
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VIDIT-Q: EFFICIENT AND ACCURATE QUANTIZA-
TION OF DIFFUSION TRANSFORMERS FOR IMAGE AND
VIDEO GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion transformers have demonstrated remarkable performance in visual gen-
eration tasks, such as generating realistic images or videos based on textual in-
structions. However, larger model sizes and multi-frame processing for video
generation lead to increased computational and memory costs, posing challenges
for practical deployment on edge devices. Post-Training Quantization (PTQ) is
an effective method for reducing memory costs and computational complexity.
When quantizing diffusion transformers, we find that existing quantization meth-
ods face challenges when applied to text-to-image and video tasks. To address
these challenges, we begin by systematically analyzing the source of quantiza-
tion error and conclude with the unique challenges posed by DiT quantization.
Accordingly, we design an improved quantization scheme: ViDiT-Q (Video &
Image Diffusion Transformer Quantization), tailored specifically for DiT models.
We validate the effectiveness of ViDiT-Q across a variety of text-to-image and
video models, achieving W8A8 and W4A8 with negligible degradation in visual
quality and metrics. Additionally, we implement efficient GPU kernels to achieve
practical 2-2.5x memory saving and a 1.4-1.7x end-to-end latency speedup.
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Figure 1: ViDiT-Q addresses the challenges that existing quantization methods face in text-to-image
and video generation. It achieves quantization with negligible performance loss, delivering 2-2.5x
memory savings and 1.4-1.7x latency reduction.

1 INTRODUCTION

Diffusion Transformers (DiTs) Peebles & Xie (2023) and video generation tasks Singer et al. (2022)
have garnered significant research interest since the impressive performance of SORA OpenAI
(2024). However, the increasing model size poses challenges for application and deployment on
edge devices. In the realm of video generation, processing multiple frames imposes a significant

0The videos in figures are provided in the supplementary materials
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burden on both memory and computation. For example, the OpenSORA HPC-AI (2024) model
consumes over 10 GB of GPU memory to generate a single 512×512 resolution video with only 16
frames, taking about 50 seconds on an Nvidia A100 GPU.

Model quantization Jacob et al. (2018) has proven to be an effective compression method. By com-
pressing high bit-width floating-point (FP) data into lower bit-width integers, the computational and
memory costs can be effectively reduced. The quantization of DiT models remain under-explored.
While some prior studies Wu et al. (2024); Chen et al. (2024) explores DiT quantization for class-
conditioned generation, we empirically obeserve challenges when applying them to more challeng-
ing text to image and video generation tasks with larger-scaled model (as seen in Fig. 1).

To address this challenge, we begin by analyzing the sources of quantization error and conclude the
primary issue stems from improperly large quantization range caused by high data variation within
quantization groups. Next, we investigate the unique challenges in the specific application. For
DiT models, we observe significant variation in multiple dimensions. For visual generation task, we
find that merely reducing quantization error is insufficient to preserve the multi-faceted generation
quality, such as textual alignment Wu et al. (2021) and temporal consistency Liu et al. (2023b).

In light of the above findings, we further investigate the reason for the failure of existing methods and
introduce corresponding modifications. First, to handle data variation in multiple dimensions, we
carefully examine the limitations of quantization grouping of existing methods from the perspectives
of both algorithm performance and hardware efficiency, and highlight the need for fine-grained and
dynamic quantization parameters. Second, in response to the unique time-varying channel imbal-
ance problem, we analyze the shortcomings of existing scaling and rotation based channel balancing
techniques, and design a “static-dynamic” channel balancing technique that combines the strengths
of both approaches. Finally, to preserve multiple aspects of generation quality under lower bitwidth,
we introduce a metric-decoupled mixed precision scheme, which ”decouples” the effects of quanti-
zation across different dimensions for sensitivity analysis.

We summarize our contributions as follows:

1. We conduct extensive analysis and identify the major source of quantization error and
unique challenges for quantizing the DiT model and visual generation task.

2. We design improved quantization scheme ViDiT-Q, tailored for DiT models, containing
techniques accordingly to address these challenges.

3. We validate the effectiveness of ViDiT-Q on extensive DiT models for both image and
video generation, and further implement efficient GPU kernels to achieve practical hard-
ware savings and acceleration.

2 RELATED WORKS

2.1 DIFFUSION TRANSFORMERS FOR IMAGE AND VIDEO GENERATION

Diffusion Transformers (DiTs), which employ Transformers Vaswani et al. (2017) to replace the
CNN-based diffusion backbones (U-Net Ronneberger et al. (2015)) in prior research Rombach et al.
(2022), have achieved remarkable performance in visual generation. Image Generation: DiT Pee-
bles & Xie (2023) and UViT Bao et al. (2023) pioneer the use of transformers as diffusion backbones.
PixArt-α Chen et al. (2023) explores text-to-image generation with DiTs. Video Generation: Early
video generation models Ho et al. (2022b;a); Guo et al. (2023) mainly adopted CNN backbones.
Latte Ma et al. (2024) pioneer the use of transformers for text-to-video generation. The success of
SORA OpenAI (2024) inspire the development of video diffusion transformers such as OpenSORA
HPC-AI (2024). Both high-resolution image generation and multi-frame video generation add to
hardware costs, necessitating efficiency improvements.

2.2 IMAGE AND VIDEO GENERATION EVALUATION METRICS

Visual generation can be evaluated from multiple aspects, and many metrics are introduced accord-
ingly. Image Metrics: FID Heusel et al. (2017) and IS Salimans et al. (2016) are two commonly
adopted metrics for measuring the Inception network feature difference between generated and ref-
erence images for quality and fidelity assessment. ClipScore Hessel et al. (2021) evaluates how well
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the generated image follows the prompt instruction (text-image alignment), while ImageReward Xu
et al. (2023), HPS Wu et al. (2023b) incorporates human preference by collecting actual user data
to train the reward model. Video Metrics: FVD extends the feature-based metric FID to the video
domain. CLIPSIM Wu et al. (2021) estimates the similarity between video and text instructions.
CLIP-temp Esser et al. (2023) measures the semantic similarity between video frames. Flow-score
is proposed as part of the video evaluation benchmark EvalCrafter Liu et al. (2023a) to assess mo-
tion quality. EvalCrafter also adopts DOVER Wu et al. (2023a) for video quality assessment. These
metrics from multiple aspects should be considered when evaluating the effect of quantization.

2.3 MODEL QUANTIZATION

Post Training Quantization (PTQ) has proven to be an efficient and effective model compression
method Nagel et al. (2021). Diffusion Model: Focusing on the unique timestep dimension, prior
research Q-Diffusion Li et al. (2023) and PTQ4DM Shang et al. (2023) collects timestep-wise ac-
tivation data to determine quantizaiton parameters. Transformer: Prior research made significant
progress in quantizing transformers for both ViTs Liu et al. (2021) and language models Yao et al.
(2022). One major focus is addressing the channel imbalance issue. SmoothQuant Xiao et al. (2024)
introduces channel-wise scaling to balance the difficulty of weight and activation quantization, while
Quarot Ashkboos et al. (2024) employs orthogonal matrix rotations to distribute values more evenly
across channels. DiT: Q-DiT Chen et al. (2024) tackles channel-wise imbalance by assigning differ-
ent quantization parameters to different channels. PTQ4DiT Wu et al. (2024) addresses time-varying
channel imbalance by designing a fixed channel balance mask that fits all timesteps. While these
methods improve quantization from various angles, directly applying them to the more chal-
lenging task of text-to-image/video generation in DiT models results in notable performance
degradation. In Sec. 4, we thoroughly discuss their limitations and propose novel techniques to
overcome these challenges.

3 PRELIMINARY ANALYSIS

3.1 QUANTIZATION ERROR ANALYSIS

Consider the quantization problem as seeking the optimal quantization strategy to minimize the
difference between the quantized model and the floating-point model. An usual approach is to
surrogate this task into minimzing the layer-wise quantization error for weight W and activation X:

minLtask(fFP , fq) ⇒ min
Wq,Xq

L∑
l

(
∥W (l) −Q(W (l))∥22 + ∥X(l) −Q(X(l))∥22

)
, (1)

where fFP , fq denotes the network with L layers. The Wq , Xq represents quantized weight and
activation. The weight and activation are quantized within each group G (e.g., tensor-wise, channel-
wise). The quantization process approximates the full-precision x with integer xint and quantization
parameters (scaling factor s, zero point z): x ≈ x̂ = s(xint − z). The elements within certain group
of size g, represented by vector x ∈ Rg shares the same quantization parameters (s and z). The
quantization operator Q with b bits is described as:

xint = Q(x; s, z, b) = clamp
(⌊x

s

⌉
+ z, 0, 2b − 1

)
. (2)

The function clamp(x; a, c) clamps the values into range [a, c], the ⌊·⌉ is the round-to-nearest oper-
ator. As discussed in prior literature Nagel et al. (2021), the quantization error mainly consist of two
parts, the clamping error and the rounding error. They act as a trade-off, the clamping error could
be reduced with larger scaling s, however, this in turn increases the rounding error, which lies in
range [− s

2 ,
s
2 ]. In the minmax quantization scheme adopted by most recent literature and deploy-

ment tools, the scaling s = (max(x)−min(x))/(2b− 1) are chosen to set the quantization range in
[max(x),min(x)], which avoids the clipping error. Therefore, the major source of the quantiza-
tion error arises from the rounding error with large s when large data variation exists within
the group. For example, when the group size is large (i.e., tensor-wise), the range are determined by
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W4A16 Quantization

Evidence: Quantization are “bottlenecked” by some over-sensitive layers

(UnQuant blocks.27.ffn.fc2)
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Figure 2: The overall framework of ViDiT-Q. We begin by analyzing the sources of quantization
error and identifying the unique challenges faced by DiT models and visual generation tasks. Cor-
respondingly, we develop specialized techniques to address these challenges.

a small portion of large values, making the quantization range unnecessarily large for the majority
of elements, thus resulting in larger rounding error. Recent literature Chee et al. (2024) introduces
the idea of “incoherence processing” echoes this finding. The data group x ∈ Rg is defined to be
µ-coherent if: max(x) ≤ µ||W ||F /

√
g, where || · ||F indicates the Frobenius norm, and g is the

number of elements. The data group with higher incoherence are harder to quantize, since the largest
element is an outlier relative the average magnitude. Additional incoherence processing to ensure
balanced data distirbution within group is essential to reduce the quantization error.

3.2 UNIQUE CHALLENGES FOR DITS AND VISUAL GENERATION

Challenges for DiT model: As mentioned above, data variation within group incur large quanti-
zation error. We conduct comprehensive analysis for DiT data distribution, and discover that DiT
model witness high data variation in multiple levels as presented in Fig. 2:

• Token-wise Variation: We observe notable variation between the visual tokens. Specifi-
cally, for video DiTs, the variations exist both along the spatial and temporal dimension.

• Condition-wise Variation: For conditional generation, the classifier-free-guidance Ho
(2022) (CFG) conducts two separate forwards with and without the control signal (often
implemented with batch of 2). We observe notable difference between the conditional part
(red square) and the unconditional part (blue square).

• Timestep-wise Variation: Diffusion method iterates the model for multiple timesteps. We
observe notable variation in activation for the same layer across timesteps.

• Channel-wise Variation: For both the weight and activation, we witness significant differ-
ence across different channels. Specifically, the activation channel variation demonstrate
time-varying characteristics.

Challenges for visual generation task: As described in eq. (2), the minimization of quantization
error is often adopted as the proxy task for quantization. However, for visual generation, the gen-
eration quality could be evaluated from multiple perspectives (e.g., aesthetic, alignment). Simply
regularizing the absolute error may not be sufficient for assessing the quantization’s effect on
visual generation. (discussed in more details in Sec. 4.3) For video generation, more aspects related
to the temporal dimension should be included (e.g., temporal consistency, temporal flickering).
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4 VIDIT-Q: QUANTIZATION SCHEME TAILORED FOR DITS

As presented in Fig. 2, to address the aforementioned challenges, we design ViDiT-Q. Firstly, we
highlight the importance of choosing fine-grained and dynamic quantization parameters to avoid
data variation in large group. (Sec. 4.1). Secondly, we design a static-dynamic channel balance
technique to handle the unique time-varying channel-wise data variation within group (Sec. 4.2).
Finally, considering the quantization’s effect of multiple aspects on generation quality, we design
metric decoupled mixed precision method to preserve performance under lower bitwidths (Sec. 4.3).

4.1 FINE-GRAINED GROUPING AND DYNAMIC QUANTIZATION

As discussed in Sec. 3.1, high data variation within the quantization group (i.e., high incoherence)
is a major source of quantization error. Adopting coarse-grained quantization grouping with larger
group size is more likely to include data with higher variation. For instance, in tensor-wise quanti-
zation groupings, as used in prior research Wu et al. (2024), the group contains all tokens, leading to
high variation (as shown in Fig. 2). This suggests that finer groupings should be used as long as
they do not impede efficient hardware implementation. In hardware implementations, the data
summed together should share the same quantization parameters (i.e., belong to the same quanti-
zation group) to avoid the overhead of casting integer values to floating-point for summation. In
transformer quantization, where the majority of computation occurs in the Linear layers, summation
occurs along the input-channel dimension of the weights and activations. Therefore, despite the
“channel-wise” activation quantization in Q-DiT Chen et al. (2024) enhances performance, it brings
difficulty in hardware acceleration. Differently, we adopt the hardware-friendly ”channel-wise”
and ”token-wise” quantization groupings for weights and activation. This approach compresses the
group size for activation quantization to the number of channels, introducing negligible overhead
compared to coarse-grained groupings, and is supported by mainstream inference frameworks Zhao
et al. (2024b); Lin et al. (2024). .

For diffusion model, two additional dimensions, ”condition-wise” and ”timestep-wise” variation are
introduced. Using static quantization parameters across all timesteps and conditions results in
equivalent larger group sizes with larger data variation. For example, PTQ4DiT Wu et al. (2024)
adopts the tensor-wise static activation quantization grouping, and fails to hanlde the high variation
in the token, timestep dimensions. To address timestep-wise variation, previous methods So et al.
(2024) adopt timestep-wise static quantization parameters. However, the determination of these
quantization parameters are costly (requires iterative training) and face difficulties when general-
izing across solvers. In contrast, we propose using ”dynamic” quantization parameters, which are
computed online and naturally adapt to varying timesteps and conditions. This approach acts as the
upper bound of algorithm performance for resolving the timestep-wise variation issue. The addi-
tional hardware cost is negligible, as it only requires determining the max and min of the data group
and can be fused with previous operations to further minimize overhead. More detailed profiling
and analysis are presented in Sec. 5.3.

4.2 STATIC-DYNAMIC CHANNEL BALANCING

As mentioned above, by incorporating fine-grained grouping and dynamic quantization, the data
group is reduced to a vector with C channels. Consequently, reducing data variation within the
group (i.e., channel balancing) is crucial for minimizing quantization error. As illustrated in
Fig. 2, channel-wise data variation is evident in transformer models. Specifically, for DiTs, the de-
gree of channel imbalance varies significantly across timesteps. Existing channel-scaling or rotation
based techniques struggle with the unique ”time-varying channel imbalance”. We investigate the
reasons for their failure and design a specialized ”static-dynamic” channel balance technique.

Scaling based methods Xiao et al. (2024) introduce a per-channel balancing mask s ∈ RCi . By
dividing the activation with s and multiplying s with weights, it shifts the quantization difficulty
from activation to weights, and vice versa. The mask s could be calculated as follows:

Y = (Xdiag(s)−1) · ((diag(s)W )) = X̂ · Ŵ ; si = max(|Xi|)α/max(|Wi|)1−α, (3)
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Figure 3: The illustration of static-dynamic channel balancing. Left: the limitations of existing
rotation and scaling based channel balancing techniques. Right: the reason for time-varying imbal-
ance could be decomposed into the static and the dynamic part.

where X,Y,W represents the input activation , output activation, and weights. The s is a channel-
wise balancing mask, α is a hyperparameter. Channel balancing could effectively alleviate the input
channel-wise variation. However, we empirically discover that it is sensitive to α choices. For dif-
ferent timesteps, the degree of activation channel imbalance changes, suitable α also changes.
Employing the same α for earlier stages may shift too much difficulty from weights to activations,
harming the activation quantization, and vice versa for latter stages. Introducing multiple αs for
different timesteps can resolve this issue. However, it necessitates different versions of weights for
various timesteps. Optimizing for the optimal α cross all timesteps is alos challenging.

Rotation based methods Ashkboos et al. (2024); Liu et al. (2024) introduces an orthogonal rotation
matrix Q, such that QQT = I and |Q| = 1. Multiplying the matrix Q on the left and right of the
data preserves computational invariance Y = XWT = (XQ)(QTW ). The rotation matrix makes
the data values more evenly distributed along channels. Quantizing the rotated matrix XQ with
less incoherence could reduce quantization error. The rotation based method requires no parameter
tuning and naturally adjust to varying degree of channel imbalance across timestep. However, as
seen in Fig. 3, some channels are still prominently larger than others after the rotation.

To overcome these limitations, we analyze the data distribution of DiT models and discover that the
time-varying channel imbalance phenomenon arises from the ”feature modulation” that aggregates
the timestep embedding with the feature (as shown in Fig. 3). This phenomenon can be decomposed
into two parts: the ”static” initial activation distribution orginating from the pretrained “scale shift
table” and the ”dynamic” variation introduced by the time embedding. Inspired by these findings, we
propose combining scaling and rotation-based channel balancing methods to leverage the strengths
of both. The scaling-based method addresses the ”static” channel imbalance at the initial denoising
stage, avoiding the need for multiple αs for varying distributions. The rotation-based method is then
utilized to address the ”dynamic” varying distribution. Since the scaling method has already allevi-
ated extreme channel imbalance, the rotation method ensures a balanced distribution. This channel
balance scheme does not introduce complex hyperparameter tuning and hardware overhead. The
only hyperparameter to be determined is the single α adopted in static scaling, and the hardware
overhead is the online multiplication of the rotation matrix for some layers, which can be imple-
mented with an efficient CUDA kernel and has negligible overhead compared to computation, as
suggested by prior literature Ashkboos et al. (2024).

4.3 METRIC DECOUPLED MIXED PRECISION DESIGN

The aforementioned techniques can effectively reduce the ”incoherence” of data distribution,
thereby decreasing quantization error. However, we still observe notable quality degradation with
lower bit-widths (W4). Upon investigating the reasons for this issue, we find that some layers, de-
spite exhibiting relatively low quantization error, can significantly impact overall quantization. This
suggests that layers have varying quantization sensitivity, and quantization can be ”bottlenecked”
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Figure 4: The illustration of metric decouple mixed precision. Left: The findings of layer sensi-
tivity and quantization’s effect. Right: the overview of metric decoupled mixed precision.

by certain highly sensitive layers. This aligns with the discussions in Sec. 3.1 and Sec. 3.2. Merely
minimizing quantization error may not be sufficient, especially for visual generation tasks. Quanti-
zation’s effects on multiple aspects of generation quality should be considered.

To address the ”bottleneck” phenomenon, a straightforward solution is to assign higher bit-widths to
”protect” these sensitive layers. The main challenge in mixed precision allocation lies in accurately
identifying these sensitive layers. Prior literature Yang et al. (2023) measures sensitivity by quan-
tizing specific layers and calculating the Mean Squared Error (MSE) with the floating-point output.
However, MSE alone does not accurately reflect overall generation performance. Consistent with
previous studies Sui et al. (2024), we discover that MSE tends to overemphasize content changes at
the expense of visual quality degradation and temporal consistency.

Inspired by prior research Zhao et al. (2024a), we find that quantization’s impact on various as-
pects of generation quality is strongly correlated with layer types. Specifically, cross-attention
layers contribute significantly more to ”content change” than other layers. In contrast, ”visual qual-
ity” is primarily influenced by spatial attention and feedforward network (FFN) layers, while ”tem-
poral consistency” is chiefly affected by temporal attention layers. Given these diverse impacts on
generation, the quantization effects of these layers should not be directly compared.

Building on this finding, we propose to ”disentangle” the mixed influences of quantization on
multiple aspects and develop a metric-decoupled mixed precision method as presented in Fig. 4.
To account for sensitivity variation across timesteps, we divide the denoising process into four equal
ranges and conduct sensitivity analysis for them respectively. Given a target bit-width budget, we
categorize layers into three groups and allocate the budget based on the MSE error between FP16
generation and each group when quantized. For each group, we use specific metrics (VQA. Clip-
Score, and FlowScore) as sensitivity measures for the layers within that group. Finally, we iteratively
assign higher bit-widths to the most sensitive layers within each group until reaches the budget.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS AND EXPERIMENTAL SETTINGS

Video Genration Evaluation Settings: We apply ViDiT-Q to OpenSORA HPC-AI (2024), the
videos are generated with 100-steps DDIM with CFG scale of 4.0. The mixed precision is only
adopted for the challenging W4A8. The evaluation contains two settings. (1) Benchmark suite:
We evaluate the quantized model on VBench Huang et al. (2023) to provide comprehensive results.
Following prior research Ren et al. (2024), we select 8 major dimensions from Vbench. (2) Multi-
aspects metrics: We select representative metrics, and measure them on OpenSORA prompt sets.
Following EvalCrafter Liu et al. (2023a), we select CLIPSIM and CLIP-Temp to measure the text-
video alignment and temporal semantic consistency, and DOVER Wu et al. (2023a)’s video quality
assessment (VQA) metrics to evaluate the generation quality from aesthetic (high-level) and technical
(low-level) perspectives, Flow-score and Temporal Flickering are used for evaluating the temporal
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Table 1: Performance of ViDiT-Q text-to-video generation on VBench evaluation benchmark
suite. The bit-width “16” represents FP16 without quantization. We omit some baselines that fails
to produce readable content under W4A8. The mixed precision are applied for ViDiT-Q W4A8.

Method Bit-width Imaging Aesthetic Motion Dynamic BG. Subject Scene Overall
(W/A) Quality Quality Smooth. Degree Consist. Consist. Consist. Consist.

- 16/16 63.68 57.12 96.28 56.94 96.13 90.28 39.61 26.21

Q-Diffusion 8/8 60.38 55.15 94.44 68.05 94.17 87.74 36.62 25.66
Q-DiT 8/8 60.35 55.80 93.64 68.05 94.70 86.94 32.34 26.09

PTQ4DiT 8/8 56.88 55.53 95.89 63.88 96.02 91.26 34.52 25.32
SmoothQuant 8/8 62.22 55.90 95.96 68.05 94.17 87.71 36.66 25.66

Quarot 8/8 60.14 53.21 94.98 66.21 95.03 85.35 35.65 25.43
ViDiT-Q 8/8 63.48 56.95 96.14 61.11 95.84 90.24 38.22 26.06

Q-DiT 4/8 23.30 29.61 97.89 4.166 97.02 91.51 0.00 4.985
PTQ4DiT 4/8 37.97 31.15 92.56 9.722 98.18 93.59 3.561 11.46

SmoothQuant 4/8 46.98 44.38 94.59 21.67 94.36 82.79 26.41 18.25
Quarot 4/8 44.25 43.78 92.57 66.21 94.25 84.55 28.43 18.43

ViDiT-Q 4/8 61.07 55.37 95.69 58.33 95.23 88.72 36.19 25.94

Method Bit-width CLIPSIM CLIP-Temp VQA- VQA- ∆ Flow
(W/A) Aesthetic Technical Score. (↓)

- 16/16 0.1797 0.9988 63.40 50.46 -

Q-Diffusion 8/8 0.1781 0.9987 51.68 38.27 0.328
Q-DiT 8/8 0.1788 0.9977 61.03 34.97 0.473

PTQ4DiT 8/8 0.1836 0.9991 54.56 53.33 0.440
SmoothQuant 8/8 0.1951 0.9986 59.78 51.53 0.331

Quarot 8/8 0.1949 0.9976 58.73 52.28 0.215
ViDiT-Q 8/8 0.1950 0.9991 60.70 54.64 0.089

Q-DiT 6/6 0.1710 0.9943 11.04 1.869 41.10
PTQ4DiT 6/6 0.1799 0.9976 59.97 43.89 0.997

SmoothQuant 6/6 0.1807 0.9985 56.45 48.21 29.26
Quarot 6/6 0.1820 0.9975 61.47 53.06 0.146

ViDiT-Q 6/6 0.1791 0.9984 64.45 51.58 0.625

Q-DiT 4/8 0.1687 0.9833 0.007 0.018 3.013
PTQ4DiT 4/8 0.1735 0.9973 2.210 0.318 0.108

SmoothQuant 4/8 0.1832 0.9983 31.96 22.85 0.415
Quarot 4/8 0.1817 0.9965 47.36 33.13 0.326

ViDiT-Q 4/8 0.1809 0.9989 60.62 49.38 0.153

Figure 5: Performance of text-to-video generation on OpenSORA prompt set. Left: The com-
parison of generation quality for different quantization methods under different bitwidths. The Q-
diffusion for W6A6 and W4A8 are omitted since it fails to generate readable content. Right: Visu-
alization of generated videos for DiT quantization methods under W4A8.

consistency. We also present results on the UCF-101Soomro et al. (2012), adopting FVD Unterthiner
et al. (2019) as the metric for OpenSORA and Latte Ma et al. (2024) in the Appendix Sec. D.1.

Image Evaluation Settings: We apply ViDiT-Q to PixArt-α model, the images are generated with
20-steps DPM-solver with CFG scale of 4.5. No mixed precision is adopted for W4A8. We choose
FID Heusel et al. (2017) for fidelity evaluation, Clipscore Hessel et al. (2021) for text-image align-
ment, and ImageReward Xu et al. (2023) for human preference. These metrics are measured on the
first 1024 prompts on COCO annotations.

Hardware Implemention Settings: We implement efficient quantized GEMM CUDA kernels for
practical resource savings. Following SmoothQuant Xiao et al. (2024), the scaling-based chan-
nel balance factors are fused into the previous layer. Kernel fusion is also adopted by integrating
the quantization operation and Hadamard transformation into the previous LayerNorm, GeLU, and
residual operations, thereby minimizing the quantization overhead. We measure the latency and
memory savings on the Nvidia A100 GPU using CUDA12.1, the memory usage is measured with
the PyTorch Memory Management APIs PyTorch (2023), and the latency is profiled with Nsight
tools NVIDIA. The profiling is conducted with batch size of 1, and 20 denoising steps.
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Method Bit-width FID(↓) CLIP(↑) IR(↑)(W/A)

- 16/16 73.34 0.258 0.901

Q-Diffusion 8/8 96.54 0.239 0.186
4/8 91.95 0.228 -0.224

Q-DiT 8/8 73.60 0.256 0.854
4/8 475.8 0.127 -2.277

PTQ4DiT 8/8 127.9 0.217 -1.216
4/8 171.9 0.177 -2.064

ViDiT-Q 8/8 75.61 0.259 0.917
4/8 74.33 0.257 0.887

Figure 6: Performance of ViDiT-Q text-to-image generation on COCO. Left: The metric scores
of PixArt-α quantization. Right: Generated images comparison of W4A8 quantization.

5.2 MAIN RESULTS

Text-to-video generation on VBench and OpenSORA prompt set: As presented in Tab. 1 and
Fig. 5, existing diffusion quantization methods (e.g., Q-Diffusion) designed for U-Net-based mod-
els incur notable quality degradation (VQA in Fig. 5, and mutliple aspects in Tab. 1) even at
W8A8. These methods often fail to generate readable content (resulting in blank images or noise)
at lower bit-widths, which are omitted in the table. The primary reason for their failure is the use of
coarse-grained and static quantization parameters. The baseline DiT quantization methods (Q-DiT,
PTQ4DiT) achieve acceptable performance at W8A8 and W6A6. However, for W4A8, they fail to
manage channel imbalance, producing unreadable content, as shown in the right part of Fig. 5. For
Q-DiT, its grouping mechanism struggles to handle the large output channel variation under W4.
For PTQ4DiT, the use of fixed channel balancing scaling is insufficient to manage the large varia-
tion across timesteps. Language model quantization techniques (e.g., SmoothQuant, Quarot) also
perform comparably at W8A8 and W6A6. However, significant degradation is observed at the more
challenging W4A8, highlighting the importance of improved channel balancing.

Text-to-image generation on COCO: Similar to video generation, as seen in Fig. 6, existing
quantization schemes, which employ fine-grained static quantization parameters (Q-Diffusion and
PTQ4DM), encounter challenges even with W8A8 configurations. These difficulties arise from the
improper handling of activation data variation across multiple dimensions. While Q-DiT achieves
satisfactory performance under W8A8, it struggles under W4A8 due to output channel-wise imbal-
ance. In contrast, ViDiT-Q consistently maintains performance across all bitwidths.

5.3 HARDWARE RESOURCE SAVINGS

Memory footprint reduction. Fig. 7 (a) shows the GPU memory usage of ViDiT-Q and the FP16
baseline. ViDiT-Q can reduce the memory from two aspects: (1) Weight quantization reduces the
allocated memory for storing model weights. (2) Activation quantization reduces allocated memory
to store intermediate activations. Combining the two benefits, ViDiT-Q can effectively reduce the
peak memory footprint by 1.99× for W8A8.Due to the adoption of mixed precision, the memory
savings under W4A8 are slightly less than the theoretical value, achieving a 2.42× reduction.

Latency speedup. We present the latency speedup in Fig. 7-(b). Replacing FP16 layers with our ef-
ficient INT8 kernels achieves approximately 2× acceleration. Taking into account the unquantizable
layers (e.g., norms, non-linears, attention) and the overhead from quantization (FP to INT conver-
sion, channel balancing scaling, and rotations), the overall speedup is 1.71×. We also compare our
quantization method with a standard baseline (”Naive W8A8”) that lacks dynamic and fine-grained
quantization as well as channel balancing techniques. As shown, the incorporation of our methods
significantly improves generation quality while introducing only minimal hardware overhead (from
1.73× to 1.71×). For W4A8, since current DiT computation exhibits a ”compute-bound” charac-
teristic, the W4A8 CUDA kernel primarily saves memory without enhancing efficiency. Due to the
use of mixed precision, the overall latency speedup is smaller (1.38×) compared to W8A8.
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Bit-width Memory Latency
(W/A) Opt. Opt.

16/16 1.00× 1.00×
8/8 (naive) 1.99× 1.74×
8/8 (ours) 1.99× 1.71×
4/8 (ours) 2.42× 1.38×

Figure 7: The illustration of ViDiT-Q’s hardware resource savings. The table and figures present
memory savings and end-to-end latency speedup of ViDiT-Q and naive quantization scheme.

Table 2: Ablation studies of ViDiT-Q techniques. The comparison of OpenSORA W4A8 perfor-
mance by gradually incorporating ViDiT-Q techniques.

Methods Bit-width CLIPSIM CLIP-Temp VQA- VQA- ∆ Flow

Quant Params Channel Balance Mixed Precision (W/A) Aesthetic Technical Score.

- - - 16/16 0.180 0.998 64.198 51.904 -

Static & Tensor-wise - - 4/8 0.201 0.997 0.178 0.086 0.603
Dynamic & Token-wise - - 4/8 0.196 0.998 32.217 10.994 0.109
Dynamic & Token-wise Scaling-based - 4/8 0.191 0.999 31.963 22.847 0.415
Dynamic & Token-wise Rotation-based - 4/8 0.181 0.999 47.356 33.128 0.326
Dynamic & Token-wise Static-Dynamic - 4/8 0.181 0.999 60.216 42.257 0.151
Dynamic & Token-wise Static-Dynamic MSE-based 4/8 0.179 0.999 53.335 38.729 0.258
Dynamic & Token-wise Static-Dynamic Metric Decoupled 4/8 0.199 0.999 60.616 49.383 0.334

5.4 ABLATION STUDIES

We present ablation studies that gradually incorporate ViDiT-Q’s techniques for W4A8 quantization,
as shown in Tab. 2. Effectiveness of fine-grained grouping and dynamic quantization param-
eter: Replacing static, tensor-wise quantization parameters with dynamic, token-wise ones signif-
icantly improves generation, transforming it from near failure (with VQA scores close to zero) to
producing readable content. Effectiveness of static-dynamic channel balancing: The scaling and
rotation-based channel balancing technique results in notable quality degradation, whereas static-
dynamic balancing improves generation quality to a level comparable to FP. Effectiveness of mixed
precision: Applying metric-decoupled mixed precision further enhances generation quality, while
MSE-based mixed precision negatively impacts performance.
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Figure 8: The channel distribution of block1.mlp.fc1 weights with different channel balancing
techniques. Directly adopting Quarot still results in relatively large incoherence. However, imple-
menting a static-dynamic channel balance reduces incoherence to an acceptable level..

6 CONCLUSION AND LIMITATIONS

We design ViDiT-Q, a quantization method that addresses unique challenges of DiTs. It achieves
W4A8 quantization with minimal performance degradation for popular video and image generation
models. We further implement CUDA kernels to achieve 2-2.5× memory savings, and 1.4-1.7×
latency speedup. Despite achieving good performance, the mixed precision design is still worth
polishing, and lower activation bit-width is essential for fully utilizing the acceleration potential of
4-bit weight. We aim to address these issues and further improve ViDiT-Q.
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REPRODUCIBILITY STATEMENT

All findings presented in this paper are fully reproducible. We have provided anonymized code in
the supplementary materials, along with the videos shown in the figures. Detailed information about
our experiments, including hyperparameters, training protocols, and evaluation methods, is available
in the Experiments section. We are confident that, with the provided resources, readers will be able
to reproduce all of the results presented.
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A ADDITIONAL EXPERIMENTAL DETAILS

A.1 MOTIVATION FOR QUANTIZING LINEAR LAYERS ONLY

In Sec. 4, we mention that the linear layers accounts for the most of the computation. So we focus
on quantizing the linear layers and leave the attention computation unquantized. We elaborate on the
reason for this focus here. In Fig. 9, we visualize the detailed latency breakdown for an STDiT model
block. The ’attention computation’ includes the matrix multiplication for query and key embedding
to generate the attention map, and the multiplication of the attention map with the value embedding.
The QKV linear mapping and the projection after attention aggregation are not included, as these
are linear layers that can be quantized. As shown, when utilizing FlashAttention, the latency cost of
attention computation accounts for only 14.3% of the overall latency. Additionally, FlashAttention
minimizes the activation memory usage for storing the attention map. Therefore, we focus on the
primary cost: the linear layers. We quantize all linear layers except for the “t embedding”, “y
embedding” and “final layer”, they appear at the start or end of the model, and have smaller channel
sizes. They account for only negligible amount of computation (< 1/1000 overall latency), therefore
we maintain them as FP16.

Figure 9: The latency comparison of linear layers and attention computation. When utilizing
FlashAttention, the attention computation only takes up a small portion (14.3%) of the latency.

A.2 IMPLEMENTION DETAILS FOR BASELINE METHODS

Q-Diffusion: We follow the official open-sourced code and collect timestep-wise activation as cal-
ibration data, and conduct optimization for the scaling factor “delta”, and the AdaRound parameter
“alpha”. PTQ4DiT: We reimplement the “ρ-guided” saliency correction. Following the original
paper, we adopt static tensor-wise activation parameters. Q-DiT: Following the original paper, we
adopt channel-wise quantization grouping for both the weight and activation. The group size is de-
termined with the evolutionary algorithm search. SmoothQuant: We adopt the same formulation of
channel scaling mask s, and leverage grid search to determine the optimal α. QuaRot: We adopt the
same Hadamard matrix transformation as the original paper. Specifically, since we donot quantize
the attention QK matrix multiplication, we only apply rotation to linear layers.

B DETAILED DESCRIPTION OF EVALUATION METRICS

B.1 BENCHMARK SUITE

Following VBench Huang et al. (2023), our benchmark suite encompasses three key dimensions.
(1) Frame-wise Quality assesses the quality of each individual frame without taking temporal qual-
ity into concern.

• Aesthetic Quality evaluates the artistic and beauty value perceived by humans towards
each video frame.

• Imaging Quality assesses distortion (e.g., over-exposure, noise) presented in the generated
frames

(2) Temporal Quality assesses the cross-frame temporal consistency and dynamics.
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• Subject Consistency assesses whether appearance of subjects in the video remain consis-
tent throughout the whole video.

• Background Consistency evaluates the temporal consistency of the background scenes.
• Motion Smoothness evaluates whether the motion in the generated video is smooth and

follows the physical law of the real world.
• Dynamic Degree evaluates the degree of dynamics by calculating average optical flow on

each video frame.

(3) Semantics evaluates the video’s adherence to the text prompt given by the user. consistency.

• Scene Consistency evaluates whether the video is consistent with the intended scene de-
scribed by the text prompt.

• Overall Consistency reflects both semantics and style consistency of the video.

We utilize three prompt sets provided by official github repository of VBench. We generate one
video for each prompt for evaluation.

• subject consistency.txt: include 72 prompts, used to evaluate subject consistency, dy-
namic degree and motion smoothness.

• overall consistency.txt: include 93 prompts, used to evaluate overall consistency, aesthetic
quality and imaging quality.

• scene.txt: include 86 prompts, used to evaluate scene and background consistency.

B.2 SELECTED METRICS

FVD and FVD-FP16: FVD measures the similarity between the distributions of features extracted
from real and generated videos. We employ one randomly selected video per label from the UCF-
101 dataset (101 videos in total) as the reference ground-truth videos for FVD evaluation. We follow
Blattmann et al. (2023) to use a pretrained I3D model to extract features from the videos. Lower
FVD scores indicate higher quality and more realistic video generation. However, due to relatively
smaller video size (e.g. 101 videos in our case), employing FVD to evaluate video generation models
faces several limitations. Small sample size cannot adequately represent either the diversity of the
entire dataset or the complexity and nuances of video generation, leading to inaccurate and unstable
results. To mitigate limitations above, we propose an enhanced metric, FVD-FP16, for assessing the
semantic loss in videos generated by quantized models relative to those produced by pre-quantized
models. Specifically, we utilize 101 videos generated by the FP16 model as ground-truth reference
videos. The FVD-FP16 has significantly higher correlation with human perception.

CLIPSIM and CLIP-temp: The CLIPSIM and CLIP-temp metrics are computed using implemen-
tation from EvalCrafter Liu et al. (2023a). For CLIPSIM, We use the CLIP-VIT-B/32 model Rad-
ford et al. (2021) to compute the image-text CLIP similarity for all frames in the generated videos
and report the averaged results. The metric quantify the discrepancy between input text prompts and
generated videos. For CLIP-temp, we use the same model to compute the CLIP similarity of each
two consecutive frames of the generated videos and then get the averages on each two frames. The
metric indicates semantics consistency of generated videos.

DOVER’s VQA: We employ the Dover Wu et al. (2023a) method to assess generated video quality
in terms of aesthetics and technicality. The technical rating(VQA-T) measures common distortions
like noise, blur and over-exposure. The aesthetic rating(VQA-A) reflects aesthetic aspects such as
the layout, the richness and harmony of colors, the photo-realism, naturalness, and artistic quality of
the frames.

Flow Score: We employ flow score proposed by Liu et al. (2023a) to measure the general motion
information of the video. we use RAFT Teed & Deng (2020), to extract the dense flows of the video
in every two frames. Then, we calculate the average flow on these frames to obtain the average flow
score of each generated video.

Temporal Flickering: We utilize the temporal flickering score provided by VBench Huang et al.
(2023) to measure temporal consistency at local and high-frequency details of generated videos. We
calculate the average MAE(mean absolute difference) value between each frame.
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C DETAILED ANALYSIS OF EXPERIMENTAL RESULTS

In this section, we present more detailed analysis of the experimental results in Sec. 5.

Imaging Quality

Aesthetic Quality

Motion Smooth.

1- Dynamic Degree

BG. Consist.

Subject Consist.

Scene Consist.

Overall Consist.

Imaging Quality
0.2

0.4
0.6

0.8
1.0

FP16
Naive PTQ:W8A8
ViDiT-Q:W8A8
ViDiT-Q:W6A6
ViDiT-Q:W4A8

Figure 10: The radar chart corresponding to the data presented in Table 1 from Sec. 5.2. ViDiT-
Q has a superior performance on VBench compared with the naive PTQ.

C.1 TEXT-TO-VIDEO PERFORMANCE ON VBENCH

VBench is a comprehensive benchmark suite for video generation models, covering a wide range
of dimensions, such as motion smoothness and subject consistency. The metric values of ViDiT-
Q’s performance on VBench is presented in Tab. 1 Sec. 5. We visualize the Radar plot of the
VBench performance in Fig. 10, the metric values are normalized by the maximum value in each
diemsnion. It’s clearly illustrated that ViDiT-Q achieves similar performance with FP16 for all bit-
widths (W8A8 , W6A6 mixed precision, W4A8 mixed precision), outperforming the Naive PTQ
W8A8. We further analyze the generated video’s performance from three aspects as follows:

Dynamic Degree: Dynamic degree indicates the range of motion in the video, higher dynamic
degree denotes more dynamic movement in the video. Lower dynamic degree denotes that the video
barely moves, resembling a static image. Normally, higher dynamic degree is favored. However,
in the quantization scenario, we discover that quantization often causes the generated videos to
jitter and tremble. It is not favorable but results in notable dynamic degree value increase. In our
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experimental setting, too high or too low dynamic degree means degradation. Therefore, in the
radar plot, using FP16 generated videos as the ground-truth reference, we use the (fQ − fFP )/fFP

to denote “relative dynamic degree changes from FP generated videos”, and use 1−(fQ−fFP )/fFP

as dynamic degree scoring in the radar plot. As illustrated Fig. 10 dynamic degree dimension, Naive
PTQ W8A8’s scoring (< 0.8) is notably lower than ViDiT-Q results. The video examples in Fig. 11
supports this finding. In Fig. 11c, the navive PTQ W8A8 generated buildings have jittering and
glitches, and changes significantly across frames (ref the supplementary for the video). In contrast,
both the FP16 and ViDiT-Q W8A8 generated buildings moves acutely.

Consistency: The consistency denotes whether some object remains consistent (does not disappear,
change significantly) across frames. Vbench evaluates consistency from the subject, scene, back-
ground, and overall level. From the Radar plot, we witness ViDiT-Q also notably outperforms naive
PTQ, especially in the “scene consistency” dimension (< 0.8). As seen in the aforementioned video
example in Fig. 11c, the buildings (act as the “scene”) changes significantly across frames. It vio-
lates the scene consistency and lead to lower scoring. Also, as presented in Fig. 12c, the generated
bear’s ear does not exist in earlier frames, and suddenly appears. This also reflects the degradation
of subject consistency.

Quality: VBench evaluates the quality from both the aesthetic (composition and color), and imag-
ing quality (clarity, exposure) dimension. Fig. 13 shows the example of Naive PTQ W8A8’s quality
degradation. The color notably turns blue, and the mountain on the left is blurred. Similar color
shifting degradation is also witnessed in Fig. 12c.
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(a) FP16

(b) ViDiT-Q: W8A8

(c) Naive PTQ: W8A8

Figure 11: The qualitative results on VBench about the ViDiT-Q’s ability to maintain the dy-
namic degree.
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(a) FP16

(b) ViDiT-Q: W8A8

(c) Naive PTQ: W8A8

Figure 12: The qualitative results on VBench about the ViDiT-Q’s ability to maintain the con-
sistency.
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(a) FP16

(b) ViDiT-Q: W8A8

(c) Naive PTQ: W8A8

Figure 13: The qualitative results on VBench about the ViDiT-Q’s ability to maintain the image
quality.
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C.2 TEXT-TO-IMAGE GENERATION ON COCO

We present more qualitative results of generated images by baseline quantization and ViDiT-Q quan-
tization in Fig. 14. As shown, the Naive PTQ’s generated images are highly blurred. While the
W8A8 images depict outlines of objects, the W4A8 images generate nearly pure noises. In con-
trast, ViDiT-Q generates images nearly identical to the FP16 ones, preserving both visual quality
and text-image alignment.

Figure 14: Qualitative results of text-to-image generation
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C.3 VISUALIZATION OF ABLATION STUDIES

We present the generated videos for the ablation studies in Tab. 2. As seen in Fig. 15, video quality
improves from blank images to similar to the FP16 baseline. For the challenging W4A8 quan-
tization, the baseline method generates blank images. After adding dynamic quantization, some
meaningful background (deep ocean) appears, but the main object (turtle) is still missing. Channel
balancing reduces color deviation (from dark blue to green-blue), but the main object remains un-
recognizable and changes significantly across frames (please refer to the supplementary materials
for the video). The static-dynamic channel balancing improves the consistency of the main object,
but notable degradation is still observed compared to the FP16 video. Finally, with mixed precision,
a similar generation quality to the FP16 baseline is achieved.”

Generated Videos Example of Ablation Studies: STDiT W4A8

Baseline + Dynamic
Quantization

+ Scaling Channel
Balancing

+ Static-Dynamic
Channel Balancing

+ Mixed Precision

Linear layer
9.5ms

Minmax
110 us

FlashAttention: 14.3%

FP16

“A serene underwater scene featuring a sea turtle swimming through a coral reef. The turtle, with its greenish-brown shell, is the main focus of the video, swimming gracefully towards the 
right side of the frame. The coral reef, teeming with life, is visible in the background, providing a vibrant and colorful backdrop to the turtle's journey. Several small fish, darting around the 
turtle, add a sense of movement and dynamism to the scene. The video is shot from a slightly elevated angle, providing a comprehensive view of the turtle's surroundings. The overall style of 
the video is calm and peaceful, capturing the beauty and tranquility of the underwater world.”
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Jetson Orin Nano

Normalized Latency of ViDiT-Q INT8

ViDiT-Q INT8 FP16
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Figure 15: Visualization of generated videos of ablation studies.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PERFORMANCE OF VIDIT-Q ON UCF-101 DATASET

In this section, we apply ViDiT-Q to both OpenSora HPC-AI (2024) Model and Latte Ma et al.
(2024) and evaluate them on UCF-101 Soomro et al. (2012) dataset.

Experimental Settings: Similar to the settings mentioned in Sec. Sec. 5.1, We select multi-aspects
metrics for more comprehensive evaluation. The commonly adopted FVD Unterthiner et al. (2019)
is also provided. Specifically, due to the lack of ground-truth videos for prompt-only datasets,
inspired by Tang et al. (2023), we also report FVD-FP16 which chooses the FP16 generated video
as ground-truth. The above metrics are evaluated on 101 prompts (1 for each class) for UCF-101.
We adopt the class-conditioned Latte model trained on UCF-101 and use the 20-steps DDIM solver
with CFG scale of 7.0 for it.

Experimental Results: Similar to the results on VBench and OpenSORA prompt sets, for both the
OpenSORA and Latte, the baseline quantization methods (Naive PTQ and Q-Diffusion) incur no-
table performance degradation under W8A8, and fails under W4A8. While SmoothQuant channel
balance technique could achieve good performance under W8A8, it still witnesses notable degra-
dation under W4A8. It is also worth noting that the FVD metrics are noisy when the number of
videos are relatively small, and the “FVD-FP16” metric could work as an effective alternative for
measuring quantization’s effect.

D.2 PERFORMANCE OF VIDIT-Q FOR SUPER RESOLUTION TASK.

ViDiT-Q addresses the core problem of reducing quantization error by analyzing the distribution
of DiTs, making it highly compatible and generalizable to novel tasks that utilize DiTs. We have
extended the application of ViDiT-Q to the image super-resolution task using the recent InfDiT
model Yang et al. (2024). The statistics are presented in Tab. 4, and qualitative results in Fig. 16.

As could be seen, ViDiT-Q consistently maintains the performance of Inf-DiT across all bitwidths.
When quantizing the model under W4A8 with ViDiT-Q, the PSNR and SSIM scores of the quantized
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Table 3: Performance of text-to-video generation on UCF-101 Dataset.. The description of met-
rics is provided in Sec. 5.1, unless specified with ↓, higher metric values denote better performance.

Model Method Bit-width FVD(↓) FVD-FP16(↓) CLIPSIM CLIP-T VQA- VQA- ∆ Flow Temp.
(W/A) Aesthetic Technical Score. (↓) Flick.

STDiT

- 16/16 136.87 0.00 0.1996 0.9978 41.63 56.64 2.24 97.53

Naive PTQ 8/8 154.92 50.72 0.1993 0.9968 27.52 35.50 2.61 97.02
Q-Diffusion 8/8 144.77 74.97 0.1979 0.9964 32.88 44.42 2.50 96.71

SmoothQuant 8/8 109.24 48.78 0.1993 0.9971 39.19 52.64 2.53 97.21
ViDiT-Q 8/8 141.13 15.52 0.1995 0.9978 43.59 55.36 2.32 97.45

Naive PTQ 4/8 544.34 637.02 0.1868 0.9982 0.16 0.13 1.61 99.90
SmoothQuant 4/8 122.51 96.25 0.1960 0.9973 17.39 24.22 1.99 96.23

ViDiT-Q 4/8 136.54 77.43 0.1978 0.9976 20.76 25.65 1.94 96.51
ViDiT-Q-MP 4/8 129.10 60.13 0.1995 0.9977 33.98 47.65 1.8 9 97.57

Latte

- 16/16 99.90 0.00 0.1970 0.9963 36.33 91.23 3.37 96.22

Naive PTQ 8/8 98.75 73.82 0.1981 0.9950 27.62 50.52 3.53 95.35
ViDiT-Q 8/8 110.96 20.83 0.1959 0.9962 30.26 80.32 3.14 95.95

Naive PTQ 4/8 183.52 239.08 0.1719 0.9929 5.62 0.41 66.06 65.14
ViDiT-Q 4/8 95.04 79.11 0.1943 0.9971 21.76 32.17 2.84 95.57
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(W4A4-MP)

ViDiT-Q
(W2A8-MP)
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ViDiT-Q
(W4A8)
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(Quantize Block 0 Only)
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Figure 16: Qualitative results of generated super resolution image for Inf-DiT with ViDiT-Q
quantization.

model still achieve good performance, similar to FP16. We have supplemented the implementation
details as follows: We followed the settings used in the PixArt quantization experiments in our paper.
For the super-resolution implementation and model evaluation, we adhered as closely as possible to
the original setup. We fixed the image degradation to bicubic interpolation with 4× downsampling
and conducted the experiment on the DIV2K validation dataset. Additionally, unlike other super-
resolution models, Inf-DiT performs non-overlapping patch division on the downsampled images
during super-resolution. This means that the original image needs to be divisible by the product
of the super-resolution scale and the patch size. According to the original settings, the patch size
is set to 32. Therefore, we performed center cropping on the ground truth images to ensure the
image size is divisible by 128. Since the InfDiT official codebase Yang et al. (2024) did not provide
detailed evaluation code, we implemented the SSIM and PSNR calculations based on the popular
code repository from Saharia et al. (2021).

Table 4: Comparison of ViDiT-Q for Inf-DiT model for image super resolution.

Method PSNR SSIM
InfDiT FP16 25.8015 0.7307

InfDiT (ViDiT-Q W8A8) 25.8628 0.7318
InfDiT (ViDiT-Q W4A8) 26.0139 0.7249
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D.3 EFFICIENCY IMPROVEMENT ON DIFFERENT HARDWARE DEVICES

We present hardware experiments on the RTX3090 and Jetson Orin Nano (a low-power embedded
GPU with 7-10W power) in Fig. 17. The memory optimization for all platforms still achieves a
2x reduction, and the latency speedup varies slightly. On the RTX3090, we achieve a 1.6x latency
speedup, while on the Orin, we achieve approximately 1.82x speedup. This speedup could be further
improved by tuning the tiling parameters in the CUDA code, as different platforms have diverse
optimal tiling parameter setups due to varying hardware resources.

Generated Videos Example of Ablation Studies: STDiT W4A8

Baseline + Dynamic
Quantization

+ Scaling Channel
Balancing

+ Static-Dynamic
Channel Balancing

+ Mixed Precision

Linear layer
9.5ms

Minmax
110 us

FlashAttention: 14.3%

FP16

“A serene underwater scene featuring a sea turtle swimming through a coral reef. The turtle, with its greenish-brown shell, is the main focus of the video, swimming gracefully towards the 
right side of the frame. The coral reef, teeming with life, is visible in the background, providing a vibrant and colorful backdrop to the turtle's journey. Several small fish, darting around the 
turtle, add a sense of movement and dynamism to the scene. The video is shot from a slightly elevated angle, providing a comprehensive view of the turtle's surroundings. The overall style of 
the video is calm and peaceful, capturing the beauty and tranquility of the underwater world.”
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Generated Videos Example of Ablation Studies: STDiT W4A8

Baseline + Dynamic
Quantization

+ Scaling Channel
Balancing

+ Static-Dynamic
Channel Balancing

+ Mixed Precision

Linear layer
9.5ms

Minmax
110 us

FlashAttention: 14.3%

FP16

“A serene underwater scene featuring a sea turtle swimming through a coral reef. The turtle, with its greenish-brown shell, is the main focus of the video, swimming gracefully towards the 
right side of the frame. The coral reef, teeming with life, is visible in the background, providing a vibrant and colorful backdrop to the turtle's journey. Several small fish, darting around the 
turtle, add a sense of movement and dynamism to the scene. The video is shot from a slightly elevated angle, providing a comprehensive view of the turtle's surroundings. The overall style of 
the video is calm and peaceful, capturing the beauty and tranquility of the underwater world.”
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Figure 17: Comparison of ViDiT-Q’s efficiency improvement on different devices.

D.4 PERFORMANCE OF VIDIT-Q UNDER LOWER BITWIDTH.

Analysis of Lower Bitwidth from Hardware Perspective: For GPUs, both the activation and
weight need to be quantized into 4-bits to leverage efficient INT4 computation. In the current W4A8
implementation, the weights are quantized into 4-bits to save model size and memory cost, but
they must be upcasted to 8-bit for computation with 8-bit activation. Therefore, pursuing lower
bitwidths such as INT4 to fully utilize the potential of INT4 computation is definitely valid, and
W2A8 could further reduce the model size and memory consumption. The W4A2 may require
customized operator support, which is not currently supported by GPUs, and remains to be explored
as a future direction.

We present W4A8 in the main paper as a relatively “conservative” setting to ensure negligible
performance degradation. ViDiT-Q remains capable of generating images of good quality with a
mixed-precision plan. We have supplemented the experiments on text-to-image generation for the
Pixart-Sigma model. The statistical and qualitative examples are presented in Tab. 5 and Fig. 18 as
follows. The “ViDiT-Q W4A4-MP” plan employs mixed precision without careful tuning, assign-
ing 66.7% of the linear layers as W4A4 and the remaining rest as W8A8, resulting in an average
bitwidth of approximately W5A5. The “ViDiT-Q W2A8-MP” plan assigns around 50% of the linear
layers as W2A8 and the rest as W8A8, achieving an average bitwidth of approximately W5A8. 2-bit
weight quantization is particularly challenging and may require quantization-aware training to pre-
serve performance. Despite these challenges, ViDiT-Q performs well under lower bitwidth settings
(W4A4 & W2A8), achieving comparable or even higher metric values compared to Q-DiT W8A8.
As illustrated in the Fig. 18, even under ”aggressive compression” settings, the generated images
closely resemble those produced by FP models.

D.5 COMPARISON WITH GENERAL QUANTIZATION METHODS

we conducted experiments by adding the AdaRound Nagel et al. (2020) and BRECQ Li et al. (2021)
techniques as baselines for the OpenSORA model, the implementation details of quantization tech-
niques are set the same as Q-Diffusion, and the other implementation details are kept the same with
the main paper. The results are presented in Tab. 6.

As can be seen from the table, both the AdaRound and Brecq methods experience a moderate per-
formance drop compared to FP16, while ViDiT-Q achieves comparable results with the FP16 base-
line. For the more challenging W4A8 scenario, due to the significant channel-wise variation that
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Table 5: Comparison of performance under lower bitwidths (W4A4, W2A8) for Pixart-Sigma
text-to-image generation. The “ViDiT-Q W4A4 MP” stands for utilizing the mixed precision for
W4A4 quantization.

Method (Bitwidth) FID (↓) CLIP(↑) ImageReward(↑)
FP16 73.34 0.258 0.901

Q-DiT W8A8 73.60 0.256 0.854

ViDiT-Q W8A8 75.61 0.259 0.917
ViDiT-Q W4A8 74.33 0.257 0.887

ViDiT-Q W4A4-MP 74.56 0.257 0.861
ViDiT-Q W2A8-MP 75.32 0.256 0.843
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Figure 18: Qualitative results of ViDiT-Q generated images under lower bitwidth.

AdaRound and Brecq are not designed to handle, they fail to produce meaningful content, resulting
in near-zero VQA scores. This underscores the importance of specialized techniques to address the
channel imbalance problem effectively.

D.6 COMBINATION WITH ATTENTION QUANTIZAITON METHOD

Recent attention quantization method SageAttention Zhang et al. (2024) could reduce the cost of
attention computation in DiTs through quantizing the QK into 8 bits. ViDiT-Q and SageAttention
focus on different aspects of quantization. ViDiT-Q quantizes the linear layers, while SageAttention
accelerates the attention QK matrix multiplication. Therefore, these two methods can be seamlessly
combined to achieve better speedup. We applied SageAttention on top of the OpenSORA model
as presented in Tab. 7. Since the linear layers constitute the majority of the computational cost for
the model (more than 80%, as presented in Fig. 9), further introducing SageAttention will not cause
notable performance degradation but could moderately improve latency. We present the algorithm
performance and hardware efficiency as follows:

E ADDITIONAL ANALYSIS
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Table 6: Comparison with general quantization methods.

Method W/A CLIPSIM CLIP-Temp VQA-A VQA-T ∆ Flow Score
FP16 - 0.1797 0.9988 63.40 50.46 0

Adaround 8/8 0.1796 0.9983 52.90 29.84 0.2934
Brecq 8/8 0.1791 0.9983 48.27 31.98 0.3978

ViDiT-Q 8/8 0.1950 0.9991 60.70 54.64 0.0890

Adaround 4/8 0.9971 0.1648 0.272 0.151 0.4210
Brecq 4/8 0.1669 0.9963 0.085 0.077 0.4303

ViDiT-Q 4/8 0.1809 0.9989 60.62 49.38 0.1530

Table 7: Comparison of efficiency when combining with SageAttention.

Method Bit-width Memory Opt. Latency Opt.
- 16/16 - -

ViDiT-Q 8/8 1.99x 1.71x
ViDiT-Q + SageAttn 8/8 1.99x 1.72x

E.1 COMPARISON WITH BASELINE QUANTIZATION METHODOLOGY DESIGN

We present detailed comparison with existing quantization methods as follows:

Static and coarse-grained quantization parameters: Previous diffusion-based methods primarily
focused on CNN-based model quantization (PTQ4DM Shang et al. (2023), Q-Diffusion Li et al.
(2023)) adopt static and coarse-grained quantization parameters. The recent DiT-targeted quantiza-
tion method PTQ4DiT Wu et al. (2024) follows this scheme. Static and coarse-grained quantiza-
tion parameter determination assigns the same set of shared quantization parameters for activations
across different tokens, timesteps, and conditions. As illustrated in Fig. 2, the large data variation
across these dimensions incurs significant quantization errors, leading to substantial performance
degradation. We also collect their performances and present them in the table below. It demon-
strates that these baselines incur notable performance degradation under W8A8, and fails under
W4A8.

Channel group-wise and dynamic quantization parameters: Q-DiT Chen et al. (2024) adopts
dynamic and channel group-wise quantization parameters, where a group (64 to 128) of channels
shares the same set of quantization parameters. This approach can handle channel-wise imbalance
to some extent, and the ”dynamic quantization” addresses variation across timesteps. However, all
tokens still share the same set of quantization parameters, which is problematic for video generation
models where token-wise variation is significant. This method still faces severe quality degradation.
Additionally, having different quantization parameters for different channels introduces challenges
for efficient CUDA implementation. As seen from the table below, the Q-DiT incurs notable perfor-
mance degradation under W8A8, and fails under W4A8.

Timestep-wise static quantization parameters: Previous diffusion-based quantization methods
that adopt static quantization parameters often determine timestep-wise quantization parameters
through careful calibration (PTQ4DM Shang et al. (2023), Q-Diffusion Li et al. (2023)) and
gradient-based optimization (TDQ So et al. (2024)). The existing methods for handling timestep-
wise variation have the following disadvantages compared to simple dynamic quantization: (1) The
process of determining timestep-wise quantization parameters could be costly: This process
requires iterating the model multiple times for calibrating timestep-wise activation quantization, and
parameter tuning like TDQ incurs additional training costs. In contrast, adopting dynamic quan-
tization requires no overhead for determining parameters for each timestep. (2) The determined
timestep-wise quantization parameters may face challenges in generalizing across different
timesteps and solvers: Static timestep-wise quantization parameters need to be calibrated and de-
termined offline. However, in practical usage, the diffusion model can be inferred with different
numbers of timesteps and different solvers. Whether the timestep-wise quantization parameters
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can generalize to unseen solvers or numbers of sampling steps remains challenging. (3) Dynamic
quantization acts as the algorithm performance upper bound for solving timestep-wise quan-
tization: The primary goal of timestep-wise quantization parameters is to reduce the quantization
error caused by sharing the same set of quantization parameters across different timesteps. However,
when employing dynamic quantization, no sharing of quantization parameters is involved, and such
error is minimized. (4) Comparison of hardware overhead: A potential downside of dynamic
quantization is the overhead involved in the online calculation of quantization parameters compared
to static schemes that determine these parameters offline. As seen in Table, we have implemented
efficient CUDA kernels, demonstrating that such overhead is acceptable (1.74x to 1.71x), while
significantly improving algorithm performance by introducing dynamic quantization.

E.2 HARDWARE IMPLEMENTATION OF QUANTIZED LINEAR LAYERS.

We present the process of quantized GEMM (General Matrix to Matrix Multiplication) in linear
layers. It involves the following steps. Given a weights matrix of shape [Cin, Cout] and an ac-
tivation matrix of shape [Ntoken, Cin], the matrix multiplication process can be described in the
Figure Fig. 19. As can be seen, the elements for each row of the weight matrix and each column
of the activation matrix need to be summed together. These values should share the same quantiza-
tion parameter for efficient processing (so that the process of ”integer computation with summation
WintXint” and ”multiplying by the quantization parameters swsx” can be conducted separately).
Therefore, the weight matrix should have ”output-channel-wise” quantization parameters, and the
activation matrix should have ”channel-wise” quantization parameters.
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Figure 19: Hardware implementation of quantized linear layer computation. The yellow bar
stands for the quantization parameters s, z.

E.3 ANALYSIS OF METRIC DECOUPLED ANALYSIS

E.3.1 MOTIVATION FOR METRIC DECOUPLE

We verify the motivation of metric decoupled analysis through analyzing the layer type’s correlation
with the metric values. We compare and present each layer’s sensitivity with respect to the metric
value of each aspect in Fig. 20. The values are calculated as follows: Firstly, we calculate the relative
metric value difference (MetricsFP −MetricQ)/MetricFP. Then, we perform Z-score standardization
for all values to ensure their values are within range of [0,1]. Next, we apply softmax to make
each layer type’s effect on different metrics sum to one. As can be seen, each layer type shows
significant correlation with a certain metric, which corresponds to the model design. For instance,
cross-attention, which is conducted between pixel and text embeddings, affects text-video alignment,
and temporal attention, which models aggregation across frames, primarily affects the temporal
consistency-related metric FlowScore. Despite some layer type (SeldfAttn) are sensitive to multiple
metrics simultaneously, all layer types have a major focus on some aspects. The layer type that best
fits the ”sensitive to multiple metrics” category is the self-attention layers, which still predominantly
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affect visual quality (0.6232) compared to other aspects (0.2364 and 0.1404). This still supports the
motivation of adopting the metric decoupling approach.

Figure 20: Visualization of correlation between layer types and metric values.

E.3.2 DETAILED PROCESS OF METRIC DECOUPLED ANALYSIS

The metric-decoupled sensitivity analysis we introduced is a generalized framework that can be
adapted to different tasks and models. It consists of three steps.

(1) Firstly, for a specific task (especially generative tasks), we need to identify common aspects
that are typically evaluated and select corresponding metrics for them. These metrics can be chosen
based on popular evaluation settings. For example, for video generation, we might consider visual
quality (VQA), temporal consistency (FlowScore), and text-video alignment (CLIPSIM); for image
generation, we might consider fidelity (FID) and text-image alignment (CLIP-Score).

(2) Next, we need to analyze how each part of the network affects these metric values. Given the
large number of layers, we can group similar layers and conduct group-wise evaluation (for instance,
grouping layers by operator types such as self-attention, cross-attention, and temporal attention).
We can plot a heatmap (as seen in Appendix Section) to discover the correlation between layers and
certain aspects. This correlation is intrinsically linked because of how the model is designed (for
example, cross-attention strongly correlates with text-video alignment, as it is designed to model the
correlation between text and image embeddings, and similarly for temporal attention). In addition
to video generation, we observe similar phenomena in text-to-image generation with Pixart, where
cross-attention layers primarily correlate with image-text alignment, and for self-attention and FFN
layers with quality. Such findings could help us design ”how to decouple the metrics”.

(3) Finally, we need to ”decouple” the effect on each layer type to obtain relative importance for
more accurate sensitivity. With the guidance of the correlation from the previous step, we measure
the relative importance of certain metrics (for instance, comparing all CrossAttn layers with their
relative effect on CLIPSIM as sensitivity). The advantage of the ”decouple” is two-folder. (1) It re-
duces the vast search space of jointly searching for each layer (by comparing only within groups). (2)
It resolves the issue of different metrics’ absolute value changes not being directly comparable. By
carefully selecting the mixed precision plan for each group, it helps preserve multi-aspect metrics,
avoiding the search from over-emphasizing certain aspects and causing failures in others. As pre-
sented in the results below and the qualitative results in Appendix, incorporating metric-decoupled
analysis instead of joint search allows the generated quality to preserve multi-aspect metrics simul-
taneously.

E.3.3 COMPARISON OF DIFFERENT MIXED PRECISION SEARCH METHOD.

We compare the “MSE-based”, “Multiple metrics joint search based” mixed precision sensitivity
analysis with metric decoupled analysis to demonstrate the effectiveness of metric decoupled mixed
precision. As could be seen in Tab. 8, both the “MSE-based” and “Multiple metrics joint search
based” achieves even worse results than uniform W4A8. We conclude the potential reasons for
their failures as follows: For “MSE-based” analysis, as we discussed in Sec. 4.3, the MSE error
could not accurately depict the changes in multiple aspects for video generation task. For “Multiple
metrics joint search based”, firstly, balancing the effect of different metrics is a non-trivial problem.
Due to the diverse forms of various metrics, the absolute values of their changes cannot be directly
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Method CLIPSIM CLIP-Temp VQA-A VQA-T ∆ Flow Score
Without Mixed Precision 0.181 0.999 60.216 42.257 0.151

MSE-based Search 0.179 0.999 53.335 38.729 0.258
Multiple Metrics Joint Search 0.179 0.999 51.256 35.412 0.279

Metric Decoupled Search 0.199 0.999 60.616 49.383 0.334

Table 8: Comparison of different mixed precision analysis schemes under W4A8.

compared. Therefore, we introduce metric decoupled analysis to ensure that each layer’s sensitivity
is measured with comparing with layers that have similar effects. To a certain extent, this approach
demonstrates the principles of “controlled variable analysis”.
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