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ABSTRACT

Secure aggregation of user update vectors (e.g. gradients) has become a criti-
cal issue in the field of federated learning. Many Secure Aggregation Protocols
(SAPs) face exorbitant computation costs, severely constraining their applicabil-
ity. Given the observation that a considerable portion of SAP’s computation bur-
den stems from processing each entry in the private vectors, we propose Partial
Vector Freezing (PVF), a portable module for compressing computation costs
without introducing additional communication overhead. A-SecAgg, which inte-
grates SAP with PVF, “freezes” a substantial portion of the private vector through
specific transformations, requiring only % of the original vector to participate in
SAP. Eventually, users can “thaw” the public sum of the “frozen entries” by the
result of SAP. To avoid potential privacy leakage, we devise Disrupting Variables
Element for PVF. We demonstrate that PVF can seamlessly integrate with various
SAPs and it poses no threat to user privacy in the semi-honest and active adver-
sary settings. We include 7 baselines, encompassing 5 distinct types of masking
schemes, and explore the acceleration effects of PVF on these SAPs. Empirical
investigations indicate that when A = 100, PVF yields up to 99.5x speedup and
up to 32.3 X communication reduction.

1 INTRODUCTION

Machine learning technologies are applied in countless fields to improve service performance. How-
ever, aggregating large amounts of data for big data mining raises concerns regarding data pri-
vacy (Liu et al.l 2021). Federated Learning (FL) (McMahan et al.,|2017) keeps original data on the
local devices while only requiring data owners to submit local training updates to a central server.
Nonetheless, as |Zhu et al. (2019) and |Geiping et al.| (2020) indicate, attackers can infer a user’s
local data by reversing the submitted updates. To address this issue, numerous research efforts have
been focusing on Secure Aggregation Protocols (SAPs) (Liu et al., 2022b) for aggregating all user’s
model information while preserving individual privacy.

The widely discussed SAPs are based on Secure Multi-Party Computation (SMPC) (Xu et al., 2022}
Sotthiwat et al., 2021), Mask (Bonawitz et al., |[2017), Homomorphic Encryption (HE) (Aono et al.,
2017) and Differential Privacy (DP) (Wei et al.,|2020). For most SAPs, except for DP-based ones,
the computation overhead often scales proportionally with the length of the model update vectors
since most of these schemes involve masking (encrypting) each entry of the vector sequentially.
Therefore the computation time for both masking and unmasking always experiences a steep esca-
lation with the increase in vector length, as PracAgg (Bonawitz et al.,[2017) in Figure[l] significantly
constraining real-world applications. Especially in recent applications that utilize FL to fine tune
Large Language Models (LLMs) (Ye et al., [2024) with billions of parameters, the computational
overhead brought by SAP is unbearable.

On the other hand, DP-based solutions although have the best efficiencies, many studies (Stevens
et al.,|2022; [Wang et al.l |2021) posit that the minimal noise added by DP is insufficient to thwart
attacks such as gradient inversion aimed at stealing users’ local data, where adversaries can recover
flawed but recognizable handwritten digit image (Wang et al.,[2021)). Therefore the security of DP in
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secure aggregation faces challenges, necessitating its combination with masking to bolster privacy.
In this work, we primarily explore methods to alleviate masking-related overhead.

Our proposal. We think the root cause of computation overhead in SAPs is masking each entry
of the original vector. While a few sparsification-related approaches (Ergun et al [2021; Lu et al.,
2023) try to reduce the dimensions of uploaded vectors, they raise an inevitable trade-off of dis-
carding some information. In this work, we propose Partial Vector Freezing (PVF) to reduce the
number of entries processed in SAPs while ensuring intact aggregation of all entries in the original
vector. Within the module, each user performs certain transformations on the original vector at a
negligible computation cost to selectively freeze most entries of the user’s original vector, compress-
ing the length of the vector involved in SAPs to % of its original size () is the compression factor).
The communication overhead and number of communication interactions in SAPs after integrating
PVEF, which we call A-SecAgg, do not increase. Further, we propose Disrupting Variables Ele-
ment to prevent PVF from leaking the linear relationship between vectors. PVF remains decoupled
from SAPs and guarantees individual user privacy under semi-honest and active adversary settings,
offering high portability.

Our contributions can be summarized as follows:

* We propose the PVF without incurring additional communication overhead or harming security. It
reduces the entries processed in SAP while ensuring the aggregation of all entries in the origi-
nal vector, which means it can compress the computation overhead of SAP to approximately % of
the original. Moreover, it brings up to 32.3 x (A = 100) additional communication enhancements
for HE-based SAPs thanks to the decreased number of ciphertext entries.

* We propose the disrupting variables element to PVF to avoid potential privacy leakage.

» Extensive experiments show the effectiveness of our proposal. We include 7 baselines encom-
passing 5 types of masking schemes for a comprehensive overhead comparison, which is largely
unexplored in most research endeavors and reaffirms the high portability of PVFE.

2 RELATED WORK

Secure Aggregation Protocols. Various types of SAPs have been proposed, including SMPC-
based (Boer & Kramer| 2020; Xu et al.l 2022), HE-based (Aono et al., 2017; Ma et al., [2022} [Li1
et al.,|2022)), DP-based (Geyer et al., 2017; Wei et al., 2020), and Mask-based (Bonawitz et al.,[2017)
schemes. Most efforts to reduce computation cost focus on enhancing PracAgg (Bonawitz et al.
2017), which is mainly categorized into two types: (i) improving the masking mechanism (Liu et al.,
2022a};Stevens et al.,[2022; |Liu et al., 2022¢} |Wei et al., 2023)) to reduce masking-related overhead;
(i1) minimizing interaction-related overhead, including refining communication structures (Bell
et al., 2020; So et al.l [2021) and enhancing efficiency in key agreements among users (Kalikinkar
et al.} 2018;|Kadhe et al.,[2020; |[Ma et al.,2023). Note that the security of FL remains an open issue.
SAPs, though cannot fully guarantee FL security at the moment, remain a promising direction worth
exploration. The main objective of our work is to reduce the masking-related overhead of secure
aggregation, thereby making it more applicable in practice.
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Compression-based Techniques. [Rothchild et al.| (2020) employs a Count Sketch to compress
model updates. Additionally, some sparsification-based approaches (Ergun et al., [2021} |Lu et al.,
2023)) can reduce vector dimensions. Our method fundamentally differs from these schemes, as our
proposal compresses the entries involved in secure aggregation while retaining the intact aggrega-
tion result of all original entries.

Defense Against Malicious Server. Several works indicate the malicious server can launch Model
Inconsistency Attacks (Pasquini et al., [2022), Multi-round Privacy Stealing Attacks (So et al., 2023)
and Aggregation Falsification Attacks (Guo et al., |2021). These studies also propose strategies to
counter these attacks accordingly, only requiring minor modifications to the SAP process, as de-
scribed in Section 3.4

Input constraints. Several works (Bell et al.|[2023} Lycklama et al.,2023) are proposed to mitigate
Poisoning Attacks in FL. They delineate that the erroneous inputs of malicious users can result in
the server obtaining an inaccurate global model, thereby harming the training task. They propose
methodologies utilizing Zero-Knowledge Proofs to bound user inputs. However, their ability to pre-
vent poisoning attacks is limited (Ma et al., 2023)). Establishing strong constraints against malicious
inputs remains an unresolved challenge, and it falls beyond the scope of this work. What’s more,
Mozaffari et al.|(2023) propose Federated Rank Learning (FRL), where the server aggregates the
parameter rankings instead of the model parameter updates. It can effectively resist poisoning at-
tacks, and enable direct aggregations without any constraints on user submissions. Therefore, FRL
can be combined with SAP, and we do not have to worry about whether PVF can be integrated with
input constraints in this work.

3 PARTIAL VECTOR FREEZING

Scenario. In the ¢-th round of FL, the user set &/ = {uy,...,u,} conduct local model training
and submit model updates {x*®)};o, = {(;L'zl(t); ces xz,(f))}ieu (Original Vectors) to the server

S. There might be ) (< 30%) users that drop out during the aggregation due to network instabil-
ity or other reasons and U’ is the surviving user set. S aggregates the model updates to compute
Zieu’ () and redistributes the result to all users (Plain Aggregation). This iterative process con-
tinues until the completion of model training. SAPs can help obtain ), , x'®) while ensuring the
privacy of each individual 2'®), Similar to other SAPs (Bonawitz et al., 2017; [Stevens et al.,[2022),
we define the elements of '®) (i € [1,n]) within Z, for some large public prime p and assume
there is a secure communication channel between each user and S. In this section, our emphasis
lies in introducing the computation methodology of PVF, specifically considering a single-round
aggregation process with superscript “(¥)”” omitted. To ensure multi-round privacy, employing a spe-
cialized user selection mechanism for each round is sufficient (Liu et al.,|[2023}; |So et al.,|2023)). For
the summary of notations, please refer to Appendix

Threat model: Corrupt participants endeavor to infer the privacy of honest parties based on the
messages they receive, i.e., the Semi-honest Model, and can fabricate messages, i.e., the Active
Adversary Model. We assume malicious users do not exceed one-third of the total users, aligned with
PracAgg (Bonawitz et al.||2017) and EffiAgg (Liu et al.| 2022a)). The lenient security assumptions of
PVF allow its easy integration with secure aggregation protocols. When integrating with a SAP, the
security assumptions originally employed in the corresponding protocol are adopted and we assume
the integrated SAP can reliably ensure the privacy of inputs.

3.1 MOTIVATION

Within SAP, every minor operation on an entry accumulates /m times, ultimately imposing significant
computational burdens on devices. For example, u; in PracAgg needs to perform the following
calculations on each entry z of " (b and s are user secret keys, PRG is a pseudorandom number
generator):

y; =5 +PRG(b:) + > PRG(sin) — ) PRG(sn:). (1)

hel:i<h heU:i>h

Based on these observations, we try to reduce the number of entries processed in secure aggregation
while ensuring users receive all entries of the aggregated vector. To accomplish this objective, our
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Figure 4: Workflow of A-SecAgg with Main PVFE.

mindset is to devise a module that can freeze certain entries (Frozen Entries) of the user’s original
vector, and only perform secure aggregation on the other entries (SecAgg Entries). Upon SAP com-
pletion, this module thaws the frozen entries, ensuring that their privacy is well protected throughout
the entire process.

Definition 1. Given an invertible A x A matrix A and a segment of original vector x = (x1;...;xTy),
we define Incomplete Matrix A = A.\_1 . and Residual Vector o« = A .. The function for finding
the solution set of a system of linear equations is:

SLEAK(Aa:) — x, 2)

where AK denotes the additional knowledge. We use rank(-) represents the rank of a matrix. Since
rank(A) = rank(A, Ax) = ) the system of linear equations has a unique solution x. However,
due to rank(A) = rank(A, Ax) < ), the system has an infinitude of solutions (Suetin et al.
1989), also called an Under-determined System of Linear Equations.

It can be seen that when A and Az are known, in the absence of knowledge about ccx, & presents
an infinite set of possibilities, rendering it impossible to determine that specific confidential vector.
Motivated by this, we propose PVF.

3.2 MAIN METHOD

In this section, we present the computation process of the Main PVF module during a single aggre-
gation round, depicted by the workflow shown in Figure

Phase 0: Main.Setup(-). Generate an invertible matrix A € Z;}X)‘ randomly, and obtain ALl A,
o, which are all public parameters. We refer to A as the Compression Factor.

Phase 1: Main.Freeze(-). Fori € [1, n] randomly pad m to ensure the length of the padded vector
isa multlple of A. The padded vector is x,,,, = = (x%;2%;...;2! ), where m’ = [\. Then divide

! oa INto [ groups: x} , = (di;db;.. .7dl), where d} = (m(j71)>\+1?$1('j71)>\+2§ -.;ahy). Use

the 1ncomplete matrix A to compute Frozen Vector:

y' = (y{,,y?) = ((yiv"wyg\fl)? ’ (l/'(izf1),\+1v e 7y2l71)/\+/\*1)) 3)
= (Adi,..., Ad)),
and use the residual vector to compute Key Vector:
k'=(ki,....k{) = (adi,...,ad}). @)

Phase 2: Main.SecAgg(-). Users and S execute SAP, where the vector to be aggregated of user ¢
is k' = (ki,ki,... k}) € Z;. We require all users to send their respective y° to S during SAP,
thus eliminatlng the need for additional interactions. Upon completion of SAP, the surviving user
set Y’ and S can receive the aggregated result of the key vectors: Y, k' or Enc(}", o, k') (in

HE-based SAPs). Then S computes > ;s y*, immune to the impact of dropout users.

Phase 3: Main.Thaw(-). Thawing can be executed either at the server or user side, without com-
promising privacy and incurring any additional communication:
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(1) Thawing on the server side. Based on the acquired Y., k" and 3., y*, S can derive the
aggregated result sum. The correctness stems from the linearity of A and a:

L ((Zyizki)»w(nyvzkli)) - ((ZAdi,Zki),...,(ZAd},ZkZ))

iceu’ ieu’ iceu’ e’ ieu’ ieu’ e’ e’ (5)
= <§ Ady,. D :Ad}) = <A§ di,....AY d;)
icu’ e’ icu’ e’

Since A1 and z are public, S can thaw frozen vectors and compute the aggregated results of all
entries in the original vector by:

i -1 -1 i
E di=A""z2=A""A E (x9;28; ... 28),
= =

(6)

Z d=A"'z=A""A Z (TGo1)At13 T—yages - -3 T00)-
icu’ icu’
At this point, S completes the thawing phase and obtain:

sum:(Zdi;...;de)=<Zx§;...;2xf/\>=2:w;ad. (7
ieu’ ieu’ ieu’ ieu’ ieu’

Subsequently, it transmits sum to all online users. Upon receiving sum, users can obtain the final
aggregated result by removing the padding.

(2) Thawing on the user side. In certain SAPs (Aono et al., 2017;|Xu et al.,[2022), the aggregated re-
sults remain invisible to S to ensure the protection of users’ intellectual property, among other goals.
In such situations, S cannot perform the thawing. Instead, S sends >, .., y* and Enc(d_, ., k*)

to all surviving users. Users locally decrypt Enc(} ;. k%) and perform the thawing process to
obtain sum. By removing the padding, users attain the final aggregated result.

3.3 DISRUPTING VARIABLES ELEMENT

While the server cannot obtain any individual element of 2 within Main PVF, it still obtains certain
linear relationships involving the private entries. In this section, we present improvements to the
Main PVF to ensure that the server cannot obtain any information about * from y°*.

Firstly, we improve the process of generating y; (ignoring the superscript ““” for clarity) in Equa-
tion (3)) as follows:

Anp(@g-ap HRet ek ) e Az H R e R = ygooan
®)

L
X

Ax11(@goyaer H R+ k[ J) +o+ Az + kl—HJ +- 4 k) =y

where j € [1,1] and k is the same as in Equation . Similar to Equation , upon thawing, the
following can be derived:

A zgoya) o F A Tn) = 2 YG-na — 2 Zoeu,,\] Ao ng[(aﬂ)ﬁjﬂ,a[ﬂ] K

: , )
A1) o Aia Qo an) = 2 yia-1 = 2 Xoen n Ar-10 Zrefo-1) [ £ | +1,0] L] Fr

A1 monar) +o A win) = 20k

where the right side can be obtained given > k' is known. Then, Y @’ can be determined and the
thawing phase is successfully completed. This improvement aims at complicating the relationships
among entries. It can be seen that this additional operation only adds some vector-vector additions,
which brings negligible computational overhead.

Secondly, similar to many hybrid schemes combining mask and DP (Bonawitz et al., 2017; Stevens
et al., 2022; [Liu et al.} 2022c) (or encryption and DP (Wang et al., [2021)), DVE adds noise to =’
before aggregation to enhance privacy by:

=z +e, (10)
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where the Gaussian noise e ~ N(0,02). Andy* = A(z'+e) = Az’ +e’ (A is public). Therefore,
given a uniformly random vector w®, Lemma [3|in Appendix ensures that (A, y*) and (A, w?)
are indistinguishable, which guarantees S does not obtain private information from honest users
through frozen vectors. For clarity and conciseness, we do not differentiate the symbols of the
original vector before and after adding noise.

3.4 INTEGRATING PVF WITH DIFFERENT SAPS

To resist model inconsistency attacks, appending the hash of the received model to the pseudo-
random generator seed is sufficient, without incurring additional overhead (Ma et al.| [2023)). And
utilizing an innovative user selection mechanism (So et al., 2023 [Liu et al., 2023) is able to achieve
multi-round privacy. To resist aggregation falsification attacks, verifiable protocols (Hahn et al.,
2023)) are able to verify the aggregation results through commitments sent by S, and we provide Re-
sult Verification Extension in Appendix [B.2]to enable PVF to integrate with such SAP. The pipeline
of A-SecAgg is shown in Figure[I3] For the detailed portability analysis, please refer to Appendix[C]

4 SECURITY ANALYSIS

Evidently, the information that adversaries can obtain about an honest participant only includes
sum and under-determined systems of linear equations (y*). Randomly generating A and per-
forming certain pre-checks (as Section 4.1, the under-determined systems of linear equations can
effectively preserve the privacy of each entry, which is also adopted by [Liu et al.| (2023). And in
Section 4.2 we demonstrate adversaries cannot access x* throughout \-SecAgg process.

4.1 PRIVACY OF EACH ELEMENT

In cases of improper selection of A, S can access the privacy of some specific elements within an
original vector (if without DVE), as illustrated in Example[D.I} In the implementation, we initially
generate A randomly, and we transform A into Reduced Row Echelon Form and verify that no
element can be deduced. This ensures privacy of every element. Unless specified otherwise, all
subsequent references to A in the following text are designed to guarantee each element privacy.

4.2 SECURITY ANALYSIS OF ENTIRE VECTORS

Protocol security requires that adversaries can not obtain private information of any individual hon-
est participant. The view of a participant consists of its internal information and received messages.
Given a SAP that can maintain security in the active adversary setting, Theorem [1| guarantees its
security when integrated with PVF. Theorem I]demonstrates the information revealed during a real
execution is indistinguishable from that obtained through a random simulation. The proof of The-
orem |l|is is carried out in a Random Oracle model. In this model, we define a trapdoor function
to inform SIM of the sum of existing honest users’ private information. During one execution of
the protocol, STM can only access it once to obtain necessary information. Let C denote the set of
malicious participants, which is a subset of U/ U {S}. The ideal function is defined as follows:

S el LS U\C)and |L| > {%}
Ideal(giy, . . (L) =< icL . (11)
1, otherwise

Theorem 1 (Security against malicious participants). Let REALZ(}{’)‘({wi}ieu,Z/l’) denote a ran-
dom variable representing the joint view of adversaries in an actual protocol execution and
SIMZé{’)‘({:ci}ieu,L{’) denote the joint view of adversaries in a simulated protocol execution. For

all X > 2,U,x!,,U', C C UU{S} and SAP that can ensure privacy in the active adversary
setting, there exists a PPT simulator SIM such that:

SIME (@' }ieu,U') = REALE ({a'Yieu, U, (12)
where “=" denotes the distributions are identical.

The proof of the theorem is provided in Appendix
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5 EVALUATION

5.1 THEORETICAL COMPLEXITY ANALYSIS

Communication. PVF does not increase interaction-related overhead. The vectors sent from each
) PN ) m . . . - /
user are y* € Zz(, %] and k' € Z " ', which contain the same number of entries as x;,,, € Z;" .

Hence, the theoretical communication complexity of SAP remains unchanged.

Computation. The additional computation operations required by PVF involve conducting [ %]
matrix-vector multiplications by both users and S, incurring a computation cost of O(Am).

The theoretical complexity for one aggregation of users and S, before and after PVF integration, is
summarized in Tabled] For the method to avoid padding, please refer to Appendix [E.4]

5.2 EXPERIMENTAL SETTINGS
Baselines. We include 7 baselines that encompass 5 types of masking (encryption) schemes:

* PPDL (Aono et al.,[2017)), utilizing Single-private-key HE (Type 1), safeguards the global model,
all while necessitating only a single interaction round between the users and S.

* EPPFL (Lietal.,2022), relying on Multi-private-key HE (Type 2), requires two interaction round.

* NIVP-DS (Xu et al.,[2022), based on SMPC (Type 3), requires two non-colluding servers, while
involving only a single interaction round.

* PracAgg (Bonawitz et al.,|2017), based on Pair-wise Masking (Type 4), is widely regarded as the
state of the art, involving multiple interactions rounds.

* PracAgg+ (Bell et al.|[2020), a type-4 scheme, exhibits a more efficient communication structure.

» EffiAgg (Liuetal.,|2022a), based on Non-pair-wise Masking (Type 5), requires server computation
of discrete logarithms alongside multiple interactions between users and S.

* LPPFedL (Wei et al. |2023), based on non-pair-wise masking, necessitates users to transmit mul-
tiple high-dimensional vectors along with multiple interactions.

To underscore the focal point of our work, our attention is exclusively directed towards secure-
aggregation-related operations within the baselines, omitting other parts like “weight aggregation”
in EPPFL. And masking schemes of other protocols that reduce interaction-related can be classified
into the above five types, like Flamingo (Ma et al.}[2023)) (type 4), LTPA (Liu et al.}[2023)) (type 4).

Experimental settings. We run on a Linux workstation with 32GB of RAM and an AMD Ryzen 5
5600G. We use 1 NVIDIA GeForce RTX 3090 GPU only for model training, excluding the aggre-
gation process. In all experimental settings, the space of the elements in the input vectors is 32-bit.
Same with PracAgg, our main experiments are conducted under a semi-honest setting, with a spe-
cific focus on assessing the speed enhancement brought by PVF. We disregard operations such as
digital signatures and public key infrastructure in the active adversary setting, which do not impact
the asymptotics of the results (Bonawitz et al., 2017).

. . __ Time of (un)masking w/o PVF .
Evaluation Metrics. We use Improvement Factor = — == (anymasking w/ PVE (speedup) to describe

the efficacy of PVF. When evaluating communication overhead, we track costs for a single user, with
the costs of S being n times that of each user, a convention widely adopted in prior works (Liu et al.,
2022a)). The experimental results provided are the average outcomes from 5 repeated executions.

5.3 PERFORMANCE COMPARISON

Effectiveness of compressing costs. Results in Table [1| indicate that integrating PVF can yield
a speedup ranging from 70X to 99.5X for the majority of baselines when A = 100. The inabil-
ity to achieve a Ax speedup is attributed to interaction-related overhead within SAP such as key
agreements and secret sharing. Overall, the gain from PVF is the weakest for LPPFedL. This is
because LPPFedL increases user communication overhead to achieve highly lightweight masking
and unmasking. Consequently, interaction-related overhead constitutes a more significant portion
of its computation time. As the original vector length increases from 100k to 500k, the proportion
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Table 1: Comparison of secure aggregation protocols computation time (in milliseconds) and com-
munication cost (in KB) before and after integrating PVF for a single round. The number of users n
is set to 100, with A set as 100. w/ denotes the corresponding protocol integrated with PVF.

Vector Length (m) | 100k | 500k
Operation Eachuser Server Server Server | Comm. Cost | Eachuser  Server Server Server | Comm. Cost
Dropout rate (1) 0% 0% 10% 30% 10% 0% 0% 10% 30% 10%
PPDL 139010 29759 27418 21789 27761 708579 149293 136155 107998 138679
w/ PVF 1401 304 283 225 859 7128 1571 1446 1133 4291
Improvement Factor | 99.2x 97.9x 96.8x 96.8X 32.3% 99.4% 95.0% 94.1% 95.3 % 32.3%
EPPFL 3464 755163 754261 749279 9962 17582 3763769 3732358 3745663 49798
w/ PVF 44 7686 7642 7711 681 219 38833 38924 39612 3400
Improvement Factor 78.7x 98.2x 98.7x 97.2X 14.6x 80.3x 97.0% 95.9% 94.6 X 14.6x
NIVP-DS 15 386 372 331 586 72 1902 1834 1789 2932
w/ PVF 13 10 9 12 586 63 49 44 39 2931
Improvement Factor 1.2x 38.6x 41.3x 27.6X \ 1.1x 38.9% 41.7x 45.9% \
PracAgg 13702 14249 139936 307031 785 73335 71607 697950 1515347 3910
w/ PVF 177 187 1472 3207 785 779 794 7063 15686 3910
Improvement Factor 77.4% 76.2x 95.1x 95.TXx \ 94.1x 90.2% 98.8 % 96.6 X \
PracAgg+ 2773 13973 39735 69623 782 14487 70359 197540 347055 3908
w/ PVF 38 159 410 724 782 179 787 2026 4319 3908
Improvement Factor | 72.9x  87.9x 97.0x 96.2x \ 80.9 % 89.4x 97.5x% 80.4 % \
EffiAgg 1227 537771 537329 539814 783 6014 2662161 2730404 2637768 3908
w/ PVF 32 5677 5702 6135 783 99 27175 27440 28068 3908
Improvement Factor | 38.3x  94.7x 94.2x  88.0X \ 60.7 % 98.0X  99.5x  94.0x \
LPPFedL 176 63 59 46 1564 846 319 291 218 7814
w/ PVF 22 21 20 17 1564 53 77 70 61 7814
Improvement Factor 8.0% 3.0x 3.0 2.7X \ 16.0x 4.1x 4.2X 3.6 X \

of time spent on masking or encryption rises, so PVF exhibits a more noticeable acceleration effect
for these SAPs in general. For PPDL and EPPFL (HE-based SAPs), only % of the original vector
is transformed into ciphertext. Therefore, PVF brings them communication improvements of about
32.3x and 14.6 x, respectively.

End-to-end comparison. In Figure |2} the model employed is LeNet (LeCun et al., |1998), con-
sisting of 61, 706 parameters. The dataset is MNIST (Deng, [2012)) with each user possessing local
data for only two labels. Across different aggregation methods, the model eventually achieves com-
mendable training outcomes, and the integration of PVF showcases a significant acceleration effect,
greatly reducing the training speed gap between using SAPs and plain aggregation. In Figure [3]
consistent with FetchSGD (Rothchild et al., [2020), we use the ResNet9 (with 6.5M parameters),
CIFAR10 dataset and PracAgg, with the optimal setting for FetchSGD and k£ = 50, 000 for both
FetchSGD and Top-k(Lu et al., [2023). It shows our method takes the least time and achieves the
best accuracy because both FetchSGD and Top-k require more overhead for compression and PVF
can ensure the intact aggregation of all entries in the original vector.

5.4 ABLATION STUDY

A. We conduct experiments to analyze the variation in the acceleration effect of PVF on all baselines
under different A values, as depicted in Figure |5| PVF exhibits a more pronounced acceleration
effect for participants with substantial original computational overhead, such as PPDL users. For
certain SAPs like EffiAgg, the improvement factor of S can reach up to 1000x. As X increases, the
improvement factor of PVF gradually stabilizes and may experience a slight decline in certain SAPs.
This trend emerges because when A becomes sufficiently large, the primary computational overhead
in secure aggregation shifts from masking-related overhead to interaction-related overhead like
secret sharing. It’s worth noting that when A reaches a certain threshold, for certain entities with
relatively low primary computational load, such as users in NIVP-DS and servers in LPPFedL,
integrating PVF may increase their computational overhead (improvement factor less than 1). This
occurs because the computation cost incurred by the linear transformation in PVF becomes notable.
But the gains from PVF for the servers in NIVP-DS and users in LPPFedL remain enticing, rendering
the cost of the PVF linear transformation negligible.

Disrupting Variables Element. We focus on the impact of DVE on the model’s performance in
this part. In the 32-bit input space, the o is set to 8783 (> %), which is equivalent to adding

noise with a standard deviation of 0.0409 (consistent with (Stevens et al., 2022)) to the aggregation
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Figure 5: Computation acceleration for secure Figure 6: The impact of DVE on model per-
aggregation brought by different A in PVE. n = formance in practical applications. In these two
100, m = 100k, and n = 10%. tasks, n = 100, n = 100, and A=100.

sum (float). And we explore the impact of DVE on model performance in two practical tasks: (i)
Image classification, with LeNet model and MNIST dataset; (ii) Movie recommendation, using
FedMF (Chai et al., 2020) model with the item embedding size of 32, i.e. 118,592 parameters in
total, and ML-IM (Harper & Konstan| [2015) dataset. As shown in Figure [] the impact of using
PracAgg integrated with DVE on model performance is negligible.

n. Figure [/| displays the speedup effect of PVF across different n. The speedup remains consis-
tently high for PracAgg+ and PPDL across various n. However, as n rises, the speedup for PracAgg
diminishes. This occurs because PracAgg necessitates multiple secret sharings for each user across
the entire user set, along with multiple secret reconstructions by S. These interaction-related over-
head increases more significantly as n increases. Nonetheless, even when n reaches 1000, the gain
brought by PVF for PracAgg servers remains above 85 X, with user gain still exceeding 55 X.
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Figure 7: The gain introduced by PVF with re- Figure 8: Additional computational overhead in-
spect to the number of users, with n = 10%. curred by PVF itself under different A and vector
m = 100k, and A = 100. lengths.

Transformation. The additional overhead of integrating PVF primarily arises from Equations (3),
(@) and (6). Figure[§]illustrates the overall additional computation costs of PVF concerning differ-
ent m and . It is evident that when A = 100 and the original vector length is substantial (reaching
200k), the computation time is less than 15 ms, nearly negligible compared to the computational
time saved by PVFE. As \ gradually increases while vector length remains fixed, the number of
loops during freezing and thawing computations decreases in the beginning because of the reduced
number of groups. When A exceeds 60 and continues to increase, the scale of matrix-vector multi-
plication gradually rises, consequently increasing the computation cost. However, this cost remains
consistently within the range of tens of milliseconds, posing a negligible computation burden.

6 CONCLUSION

We present a new perspective aimed at mitigating the formidable computation overhead of SAPs by
reducing the number of involved entries while ensuring intact secure aggregation of original vectors.
Based on this, we propose PVF, a concrete portable solution. After integrating with PVF, A-SecAgg
involves only % of original vectors. Moreover, we introduce the disrupting variables element to
improve security. Extensive experiments showcase the remarkable improvements in acceleration
and communication brought by PVF and its portability. Consequently, our method undoubtedly
renders SAPs genuinely feasible, promising inspiration for future research endeavors.
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A NOTATIONS

The primary notations used in this work are listed in Table

Table 2: Notations.

Symbol  Definition
n  Number of users
m  Length of original vectors
n  Dropout rate
A Compression factor
© The number of broken elements within every A elements
U  The user set
U’ The surviving user set
S The server
z'® Original vector of ¢ in the ¢-th round (with DP-based noise)
A A X x Ainvertible matrix
A™'  The inverse matrix of A
A The matrix composed only of the first A — 1 rows of A
a  The vector composed of the A-th row of A
APt A with p-security
ot a with p-security
SLEarx(Az) Function for computing & of Ax with the knowledge AK
i @ after padding
m’  Length of ac;(at()i
d;-(t) The j-th group of :Bl(at;
y*®  Frozen vector of w;@
GN  DP-based noise generated by the Gaussian mechanism
k'™ Key vector of :c;((fjl
¢®  Commitment vector of *(*)
¢! Corresponding random vector of ¢*¥)

B OPTIONAL EXTENSIONS

We introduce 3 optional extensions augmenting functionality and security for better portability:
(1) p-security Extension, which resists adversaries that possess prior knowledge of partial private
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vectors; (i) Result Verification Extension (RVE), which ensures the correctness of performing trans-
formations to prevent malicious server-side computations, and (iii) User Commitment Extension
(UCE), which ensures the uniqueness of users’ original vectors to prevent malicious attempts at in-
correct computations. The detailed pipeline for integrating PVF with all 4 extensions into SAP is
depicted in Figure

B.1 u-SECURITY EXTENSION

Threat. Consider an extreme scenario where an extremely powerful malicious server S somehow
obtains an element 3:25 of xt, although this is generally unrealistic in most cases. In this case, S,
during the PVF (without DVE) execution, would acquire X — 1 equations of the j-th group where x?
lies, namely y! = Ad in Equation , along with . This allows S to solve for all elements in the

7-th group. Even though only a very small fraction of original vectors, % is leaked, we still aim to
fortify against this. Assuming the adversary’s capability is to steal p (< A — 1) elements from each
group of x’.

We expand the definitions of incomglete matrix A, and residual vector a of PVF. We define

Incomplete Matrix with p-security AFTY = A.\_,—1,. and Residual Matrix with p-security
attl = A)_,.... Then Frozen Vector with ji-security is:

y' = (Artidi, Avtidy, . Artid)) (13)
and Key Vector with ji-security is:

ki = (a“Hdi, ol tidy, . a‘”‘ld;) . (14)

Clearly, the aforementioned changes won’t affect the execution process and security of PVF. How-
ever, the compression factor of PVF will decrease from A to ey (0 < p < A —1). With these
modifications, the adversary, apart from the known private elements, cannot obtain additional el-
ements from the execution of PVF. Particularly, in the methodology outlined in Section [3.2] we
consider p = 0.

B.2 RESULT VERIFICATION EXTENSION

Threat. The malicious server might intentionally provide incorrect aggregated results to disrupt
training, even if it doesn’t compromise user privacy. When integrating PVF with SAPs featuring
result verification capabilities, we contemplate incorporating RVE.

Most recent SAPs that can verify aggregated results typically necessitate honest and non-dropping
participants, such as Collectors (Wang et al.l [2023)) and Auxiliary Nodes (Eltaras et al., 2023), in-
troducing additional assumptions. Consequently, by utilizing this extension, we unavoidably add
security assumptions. Without loss of generality, we adopt the approach and security assumptions
from VerSA (Hahn et al.| 2023) for PVF, which requires the server and users not to collude but does
not need other trusted third parties. Most SAPs (Aono et al., 2017 Bonawitz et al.,|2017; Bell et al.,
2020; [L1 et al., 2022; [Xu et al.| [2022; [Liu et al.l 2022al; |[Stevens et al., |2022; |Wei et al.| [2023)) lack
the functionality to verify aggregated results. This extension merely constrains the server within the
PVF module to obtain the correct Ziew yi, and it allows secure integration of PVF and SAPs in
the face of aggregation falsification attacks.

Phase 0: MainRV.Setup(-). Execute Main.Setup(-).
Phase 1: MainRV.Freeze(-). Execute Main.Freeze(-).

Phase 2: MainRV.SecAgg(-). During the execution of VerSA, all users obtain a set of random
vectors (K1, k2) derived from shared keys. In the verification step, users send ¥ = k1y® and
1J° = y' + Ky to the server, which simultaneously aggregates ¥° and %°. In this process, the
verification of the sum of frozen vectors and the sum of key vectors is combined, avoiding additional
interaction. VerSA ensures users obtain a consistent /' and the correct ),/ k. Users also receive

Dicw Yrand 3o, 4
Phase 3: MainRV.Thaw(-). After receiving the results, users proceed with verification:

STy Nk = > G - U |k (15)

e’ ieu’
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y' is unknown to S throughout the process. If the verification passes, execute Main.Thaw(:) for
thawing on the user side. Otherwise, conclude that the server deviates from the protocol and termi-
nate the execution.

B.3 USER COMMITMENT EXTENSION

Threat. In PVF, if a malicious user ¢ uses inconsistent d; and d}i for freezing, resulting in obtaining

Adé and ad;?", or applies mismatched A and o' to dt for linear transformations, the frozen vector
and key vector no longer correspond. Although this remains harmless to the privacy of honest
users, it will lead to inaccuracies in the final aggregated result.

This malicious tampering is unrelated to SAPs. In the freezing phase of PVF, we use Pedersen Com-
mitment (Pedersen, |1991) to ensure users’ vector consistency. Note that, to enable verification, it’s
crucial to ensure that during the validation phase, the server is semi-honest and cannot collude with
users. Otherwise, a malicious server could illegitimately approve malicious user actions, making
user verification invalid, which is widely adopted in prior works (Rathee et al., 2023). Below, we
outline UCE to modify the Main method to achieve the aforementioned functionality. UCE supports
consistency verification of the user inputs in scenarios with advanced needs. Note that UCE is only
applicable to SAPs where the server has access to the aggregated results.

Phase 0: MainUC.Setup(-). Execute Main.Setup(-). Given the security parameter p, it generates
the group (G,,p,g), where p is the order of G, and g is its generator. h is an element of G,.
Gy, p, g, h are public.

Phase 1: MainUC.Freeze(:). The user i € [1,n] generates the Random Vector (' =
(¢3,¢5,-.., ¢, ) and calculates the Commitment Vector:

c = ((017---70/\) (AR (C(l—l)/\+17"‘7cl)\>>

= ((g”zl hCi’gT’; hC§7 . 7gT&hC;)7 ce (gm}l—l)k+l hcgl—l))\ﬁ»l’gm‘(bl—l)kﬁ»z hcél—l)k+27 L 7gm;A hq)\)'

(16)

Execute Main.Freeze(-).

Phase 2: MainUC.SecAgg(-). Execute Main.SecAgg(-), once completed, all users obtain the ag-
gregated result sum. Each user i sends ¢’ and ¢* to the server. For j € [1,I], r € [1,)], S
validates: )
H C’éj—l))\-iﬂ' = GG DA hieu! S— D+ (17)
icu’
If the validation fails, it implies the user deviates from the protocol, and the protocol is terminated.
Otherwise, it signifies that the user employs the consistent original vector when generating the frozen
vector and key vector, and the utilized public parameters are accurate.

Phase 3: MainUC.Thaw(-). Execute Main. Thaw(-).

Clearly, this extension will inevitably introduce a performance decrease. It’s worth noting that in
the majority of SAPs, many malicious user behaviors, such as incorrectly executing key agreements
or submitting counterfeited secret shares, result in aggregation errors. And strictly enforcing user
behavior remains a pending issue (Ma et al.|[2023).

C PORTABILITY ANALYSIS

PVF does not attempt to alter SAP, and the decoupling greatly enhances the portability. PPDL (Aono
et al.|[2017) and EPPFL (Li et al.| 2022) employ homomorphic encryption, eliminating the need for
secret sharing. NIVP-DS (Xu et al., 2022) constitutes a dual-server secure multi-party computation
scheme, requiring users to share secrets between two servers. PracAgg (Bonawitz et al.,[2017) and
PracAgg+ (Bell et al.l [2020) represent classic mask-based solutions, with PracAgg+ necessitating
an additional user grouping process. EffiAgg (Liu et al.| |2022a) and LPPFedL (Wei et al., 2023)
respectively introduce specialized masking mechanisms to lightweight PracAgg. VerSA (Hahn et al.|
2023)) enables users to verify the aggregated result at the conclusion, and its integration with PVF
requires RVE. LTPA (Liu et al.|[2023) and MRSA (So et al., |2023) individually design specific user
selection mechanisms to ensure privacy in multi-round aggregation. Resistance against model
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Table 3: Symbolic representation of SAP execution process without and with PVFE. The symbols’
meanings are as follows: US: User Selection; UG: User Grouping; K A: Key Agreements among
Users; SS: Secret Sharing; E/M: Encryption or Masking user’s original vectors; U A: Upload
and Aggregation; D /U: Decryption or Unmasking vectors; Ver: Verification of aggregated results;
F: Freezing process in PVF Main Method, generating frozen vectors and key vectors; 7": Thawing
process in PVF Main Method, deriving all entries based on aggregated entries; RV: Result Verifica-
tion Extension of PVF; X’: Specialized design for process X in the corresponding protocol; SA(-):
Operations involved in the aggregation process; [1: Protocol can execute in the semi-honest setting;
l: Protocol can execute in the active adversary setting.

Type Scheme w/o PVF w/ PVF
\ PlainAgg [US,UA] \
HE-based PPDL [US,SA(KA,E/M,UA,D/U)|n [US,F,SA(KA,E/M,UA,D/U),T)|n
EPPFL [US,SA(KA,E/M,UA,D/U)|n [US,F,SA(KA,E/M,UA,D/U),T|n
SMPC-based NIVP-DS [US,SA(KA,SS,E/M,UA,D/U)|n [US,F,SA(KA,SS,E/M,UA,D/U), T
PracAgg [US,SA(KA,SS,E/M,UA,D/U)|om [US,F,SA(KA,SS,E/M,UA,D/U),T|om
Mask-based PracAgg+ [US,SA(UG,KA,SS,E/M,UA,D/U)|qm [US,F,SA(UG,KA,SS,E/M,UA,D/U),T|om
EffiAgg [US,SA(KA,SS,E/M'.UA,D/U")|om [US,F,SA(KA,SS,E/M',UA,D/U"), T|om
LPPFedL [US,SA(KA,SS,E/M',UA,D/U") o [US,F,SA(KA,SS,E/M',UA,D/U"),T|n
Result Veri. VerSA [US,SA(KA,SS,E/M,UA,D/U,Ver)|g [US,F,SA(KA,SS,E/M,UA,D/U,Ver),RV,T|q
Multi. Privac LTPA [US',SA(KA,SS,E/M,UA,D/U)|n [US',F,SA(KA,SS,E/M,UA,D/U),T)n
’ y MRSA [US",SA(KA,SS,E/M,UA,D/U)|n [US',F,SA(KA,SS,E/M,UA,D/U),T)n
Resist. M. Incon. \ [US,SA(KA,SS,E/M',UA,D/U)|g [US,F,SA(KA,SS,E/M',UA,D/U),T|q

inconsistency attacks can be achieved by making slight modifications to PRG without incurring
additional overhead (Ma et al.| [2023)). PVF also fits the asynchronous setting. Since PVF itself is
one-shot and decoupled from specific SAP, it does not affect the one-shot masking or recovery in
asynchronous SAP (such as LightSecAgg (So et al.l [2022)). We symbolically represent the entire
process of federated learning aggregation in Table 3| It is evident that PVF is decoupled from SAPs,
not interfering with the internal execution process of SAP.

D DETAILED SECURITY ANALYSIS
D.1 EXAMPLE OF IMPROPER MATRIX

Example 1. Consider a 3 x 3 matrix:

1 2 3]
A=|1 3 3|, (18)
11 2 4]
which is an invertible matrix. The corresponding incomplete matrix is:
([t 2 3]
A= R (19)
Assume the original vector is © = (x1;z2;23) = (1;2;3), and the frozen vector is Ax =
(14,16). S obtains the under-determined system of linear equations as follows:
1 + 3z + 323 = 16 (ZZ)

While S cannot obtain the complete «, it can deduce x5 = 2 by (i¢) — (¢). Unlike S obtaining prior
knowledge of elements through attacks as discussed in Section[B.T] here, S deduces x5 = 2 through
the computation process within PVE. However, since A is public, any maliciously constructed A
can be easily detected by honest users.
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D.2 SUPPLEMENTARY CRYPTOGRAPHIC PRIMITIVES

Here, we supplement the symmetric authenticated encryption and the digital signature we require in
the active adversary model.

D.2.1 SYMMETRIC AUTHENTICATED ENCRYPTION
Symmetric authenticated encryption can ensure the confidentiality of a message, including:

» AFE.gen(k) — (sk), where k is the security parameter. It outputs a secret key sk.
» AE.enc(sk,m) — (c). It encrypts the message m using sk and outputs the ciphertext c.

o AE.dec(sk,c) — mor L. If sk is the correct key corresponding to the ciphertext ¢ and ¢ passes
integrity verification, it outputs the plaintext m. Otherwise, it outputs an error symbol.

We need the encryption scheme to be indistinguishable under chosen plaintext attacks (IND-CPA)
and ciphertext integrity (IND-CTXT) (Bellare & Namprempre, |2000). In Figure we omit the
encryption of messages before transmission and the decryption after reception by each participant.
If any error occurs during encryption or decryption process, the protocol will be immediately termi-
nated.

D.2.2 DIGITAL SIGNATURE

Digital signature can ensure the authenticity and integrity of a message. We use the signature scheme
that achieves security against universal forgery under chosen message attack (UF-CMA). The digital
signature scheme consists of:

» DS.gen(k) — (sk, pk), where k is the security parameter. It outputs a secret key sk and a public
key pk.

» DS.sign(sk,m) — (sig). It outputs a digital signature sig on the message m.

» DS.werify(sig, pk, m) — True or False. It verifies whether the signature sig is valid on m.

D.3 DETAILED EXPLANATION AND PROOF OF THEOREM 1

First and foremost, it is evident that in PVF, the user only transmits y* to the server, and the server
only sends Y y? back to the users after SAP ends. Notably, k' and > k* are transmitted through
the SAP, independent of PVF. In the active adversary model, we obviously cannot guarantee the
correctness of the aggregation result because the malicious server can arbitrarily modify the result.
However, we can guarantee the privacy of honest users’ inputs. We provide a detailed explanation
of the active attacks that malicious participants can launch within PVF and how PVF leverages the
cryptographic primitives to defend against them.

» Forging fake users to participate in PVFE. This type of attack, also known as a Sybil Attack, involves
fake users reporting received information to the server. Such attacks primarily target scenarios
where users share secret keys among themselves but keep the keys secret from the server, like
PPDL. Alternatively, an attacker may attempt to forge a large number of fake users (more than
%\Z/l ) to reconstruct users’ private keys in the secret-sharing scheme. Since PVF does not involve
information that is kept secret from the server but shared among all users, and consistent with the
assumption in PracAgg that the number of malicious users does not exceed %|Z/{ |, PVF is resistant
to this type of attack.

* Attempting to forge or tamper with honest users’ messages. Such attacks may occur in PVF in the
following situations: malicious participants forging or tampering with an honest user’s y*. This
can be avoided by the digital signature o employed in PVF. Similarly, malicious participants may
attempt to forge or tamper with > y? sent by the server, which is prevented by the use of 3.

* Sending malformed messages. In PVF, such attacks include malicious users sending malformed
ciphertexts of y* or the malicious server sending malformed ciphertexts of Y y*. Such attacks are
prevented by the IND-CPA and IND-CTXT security of the symmetric authenticated encryption
used in PVF. If decryption fails, the protocol is immediately terminated.
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* Intercepting and stealing private information. Malicious adversaries may intercept messages sent
by honest users to extract private information. This is effectively avoided by the symmetric au-
thenticated encryption employed in PVF.

The use of symmetric authenticated encryption and digital signatures to ensure privacy under the
active adversary model is a relatively mature application in the field of secure aggregation, and our
design follows these existing works. Then we present the following lemmas:

Lemma 1 4(Privacy during the freezing phase). Fix p, U, m, A, A and a private vector =
(dy,..., d?%]) (with noise) of an honest user i € U. For any probabilistic polynomial-time (PPT)
adversary M who is given {y"};cys and C, the advantage of M to obtain any unbroken element a; is
defined as: o

Ad’l}?w()\) = PT[SLEc(Ad;-) — aj]je[lﬁf%”. 20
There exists a negligible function € such that Adv¥;(\) < e.

Remark 1. The adversary can obtain I(\ — 1) independent equations, with I\ variables. Hence
there are infinite solutions, and the probability of M determining the unique (") is é

Lemma 2 (Privacy during the thawing phase). Fix p, U, m, A, A and the sum of private vectors
> icw x'. For any PPT adversary M who is given {y*}icy, C and ), ., k', the advantage of M
to obtain any unbroken element a; is defined as:

Adv§F () = Pr[SLEc(AY " di) = aj)jeqnr2)- (22)
jeu’
There exists a negligible function € such that Adv%f()\) <e.
Remark 2. S can obtain Zj cw d;- by Equatio_n @ or Equation @) For any individual dz- (with
noise), the information known to M is > d;- and Ad;-. So there are still infinite solutions, and

Adv¥f(\) = L.

oo

JjeU’

Lemma 3 (The hardness of the Learning With Errors decision problem). Given a finite field I, and
a discrete probability distribution X over F,. Let s € F}) be a secret vector, A € Fy*" be a matrix
that is chosen uniformly at random and e € F be the error vector that is sampled from X. (v, q, o)
parameterize an LWE instance, where o is the standard deviation of X. The Learning With Errors
(LWE) (search) problem is to find s, given the pair (A,b), where b = As+e. And the LWE decision
problem is to distinguish between two uniformly randomly generated pairs.

Remark 3. |Regev|(2009) shows that if the size of q is polynomial in v and X is a discrete Gaussian
2v/v

T the LWE decision problem is at least as hard as

distribution on IFy with standard deviation o >

the LWE search problem and solving the LWE search problem can be reduced to solving the Shortest
Vector Problem. In DVE, v = A, and we use Z,, as .

We use a standard hybrid argument to prove the theorem.

Proof. We define a sequence of hybrid distributions Hy, H1, . .. to denote a series of modifications
to REAL, which can finally get STM. We prove SIM and RE AL are indistinguishable by proving
two adjacent hybrids are indistinguishable.

Hy In this hybrid, STM is exactly the same as REAL.

H; This hybrid is distributed similarly to the previous one, except for the following modifications.
SIM obtains ;) x' by calling Ideal(giy, . . (U'\C). SIM aborts if there is an illegal
request. We replace the ciphertexts of {y'}icus with the ciphertexts of uniformly random vec-
tors {w' }icy that satisfy Y5, new' = Y cqnc ¥’ Dicunc Y’ can be can be computed
from Equation (@) based on ), cunce x'. The IND-CPA and IND-CTXT security of symmetric

authenticated encryption guarantees the distribution of this hybrid is indistinguishable from the
previous one.

Hj This hybrid is distributed exactly as the previous one, except SIM aborts if there is an invalid sig-
nature (o], 04 or 03). The UF-CMA security of the digital signature scheme can ensure C cannot
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forge any valid signature of an honest user, so the distribution of this hybrid is indistinguishable
from the previous one.

Hj3 This hybrid is distributed similarly to the previous one, except for the following modifications.
Firstly, according to the security analysis process of the integrated SAP, we replace the corre-
sponding messages conveyed in SAP with random strings of equal length. Secondly, we replace
the frozen vectors {y’};cy received by S with uniformly random vectors {w®};cys. @ is added
with noise (Ae) through Equation . Therefore, Lemma 3 ensures that (A, y’) and (A, w’)
are indistinguishable, which guarantees S does not obtain private information from honest users
through frozen vectors. Therefore, the security of SAP and the lemmas ensure the distribution of
this hybrid is indistinguishable from the previous one.

Therefore, the distribution of STM which is the same as Hg is indistinguishable from REAL.
STM does not depend on the inputs of honest parties, and C can only learn about the sum of original
vectors. If too many users drop out, SAP will abort and still guarantee the above conclusion. Clearly,
the security of A\-SecAgg still holds in the semi-honest setting. O

E ADDITIONAL COMPARISON AND EXPERIMENT

E.1 THEORETICAL COMPLEXITY COMPARISON

Table [] indicates for some SAPs, the theoretical computation complexity increases after integrat-
ing PVF. This is attributed to the transformation required for the entire original vector within PVF.
However, intuitively, the computation time for secure aggregation per entry (e.g., homomorphic
encryption, PRG expansions, or modular exponentiations) tends to be significantly greater com-
pared to the computation time per entry in linear transformations. This suggests that PVF still
manages to compress computation overhead, which is evident in the experiment outcomes.

In practice, the choice of A mainly considers: (i) Security requirements in DVE (see Lemma3). (ii)
SAP. For schemes with more masking-related overhead, a larger A performs better. For schemes
with more interaction-related overhead, a smaller A performs better (as in Section . (>iii) m. For
larger m, masking-related overhead is greater, so a larger A performs better.

Table 4: Theoretical complexity of SAP without and with PVF of single-round aggregation in the
semi-honest setting. O(-)(+) in the rightmost column indicates the communication complexity per-
tains to users, followed by the number of interactions between users and the server. “P. of G. M.”
stands for privacy of the global model. In the real world, p > m > n. 1 indicates the integration of
PVF into the protocol would increase its theoretical complexity.

SAP Each user Server P of Communi. (Inter.)
w/o PVF w/ PVF w/o PVF w/ PVF G. M.
PPDL Oo(m) O(Am) T O(mn) O(3mn + Am) v Oo(m) (1)
EPPFL Oo(m) O(Am) T O(mn) O(5mn + Am) x O(m) (2)
NIVP-DS Oo(m) O(Am) T O(mn) O(Xmn + Am) v O(m) (1)
PracAgg O(mn +n?) O($mn + Am + n?) O(mn?) O(5mn? + Am) X O(m +n) (4)
PracAgg+ O(mlogn + log®n) 0(§mlogn +Am +log?n)  O(mnlogn + nlog®n) O(%mnlogn + Am + nlog®n) X O(m + logn) (4)
EffiAgg O(m +n?) O(Am +n?) 1 O(my/p+n) O(+my/p + Mm +n) X O(m +n) (4)
LPPFedL O(m +n?) O(Am +n?) 1 O(m+n) O(Am+n) 1 X O(m—+n) (4)

E.2 MORE IMPLEMENTATION DETAILS

We implement the baselines using Python. Specifically, we utilize AES-GCM with 128-bit keys for
the symmetric authenticated encryption, standard (¢, n) Shamir Secret Sharing (Shamir,|1979), AES
in counter mode for the pseudorandom generator, SHA-256 hash to implement a homomorphic pseu-
dorandom generator for EffiAgg, Sympy library (Meurer et al.,[2017) to compute discrete logarithms
for EffiAgg, and Paillier Encryption with 1024-bit keys for PPDL. In Section 3.3} experimental set-
tings of the image classification task is the same as Figure [2] and for the movie recommendation
task, the dataset is split using a Leave-One-Out (He et al., [2017)) approach for training and testing,
where users with fewer than 10 records are excluded, using Hit Ratio (HR) as metrics to assess the
performance of the recommendations, with higher values indicating superior effectiveness.
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In Figure [2] we use three widely discussed SAPs: PracAgg+, PracAgg, and PPDL. NIVP-DS falls
behind due to the requirement of two non-colluding servers, while LPPFedL demands increased
communication overhead. Remarkably, PPDL, previously considered impractical due to its use of
HE, has its computational overhead significantly mitigated by integrating PVF. And its advantages
of operating with a single server, single-interaction communication, and preserving the global model
make it more appealing.

E.3 ForFL oF LLM

LLMs have a profound impact on the entire Al research community due to their excellent contextual
learning and instruction following ability (Zhao et al.,|2023). Given privacy concerns, training (or
fine-tuning) LLLM in a federated setting has been explored (Hilmkil et al., 2021 |Ye et al., [2024).
In the context of LLMs, during the aggregation process, the length of user original vectors reaches
billions. Taking Llama2-7B (Touvron et al.| [2023) as an example, assuming 1% of the parameters
need to be updated during the fine-tuning, which is 700M, the computational cost of using a general
secure aggregation scheme is unimaginable, making PVF particularly important. As shown in Ta-
ble[3] the time required to train one round without using PVF can basically meet the requirement of
training 100 rounds with PVF. At present, FL for LLM among a multitude of lightweight clients is
unrealistic. The SOTA scheme OpenFedLLM (Ye et al.,|2024)) involves only n € {2, 4, 5} clients per
round (using Llama2-7B). And PVF can contribute to future FedLLMs and involving more clients.

Table 5: Estimated computational overhead per round with and without PVF for fine-tuning Llama2-
7B. n = 100, m = 700M, A = 100, and = 0%.

S | Each user | Server
cheme
| wlo w/ | wlo w/
PPDL ~300h ~3h | ~60h  ~0.6h
PracAgg | ~27h ~0.27h | ~27h ~0.27h
PracAgg+ | ~5h  ~0.05h | ~27h ~0.27h

E.4 THE IMPACT OF PADDING

PVF necessitates padding the original vector, thereby increasing the vector size. In theory, the
additional cost that padding introduces in computation and communication does not exceed % of
the original, as the maximum value of padding length is \. Table [6] showcases the impact of no
padding versus padding A entries on the computation and communication overhead, where % =
0.001. It’s evident that the overhead induced by padding is almost negligible. To strictly adhere
to the principle of “not increasing any communication overhead”, we present a method to avoid
padding. We extract the first L%J A entries from the original vector and apply PVF to them. The
remaining entries, which are fewer than )\, are appended to the key vector k for participation in
the secure aggregation. This approach allows us to obtain the aggregate result of the entire original
vector while eliminating the need for padding.

Table 6: Comparison of overhead with and without padding. n = 100, m = 100k, A = 100, and
n = 10%.

Scheme | Usercomp. (ms) | Server comp. (ms) | Comm. cost (KB)
| No pad Pad | No pad Pad | Nopad Pad

PPDL 1402 1403,1 1 303 304,11 859 860, 1T 1
EPPFL 41 42,11 7337 7351,17 14 681 681,10
NIVP-DS 13 13,10 10 10,10 587 587,10
PracAgg 162 164,71 2 1456 1463, 17 785 785,10
PracAgg+ | 38 39,11 | 405 400,14 | 783 783,10
EffiAgg 29 32,13 5404 5482,1 78 783 783,10
LPPFedL 19 19,170 20 20,10 1564 1564, 1 0
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E.5 MEMORY USAGE

In Figure[9] we evaluate the memory usage of each user and S during PracAgg without PVF (A = 0)
and with PVF (A = 100, 1000).

For each user, the increased memory usage for A = 1000 compared to A = 100 is due to the need
to store a larger transformation matrix (A x A) required by PVF. The increase in memory usage for
A = 0 compared to A = 100 is because PVF reduces the number of random numbers generated
(nm — ™) and decreases the scale of vector addition computations (m — %) during the masking
process.

For S, all three methods require summing up the vectors uploaded by all users, with a memory
usage of approximately O(mn), so the additional O()\?) overhead introduced by PVF is negligible.
The increased memory usage for A = 0 compared to A = 100 is due to PVF reducing the number

(1fn)n2;(1*’7)")m) and decreasing

of random numbers generated ((n(1 — n)n? + (1 — n)n)m — (@
the scale of vector addition computations during the unmasking process.
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Figure 9: Memory usage with different A\. n = Figure 10: Comparison of various aggregation
100, m = 100k, and n = 10%. methods, with n = 100, = 5%, A = 100.

E.6 EVALUATION OF EXTENSIONS

End-to-end comparison. In accordance with the experimental settings of Figure [2] we evaluate
the impact of RVE, UCE, and p-security on the overall model training time (as illustrated in the Fig-
ure[I0). The acceleration effect and communication expansion when integrating different extensions
are 34.5x and 1.4x (RVE), 21.1x and 2.9x (UCE), 13.5x and 1.0x (5-security).

(A, ). We evaluate the speedup with different (A, u) € {100, 300, 500, 700, 1000} x [1,10]. The

integration of PVF with the p-security extension reduces the entries of vectors involved in secure
aggregation to “T“(,u < /\.—' 1) of their original size. Figure |l11|showcases incorporating the -
security extension does diminish the improvement factor. However, even when 1 = 0.1, PVF still

yields an acceleration gain of 10x along with communication improvements exceeding 5x.

RVE and UCE. UCE necessitates users to commit to each dimension of the original vectors, while
S needs to validate each dimension. RVE requires users to submit frozen vectors twice and S to
perform summations twice. Thereby, both UCE and RVE impose on each participant an additional
communication complexity of O(m) and computation complexity of O(m).

Figure T2 presents the overhead required for SAPs with different extensions. Compared to not inte-
grating PVF, the computation overhead after adding extensions is still nearly an order of magnitude
lower. Communication costs from extensions primarily stem from the transmission of additional
vectors, such as commitment vectors. We leave mitigating these overheads to future work.
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Participants: S and User set U = {u1,ua, ..., up}.
Public Inputs: A, 11, A+1, a1, X, Z,,, g and h. Users’ public keys for signatures {sig?’* };c;; and the server’s public key for signatures sigg’cA
Private Inputs: Original vectors {mim}ieu of ¢-th iteration. Users’ secret keys for signatures {sigf’”'}ieu and the server’s secret key for signatures sigglk.
Outputs: Surviving user setU’, 3=,/ '),
o Phase 1 Freezing
Useri € U:
- pad xi(®) randomly and group the entries.
- add noise to ') via Equation m .
- calculate key vector k*(*) via Equation w .
- calculate frozen vector y**) via Equation {8} and Equation .
- generate random vector ¢'(1) = (¢i) ¢}V ¢\") and calculate commitment vector ¢/(*) via Equation .
- obtain m} =y (Do not send y’) when there is RVE)|[¢" ||, send o} — DS.sign(sig:*,m})to S.
o Phase 2 SecAgg
S and Users:
- execute SAP for {k'(V} ;.

* users get (k1,#2) and obtain mb = ¥’ (k1y'D)||g' D (y'®) + K2), send 0§ — DS.sign(sigi*,mb) 10 S.
- all participants receive U’ and 3, k' (or Enc(Y e ki),
S.

-if DS.werify(o}, sigfk, mj) — False, abort. Otherwise, calculate y*((can not get Diew y'®) calculate Diew ') and D iew g,
-for j € [1,1], 7 € [1, \], reveal the commitments via Equation {17}. If verification fails, abort.
o Phase 3 Thawing
Thawing on the server side

- calculate sum =, cc;((f,)i via Equation @ and send sum and o3 — DS.sign(sigs, sum)toi e U’.
Userie U’

- receive Yy 2'®)if DS.werify(os, sig'ék, sum) — False, abort. Otherwise, unpad and output.
Thawing on the user side

" - send 516“, Yy, Enc(3 0 k'V) and o5 — DS.sign(sigs, i ' Ol Enc(Y 0 K V)) t0i € U'.
seri €U
-if DS.werify(os, siggk, Sicre V' ONEnc(Y 00 k') — False, abort. Otherwise, verify 3°
- decrypt Enc(Y,; o k1 ®).
- calculate sum = 3.,/ w;,((f{)t via Equation EI unpad and output.

y*®) via Equation

e {15). 1f verification fails, abort.

Figure 13: The pipline of A\-SecAgg with all 4 extensions for one aggregation. The red and
underlined parts are required in the user commitment extension. The blue and underlined parts
are required in the result verification extension.
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