a novel point cloud segmentation architecture which seamlessly in-
tegrates Mamba’s efficiency and strong contextual understanding with the local sensitivity of CNN.
As shown in Fig. 1, MEEPO not only achieves significantly lower inference latency but also sur-
passes the performance of other leading segmentation models across both indoor and outdoor scenes.
Specifically, it outperforms the previous best method, PTv3, by up to +0.8 mIoU across ScanNet,
ScanNet200, S3DIS, and nuScenes datasets, with 42.1% smaller latency and 5.53× smaller memory
usage. MEEPO also scales much better with respect to the size of point cloud. As shown in Fig. 1(d),
it achieves up to 12× fewer GFLOPs than PTv3 when processing a scene with 217 (131, 072) points.

In summary, the contributions of our paper are as follows:

1. We carefully analyze existing point cloud segmentation networks, identifying the impor-
tance of spatial locality and robust contextual understanding in achieving high perfor-
mance. We then reveal that Transformer’s global attention is unnecessary and inefficient
for this task as Mambas offer comparable contextual modeling with linear complexity.

2. We propose two corresponding solutions to address the limitations of Mamba when applied
to point cloud segmentation, namely the removal of the causality constraint and the incor-
poration of an innovative Bidirectional Strided SSM to enhance contextual understanding.

3. We introduce MEEPO, a novel architecture that solely utilizes the efficient sparse convo-
lution to provide spatial locality and the efficient SSM to provide robust contextual under-
standing. MEEPO not only consistently outperforms previous best method, PTv3 across
multiple key benchmark datasets, but is also much faster and much more memory efficient.

2 PRELIMINARIES

In this section, we briefly introduce state space model (SSM) to facilitate subsequent discussion.

SSM’s formulation. SSM is a type of sequence model (Gu & Dao, 2024) that maps an input
sequence x(t) ∈ R to an output sequence y(t) ∈ R through a latent state h(t) ∈ RN :

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t). (1)

Using zero-order hold (ZOH) rule, we can discretize the continuous parameters (∆,A,B) as:

Ā = exp(∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B, (2)

where ∆ is the discretization step size and I is the identity matrix. Under this discretization rule, the
hidden state ht can be computed efficiently as a linear recurrence:

ht = Āht−1 + B̄xt, yt = Cht. (3)

Mamba is a recent popular SSM model that sets the SSM parameters to be functions of the input:

Bt = fB(x(t)) Ct = fC(x(t)) ∆t = f∆(x(t)) (4)

3
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Figure 2: Proposed meta-architecture and various block options used for analysis. The model that
exclusively uses choice A is called Pure CNN, the model that exclusively uses choice B is called
Pure Mamba, and the model that exclusively uses choice C is called Pure Transformer.

This allows the model to selectively propagate or discard information based on the input. In practice,
matrix A is typically set as a diagonal matrix, ensuring that all elements of Ā = exp(∆A) lie
between 0 and 1. Consequently, Ā can be viewed as a forget gate, which controls how much
information from the previous hidden state, ht, is retained (Han et al., 2024).

3 ANALYSIS

In this section, we delve into the key requirements for effective point cloud segmentation, showing
the importance of capturing both local and contextual features via model architecture. Robust local
modeling is essential for maintaining point-level consistency, especially when object boundaries are
unclear, while strong contextual modeling is crucial for identifying occluded or ambiguously shaped
objects. With these needs in mind, we evaluate various architectures, assessing their strengths and
weaknesses in providing these important properties for effective point cloud segmentation.

Meta-architecture for analysis. To facilitate our analysis, we first propose a meta-architecture for
point cloud segmentation. This meta-architecture follows an encoder-decoder framework, featuring
a 5-stage encoder and a 4-stage decoder. Following PTv3 Wu et al. (2024), the input points are first
voxelized into non-overlapping segments and arranged into an ordered sequence using alternating Z-
order and Hilbert space-filling curves (Morton, 1966; Peano, 1890). These voxels are then processed
by an embedding module that employs a single submanifold sparse convolution layer (Graham et al.,
2018). GridPooling and GridUnpooling operations are applied at the end and beginning of each
encoding stage, respectively, to downsample and upsample the point cloud (Wu et al., 2024). Within
this meta-architecture, we train three similarly sized models, each using either the CNN, Mamba,
or Transformer blocks, as shown in Fig. 2, to evaluate their performance both qualitatively and
quantitatively. To account for the different parameter densities of these blocks, their channel sizes
are adjusted accordingly to ensure similar parameter counts. These models are referred to as Pure
CNN, Pure Mamba, and Pure Transformer, respectively. We hypothesize that the global attention
mechanism of the Pure Transformer and the long-range sequential modeling capabilities of the Pure
Mamba are highly effective for contextual modeling. In particular, Pure Mamba offers additional
advantages, including enhanced inference efficiency due to its linear computational complexity and
improved data efficiency enabled by the inductive bias of the forget gate. On the other hand, Pure
CNN excels in local modeling by leveraging its inherent spatial locality.

Table 2: PTv3 without spatial locality
perform much worse on ScanNet val.

Case mIoU↑
PTv3 (Wu et al., 2024) 77.5

Remove spatial locality 69.3 (-8.2)
Remove contextual modeling 73.2 (-4.3)

1. Are both local and contextual modeling important for
point cloud segmentation? To assess the individual contri-
butions of local and contextual modeling in point cloud seg-
mentation, we analyze the performance impact of removing
key components from the current leading network, PTv3
(Wu et al., 2024). Specifically, we investigate the effects
of eliminating the sparse convolution layers, which capture
spatial locality, and attention modules, which model contextual relationships. As detailed in Tab. 2,
removing the sparse convolution layers results in a substantial performance drop of -8.2 mIoU, while
removing the attention modules leads to a decrease of -4.3 mIoU. These results highlight the critical
importance of both local and contextual modeling in achieving effective point cloud segmentation.

2. Which model is more effective at providing contextual understanding? To investigate this,
we perform another experiment using PTv3, by modifying its full attention mechanism to a window-
based approach. By varying the window size, we control the amount of context the model processes.
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Figure 3: Both Transformer and Mamba models incorporate mechanisms to learn long-range depen-
dencies, allowing them to accurately interpret occluded regions and areas with similar textures.
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Figure 4: Analysis of a representa-
tive Transformer-based model, PTv3,
demonstrates that additional context be-
yond a certain amount is unnecessary.

As shown in Fig. 4, increasing the window size progres-
sively improves performance from 24 to 1024, peaking
at 1024 before gradually declining as the window size
grows further. Since point cloud segmentation suffers
from data scarcity, the poor performance at larger window
size is likely due to insufficient training data, as attention
mechanisms typically require large amounts of data to be
trained effectively (Dosovitskiy et al., 2021). Meanwhile,
Mamba emerges as a strong candidate for modeling con-
text due to its emphasis on local processing while still
being able able to capture broader context when neces-
sary. To provide evidence for this, we visualize the per-
formance of different models using a representative example in Fig. 3, which depicts an office room
with a challenging-to-discern door in the bottom left corner. Try to focus on the boxed region in
each image and identify the object category. This task is challenging because the door’s point cloud
is partially occluded and its texture and color closely match the surrounding wall and floor, requiring
a comprehensive understanding of the scene. As depicted in the figure, Mamba’s balance of local
and global context allows it to outperform the Transformer model, which in turn surpasses the CNN,
thereby confirming Mamba’s efficacy in contextual understanding.

3. Which model is more effective at providing spatial locality? To compare the performance of
the aforementioned model architectures in this regard, we visualize their predictions in Fig. 5 using
another insightful example of a room with a centrally placed table whose boundaries are poorly de-
fined due to severe overexposure. Without zooming in, the boundaries are hard to discern, requiring
strong local feature extraction capabilities. In this challenging scenario, the results support our hy-
pothesis regarding spatial locality. The CNN, equipped with sparse convolutional layers specifically
designed to capture local spatial patterns, outperforms both Mamba and the Transformer. Mamba
exhibits slight spillage of floor pixels onto the table, while the Transformer mislabels a significant
portion of the table area. These results demonstrate the CNN’s superior capability in local modeling.

4. Which model architecture is more efficient? The computational complexities of the core
operations in the Transformer, Mamba, and CNN models are as follows:

Ω(Transformer) = 4 · L · C2︸ ︷︷ ︸
qkv and output projections

+ 2 · L2 · C︸ ︷︷ ︸
attention

= O(L2), (5)

Ω(Mamba) = 9 · L · C ·N︸ ︷︷ ︸
SSM

+ L · C ·K︸ ︷︷ ︸
depthwise conv1d

+ 3 · L · C2 · E︸ ︷︷ ︸
input and output projections

= O(L), (6)

Ω(CNN) = 2 · Cin · Cout · k3 · L︸ ︷︷ ︸
convolution

+ L · Cin · Cout︸ ︷︷ ︸
bias addition

= O(L), (7)

where C, Cin, and Cout represent the channel sizes, N the SSM’s state dimension, E the SSM’s
expansion factor, L the number of points or input sequence length, K the depthwise convolution
kernel size in Mamba and k the convolution kernel size in sparse convolutions within CNN. Both
Mamba models and CNNs scale linearly with respect to L, while Transformers scale quadratically.
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Figure 5: Comparison of model performance on tasks requiring robust local modeling. CNNs excel
due to spatial convolutions, and Mambas benefit from its locally-biased forget gate. Transformers,
lacking specialized local modeling mechanisms, often produce inaccurate predictions.

Consequently, for point cloud processing tasks involving hundreds of thousands of points, Trans-
formers can be significantly slower. When comparing CNNs and Mamba models of similar sizes,
CNNs are generally faster in practice. This is because CNNs typically have fewer layers when the
total number of parameters is the same, as each 3D sparse convolution layer in a CNN contains
significantly more parameters than a corresponding block in a Mamba model.

Key insights: Point cloud segmentation requires both effective local modeling and a comprehensive
understanding of contextual information. While CNNs excel at local modeling, contextual modeling
demands a different approach. Due to the current scarcity of large-scale point cloud segmentation
datasets, Transformers cannot fully leverage their attention mechanism potential, with performance
peaking at a window size of 1024. Mambas, however, strike a balance between local and global
modeling, providing the necessary contextual understanding with linear complexity, without the
quadratic complexity of Transformers. Given the distinct strengths and limitations of each architec-
ture, it is crucial to explore models that can holistically integrate these capabilities.

4 METHOD

Building on insights from previous analysis, we introduce MEEPO, a novel model that is both
efficient and effective for point cloud segmentation. MEEPO adopts the same meta-architecture
presented in Fig. 2 but incorporates the CNN-Mamba block as a core component to facilitate the
seamless integration of local and contextual modeling. Additionally, we introduce two micro-level
modifications to the standard Mamba module to address its limitations in point cloud segmentation.

4.1 MACRO ARCHITECTURE DESIGN

Optimizing block choices for point cloud segmentation. To identify the most effective block
configuration for integrating local and contextual modeling, we draw inspiration from the widely
adopted sequential combination of local convolutional layers and contextual operators in previous
point cloud segmentation studies (Wang, 2023; Wu et al., 2024) and evaluate two possible candi-
dates: the CNN-Mamba block and the CNN-Transformer block. As depicted in Fig. 6, the CNN-
Mamba block comprises a sparse convolution layer, followed by a Mamba module and an MLP layer.
In contrast, the CNN-Transformer block follows the same structure but substitutes the Mamba mod-
ule with an Attention module. Our comprehensive ablation study, presented in Tab. 7(b), demon-
strates that replacing CNN-Transformer blocks with CNN-Mamba blocks throughout the network
(22 blocks in total) achieves the best performance and efficiency. These findings validate our hypoth-
esis that the Mamba module offers superior contextual understanding while maintaining efficiency.

6
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Figure 6: Our proposed architecture, MEEPO, integrates CNN-Mamba blocks throughout the pro-
posed meta-architecture to harness their strengths in local and contextual modeling. To optimize for
point cloud segmentation, MEEPO modifies the standard Mamba by replacing causal convolutions
with regular convolutions, preserving critical spatial information. Additionally, it introduces a novel
Bidirectional Strided SSM, which enhances contextual modeling by minimizing directional bias.

4.2 MICRO ARCHITECTURE DESIGN

Optimizing Mamba for point cloud segmentation. Despite its impressive speed and performance,
MEEPO without micro-level optimizations still does not surpass the leading point cloud segmen-
tation network, PTv3, in accuracy. This aligns with previous research, which consistently demon-
strates that attempts to apply Mamba have all failed to outperform well-established models for this
task (Zhang et al., 2024; Liu et al., 2024b). A closer analysis reveals that the standard Mamba, origi-
nally designed for sequential data, is inherently unsuited for processing unordered point clouds. We
identify two key limitations in the standard Mamba and propose the solutions to overcome them.

1. Loss of spatial information due to enforced causality: Mamba was originally designed for se-
quential data with clear causal relationships. However, point clouds lack such dependencies, as their
spatial relationships are multidimensional, requiring simultaneous consideration of points holisti-
cally. The causal convolutions in standard Mamba impose a causal dependency that disrupts these
essential spatial relationships, making it ineffective for handling spatial data like point clouds.

Proposed Solution: Causal-Free Mamba. To address this issue, we propose replacing the causal
convolution with a standard convolution, resulting in the Causal-Free Mamba module, as illustrated
in Fig.6(b). This modification eliminates the limitations of the original Mamba architecture when
processing spatial data, greatly enhancing its performance in point cloud segmentation tasks.

2. Directional bias due to unidirectional scan: Mamba’s unidirectional scanning method intro-
duces a directional bias in the representation learning of point clouds because some parts are scanned
first while others are scanned later. Such sequential processing is ill-suited for orderless point cloud
data, where all information should be treated equally. This approach can lead to models prioritizing
information from later stages of the scan, overlooking details captured earlier. The bias is further
amplified by factors such as noise, occlusions, or reduced data density at the beginning of the scan,
which can degrade the quality of the early data. As a result, important features captured early in the
scan may be missed or inaccurately interpreted, leading to segmentation errors where boundaries
are poorly defined, and features are incorrectly merged or omitted.

Proposed Solution: Bidirectional Strided SSM. To address this issue, we propose an innovative
multi-directional scanning approach to reduce the directional bias of Mamba. Unlike the standard
Mamba, which employs a unidirectional scan, this scanning method processes data in four distinct
scanning directions: forward, backward, n-strided forward, and n-strided backward. In an n-strided
forward scan, every n-th token is skipped, and the scan pattern restarts from the beginning once the
end is reached. For example, given the sequence 1, 2, 3, 4, 5, 6, a 2-strided forward scan would
process it as 1, 3, 5, 2, 4, 6. The backward scan operates similarly but in reverse order. This multi-
directional scanning approach can effectively expand Mamba’s receptive field, reduce information
loss, and improve overall performance by shortening the information flow path.
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Table 3: Indoor semantic segmentation comparison
on ScanNet, ScanNet200, S3DIS Area 5.

Method ScanNet ScanNet200 S3DIS

Val Test Val Test Area5

PCM (Zhang et al., 2024) - - - - 63.4
PointNeXt (Qian et al., 2022) 71.5 71.2 - - 70.5
MinkUNet (Choy et al., 2019) 72.2 73.6 25.0 25.3 65.4

ST (Lai et al., 2022) 74.3 73.7 - - 72.0
PTv2 (Wu et al., 2022) 75.4 74.2 30.2 - 71.6

OctFormer (Wang, 2023) 75.7 76.6 32.6 32.6 -
Point Mamba (Liu et al., 2024b) 75.7 - - - -

OA-CNNs (Peng et al., 2024) 76.1 75.6 32.3 33.3 71.1
Swin3D (Yang et al., 2023) 76.4 - - - 72.5

PTv3 (Wu et al., 2024) 77.5 77.9 35.2 37.8 73.4

MEEPO(OURS) 78.0 78.4 36.0 38.5 73.5

Table 4: Outdoor semantic segmenta-
tion comparison on nuScenes.

Method nuScenes

val test

AF2S3Net (Cheng et al., 2021) 62.2 78.0
MinkUNet (Choy et al., 2019) 73.3 -
Cylinder3d (Zhu et al., 2021) 76.1 77.2
SPVNAS (Tang et al., 2020) 77.4 -

RPVNet (Xu et al., 2021) 77.6 -
RangeFormer (Kong et al., 2023) 78.1 80.1
SphereFormer (Lai et al., 2023) 78.4 81.9
OA-CNNs (Peng et al., 2024) 78.9 -

PTv2 (Wu et al., 2022) 80.2 82.6
PTv3 (Wu et al., 2024) 80.4 82.7

MEEPO (Ours) 80.8 82.8

Table 5: Latency, parameters and accu-
racy comparison on ScanNet.

Method Lat. (ms) Params. (M) mIoU

Point Mamba (Liu et al., 2024b) 280 109.5 75.7
PTv2 (Wu et al., 2022) 296 12.8 75.4
PTv3 (Wu et al., 2024) 190 46.2 77.5

OctFormer (Wang, 2023) 133 44.0 75.7
OA-CNN (Peng et al., 2024) 127 51.5 76.1

MEEPO (Ours) 110 45.6 78.0

Table 6: Performance on ScanNet data efficient
benchmark.

Method Limited Reconstruction Limited Annotation

1% 5% 10% 20% 20 50 100 200

MinkUNet (Choy et al., 2019) 26.0 47.8 56.7 62.9 41.9 53.9 62.2 65.5
PTv2 (Wu et al., 2022) 24.8 48.1 59.8 66.3 58.4 66.1 70.3 71.2
PTv3 (Wu et al., 2024) 25.8 48.9 61.0 67.0 60.1 67.9 71.4 72.7

MEEPO (Ours) 26.4 50.9 62.3 68.1 61.9 68.8 72.3 74.4

5 EXPERIMENTS

In this section, we begin by briefly describing our implementation details (Sec. 5.1). Then, we
compare MEEPO with state-of-the-art (SOTA) methods (Sec. 5.2) and ablate our proposed method
(Sec. 5.3). Due to space limitation, detailed implementation details, more quantitative and qualitative
results and additional ablations are presented in the Appendix A.

5.1 IMPLEMENTATION DETAILS

Datasets. We evaluate our proposed method on several indoor and outdoor semantic segmentation
datasets using mean Intersection over Union (mIoU) metric. For indoor scenes, we use ScanNet
(Dai et al., 2017), its extended version ScanNet200 (Rozenberszki et al., 2022), and S3DIS (Armeni
et al., 2016). For outdoor scenes, we employ nuScenes (Caesar et al., 2020).

Training and Inference Details. We follow all experimental settings of PTv3 (Wu et al., 2024)
without any changes. For indoor segmentation, the number of epochs is 800, the learning rate is
0.006, and the weight decay is 0.05. For outdoor segmentation, the number of epochs is 50, the
learning rate is 0.002, and the weight decay is 0.005. We train all our models using batch size of 12
and the AdamW optimizer. For efficiency evaluations, we use a single V100 with a batch size of 1.

5.2 MAIN RESULTS

Indoor Semantic Segmentation. Tab. 3 compares MEEPO with leading methods on the indoor
ScanNet, ScanNet200, and S3DIS Area 5 cross-val datasets. MEEPO achieves new SOTA results
with mIoU scores of 78.0, 36.0, and 73.5 on ScanNet val, ScanNet200 val, and S3DIS Area 5 cross-
val, respectively, outperforming the second-best method, PTv3, by +0.5, +0.8, and +0.1 points.

Outdoor Semantic Segmentation. Tab. 4 compares MEEPO with leading methods on the outdoor
nuScenes val dataset. MEEPO achieves new SOTA result with mIoU score of 80.8 on nuScenes val,
surpassing the second-best method, PTv3, by 0.4 points.

Model Efficiency. In Fig. 1, we compare the average latency and memory usage of our model
with multiple leading methods on the ScanNet val dataset. As shown in Fig. 1(a) and Fig. 1(b),
MEEPO exhibits better latency and memory consumption than many previous leading networks and
achieves much higher performance. Remarkably, MEEPO not only outperforms the previous top-
performing method, PTv3, but is also 42.1% faster and 5.53× more memory efficient. MEEPO
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Table 7: Ablation experiments on on ScanNet for evaluating different design choices used for
MEEPO. The entries marked in gray are the same, which specify the default settings.

(a) Effectiveness of Proposed Architecture
case params (M) latency (ms) mIoU

Pure CNN 41.6 80 73.2
Pure Transformer 47.4 241 69.3

Pure Mamba 48.4 126 70.7
MEEPO (Ours) 45.6 110 78.0

(b) Effectiveness of CNN-Mamba Block
number of blocks memory (GB) latency (ms) mIoU

22 4.9 110 78.0
20 5.0 112 77.7
12 5.6 117 77.5
8 6.1 122 77.2
4 10.3 132 77.3
0 29.5 153 77.4

(c) Effectiveness of Causal-Free Conv1D
case mIoU

Causal Conv1D 77.5
Causal-Free Conv1D 78.0 (+0.5)

(d) Effectiveness of Bidirectional Strided SSM
case mIoU

Standard SSM 77.2
Bidirectional SSM 77.3 (+0.1)

Strided SSM 77.7 (+0.5)
Bidirectional Strided SSM 78.0 (+0.8)

(e) Optimal Stride for Bidirectional Strided SSM
stride mIoU

1 77.5
2 78.0
4 77.7
8 77.6

16 77.5

(f) Compatibility of Our Proposed Modules
case mIoU
baseline (Pure CNN network) 73.2

+ CNN-Mamba blocks 76.9 (+3.7)
+ Causal-Free Conv1D 77.4 (+4.2)

+ Bidirectional Strided SSM 78.0 (+4.8)

particularly excels at ultra-long-range modeling, owing to its use of Mamba, which scales linearly
with respect to the number of input points. As illustrated in Fig.1(d), MEEPO achieves 12× reduction
in FLOPs when handling scenes containing 131, 072 points. Note that Tab. 5 gives the exact numbers
corresponding to data points in Fig. 1(a) and Fig. 1(b).

Data Efficiency. In Tab. 6, we compare MEEPO with leading methods on the ScanNet data efficiency
benchmark, which evaluates models with limited reconstructions and annotations. The “Limited
Reconstruction” setting uses a fraction of the available 3D reconstructions, while the “Limited An-
notation” setting restricts the number of annotated points per scene. As shown, MEEPO outperforms
the second-best method, PTv3, by 0.6, 2.0, 1.3, and 1.1 points at 1%, 5%, 10%, and 20% recon-
structions, and by 1.8, 0.9, 0.9, and 1.7 points at 20, 50, 100, and 200 annotations, respectively.

5.3 ABLATION EXPERIMENTS

In this subsection, we conduct ablations for all components of our architecture using the ScanNet
(Dai et al., 2017) val dataset. All experimental settings follow the settings used in the main results.

Effectiveness of Our Proposed Architecture. Aside from the qualitative comparisons presented
in Fig. 2 and Fig. 3, we also quantitatively compare our proposed method with other model ar-
chitectures. To ensure similar parameter counts, the channel sizes of these networks are adjusted
accordingly. As shown in Tab. 7(a), MEEPO performs much than single-operator networks.

Effectiveness of CNN-Mamba Block. In Tab. 7(b), we progressively replace some of the CNN-
Mamba blocks in MEEPO with CNN-Transformer blocks. The results show that increasing the
number of CNN-Transformer blocks always leads to higher latency, more memory usage and re-
duced performance. This confirms the effectiveness of our proposed CNN-Mamba block, which can
efficiently and effectively integrate local and contextual modeling for point cloud segmentation.

Effectiveness of Causal-Free Mamba. The original Mamba uses causal depthwise convolution
to preprocess input tokens before passing them to the SSM module. While this makes sense for
sequence modeling, its necessity for 3D vision tasks, which lack causality, is unclear. To investigate
this, we experiment with replacing the causal convolution with normal convolution. As shown in
Tab. 7(c), causal convolution results in a performance improvement of +0.5 mIoU.

Effectiveness of Bidirectional Strided SSM. In Tab. 7(d), we demonstrate the effectiveness of our
proposed Bidirectional Strided SSM. As shown, it outperforms both the standard SSM and its bidi-
rectional variant, resulting in a performance improvement of +0.8 mIoU. Additionally, we ablate the
optimal stride for this module in Tab. 7(e), which shows that a stride of 2 yields the best performance.
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Compatibility of Our Proposed Modules. In addition to ablating our proposed modules individu-
ally, we perform an additive ablation study in Tab. 7(f) to demonstrate the compatibility of the en-
hancements. Incorporating CNN-Mamba blocks results in a significant improvement of +3.7 mIoU.
Further upgrades to the standard Mamba module, namely introducing causal-free convolutions and
employing multi-directional scanning, provide additional gains of +0.5 and +0.6 mIoU, respectively.

6 RELATED WORK

Architectures for point cloud segmentation fall into three main categories: point-based (Thomas
et al., 2019; Qi et al., 2017a;b; Ma et al., 2022), voxel-based (Maturana & Scherer, 2015; Song
et al., 2017), and projection-based (Chen et al., 2017; Lang et al., 2019; Li et al., 2016; Su et al.,
2015). Although they differ in pre-processing strategies, all these methods are designed with careful
consideration of the unique characteristics of point clouds. They mainly differ in how they integrate
local and contextual features and manage irregular point distributions. Recently, transformer-based
models (Wu et al., 2024; Robert et al., 2023; Yang et al., 2023; Lai et al., 2022) have emerged in
this field, achieving higher accuracy but suffering from significant time and memory complexities
relative to the size of the point cloud. To address this, more efficient attention mechanisms, such as
vector attention (Zhao et al., 2020), grouped vector attention (Wu et al., 2022), local window-based
attention (Lai et al., 2022), and memory-efficient attention (Yang et al., 2023), have been developed.
However, these strategies approximate original attention, resulting in a loss of global modeling ca-
pability (Shen et al., 2021), which may impede performance on long range modeling task like point
cloud segmentation. Our research examines the strengths and weaknesses of several widely-used
architectures for point cloud segmentation and introduces a novel architecture that effectively inte-
grates their best features, culminating in a new state-of-the-art model for point cloud segmentation.

State space models (SSMs) (Gu & Dao, 2024; Wang et al., 2024b; Lieber et al., 2024) have emerged
as a promising alternative to Transformers (Vaswani et al., 2017) in natural language processing
(NLP) for capturing long-range dependencies. Unlike Transformers that scale quadratically with se-
quence length, SSMs (Gu et al., 2022; Nguyen et al., 2022; Smith et al., 2023) achieve linear scaling
during inference. The seminal Mamba model (Gu & Dao, 2024) greatly improves the performance
and efficiency of SSM by introducing input-specific parameterization and a scalable, hardware-
optimized method, allowing it to outperform Transformers for the first time. Driven by the success
of SSMs in NLP, recent works have also explored their application to visual tasks. S4ND (Nguyen
et al., 2022) marks the introduction of SSM modules for processing visual data across 1D, 2D, and
3D domains. Subsequent works, such as VMamba (Liu et al., 2024c), Vim (Zhu et al., 2024), and
Bi-Mamba+ (Liang et al., 2024a), address the directional sensitivity in SSMs with bi-directional and
cross-scan mechanisms, allowing SSMs to achieve performance that rivals that of CNN and Trans-
former models. Mamba-based models have also delivered impressive performance in many other
vision tasks, such as image segmentation (Xing et al., 2024; Liu et al., 2024a), image synthesis (Yan
et al., 2024), graph modeling (Wang et al., 2024a), and low-level vision (Guo et al., 2024). Despite
some initial attempts (Liu et al., 2024b) to apply Mamba for point cloud segmentation, these models
have all failed to outperform existing architectures. In this work, we identify the shortcomings of
SSM when applied to this task and propose simple solutions to greatly improve its performance.

7 CONCLUSION

In this work, we present a detailed analysis of existing network architectures for point cloud seg-
mentation, highlighting their strengths and weaknesses. This evaluation provides valuable insights
into designing more efficient and effective architectures for this task. Our findings emphasize the
crucial role of spatial locality and robust contextual understanding in achieving strong performance.
Specifically, we identify convolution and the Mamba module as essential components for efficient
and accurate point cloud segmentation. Convolution provides spatial locality, while the Mamba
module enhances the understanding of context. Additionally, we improve the standard Mamba mod-
ule by removing the causality constraint and introducing Bidirectional Strided SSM, which further
enhances its ability to capture and utilize contextual information. Following these design principles
and applying targeted optimizations, we introduce MEEPO, a novel architecture that outperforms
previous state-of-the-art models across multiple key benchmark datasets and efficiency metrics.
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A APPENDIX

For a thorough understanding of our proposed MEEPO, we have compiled a detailed Appendix. The
table of contents below offers a quick overview and will guide to specific sections of interest.

CONTENTS
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A.1 IMPLEMENTATION DETAILS

We implement our method using the Pointcept (Contributors, 2023) codebase. Detailed specifica-
tions of our implementation are provided in this section.

Table 8: Indoor sem. seg. settings.
Config Value

optimizer AdamW
scheduler Cosine

criteria CrossEntropy (1)
Lovasz (1)

learning rate 6e-3
block lr scaler 0.1
weight decay 5e-2

batch size 12
datasets ScanNet / S3DIS

warmup epochs 40
epochs 800

Table 9: Outdoor sem. seg. settings.
Config Value

optimizer AdamW
scheduler Cosine
criteria CrossEntropy (1)

Lovasz (1)
learning rate 2e-3

block lr scaler 0.1
weight decay 5e-3

batch size 12
datasets nuScenes

warmup epochs 2
epochs 50

Training Settings. The experimental settings for indoor and outdoor semantic segmentation are
outlined in Tab. 8 and Tab. 9. The numbers in brackets indicate the relative weight assigned to each
criterion in the loss. The main differences between indoor and outdoor settings are in the learning
rate, weight decay, warmup epochs and training epochs used.

Table 10: Model settings.
Config Value

positional encoding None
embedding depth 2

embedding channels 32
no. of layers in Local Perceiver 1

no. of layers in Channel Modulator 2
encoder depth [2, 2, 6, 2]

encoder channels [64, 128, 256, 512]
encoder num heads [4, 8, 16, 32]

decoder depth [1, 1, 1, 1]
decoder channels [64, 64, 128, 256]

decoder num heads [4, 4, 8, 16]
down stride [×2, ×2, ×2, ×2]
drop path 0.3

Model Settings. Detailed model configurations of our MEEPO are listed in Tab. 10.
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Table 11: Data augmentations.
Augmentations Parameters Indoor Outdoor

random dropout dropout ratio: 0.2, p: 0.2 ✓ -
random rotate axis: z, angle: [-1, 1], p: 0.5 ✓ ✓

axis: x, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -
axis: y, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -

random scale scale: [0.9, 1.1] ✓ ✓
random flip p: 0.5 ✓ ✓
random jitter sigma: 0.005, clip: 0.02 ✓ ✓
elastic distort params: [[0.2, 0.4], [0.8, 1.6]] ✓ -
auto contrast p: 0.2 ✓ -
color jitter std: 0.05; p: 0.95 ✓ -
grid sampling grid size: 0.02 (indoor), 0.05 (outdoor) ✓ ✓
sphere crop max points: 102400 ✓ -
normalize color p: 1 ✓ -

Data Augmentation. Data augmentations used for training MEEPO are detailed in Tab. 11.

A.2 ADDITIONAL QUANTITATIVE RESULTS

Table 12: Results on ScanNet200 for semantic segmentation.

Method Val
Head Comm. Tail All

MinkowskiNet (Choy et al., 2019) 48.3 19.1 7.9 25.1
SparseUNet (Wu et al., 2023) - - - 28.8

LGround (Rozenberszki et al., 2022) 51.5 22.7 12.5 28.9
PTv2 (Wu et al., 2022) - - - 29.3

OA-CNNs (Peng et al., 2024) 51.3 28.0 17.7 32.3
PTv3 (Wu et al., 2024) 56.5 30.1 19.3 35.2

MEEPO 56.6 30.7 20.7 36.0

Class Imbalance Analysis on ScanNet200 (Rozenberszki et al., 2022). In Tab. 12, we compare
MEEPO with other leading methods on the head, common, and tail subsets of the ScanNet200 val-
idation benchmark. This comparison offers a more nuanced understanding of performance across
different levels of class imbalance. As shown, MEEPO achieves improvements of +0.2, +0.6, and
+1.4 mIoU on these three subsets, respectively. Notably, it performs much better on the most chal-
lenging tail subset, indicating its potential in handling long-tail distributions.

Table 13: Additional Evidences of Mamba’s Importance.
Case Params (M)↓ mIoU↑

MEEPO 45.6 78.0
Replace Mamba with Attention 42.7 77.4
Remove Mamba 38.2 73.5

Use one additional sparse conv. layer 69.0 75.7
Use one additional block in each stage 52.7 74.7
Increase input channel size from 32 to 36 48.3 74.2

Additional Evidences of Mamba’s Importance. To emphasize Mamba’s importance, we also test
alternative methods to scale up the models without it. The results in Tab. 13 show that none of the
MEEPO variants without Mamba outperform the original configuration, clearly demonstrating its
critical role in providing contextual modeling for point cloud segmentation.
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Figure 7: The average of forget gate values in different layers of MEEPO.

Additional Evidence of Mamba’s Local Bias. Fig. 7 shows average forget gate values for each
layer and their attenuation effects. Let Ālayer be the average forget gate value of a layer. The number
of preceding tokens attended is computed by taking maxk Ā

k
layer < 0.01, which corresponds to the

number of tokens that accounts for more than 1% of the current value. In shallow layers, Ālayer

tend to be small, indicating that each token primarily focuses on the preceding tokens in its vicinity,
thus demonstrating strong local bias. In deeper layers, the average ranges from approximately 0.8
to 1.0, suggesting a broader receptive field for each token. These findings confirm our analysis that
while having broad learnable adaptive receptive fields, Mamba tends to be locally biased (Han et al.,
2024).
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Figure 8: Performance comparison between MEEPO and PTv3 in Processing Long Context.

Effectiveness of Mamba in Processing Long Context. Due to their linear complexity, Mamba-
based networks can efficiently process entire point clouds without requiring window partitioning.
Similarly, the proposed MEEPO architecture operates on complete point clouds without the need
for windowing. As shown in Fig. 1(a) and (b), despite using all points, MEEPO is still 42.1% faster
and 5.53 times more memory-efficient than the best performance of PTv3, which uses a sequence
length of 1024. Nonetheless, We investigate in Fig. 8 whether such window splitting can have
performance benefit. As shown in the figure, using more points progressively improves results,
with optimal performance achieved when using all points. This indicates that Mamba is highly
effective in processing long context. This is a highly beneficial property as processing all points
offers a complete view of the scene, avoiding complex approximations and ensuring that no details
are overlooked. Conversely, segmenting a point cloud into windows may conceal crucial interactions
across boundaries, resulting in a potentially incomplete or inaccurate scene representation.
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A.3 ADDITIONAL QUALITATIVE RESULTS

wall floor cabinet bed chair sofa table door window bookshelf

picture counter desk curtain fridge shower
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Input Ground Truth PTv3's predictions Meepo's predictions

Figure 9: Comparison between MEEPO’s and PTv3’s (Wu et al., 2024) predictions. Black color are
unlabelled points. Red boxes with dash-dotted lines are wrong predictions by PTv3.
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A.4 LIMITATIONS

While our work has significantly advanced the performance of point cloud segmentation models,
many challenges and opportunities for improvement remain. For instance, although MEEPO exhibits
notable efficiency gains, there is still room for further optimization to enhance its computational and
memory efficiency. Additionally, segmentation quality, especially in handling fine details and com-
plex geometries within point clouds, can be further improved. Enhancing the model’s ability to
accurately segment objects in diverse and densely populated scenes is another critical area for future
research. Moreover, the potential of pretraining through self-supervised learning is unexplored in
this work. Leveraging large-scale unlabeled point cloud data for pretraining could help the model
learn more robust and generalizable features, ultimately boosting performance across various tasks
and datasets. Future work should explore and integrate self-supervised learning techniques to har-
ness this potential fully. Addressing these challenges will ensure that Mamba-based architectures
continue to evolve and set new benchmarks in the field of point cloud segmentation.

A.5 BROADER IMPACTS

Accessibility and Resource Efficiency. By demonstrating that our proposed method, MEEPO can
achieve superior performance with reduced latency and memory consumption, this research pro-
motes the development of more accessible and resource-efficient machine learning models. This
is particularly important for applications in resource-constrained environments, such as mobile and
embedded systems, where computational power and memory are limited. As a result, more organiza-
tions and developers can leverage advanced point cloud segmentation techniques without requiring
extensive computational resources.

Environmental Impact. The reduction in computational cost and memory usage directly translates
to lower energy consumption. Given the growing concern over the environmental impact of large-
scale machine learning models, MEEPO’s efficiency can contribute to more sustainable AI practices.
By minimizing the energy required for training and inference, this work aligns with global efforts to
reduce the carbon footprint of technology.

A.6 COMPUTE RESOURCES

We run all experiments on a cluster with a mix of RTX3090, RTX4090 or 32GB V100 and 40GB
A100 GPUs.

A.7 REPRODUCIBILITY

Our main results can be fully reproduced by running the training and evaluation scripts given in the
attached code.
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