
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

λ-SECAGG: PARTIAL VECTOR FREEZING FOR
LIGHTWEIGHT SECURE AGGREGATION IN FEDER-
ATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Secure aggregation of user update vectors (e.g. gradients) has become a criti-
cal issue in the field of federated learning. Many Secure Aggregation Protocols
(SAPs) face exorbitant computation costs, severely constraining their applicabil-
ity. Given the observation that a considerable portion of SAP’s computation bur-
den stems from processing each entry in the private vectors, we propose Partial
Vector Freezing (PVF), a portable module for compressing computation costs
without introducing additional communication overhead. λ-SecAgg, which inte-
grates SAP with PVF, “freezes” a substantial portion of the private vector through
specific transformations, requiring only 1

λ of the original vector to participate in
SAP. Eventually, users can “thaw” the public sum of the “frozen entries” by the
result of SAP. To avoid potential privacy leakage, we devise Disrupting Variables
Element for PVF. We demonstrate that PVF can seamlessly integrate with various
SAPs and it poses no threat to user privacy in the semi-honest and active adver-
sary settings. We include 7 baselines, encompassing 5 distinct types of masking
schemes, and explore the acceleration effects of PVF on these SAPs. Empirical
investigations indicate that when λ = 100, PVF yields up to 99.5× speedup and
up to 32.3× communication reduction.

1 INTRODUCTION

Machine learning technologies are applied in countless fields to improve service performance. How-
ever, aggregating large amounts of data for big data mining raises concerns regarding data pri-
vacy (Liu et al., 2021). Federated Learning (FL) (McMahan et al., 2017) keeps original data on the
local devices while only requiring data owners to submit local training updates to a central server.
Nonetheless, as Zhu et al. (2019) and Geiping et al. (2020) indicate, attackers can infer a user’s
local data by reversing the submitted updates. To address this issue, numerous research efforts have
been focusing on Secure Aggregation Protocols (SAPs) (Liu et al., 2022b) for aggregating all user’s
model information while preserving individual privacy.

The widely discussed SAPs are based on Secure Multi-Party Computation (SMPC) (Xu et al., 2022;
Sotthiwat et al., 2021), Mask (Bonawitz et al., 2017), Homomorphic Encryption (HE) (Aono et al.,
2017) and Differential Privacy (DP) (Wei et al., 2020). For most SAPs, except for DP-based ones,
the computation overhead often scales proportionally with the length of the model update vectors
since most of these schemes involve masking (encrypting) each entry of the vector sequentially.
Therefore the computation time for both masking and unmasking always experiences a steep esca-
lation with the increase in vector length, as PracAgg (Bonawitz et al., 2017) in Figure 1, significantly
constraining real-world applications. Especially in recent applications that utilize FL to fine tune
Large Language Models (LLMs) (Ye et al., 2024) with billions of parameters, the computational
overhead brought by SAP is unbearable.

On the other hand, DP-based solutions although have the best efficiencies, many studies (Stevens
et al., 2022; Wang et al., 2021) posit that the minimal noise added by DP is insufficient to thwart
attacks such as gradient inversion aimed at stealing users’ local data, where adversaries can recover
flawed but recognizable handwritten digit image (Wang et al., 2021). Therefore the security of DP in

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

20k40k60k80k100k
Vector Length

0

2

4

6

8

10

12

14

Ti
m

e
(s

)

Masking

20k40k60k80k100k
Vector Length

0

20

40

60

80

100

120

140

Ti
m

e
(s

)

Unmasking

Figure 1: Computation time for
one round, with 100 users and
10% dropout rate.

Figure 2: Comparison of vari-
ous aggregation methods, with
n = 100, η = 5%, λ = 100.

0 25 50 75 100 125
Time (min)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
cc

ur
ac

y

Ours =100
FetchSGD =0
FetchSGD =100
Top-k =0
Top-k =100

Figure 3: Comparison with
compression-based techniques,
with n = 100, η = 5%.

secure aggregation faces challenges, necessitating its combination with masking to bolster privacy.
In this work, we primarily explore methods to alleviate masking-related overhead.

Our proposal. We think the root cause of computation overhead in SAPs is masking each entry
of the original vector. While a few sparsification-related approaches (Ergun et al., 2021; Lu et al.,
2023) try to reduce the dimensions of uploaded vectors, they raise an inevitable trade-off of dis-
carding some information. In this work, we propose Partial Vector Freezing (PVF) to reduce the
number of entries processed in SAPs while ensuring intact aggregation of all entries in the original
vector. Within the module, each user performs certain transformations on the original vector at a
negligible computation cost to selectively freeze most entries of the user’s original vector, compress-
ing the length of the vector involved in SAPs to 1

λ of its original size (λ is the compression factor).
The communication overhead and number of communication interactions in SAPs after integrating
PVF, which we call λ-SecAgg, do not increase. Further, we propose Disrupting Variables Ele-
ment to prevent PVF from leaking the linear relationship between vectors. PVF remains decoupled
from SAPs and guarantees individual user privacy under semi-honest and active adversary settings,
offering high portability.

Our contributions can be summarized as follows:

• We propose the PVF without incurring additional communication overhead or harming security. It
reduces the entries processed in SAP while ensuring the aggregation of all entries in the origi-
nal vector, which means it can compress the computation overhead of SAP to approximately 1

λ of
the original. Moreover, it brings up to 32.3× (λ = 100) additional communication enhancements
for HE-based SAPs thanks to the decreased number of ciphertext entries.

• We propose the disrupting variables element to PVF to avoid potential privacy leakage.

• Extensive experiments show the effectiveness of our proposal. We include 7 baselines encom-
passing 5 types of masking schemes for a comprehensive overhead comparison, which is largely
unexplored in most research endeavors and reaffirms the high portability of PVF.

2 RELATED WORK

Secure Aggregation Protocols. Various types of SAPs have been proposed, including SMPC-
based (Boer & Kramer, 2020; Xu et al., 2022), HE-based (Aono et al., 2017; Ma et al., 2022; Li
et al., 2022), DP-based (Geyer et al., 2017; Wei et al., 2020), and Mask-based (Bonawitz et al., 2017)
schemes. Most efforts to reduce computation cost focus on enhancing PracAgg (Bonawitz et al.,
2017), which is mainly categorized into two types: (i) improving the masking mechanism (Liu et al.,
2022a; Stevens et al., 2022; Liu et al., 2022c; Wei et al., 2023) to reduce masking-related overhead;
(ii) minimizing interaction-related overhead, including refining communication structures (Bell
et al., 2020; So et al., 2021) and enhancing efficiency in key agreements among users (Kalikinkar
et al., 2018; Kadhe et al., 2020; Ma et al., 2023). Note that the security of FL remains an open issue.
SAPs, though cannot fully guarantee FL security at the moment, remain a promising direction worth
exploration. The main objective of our work is to reduce the masking-related overhead of secure
aggregation, thereby making it more applicable in practice.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Compression-based Techniques. Rothchild et al. (2020) employs a Count Sketch to compress
model updates. Additionally, some sparsification-based approaches (Ergun et al., 2021; Lu et al.,
2023) can reduce vector dimensions. Our method fundamentally differs from these schemes, as our
proposal compresses the entries involved in secure aggregation while retaining the intact aggrega-
tion result of all original entries.

Defense Against Malicious Server. Several works indicate the malicious server can launch Model
Inconsistency Attacks (Pasquini et al., 2022), Multi-round Privacy Stealing Attacks (So et al., 2023)
and Aggregation Falsification Attacks (Guo et al., 2021). These studies also propose strategies to
counter these attacks accordingly, only requiring minor modifications to the SAP process, as de-
scribed in Section 3.4.

Input constraints. Several works (Bell et al., 2023; Lycklama et al., 2023) are proposed to mitigate
Poisoning Attacks in FL. They delineate that the erroneous inputs of malicious users can result in
the server obtaining an inaccurate global model, thereby harming the training task. They propose
methodologies utilizing Zero-Knowledge Proofs to bound user inputs. However, their ability to pre-
vent poisoning attacks is limited (Ma et al., 2023). Establishing strong constraints against malicious
inputs remains an unresolved challenge, and it falls beyond the scope of this work. What’s more,
Mozaffari et al. (2023) propose Federated Rank Learning (FRL), where the server aggregates the
parameter rankings instead of the model parameter updates. It can effectively resist poisoning at-
tacks, and enable direct aggregations without any constraints on user submissions. Therefore, FRL
can be combined with SAP, and we do not have to worry about whether PVF can be integrated with
input constraints in this work.

3 PARTIAL VECTOR FREEZING

Scenario. In the t-th round of FL, the user set U = {u1, . . . , un} conduct local model training
and submit model updates {xi(t)}i∈U = {(xi(t)

1 ; . . . ;x
i(t)
m)}i∈U (Original Vectors) to the server

S. There might be η (≤ 30%) users that drop out during the aggregation due to network instabil-
ity or other reasons and U ′ is the surviving user set. S aggregates the model updates to compute∑

i∈U ′ xi(t) and redistributes the result to all users (Plain Aggregation). This iterative process con-
tinues until the completion of model training. SAPs can help obtain

∑
i∈U ′ xi(t) while ensuring the

privacy of each individual xi(t). Similar to other SAPs (Bonawitz et al., 2017; Stevens et al., 2022),
we define the elements of xi(t) (i ∈ [1, n]) within Zp for some large public prime p and assume
there is a secure communication channel between each user and S. In this section, our emphasis
lies in introducing the computation methodology of PVF, specifically considering a single-round
aggregation process with superscript “(t)” omitted. To ensure multi-round privacy, employing a spe-
cialized user selection mechanism for each round is sufficient (Liu et al., 2023; So et al., 2023). For
the summary of notations, please refer to Appendix A.

Threat model: Corrupt participants endeavor to infer the privacy of honest parties based on the
messages they receive, i.e., the Semi-honest Model, and can fabricate messages, i.e., the Active
Adversary Model. We assume malicious users do not exceed one-third of the total users, aligned with
PracAgg (Bonawitz et al., 2017) and EffiAgg (Liu et al., 2022a). The lenient security assumptions of
PVF allow its easy integration with secure aggregation protocols. When integrating with a SAP, the
security assumptions originally employed in the corresponding protocol are adopted and we assume
the integrated SAP can reliably ensure the privacy of inputs.

3.1 MOTIVATION

Within SAP, every minor operation on an entry accumulates m times, ultimately imposing significant
computational burdens on devices. For example, ui in PracAgg needs to perform the following
calculations on each entry xi

j of xi (b and s are user secret keys, PRG is a pseudorandom number
generator):

yij = xi
j + PRG(bi) +

∑
h∈U :i<h

PRG(si,h)−
∑

h∈U :i>h

PRG(sh,i). (1)

Based on these observations, we try to reduce the number of entries processed in secure aggregation
while ensuring users receive all entries of the aggregated vector. To accomplish this objective, our

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝐴1,1 ∙ 𝑥 𝑙−1 𝜆+1
𝑖 +⋯+ 𝐴1,𝜆 ∙ 𝑥𝑙𝜆

𝑖 = 𝑦𝑙𝜆−𝜆+1
𝑖

⋮

𝐴𝜆−1,1 ∙ 𝑥 𝑙−1 𝜆+1
𝑖 +⋯+ 𝐴𝜆−1,𝜆 ∙ 𝑥𝑙𝜆

𝑖 = 𝑦𝑙𝜆−1
𝑖

𝐴𝜆,1 ∙ 𝑥 𝑙−1 𝜆+1
𝑖 +⋯+ 𝐴𝜆,𝜆 ∙ 𝑥𝑙𝜆

𝑖 = 𝑘𝑙
𝑖

𝒌𝒊

SAP

𝒌𝒊

𝑥1
𝑖 ⋯ 𝑥𝜆

𝑖 𝑥 𝑙−1 𝜆+1
𝑖 ⋯ 𝑥𝑙𝜆

𝑖⋯()
Freezing

(Public) Frozen Vector :

(Private) Key Vector : 𝒌𝒊 = 𝑘1
𝑖 , ⋯ , 𝑘𝑙

𝑖

User 𝒊 Thawing

𝐴1,1 ∙𝑥 𝑙−1 𝜆+1
𝑖 +⋯+ 𝐴1,𝜆 ∙𝑥𝑙𝜆

𝑖 =𝑦𝑙𝜆−𝜆+1
𝑖

⋮

𝐴𝜆−1,1 ∙𝑥 𝑙−1 𝜆+1
𝑖 +⋯+ 𝐴𝜆−1,𝜆 ∙𝑥𝑙𝜆

𝑖 =𝑦𝑙𝜆−1
𝑖

𝐴𝜆,1 ∙𝑥 𝑙−1 𝜆+1
𝑖 +⋯+ 𝐴𝜆,𝜆 ∙𝑥𝑙𝜆

𝑖 =𝑘𝑙
𝑖

⋯

Aggregated Vector :𝒙𝒊 = ⋯ 𝑥 𝑙−1 𝜆+1
𝑖 , ⋯ ,𝑥𝑙𝜆

𝑖
𝒚𝒊 = ⋯ 𝑦𝑙𝜆−𝜆+1

𝑖 , ⋯ , 𝑦𝑙𝜆−1
𝑖

⋯

Figure 4: Workflow of λ-SecAgg with Main PVF.

mindset is to devise a module that can freeze certain entries (Frozen Entries) of the user’s original
vector, and only perform secure aggregation on the other entries (SecAgg Entries). Upon SAP com-
pletion, this module thaws the frozen entries, ensuring that their privacy is well protected throughout
the entire process.
Definition 1. Given an invertible λ×λ matrix A and a segment of original vector x = (x1; . . . ;xλ),
we define Incomplete Matrix Ǎ = A:λ−1,: and Residual Vector α = Aλ,:. The function for finding
the solution set of a system of linear equations is:

SLEAK(Ax) → x, (2)

where AK denotes the additional knowledge. We use rank(·) represents the rank of a matrix. Since
rank(A) = rank(A,Ax) = λ, the system of linear equations has a unique solution x. However,
due to rank(Ǎ) = rank(Ǎ, Ǎx) < λ, the system has an infinitude of solutions (Suetin et al.,
1989), also called an Under-determined System of Linear Equations.

It can be seen that when Ǎ and Ǎx are known, in the absence of knowledge about αx, x presents
an infinite set of possibilities, rendering it impossible to determine that specific confidential vector.
Motivated by this, we propose PVF.

3.2 MAIN METHOD

In this section, we present the computation process of the Main PVF module during a single aggre-
gation round, depicted by the workflow shown in Figure 4.

Phase 0: Main.Setup(·). Generate an invertible matrix A ∈ Zλ×λ
p randomly, and obtain A−1, Ǎ,

α, which are all public parameters. We refer to λ as the Compression Factor.

Phase 1: Main.Freeze(·). For i ∈ [1, n], randomly pad xi to ensure the length of the padded vector
is a multiple of λ. The padded vector is xi

pad = (xi
1;x

i
2; . . . ;x

i
m′), where m′ = lλ. Then divide

xi
pad into l groups: xi

pad = (di
1;d

i
2; . . . ;d

i
l), where di

j = (xi
(j−1)λ+1;x

i
(j−1)λ+2; . . . ;x

i
jλ). Use

the incomplete matrix Ǎ to compute Frozen Vector:

yi =
(
yi
1, . . . ,y

i
l

)
=
((

yi1, . . . , y
i
λ−1

)
, . . . ,

(
yi(l−1)λ+1, . . . , y

i
(l−1)λ+λ−1

))
=
(
Ǎdi

1, . . . , Ǎdi
l

)
,

(3)

and use the residual vector to compute Key Vector:

ki =
(
ki1, . . . , k

i
l

)
=
(
αdi

1, . . . ,αdi
l

)
. (4)

Phase 2: Main.SecAgg(·). Users and S execute SAP, where the vector to be aggregated of user i
is ki = (ki1, k

i
2, . . . , k

i
l) ∈ Zl

p. We require all users to send their respective yi to S during SAP,
thus eliminating the need for additional interactions. Upon completion of SAP, the surviving user
set U ′ and S can receive the aggregated result of the key vectors:

∑
i∈U ′ ki or Enc(

∑
i∈U ′ ki) (in

HE-based SAPs). Then S computes
∑

i∈U ′ yi, immune to the impact of dropout users.

Phase 3: Main.Thaw(·). Thawing can be executed either at the server or user side, without com-
promising privacy and incurring any additional communication:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(1) Thawing on the server side. Based on the acquired
∑

i∈U ′ ki and
∑

i∈U ′ yi, S can derive the
aggregated result sum. The correctness stems from the linearity of A and α:

z =

((∑
i∈U ′

yi
1,
∑
i∈U ′

ki1

)
, . . . ,

(∑
i∈U ′

yi
l ,
∑
i∈U ′

kil

))
=

((∑
i∈U ′

Ǎdi
1,
∑
i∈U ′

ki1

)
, . . . ,

(∑
i∈U ′

Ǎdi
l,
∑
i∈U ′

kil

))

=

(∑
i∈U ′

Adi
1, . . . ,

∑
i∈U ′

Adi
l

)
=

(
A
∑
i∈U ′

di
1, . . . ,A

∑
i∈U ′

di
l

) . (5)

Since A−1 and z are public, S can thaw frozen vectors and compute the aggregated results of all
entries in the original vector by:∑

i∈U ′

di
1 = A−1z1 = A−1A

∑
i∈U ′

(xi
1;x

i
2; . . . ;x

i
λ),

...∑
i∈U ′

di
l = A−1zl = A−1A

∑
i∈U ′

(xi
(l−1)λ+1;x

i
(l−1)λ+2; . . . ;x

i
lλ).

(6)

At this point, S completes the thawing phase and obtain:

sum =

(∑
i∈U ′

di
1; . . . ;

∑
i∈U ′

di
l

)
=

(∑
i∈U ′

xi
1; . . . ;

∑
i∈U ′

xi
lλ

)
=
∑
i∈U ′

xi
pad. (7)

Subsequently, it transmits sum to all online users. Upon receiving sum, users can obtain the final
aggregated result by removing the padding.

(2) Thawing on the user side. In certain SAPs (Aono et al., 2017; Xu et al., 2022), the aggregated re-
sults remain invisible to S to ensure the protection of users’ intellectual property, among other goals.
In such situations, S cannot perform the thawing. Instead, S sends

∑
i∈U ′ yi and Enc(

∑
i∈U ′ ki)

to all surviving users. Users locally decrypt Enc(
∑

i∈U ′ ki) and perform the thawing process to
obtain sum. By removing the padding, users attain the final aggregated result.

3.3 DISRUPTING VARIABLES ELEMENT

While the server cannot obtain any individual element of xi within Main PVF, it still obtains certain
linear relationships involving the private entries. In this section, we present improvements to the
Main PVF to ensure that the server cannot obtain any information about xi from yi.

Firstly, we improve the process of generating yj (ignoring the superscript “i” for clarity) in Equa-
tion (3) as follows:

A1,1(x(j−1)λ+1 + k1 + · · ·+ k⌊ l
λ⌋) + · · ·+A1,λ(xjλ + kl−⌊ l

λ⌋ + · · ·+ kl) = y(j−1)λ+1

...
Aλ−1,1(x(j−1)λ+1 + k1 + · · ·+ k⌊ l

λ⌋) + · · ·+Aλ−1,λ(xjλ + kl−⌊ l
λ⌋ + · · ·+ kl) = yjλ

, (8)

where j ∈ [1, l] and k is the same as in Equation (4). Similar to Equation (5), upon thawing, the
following can be derived:

A1,1(
∑

x(j−1)λ+1) + · · ·+A1,λ(
∑

xjλ) =
∑

y(j−1)λ+1 −
∑∑

o∈[1,λ] A1,o

∑
r∈[(o−1)⌊ l

λ⌋+1,o⌊ l
λ⌋] kr

...
Aλ−1,1(

∑
x(j−1)λ+1) + · · ·+Aλ−1,λ(

∑
xjλ) =

∑
yjλ−1 −

∑∑
o∈[1,λ] Aλ−1,o

∑
r∈[(o−1)⌊ l

λ⌋+1,o⌊ l
λ⌋] kr

Aλ,1(
∑

x(j−1)λ+1) + · · ·+Aλ,λ(
∑

xjλ) =
∑

kj

, (9)

where the right side can be obtained given
∑

ki is known. Then,
∑

xi can be determined and the
thawing phase is successfully completed. This improvement aims at complicating the relationships
among entries. It can be seen that this additional operation only adds some vector-vector additions,
which brings negligible computational overhead.

Secondly, similar to many hybrid schemes combining mask and DP (Bonawitz et al., 2017; Stevens
et al., 2022; Liu et al., 2022c) (or encryption and DP (Wang et al., 2021)), DVE adds noise to xi

before aggregation to enhance privacy by:

xi = xi + e, (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where the Gaussian noise e ∼ N(0, σ2). And yi = Ǎ(xi+e) = Ǎxi+e′ (Ǎ is public). Therefore,
given a uniformly random vector wi, Lemma 3 in Appendix D.3 ensures that (Ǎ,yi) and (Ǎ,wi)
are indistinguishable, which guarantees S does not obtain private information from honest users
through frozen vectors. For clarity and conciseness, we do not differentiate the symbols of the
original vector before and after adding noise.

3.4 INTEGRATING PVF WITH DIFFERENT SAPS

To resist model inconsistency attacks, appending the hash of the received model to the pseudo-
random generator seed is sufficient, without incurring additional overhead (Ma et al., 2023). And
utilizing an innovative user selection mechanism (So et al., 2023; Liu et al., 2023) is able to achieve
multi-round privacy. To resist aggregation falsification attacks, verifiable protocols (Hahn et al.,
2023) are able to verify the aggregation results through commitments sent by S, and we provide Re-
sult Verification Extension in Appendix B.2 to enable PVF to integrate with such SAP. The pipeline
of λ-SecAgg is shown in Figure 13. For the detailed portability analysis, please refer to Appendix C.

4 SECURITY ANALYSIS

Evidently, the information that adversaries can obtain about an honest participant only includes
sum and under-determined systems of linear equations (yi). Randomly generating A and per-
forming certain pre-checks (as Section 4.1), the under-determined systems of linear equations can
effectively preserve the privacy of each entry, which is also adopted by Liu et al. (2023). And in
Section 4.2, we demonstrate adversaries cannot access xi throughout λ-SecAgg process.

4.1 PRIVACY OF EACH ELEMENT

In cases of improper selection of A, S can access the privacy of some specific elements within an
original vector (if without DVE), as illustrated in Example D.1. In the implementation, we initially
generate A randomly, and we transform Ǎ into Reduced Row Echelon Form and verify that no
element can be deduced. This ensures privacy of every element. Unless specified otherwise, all
subsequent references to A in the following text are designed to guarantee each element privacy.

4.2 SECURITY ANALYSIS OF ENTIRE VECTORS

Protocol security requires that adversaries can not obtain private information of any individual hon-
est participant. The view of a participant consists of its internal information and received messages.
Given a SAP that can maintain security in the active adversary setting, Theorem 1 guarantees its
security when integrated with PVF. Theorem 1 demonstrates the information revealed during a real
execution is indistinguishable from that obtained through a random simulation. The proof of The-
orem 1 is is carried out in a Random Oracle model. In this model, we define a trapdoor function
to inform SIM of the sum of existing honest users’ private information. During one execution of
the protocol, SIM can only access it once to obtain necessary information. Let C denote the set of
malicious participants, which is a subset of U ∪ {S}. The ideal function is defined as follows:

Ideal{xi}i∈U\C
(L) =

∑
i∈L

xi, L ⊆ (U\C) and |L| >
⌈n
3

⌉
⊥, otherwise

. (11)

Theorem 1 (Security against malicious participants). Let REALU,λ
C ({xi}i∈U ,U ′) denote a ran-

dom variable representing the joint view of adversaries in an actual protocol execution and
SIM U,λ

C ({xi}i∈U ,U ′) denote the joint view of adversaries in a simulated protocol execution. For
all λ > 2,U ,xi

i∈U ,U ′, C ⊆ U ∪ {S} and SAP that can ensure privacy in the active adversary
setting, there exists a PPT simulator SIM such that:

SIM U,λ
C ({xi}i∈U ,U ′) ≡ REALU,λ

C ({xi}i∈U ,U ′), (12)

where “≡” denotes the distributions are identical.

The proof of the theorem is provided in Appendix D.3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EVALUATION

5.1 THEORETICAL COMPLEXITY ANALYSIS

Communication. PVF does not increase interaction-related overhead. The vectors sent from each
user are yi ∈ Z(λ−1)⌈m

λ ⌉
p and ki ∈ Z⌈

m
λ ⌉

p , which contain the same number of entries as xi
pad ∈ Zm′

p .
Hence, the theoretical communication complexity of SAP remains unchanged.

Computation. The additional computation operations required by PVF involve conducting ⌈m
λ ⌉

matrix-vector multiplications by both users and S, incurring a computation cost of O(λm).

The theoretical complexity for one aggregation of users and S, before and after PVF integration, is
summarized in Table 4. For the method to avoid padding, please refer to Appendix E.4.

5.2 EXPERIMENTAL SETTINGS

Baselines. We include 7 baselines that encompass 5 types of masking (encryption) schemes:

• PPDL (Aono et al., 2017), utilizing Single-private-key HE (Type 1), safeguards the global model,
all while necessitating only a single interaction round between the users and S.

• EPPFL (Li et al., 2022), relying on Multi-private-key HE (Type 2), requires two interaction round.
• NIVP-DS (Xu et al., 2022), based on SMPC (Type 3), requires two non-colluding servers, while

involving only a single interaction round.
• PracAgg (Bonawitz et al., 2017), based on Pair-wise Masking (Type 4), is widely regarded as the

state of the art, involving multiple interactions rounds.
• PracAgg+ (Bell et al., 2020), a type-4 scheme, exhibits a more efficient communication structure.
• EffiAgg (Liu et al., 2022a), based on Non-pair-wise Masking (Type 5), requires server computation

of discrete logarithms alongside multiple interactions between users and S.
• LPPFedL (Wei et al., 2023), based on non-pair-wise masking, necessitates users to transmit mul-

tiple high-dimensional vectors along with multiple interactions.

To underscore the focal point of our work, our attention is exclusively directed towards secure-
aggregation-related operations within the baselines, omitting other parts like “weight aggregation”
in EPPFL. And masking schemes of other protocols that reduce interaction-related can be classified
into the above five types, like Flamingo (Ma et al., 2023) (type 4), LTPA (Liu et al., 2023) (type 4).

Experimental settings. We run on a Linux workstation with 32GB of RAM and an AMD Ryzen 5
5600G. We use 1 NVIDIA GeForce RTX 3090 GPU only for model training, excluding the aggre-
gation process. In all experimental settings, the space of the elements in the input vectors is 32-bit.
Same with PracAgg, our main experiments are conducted under a semi-honest setting, with a spe-
cific focus on assessing the speed enhancement brought by PVF. We disregard operations such as
digital signatures and public key infrastructure in the active adversary setting, which do not impact
the asymptotics of the results (Bonawitz et al., 2017).

Evaluation Metrics. We use Improvement Factor = Time of (un)masking w/o PVF
Time of (un)masking w/ PVF (speedup) to describe

the efficacy of PVF. When evaluating communication overhead, we track costs for a single user, with
the costs of S being n times that of each user, a convention widely adopted in prior works (Liu et al.,
2022a). The experimental results provided are the average outcomes from 5 repeated executions.

5.3 PERFORMANCE COMPARISON

Effectiveness of compressing costs. Results in Table 1 indicate that integrating PVF can yield
a speedup ranging from 70× to 99.5× for the majority of baselines when λ = 100. The inabil-
ity to achieve a λ× speedup is attributed to interaction-related overhead within SAP such as key
agreements and secret sharing. Overall, the gain from PVF is the weakest for LPPFedL. This is
because LPPFedL increases user communication overhead to achieve highly lightweight masking
and unmasking. Consequently, interaction-related overhead constitutes a more significant portion
of its computation time. As the original vector length increases from 100k to 500k, the proportion

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of secure aggregation protocols computation time (in milliseconds) and com-
munication cost (in KB) before and after integrating PVF for a single round. The number of users n
is set to 100, with λ set as 100. w/ denotes the corresponding protocol integrated with PVF.

Vector Length (m) 100k 500k

Operation Each user Server Server Server Comm. Cost Each user Server Server Server Comm. Cost
Dropout rate (η) 0% 0% 10% 30% 10% 0% 0% 10% 30% 10%

PPDL 139010 29759 27418 21789 27761 708579 149293 136155 107998 138679
w/ PVF 1401 304 283 225 859 7128 1571 1446 1133 4291

Improvement Factor 99.2× 97.9× 96.8× 96.8× 32.3× 99.4× 95.0× 94.1× 95.3× 32.3×
EPPFL 3464 755163 754261 749279 9962 17582 3763769 3732358 3745663 49798
w/ PVF 44 7686 7642 7711 681 219 38833 38924 39612 3400

Improvement Factor 78.7× 98.2× 98.7× 97.2× 14.6× 80.3× 97.0× 95.9× 94.6× 14.6×
NIVP-DS 15 386 372 331 586 72 1902 1834 1789 2932
w/ PVF 13 10 9 12 586 63 49 44 39 2931

Improvement Factor 1.2× 38.6× 41.3× 27.6× \ 1.1× 38.9× 41.7× 45.9× \
PracAgg 13702 14249 139936 307031 785 73335 71607 697950 1515347 3910
w/ PVF 177 187 1472 3207 785 779 794 7063 15686 3910

Improvement Factor 77.4× 76.2× 95.1× 95.7× \ 94.1× 90.2× 98.8× 96.6× \
PracAgg+ 2773 13973 39735 69623 782 14487 70359 197540 347055 3908
w/ PVF 38 159 410 724 782 179 787 2026 4319 3908

Improvement Factor 72.9× 87.9× 97.0× 96.2× \ 80.9× 89.4× 97.5× 80.4× \
EffiAgg 1227 537771 537329 539814 783 6014 2662161 2730404 2637768 3908
w/ PVF 32 5677 5702 6135 783 99 27175 27440 28068 3908

Improvement Factor 38.3× 94.7× 94.2× 88.0× \ 60.7× 98.0× 99.5× 94.0× \
LPPFedL 176 63 59 46 1564 846 319 291 218 7814
w/ PVF 22 21 20 17 1564 53 77 70 61 7814

Improvement Factor 8.0× 3.0× 3.0× 2.7× \ 16.0× 4.1× 4.2× 3.6× \

of time spent on masking or encryption rises, so PVF exhibits a more noticeable acceleration effect
for these SAPs in general. For PPDL and EPPFL (HE-based SAPs), only 1

λ of the original vector
is transformed into ciphertext. Therefore, PVF brings them communication improvements of about
32.3× and 14.6×, respectively.

End-to-end comparison. In Figure 2, the model employed is LeNet (LeCun et al., 1998), con-
sisting of 61, 706 parameters. The dataset is MNIST (Deng, 2012) with each user possessing local
data for only two labels. Across different aggregation methods, the model eventually achieves com-
mendable training outcomes, and the integration of PVF showcases a significant acceleration effect,
greatly reducing the training speed gap between using SAPs and plain aggregation. In Figure 3,
consistent with FetchSGD (Rothchild et al., 2020), we use the ResNet9 (with 6.5M parameters),
CIFAR10 dataset and PracAgg, with the optimal setting for FetchSGD and k = 50, 000 for both
FetchSGD and Top-k(Lu et al., 2023). It shows our method takes the least time and achieves the
best accuracy because both FetchSGD and Top-k require more overhead for compression and PVF
can ensure the intact aggregation of all entries in the original vector.

5.4 ABLATION STUDY

λ. We conduct experiments to analyze the variation in the acceleration effect of PVF on all baselines
under different λ values, as depicted in Figure 5. PVF exhibits a more pronounced acceleration
effect for participants with substantial original computational overhead, such as PPDL users. For
certain SAPs like EffiAgg, the improvement factor of S can reach up to 1000×. As λ increases, the
improvement factor of PVF gradually stabilizes and may experience a slight decline in certain SAPs.
This trend emerges because when λ becomes sufficiently large, the primary computational overhead
in secure aggregation shifts from masking-related overhead to interaction-related overhead like
secret sharing. It’s worth noting that when λ reaches a certain threshold, for certain entities with
relatively low primary computational load, such as users in NIVP-DS and servers in LPPFedL,
integrating PVF may increase their computational overhead (improvement factor less than 1). This
occurs because the computation cost incurred by the linear transformation in PVF becomes notable.
But the gains from PVF for the servers in NIVP-DS and users in LPPFedL remain enticing, rendering
the cost of the PVF linear transformation negligible.

Disrupting Variables Element. We focus on the impact of DVE on the model’s performance in
this part. In the 32-bit input space, the σ is set to 8783 (> 2×1000√

2π
), which is equivalent to adding

noise with a standard deviation of 0.0409 (consistent with (Stevens et al., 2022)) to the aggregation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 5: Computation acceleration for secure
aggregation brought by different λ in PVF. n =
100, m = 100k, and η = 10%.

0 100 200 300
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Image Classification

0 10 20 30 40
Rounds

0.1

0.2

0.3

0.4

H
R

@
10

Movie Recommendation

Plain
-SecAgg w/ DP

Figure 6: The impact of DVE on model per-
formance in practical applications. In these two
tasks, n = 100, η = 100, and λ=100.

sum (float). And we explore the impact of DVE on model performance in two practical tasks: (i)
Image classification, with LeNet model and MNIST dataset; (ii) Movie recommendation, using
FedMF (Chai et al., 2020) model with the item embedding size of 32, i.e. 118,592 parameters in
total, and ML-1M (Harper & Konstan, 2015) dataset. As shown in Figure 6, the impact of using
PracAgg integrated with DVE on model performance is negligible.

n. Figure 7 displays the speedup effect of PVF across different n. The speedup remains consis-
tently high for PracAgg+ and PPDL across various n. However, as n rises, the speedup for PracAgg
diminishes. This occurs because PracAgg necessitates multiple secret sharings for each user across
the entire user set, along with multiple secret reconstructions by S. These interaction-related over-
head increases more significantly as n increases. Nonetheless, even when n reaches 1000, the gain
brought by PVF for PracAgg servers remains above 85×, with user gain still exceeding 55×.

Figure 7: The gain introduced by PVF with re-
spect to the number of users, with η = 10%.
m = 100k, and λ = 100.

50k 100k 150k 200k
Ventor Length

0.005
0.010

Ti
m

e
(s

)

0 100 200 300 400 500
0.01
0.02

Ti
m

e
(s

)

Figure 8: Additional computational overhead in-
curred by PVF itself under different λ and vector
lengths.

Transformation. The additional overhead of integrating PVF primarily arises from Equations (3),
(4) and (6). Figure 8 illustrates the overall additional computation costs of PVF concerning differ-
ent m and λ. It is evident that when λ = 100 and the original vector length is substantial (reaching
200k), the computation time is less than 15 ms, nearly negligible compared to the computational
time saved by PVF. As λ gradually increases while vector length remains fixed, the number of
loops during freezing and thawing computations decreases in the beginning because of the reduced
number of groups. When λ exceeds 60 and continues to increase, the scale of matrix-vector multi-
plication gradually rises, consequently increasing the computation cost. However, this cost remains
consistently within the range of tens of milliseconds, posing a negligible computation burden.

6 CONCLUSION

We present a new perspective aimed at mitigating the formidable computation overhead of SAPs by
reducing the number of involved entries while ensuring intact secure aggregation of original vectors.
Based on this, we propose PVF, a concrete portable solution. After integrating with PVF, λ-SecAgg
involves only 1

λ of original vectors. Moreover, we introduce the disrupting variables element to
improve security. Extensive experiments showcase the remarkable improvements in acceleration
and communication brought by PVF and its portability. Consequently, our method undoubtedly
renders SAPs genuinely feasible, promising inspiration for future research endeavors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-preserving deep learn-
ing via additively homomorphic encryption. IEEE Transactions on Information Forensics and
Security, 13(5):1333–1345, 2017.

James Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, and Mariana Raykova. Se-
cure single-server aggregation with (poly)logarithmic overhead. Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, 2020.

James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana Raykova, and
Cathie Yun. {ACORN}: Input validation for secure aggregation. In 32nd USENIX Security
Symposium (USENIX Security 23), pp. 4805–4822, 2023.

Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In Advances in Cryptology—ASIACRYPT
2000: 6th International Conference on the Theory and Application of Cryptology and Information
Security Kyoto, Japan, December 3–7, 2000 Proceedings 6, pp. 531–545. Springer, 2000.

Derian Boer and Stefan Kramer. Secure sum outperforms homomorphic encryption in (current)
collaborative deep learning. arXiv preprint arXiv:2006.02894, 2020.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. B. McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving
machine learning. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, 2017.

Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure federated matrix factorization. IEEE
Intelligent Systems, 36(5):11–20, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Tamer Ahmed Eltaras, Farida Sabry, Wadha Labda, Khawla Alzoubi, and Qutaibah Ahmedeltaras.
Efficient verifiable protocol for privacy-preserving aggregation in federated learning. IEEE Trans-
actions on Information Forensics and Security, 18:2977–2990, 2023.

Irem Ergun, Hasin Us Sami, and Basak Guler. Sparsified secure aggregation for privacy-preserving
federated learning. ArXiv, abs/2112.12872, 2021.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-
how easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Robin C. Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client
level perspective. ArXiv, abs/1712.07557, 2017.

Xiaojie Guo, Zheli Liu, Jin Li, Jiqiang Gao, Boyu Hou, Changyu Dong, and Thar Baker. Verifl:
Communication-efficient and fast verifiable aggregation for federated learning. IEEE Transac-
tions on Information Forensics and Security, 16:1736–1751, 2021.

Changhee Hahn, Hodong Kim, Minjae Kim, and Junbeom Hur. Versa: Verifiable secure aggregation
for cross-device federated learning. IEEE Transactions on Dependable and Secure Computing,
20:36–52, 2023.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural col-
laborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Agrin Hilmkil, Sebastian Callh, Matteo Barbieri, Leon René Sütfeld, Edvin Listo Zec, and Olof
Mogren. Scaling federated learning for fine-tuning of large language models. In International
Conference on Applications of Natural Language to Information Systems, pp. 15–23. Springer,
2021.

Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and Kannan Ramchandran. Fast-
secagg: Scalable secure aggregation for privacy-preserving federated learning. arXiv preprint
arXiv:2009.11248, 2020.

Mandal Kalikinkar, Gong Guang, and Liu Chuyi. Nike-based fast privacy-preserving high-
dimensional data aggregation for mobile devices. University of Waterloo, Waterloo, ON, Canada,
Tech. Rep. CACR, 10:2018, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yiran Li, Hongwei Li, Guowen Xu, Xiaoming Huang, and Rongxing Lu. Efficient privacy-
preserving federated learning with unreliable users. IEEE Internet of Things Journal, 9:11590–
11603, 2022.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. When machine
learning meets privacy: A survey and outlook. ACM Computing Surveys (CSUR), 54(2):1–36,
2021.

Ziyao Liu, Jiale Guo, Kwok-Yan Lam, and Jun Zhao. Efficient dropout-resilient aggregation for
privacy-preserving machine learning. IEEE Transactions on Information Forensics and Security,
18:1839–1854, 2022a.

Ziyao Liu, Jiale Guo, Wenzhuo Yang, Jiani Fan, Kwok-Yan Lam, and Jun Zhao. Privacy-preserving
aggregation in federated learning: A survey. IEEE Transactions on Big Data, 2022b.

Ziyao Liu, Hsiao-Ying Lin, and Yamin Liu. Long-term privacy-preserving aggregation with user-
dynamics for federated learning. IEEE Transactions on Information Forensics and Security, 18:
2398–2412, 2023.

Zizhen Liu, Si Chen, Jing Ye, Junfeng Fan, Huawei Li, and Xiaowei Li. Sash: Efficient secure
aggregation based on shprg for federated learning. In Uncertainty in Artificial Intelligence, pp.
1243–1252. PMLR, 2022c.

Shiwei Lu, Ruihu Li, Wenbin Liu, Chaofeng Guan, and Xiaopeng Yang. Top-k sparsification with
secure aggregation for privacy-preserving federated learning. Computers & Security, 124:102993,
2023.

Hidde Lycklama, Lukas Burkhalter, Alexander Viand, Nicolas Küchler, and Anwar Hithnawi. Rofl:
Robustness of secure federated learning. In 2023 IEEE Symposium on Security and Privacy (SP),
pp. 453–476. IEEE, 2023.

Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu. Privacy-preserving federated learning
based on multi-key homomorphic encryption. International Journal of Intelligent Systems, 37(9):
5880–5901, 2022.

Yiping Ma, Jess Woods, Sebastian Angel, Antigoni Polychroniadou, and Tal Rabin. Flamingo:
Multi-round single-server secure aggregation with applications to private federated learning. 2023
IEEE Symposium on Security and Privacy (SP), pp. 477–496, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev,
Matthew Rocklin, Amit Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Fransesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrmam, and Anthony Sco-
patz. SymPy: symbolic computing in Python. PeerJ Computer Science, 3, January 2017. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

Hamid Mozaffari, Virat Shejwalkar, and Amir Houmansadr. Every vote counts: Ranking-based
training of federated learning to resist poisoning attacks. In USENIX Security Symposium, 2023.

Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. Eluding secure aggregation in federated
learning via model inconsistency. In Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 2429–2443, 2022.

Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Annual international cryptology conference, pp. 129–140. Springer, 1991.

Mayank Rathee, Conghao Shen, Sameer Wagh, and Raluca Ada Popa. Elsa: Secure aggregation for
federated learning with malicious actors. In 2023 IEEE Symposium on Security and Privacy (SP),
pp. 1961–1979. IEEE, 2023.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of
the ACM (JACM), 56(6):1–40, 2009.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In International Conference on Machine Learning, pp. 8253–8265. PMLR, 2020.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

Jinhyun So, Başak Güler, and A Salman Avestimehr. Turbo-aggregate: Breaking the quadratic
aggregation barrier in secure federated learning. IEEE Journal on Selected Areas in Information
Theory, 2(1):479–489, 2021.

Jinhyun So, Chaoyang He, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali, Basak Guler, and
Salman Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in
federated learning. Proceedings of Machine Learning and Systems, 4:694–720, 2022.

Jinhyun So, Ramy E Ali, Başak Güler, Jiantao Jiao, and A Salman Avestimehr. Securing secure
aggregation: Mitigating multi-round privacy leakage in federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 9864–9873, 2023.

Ekanut Sotthiwat, Liangli Zhen, Zengxiang Li, and Chi Zhang. Partially encrypted multi-party
computation for federated learning. 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid), pp. 828–835, 2021.

Timothy Stevens, Christian Skalka, Christelle Vincent, John Ring, Samuel Clark, and Joseph Near.
Efficient differentially private secure aggregation for federated learning via hardness of learning
with errors. In 31st USENIX Security Symposium (USENIX Security 22), pp. 1379–1395, 2022.

PK Suetin, Alexandra I Kostrikin, and Yu I Manin. Linear algebra and geometry. CRC Press, 1989.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Chuanyin Wang, Cunqing Ma, Min Li, Neng Gao, Yifei Zhang, and Zhuoxiang Shen. Protecting
data privacy in federated learning combining differential privacy and weak encryption. In Science
of Cyber Security: Third International Conference, SciSec 2021, Virtual Event, August 13–15,
2021, Revised Selected Papers 4, pp. 95–109. Springer, 2021.

Yong Wang, Aiqing Zhang, Shu-Lin Wu, and Shui Yu. Vosa: Verifiable and oblivious secure aggre-
gation for privacy-preserving federated learning. IEEE Transactions on Dependable and Secure
Computing, 20:3601–3616, 2023.

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin, Tony QS Quek,
and H Vincent Poor. Federated learning with differential privacy: Algorithms and performance
analysis. IEEE Transactions on Information Forensics and Security, 15:3454–3469, 2020.

12

https://doi.org/10.7717/peerj-cs.103

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhaohui Wei, Qingqi Pei, Ning Zhang, Xuefeng Liu, Celimuge Wu, and Amirhosein Taherkordi.
Lightweight federated learning for large-scale iot devices with privacy guarantee. IEEE Internet
of Things Journal, 10:3179–3191, 2023.

Yi Xu, Changgen Peng, Weijie Tan, Youliang Tian, Minyao Ma, and Kun Niu. Non-interactive
verifiable privacy-preserving federated learning. Future Generation Computer Systems, 128:365–
380, 2022.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
Siheng Chen. Openfedllm: Training large language models on decentralized private data via fed-
erated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 6137–6147, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural infor-
mation processing systems, 32, 2019.

A NOTATIONS

The primary notations used in this work are listed in Table 2.

Table 2: Notations.

Symbol Definition

n Number of users
m Length of original vectors
η Dropout rate
λ Compression factor
µ The number of broken elements within every λ elements
U The user set
U ′ The surviving user set
S The server

xi(t) Original vector of i in the t-th round (with DP-based noise)
A A λ× λ invertible matrix

A−1 The inverse matrix of A
Ǎ The matrix composed only of the first λ− 1 rows of A
α The vector composed of the λ-th row of A

Ǎµ+1 Ǎ with µ-security
αµ+1 α with µ-security

SLEAK(Ax) Function for computing x of Ax with the knowledge AK

x
i(t)
pad xi(t) after padding
m′ Length of xi(t)

pad

d
i(t)
j The j-th group of xi(t)

pad

yi(t) Frozen vector of xi(t)
pad

GN DP-based noise generated by the Gaussian mechanism
ki(t) Key vector of xi(t)

pad

ci(t) Commitment vector of xi(t)

ζi(t) Corresponding random vector of ci(t)

B OPTIONAL EXTENSIONS

We introduce 3 optional extensions augmenting functionality and security for better portability:
(i) µ-security Extension, which resists adversaries that possess prior knowledge of partial private

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

vectors; (ii) Result Verification Extension (RVE), which ensures the correctness of performing trans-
formations to prevent malicious server-side computations, and (iii) User Commitment Extension
(UCE), which ensures the uniqueness of users’ original vectors to prevent malicious attempts at in-
correct computations. The detailed pipeline for integrating PVF with all 4 extensions into SAP is
depicted in Figure 13.

B.1 µ-SECURITY EXTENSION

Threat. Consider an extreme scenario where an extremely powerful malicious server S somehow
obtains an element xi

e of xi, although this is generally unrealistic in most cases. In this case, S,
during the PVF (without DVE) execution, would acquire λ−1 equations of the j-th group where xi

e

lies, namely yi
j = Ǎdi

j in Equation (3), along with xi
e. This allows S to solve for all elements in the

j-th group. Even though only a very small fraction of original vectors, λ
m , is leaked, we still aim to

fortify against this. Assuming the adversary’s capability is to steal µ (< λ− 1) elements from each
group of xi.

We expand the definitions of incomplete matrix Ǎ, and residual vector α of PVF. We define
Incomplete Matrix with µ-security Ǎµ+1 = A:λ−µ−1,: and Residual Matrix with µ-security
αµ+1 = Aλ−µ:,:. Then Frozen Vector with µ-security is:

yi =
(
Ǎµ+1di

1, Ǎ
µ+1di

2, . . . , Ǎ
µ+1di

l

)
, (13)

and Key Vector with µ-security is:
ki =

(
αµ+1di

1,α
µ+1di

2, . . . ,α
µ+1di

l

)
. (14)

Clearly, the aforementioned changes won’t affect the execution process and security of PVF. How-
ever, the compression factor of PVF will decrease from λ to λ

µ+1 (0 ≤ µ < λ − 1). With these
modifications, the adversary, apart from the known private elements, cannot obtain additional el-
ements from the execution of PVF. Particularly, in the methodology outlined in Section 3.2, we
consider µ = 0.

B.2 RESULT VERIFICATION EXTENSION

Threat. The malicious server might intentionally provide incorrect aggregated results to disrupt
training, even if it doesn’t compromise user privacy. When integrating PVF with SAPs featuring
result verification capabilities, we contemplate incorporating RVE.

Most recent SAPs that can verify aggregated results typically necessitate honest and non-dropping
participants, such as Collectors (Wang et al., 2023) and Auxiliary Nodes (Eltaras et al., 2023), in-
troducing additional assumptions. Consequently, by utilizing this extension, we unavoidably add
security assumptions. Without loss of generality, we adopt the approach and security assumptions
from VerSA (Hahn et al., 2023) for PVF, which requires the server and users not to collude but does
not need other trusted third parties. Most SAPs (Aono et al., 2017; Bonawitz et al., 2017; Bell et al.,
2020; Li et al., 2022; Xu et al., 2022; Liu et al., 2022a; Stevens et al., 2022; Wei et al., 2023) lack
the functionality to verify aggregated results. This extension merely constrains the server within the
PVF module to obtain the correct

∑
i∈U ′ yi, and it allows secure integration of PVF and SAPs in

the face of aggregation falsification attacks.

Phase 0: MainRV.Setup(·). Execute Main.Setup(·).
Phase 1: MainRV.Freeze(·). Execute Main.Freeze(·).
Phase 2: MainRV.SecAgg(·). During the execution of VerSA, all users obtain a set of random
vectors (κ1,κ2) derived from shared keys. In the verification step, users send ỳi = κ1y

i and
ýi = yi + κ2 to the server, which simultaneously aggregates ỳi and ýi. In this process, the
verification of the sum of frozen vectors and the sum of key vectors is combined, avoiding additional
interaction. VerSA ensures users obtain a consistent U ′ and the correct

∑
i∈U ′ ki. Users also receive∑

i∈U ′ ỳi and
∑

i∈U ′ ýi.

Phase 3: MainRV.Thaw(·). After receiving the results, users proceed with verification:∑
i∈U ′

ỳi \ κ1
?
=
∑
i∈U ′

ýi − |U ′|κ2. (15)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

yi is unknown to S throughout the process. If the verification passes, execute Main.Thaw(·) for
thawing on the user side. Otherwise, conclude that the server deviates from the protocol and termi-
nate the execution.

B.3 USER COMMITMENT EXTENSION

Threat. In PVF, if a malicious user i uses inconsistent di
j and d′i

j for freezing, resulting in obtaining
Ǎdi

j and ad′i
j , or applies mismatched Ǎ and α′ to di

j for linear transformations, the frozen vector
and key vector no longer correspond. Although this remains harmless to the privacy of honest
users, it will lead to inaccuracies in the final aggregated result.

This malicious tampering is unrelated to SAPs. In the freezing phase of PVF, we use Pedersen Com-
mitment (Pedersen, 1991) to ensure users’ vector consistency. Note that, to enable verification, it’s
crucial to ensure that during the validation phase, the server is semi-honest and cannot collude with
users. Otherwise, a malicious server could illegitimately approve malicious user actions, making
user verification invalid, which is widely adopted in prior works (Rathee et al., 2023). Below, we
outline UCE to modify the Main method to achieve the aforementioned functionality. UCE supports
consistency verification of the user inputs in scenarios with advanced needs. Note that UCE is only
applicable to SAPs where the server has access to the aggregated results.

Phase 0: MainUC.Setup(·). Execute Main.Setup(·). Given the security parameter ρ, it generates
the group (Gp, p, g), where p is the order of Gp and g is its generator. h is an element of Gp.
Gp, p, g, h are public.

Phase 1: MainUC.Freeze(·). The user i ∈ [1, n] generates the Random Vector ζi =
(ζi1, ζ

i
2, . . . , ζ

i
lλ) and calculates the Commitment Vector:

ci =
((

ci1, . . . , c
i
λ

)
, . . . ,

(
ci(l−1)λ+1, . . . , c

i
lλ

))
= ((gx

i
1hζi

1 , gx
i
2hζi

2 , . . . , gx
i
λhζi

λ), . . . , (gx
i
(l−1)λ+1hζi

(l−1)λ+1 , gx
i
(l−1)λ+2hζi

(l−1)λ+2 , . . . , gx
i
lλhζi

lλ).
(16)

Execute Main.Freeze(·).
Phase 2: MainUC.SecAgg(·). Execute Main.SecAgg(·), once completed, all users obtain the ag-
gregated result sum. Each user i sends ci and ζi to the server. For j ∈ [1, l], r ∈ [1, λ], S
validates: ∏

i∈U ′

ci(j−1)λ+r
?
= gsum(j−1)λ+rh

∑
i∈U′ ζ

i
(j−1)λ+r . (17)

If the validation fails, it implies the user deviates from the protocol, and the protocol is terminated.
Otherwise, it signifies that the user employs the consistent original vector when generating the frozen
vector and key vector, and the utilized public parameters are accurate.

Phase 3: MainUC.Thaw(·). Execute Main.Thaw(·).
Clearly, this extension will inevitably introduce a performance decrease. It’s worth noting that in
the majority of SAPs, many malicious user behaviors, such as incorrectly executing key agreements
or submitting counterfeited secret shares, result in aggregation errors. And strictly enforcing user
behavior remains a pending issue (Ma et al., 2023).

C PORTABILITY ANALYSIS

PVF does not attempt to alter SAP, and the decoupling greatly enhances the portability. PPDL (Aono
et al., 2017) and EPPFL (Li et al., 2022) employ homomorphic encryption, eliminating the need for
secret sharing. NIVP-DS (Xu et al., 2022) constitutes a dual-server secure multi-party computation
scheme, requiring users to share secrets between two servers. PracAgg (Bonawitz et al., 2017) and
PracAgg+ (Bell et al., 2020) represent classic mask-based solutions, with PracAgg+ necessitating
an additional user grouping process. EffiAgg (Liu et al., 2022a) and LPPFedL (Wei et al., 2023)
respectively introduce specialized masking mechanisms to lightweight PracAgg. VerSA (Hahn et al.,
2023) enables users to verify the aggregated result at the conclusion, and its integration with PVF
requires RVE. LTPA (Liu et al., 2023) and MRSA (So et al., 2023) individually design specific user
selection mechanisms to ensure privacy in multi-round aggregation. Resistance against model

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 3: Symbolic representation of SAP execution process without and with PVF. The symbols’
meanings are as follows: US: User Selection; UG: User Grouping; KA: Key Agreements among
Users; SS: Secret Sharing; E/M : Encryption or Masking user’s original vectors; UA: Upload
and Aggregation; D/U : Decryption or Unmasking vectors; V er: Verification of aggregated results;
F : Freezing process in PVF Main Method, generating frozen vectors and key vectors; T : Thawing
process in PVF Main Method, deriving all entries based on aggregated entries; RV : Result Verifica-
tion Extension of PVF; X ′: Specialized design for process X in the corresponding protocol; SA(·):
Operations involved in the aggregation process; □: Protocol can execute in the semi-honest setting;
■: Protocol can execute in the active adversary setting.

Type Scheme w/o PVF w/ PVF

\ PlainAgg [US,UA] \

HE-based PPDL [US,SA(KA,E/M,UA,D/U)]□ [US, F,SA(KA,E/M,UA,D/U), T]□
EPPFL [US,SA(KA,E/M,UA,D/U)]□ [US, F,SA(KA,E/M,UA,D/U), T]□

SMPC-based NIVP-DS [US,SA(KA,SS,E/M,UA,D/U)]□ [US, F,SA(KA,SS,E/M,UA,D/U), T]□

Mask-based

PracAgg [US,SA(KA,SS,E/M,UA,D/U)]□■ [US, F,SA(KA,SS,E/M,UA,D/U), T]□■
PracAgg+ [US,SA(UG,KA, SS,E/M,UA,D/U)]□■ [US, F,SA(UG,KA, SS,E/M,UA,D/U), T]□■
EffiAgg [US,SA(KA,SS,E/M ′, UA,D/U ′)]□■ [US, F,SA(KA,SS,E/M ′, UA,D/U ′), T]□■

LPPFedL [US,SA(KA,SS,E/M ′, UA,D/U ′)]□ [US, F,SA(KA,SS,E/M ′, UA,D/U ′), T]□

Result Veri. VerSA [US,SA(KA,SS,E/M,UA,D/U, V er)]□ [US, F,SA(KA,SS,E/M,UA,D/U, V er), RV, T]□

Multi. Privacy LTPA [US′,SA(KA,SS,E/M,UA,D/U)]□ [US′, F,SA(KA,SS,E/M,UA,D/U), T]□
MRSA [US′,SA(KA,SS,E/M,UA,D/U)]□ [US′, F,SA(KA,SS,E/M,UA,D/U), T]□

Resist. M. Incon. \ [US,SA(KA,SS,E/M ′, UA,D/U)]□ [US, F,SA(KA,SS,E/M ′, UA,D/U), T]□

inconsistency attacks can be achieved by making slight modifications to PRG without incurring
additional overhead (Ma et al., 2023). PVF also fits the asynchronous setting. Since PVF itself is
one-shot and decoupled from specific SAP, it does not affect the one-shot masking or recovery in
asynchronous SAP (such as LightSecAgg (So et al., 2022)). We symbolically represent the entire
process of federated learning aggregation in Table 3. It is evident that PVF is decoupled from SAPs,
not interfering with the internal execution process of SAP.

D DETAILED SECURITY ANALYSIS

D.1 EXAMPLE OF IMPROPER MATRIX

Example 1. Consider a 3× 3 matrix:

A =

[
1 2 3
1 3 3
1 2 4

]
, (18)

which is an invertible matrix. The corresponding incomplete matrix is:

Ǎ =

[
1 2 3
1 3 3

]
. (19)

Assume the original vector is x = (x1;x2;x3) = (1; 2; 3), and the frozen vector is Ǎx =
(14, 16). S obtains the under-determined system of linear equations as follows:{

x1 + 2x2 + 3x3 = 14 (i)
x1 + 3x2 + 3x3 = 16 (ii)

(20)

While S cannot obtain the complete x, it can deduce x2 = 2 by (ii)− (i). Unlike S obtaining prior
knowledge of elements through attacks as discussed in Section B.1, here, S deduces x2 = 2 through
the computation process within PVF. However, since A is public, any maliciously constructed A
can be easily detected by honest users.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D.2 SUPPLEMENTARY CRYPTOGRAPHIC PRIMITIVES

Here, we supplement the symmetric authenticated encryption and the digital signature we require in
the active adversary model.

D.2.1 SYMMETRIC AUTHENTICATED ENCRYPTION

Symmetric authenticated encryption can ensure the confidentiality of a message, including:

• AE.gen(k) → (sk), where k is the security parameter. It outputs a secret key sk.

• AE.enc(sk,m) → (c). It encrypts the message m using sk and outputs the ciphertext c.

• AE.dec(sk, c) → m or ⊥. If sk is the correct key corresponding to the ciphertext c and c passes
integrity verification, it outputs the plaintext m. Otherwise, it outputs an error symbol.

We need the encryption scheme to be indistinguishable under chosen plaintext attacks (IND-CPA)
and ciphertext integrity (IND-CTXT) (Bellare & Namprempre, 2000). In Figure 13, we omit the
encryption of messages before transmission and the decryption after reception by each participant.
If any error occurs during encryption or decryption process, the protocol will be immediately termi-
nated.

D.2.2 DIGITAL SIGNATURE

Digital signature can ensure the authenticity and integrity of a message. We use the signature scheme
that achieves security against universal forgery under chosen message attack (UF-CMA). The digital
signature scheme consists of:

• DS.gen(k) → (sk, pk), where k is the security parameter. It outputs a secret key sk and a public
key pk.

• DS.sign(sk,m) → (sig). It outputs a digital signature sig on the message m.

• DS.verify(sig, pk,m) → True or False. It verifies whether the signature sig is valid on m.

D.3 DETAILED EXPLANATION AND PROOF OF THEOREM 1

First and foremost, it is evident that in PVF, the user only transmits yi to the server, and the server
only sends

∑
yi back to the users after SAP ends. Notably, ki and

∑
ki are transmitted through

the SAP, independent of PVF. In the active adversary model, we obviously cannot guarantee the
correctness of the aggregation result because the malicious server can arbitrarily modify the result.
However, we can guarantee the privacy of honest users’ inputs. We provide a detailed explanation
of the active attacks that malicious participants can launch within PVF and how PVF leverages the
cryptographic primitives to defend against them.

• Forging fake users to participate in PVF. This type of attack, also known as a Sybil Attack, involves
fake users reporting received information to the server. Such attacks primarily target scenarios
where users share secret keys among themselves but keep the keys secret from the server, like
PPDL. Alternatively, an attacker may attempt to forge a large number of fake users (more than
1
3 |U|) to reconstruct users’ private keys in the secret-sharing scheme. Since PVF does not involve
information that is kept secret from the server but shared among all users, and consistent with the
assumption in PracAgg that the number of malicious users does not exceed 1

3 |U|, PVF is resistant
to this type of attack.

• Attempting to forge or tamper with honest users’ messages. Such attacks may occur in PVF in the
following situations: malicious participants forging or tampering with an honest user’s yi. This
can be avoided by the digital signature σi

1 employed in PVF. Similarly, malicious participants may
attempt to forge or tamper with

∑
yi sent by the server, which is prevented by the use of σ3.

• Sending malformed messages. In PVF, such attacks include malicious users sending malformed
ciphertexts of yi or the malicious server sending malformed ciphertexts of

∑
yi. Such attacks are

prevented by the IND-CPA and IND-CTXT security of the symmetric authenticated encryption
used in PVF. If decryption fails, the protocol is immediately terminated.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Intercepting and stealing private information. Malicious adversaries may intercept messages sent
by honest users to extract private information. This is effectively avoided by the symmetric au-
thenticated encryption employed in PVF.

The use of symmetric authenticated encryption and digital signatures to ensure privacy under the
active adversary model is a relatively mature application in the field of secure aggregation, and our
design follows these existing works. Then we present the following lemmas:
Lemma 1 (Privacy during the freezing phase). Fix p, U , m, λ, A and a private vector xi =
(di

1, . . . ,d
i
⌈m

λ ⌉) (with noise) of an honest user i ∈ U . For any probabilistic polynomial-time (PPT)
adversary M who is given {yi}i∈U and C, the advantage of M to obtain any unbroken element aj is
defined as:

AdvyM (λ) := Pr[SLEC(Ǎdi
j) → aj]j∈[1,⌈m

λ ⌉]. (21)

There exists a negligible function ε such that AdvyM (λ) ≤ ε.
Remark 1. The adversary can obtain l(λ − 1) independent equations, with lλ variables. Hence
there are infinite solutions, and the probability of M determining the unique (xi) is 1

∞ .
Lemma 2 (Privacy during the thawing phase). Fix p, U , m, λ, A and the sum of private vectors∑

i∈U ′ xi. For any PPT adversary M who is given {yi}i∈U ′ , C and
∑

i∈U ′ ki, the advantage of M
to obtain any unbroken element aj is defined as:

Advy,kM (λ) := Pr[SLEC(A
∑
j∈U ′

di
j) → aj]j∈[1,⌈m

λ ⌉]. (22)

There exists a negligible function ε such that Advy,kM (λ) ≤ ε.

Remark 2. S can obtain
∑

j∈U ′ di
j by Equation (6) or Equation (9). For any individual di

j (with
noise), the information known to M is

∑
j∈U ′ di

j and Ǎdi
j . So there are still infinite solutions, and

Advy,kM (λ) = 1
∞ .

Lemma 3 (The hardness of the Learning With Errors decision problem). Given a finite field Fq and
a discrete probability distribution X over Fq . Let s ∈ Fv

q be a secret vector, A ∈ Fu×v
q be a matrix

that is chosen uniformly at random and e ∈ Fu
q be the error vector that is sampled from X . (v, q, σ)

parameterize an LWE instance, where σ is the standard deviation of X . The Learning With Errors
(LWE) (search) problem is to find s, given the pair (A, b), where b = As+e. And the LWE decision
problem is to distinguish between two uniformly randomly generated pairs.
Remark 3. Regev (2009) shows that if the size of q is polynomial in v and X is a discrete Gaussian
distribution on Fq with standard deviation σ > 2

√
v√

2π
, the LWE decision problem is at least as hard as

the LWE search problem and solving the LWE search problem can be reduced to solving the Shortest
Vector Problem. In DVE, v = λ, and we use Zp as Fq .

We use a standard hybrid argument to prove the theorem.

Proof. We define a sequence of hybrid distributions H0, H1, . . . to denote a series of modifications
to REAL, which can finally get SIM . We prove SIM and REAL are indistinguishable by proving
two adjacent hybrids are indistinguishable.

H0 In this hybrid, SIM is exactly the same as REAL.

H1 This hybrid is distributed similarly to the previous one, except for the following modifications.
SIM obtains

∑
i∈U ′\C x

i by calling Ideal{xi}i∈U\C
(U ′\C). SIM aborts if there is an illegal

request. We replace the ciphertexts of {yi}i∈U with the ciphertexts of uniformly random vec-
tors {wi}i∈U that satisfy

∑
i∈U ′\C w

i =
∑

i∈U ′\C y
i.
∑

i∈U ′\C y
i can be can be computed

from Equation (9) based on
∑

i∈U ′\C x
i. The IND-CPA and IND-CTXT security of symmetric

authenticated encryption guarantees the distribution of this hybrid is indistinguishable from the
previous one.

H2 This hybrid is distributed exactly as the previous one, except SIM aborts if there is an invalid sig-
nature (σi

1, σi
2 or σ3). The UF-CMA security of the digital signature scheme can ensure C cannot

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

forge any valid signature of an honest user, so the distribution of this hybrid is indistinguishable
from the previous one.

H3 This hybrid is distributed similarly to the previous one, except for the following modifications.
Firstly, according to the security analysis process of the integrated SAP, we replace the corre-
sponding messages conveyed in SAP with random strings of equal length. Secondly, we replace
the frozen vectors {yi}i∈U received by S with uniformly random vectors {wi}i∈U . xi is added
with noise (Ǎe) through Equation (10). Therefore, Lemma 3 ensures that (Ǎ,yi) and (Ǎ,wi)
are indistinguishable, which guarantees S does not obtain private information from honest users
through frozen vectors. Therefore, the security of SAP and the lemmas ensure the distribution of
this hybrid is indistinguishable from the previous one.

Therefore, the distribution of SIM which is the same as H3 is indistinguishable from REAL.
SIM does not depend on the inputs of honest parties, and C can only learn about the sum of original
vectors. If too many users drop out, SAP will abort and still guarantee the above conclusion. Clearly,
the security of λ-SecAgg still holds in the semi-honest setting.

E ADDITIONAL COMPARISON AND EXPERIMENT

E.1 THEORETICAL COMPLEXITY COMPARISON

Table 4 indicates for some SAPs, the theoretical computation complexity increases after integrat-
ing PVF. This is attributed to the transformation required for the entire original vector within PVF.
However, intuitively, the computation time for secure aggregation per entry (e.g., homomorphic
encryption, PRG expansions, or modular exponentiations) tends to be significantly greater com-
pared to the computation time per entry in linear transformations. This suggests that PVF still
manages to compress computation overhead, which is evident in the experiment outcomes.

In practice, the choice of λ mainly considers: (i) Security requirements in DVE (see Lemma 3). (ii)
SAP. For schemes with more masking-related overhead, a larger λ performs better. For schemes
with more interaction-related overhead, a smaller λ performs better (as in Section 5.3). (iii) m. For
larger m, masking-related overhead is greater, so a larger λ performs better.

Table 4: Theoretical complexity of SAP without and with PVF of single-round aggregation in the
semi-honest setting. O(·)(·) in the rightmost column indicates the communication complexity per-
tains to users, followed by the number of interactions between users and the server. “P. of G. M.”
stands for privacy of the global model. In the real world, p ≫ m ≫ n. ↑ indicates the integration of
PVF into the protocol would increase its theoretical complexity.

SAP Each user Server P. of Communi. (Inter.)
w/o PVF w/ PVF w/o PVF w/ PVF G. M.

PPDL O(m) O(λm) ↑ O(mn) O(1λmn+ λm) ! O(m) (1)
EPPFL O(m) O(λm) ↑ O(mn) O(1λmn+ λm) × O(m) (2)

NIVP-DS O(m) O(λm) ↑ O(mn) O(1λmn+ λm) ! O(m) (1)
PracAgg O(mn+ n2) O(1λmn+ λm+ n2) O(mn2) O(1λmn2 + λm) × O(m+ n) (4)

PracAgg+ O(mlogn+ log2n) O(1λmlogn+ λm+ log2n) O(mnlogn+ nlog2n) O(1λmnlogn+ λm+ nlog2n) × O(m+ logn) (4)
EffiAgg O(m+ n2) O(λm+ n2) ↑ O(m

√
p+ n) O(1λm

√
p+ λm+ n) × O(m+ n) (4)

LPPFedL O(m+ n2) O(λm+ n2) ↑ O(m+ n) O(λm+ n) ↑ × O(m+ n) (4)

E.2 MORE IMPLEMENTATION DETAILS

We implement the baselines using Python. Specifically, we utilize AES-GCM with 128-bit keys for
the symmetric authenticated encryption, standard (t, n) Shamir Secret Sharing (Shamir, 1979), AES
in counter mode for the pseudorandom generator, SHA-256 hash to implement a homomorphic pseu-
dorandom generator for EffiAgg, Sympy library (Meurer et al., 2017) to compute discrete logarithms
for EffiAgg, and Paillier Encryption with 1024-bit keys for PPDL. In Section 3.3, experimental set-
tings of the image classification task is the same as Figure 2, and for the movie recommendation
task, the dataset is split using a Leave-One-Out (He et al., 2017) approach for training and testing,
where users with fewer than 10 records are excluded, using Hit Ratio (HR) as metrics to assess the
performance of the recommendations, with higher values indicating superior effectiveness.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

In Figure 2, we use three widely discussed SAPs: PracAgg+, PracAgg, and PPDL. NIVP-DS falls
behind due to the requirement of two non-colluding servers, while LPPFedL demands increased
communication overhead. Remarkably, PPDL, previously considered impractical due to its use of
HE, has its computational overhead significantly mitigated by integrating PVF. And its advantages
of operating with a single server, single-interaction communication, and preserving the global model
make it more appealing.

E.3 FOR FL OF LLM

LLMs have a profound impact on the entire AI research community due to their excellent contextual
learning and instruction following ability (Zhao et al., 2023). Given privacy concerns, training (or
fine-tuning) LLM in a federated setting has been explored (Hilmkil et al., 2021; Ye et al., 2024).
In the context of LLMs, during the aggregation process, the length of user original vectors reaches
billions. Taking Llama2-7B (Touvron et al., 2023) as an example, assuming 1% of the parameters
need to be updated during the fine-tuning, which is 700M, the computational cost of using a general
secure aggregation scheme is unimaginable, making PVF particularly important. As shown in Ta-
ble 5, the time required to train one round without using PVF can basically meet the requirement of
training 100 rounds with PVF. At present, FL for LLM among a multitude of lightweight clients is
unrealistic. The SOTA scheme OpenFedLLM (Ye et al., 2024) involves only n ∈ {2, 4, 5} clients per
round (using Llama2-7B). And PVF can contribute to future FedLLMs and involving more clients.

Table 5: Estimated computational overhead per round with and without PVF for fine-tuning Llama2-
7B. n = 100, m = 700M , λ = 100, and η = 0%.

Scheme Each user Server

w/o w/ w/o w/

PPDL ∼300h ∼3h ∼60h ∼0.6h
PracAgg ∼27h ∼0.27h ∼27h ∼0.27h

PracAgg+ ∼5h ∼0.05h ∼27h ∼0.27h

E.4 THE IMPACT OF PADDING

PVF necessitates padding the original vector, thereby increasing the vector size. In theory, the
additional cost that padding introduces in computation and communication does not exceed λ

m of
the original, as the maximum value of padding length is λ. Table 6 showcases the impact of no
padding versus padding λ entries on the computation and communication overhead, where λ

m =
0.001. It’s evident that the overhead induced by padding is almost negligible. To strictly adhere
to the principle of “not increasing any communication overhead”, we present a method to avoid
padding. We extract the first

⌊
m
λ

⌋
λ entries from the original vector and apply PVF to them. The

remaining entries, which are fewer than λ, are appended to the key vector k for participation in
the secure aggregation. This approach allows us to obtain the aggregate result of the entire original
vector while eliminating the need for padding.

Table 6: Comparison of overhead with and without padding. n = 100, m = 100k, λ = 100, and
η = 10%.

Scheme User comp. (ms) Server comp. (ms) Comm. cost (KB)

No pad Pad No pad Pad No pad Pad

PPDL 1402 1403, ↑ 1 303 304, ↑ 1 859 860, ↑ 1
EPPFL 41 42, ↑ 1 7337 7351, ↑ 14 681 681, ↑ 0

NIVP-DS 13 13, ↑ 0 10 10, ↑ 0 587 587, ↑ 0
PracAgg 162 164, ↑ 2 1456 1463, ↑ 7 785 785, ↑ 0

PracAgg+ 38 39, ↑ 1 405 409, ↑ 4 783 783, ↑ 0
EffiAgg 29 32, ↑ 3 5404 5482, ↑ 78 783 783, ↑ 0

LPPFedL 19 19, ↑ 0 20 20, ↑ 0 1564 1564, ↑ 0

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

E.5 MEMORY USAGE

In Figure 9, we evaluate the memory usage of each user and S during PracAgg without PVF (λ = 0)
and with PVF (λ = 100, 1000).

For each user, the increased memory usage for λ = 1000 compared to λ = 100 is due to the need
to store a larger transformation matrix (λ× λ) required by PVF. The increase in memory usage for
λ = 0 compared to λ = 100 is because PVF reduces the number of random numbers generated
(nm → nm

λ) and decreases the scale of vector addition computations (m → m
λ) during the masking

process.

For S, all three methods require summing up the vectors uploaded by all users, with a memory
usage of approximately O(mn), so the additional O(λ2) overhead introduced by PVF is negligible.
The increased memory usage for λ = 0 compared to λ = 100 is due to PVF reducing the number
of random numbers generated ((η(1− η)n2 + (1− η)n)m → (η(1−η)n2+(1−η)n)m

λ) and decreasing
the scale of vector addition computations during the unmasking process.

10 1 100 101 102

Time (s)

0

20

40

60

80

100

120

M
em

or
y

U
sa

ge
 (M

iB
)

User

100 102

Time (s)

0

25

50

75

100

125

150

175

200
Server

=0
=100
=1000

Figure 9: Memory usage with different λ. n =
100, m = 100k, and η = 10%.

100 101 102 103 104

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Plain
PracAgg w/o PVF
PracAgg w/ PVF
PracAgg w/ PVF w/ UCE
PracAgg w/ PVF w/ 5-security Extension
VerSA w/ PVF w/o RVE
VerSA w/ PVF w/ RVE

Figure 10: Comparison of various aggregation
methods, with n = 100, η = 5%, λ = 100.

E.6 EVALUATION OF EXTENSIONS

End-to-end comparison. In accordance with the experimental settings of Figure 2, we evaluate
the impact of RVE, UCE, and µ-security on the overall model training time (as illustrated in the Fig-
ure 10). The acceleration effect and communication expansion when integrating different extensions
are 34.5× and 1.4× (RVE), 21.1× and 2.9× (UCE), 13.5× and 1.0× (5-security).

(λ,µ). We evaluate the speedup with different (λ, µ) ∈ {100, 300, 500, 700, 1000} × [1, 10]. The
integration of PVF with the µ-security extension reduces the entries of vectors involved in secure
aggregation to µ+1

λ (µ < λ − 1) of their original size. Figure 11 showcases incorporating the µ-
security extension does diminish the improvement factor. However, even when µ = 0.1λ, PVF still
yields an acceleration gain of 10× along with communication improvements exceeding 5×.

RVE and UCE. UCE necessitates users to commit to each dimension of the original vectors, while
S needs to validate each dimension. RVE requires users to submit frozen vectors twice and S to
perform summations twice. Thereby, both UCE and RVE impose on each participant an additional
communication complexity of O(m) and computation complexity of O(m).

Figure 12 presents the overhead required for SAPs with different extensions. Compared to not inte-
grating PVF, the computation overhead after adding extensions is still nearly an order of magnitude
lower. Communication costs from extensions primarily stem from the transmission of additional
vectors, such as commitment vectors. We leave mitigating these overheads to future work.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Im
p

ro
v

em
en

t F
acto

r
Im

p
ro

v
em

en
t F

acto
r

Im
p

ro
v

em
en

t F
acto

r

PPDL PracAgg+ PracAgg

PPDL EPPFL

PPDL PracAgg+ PracAgg

U
se

r
C

o
m

p
u

ta
ti

o
n

S
er

v
er

 C
o

m
p

u
ta

ti
o

n
C

o
m

m
u

n
ic

at
io

n

Figure 11: The impact of different (λ, µ) on improvement factor. n = 100, m = 100k, λ = 100,
and η = 10%.

P1
+ P2

+P3
+ P1 P2 P3 V1 V2V3

0

100

101

Ti
m

e
(s

)

User computation

P1
+ P2

+P3
+ P1 P2 P3 V1 V2V3

0

100

101

102

Ti
m

e
(s

)

Server computation

P1
+ P2

+ P1 P2 V1 V20

500

1000

1500

2000

C
os

t (
K

B
)

P1
+ : PracAgg+ w/ PVF w/o any extensions.

P2
+ : PracAgg+ w/ PVF w/ UCE.

P3
+ : PracAgg+ w/o PVF.

P1: PracAgg w/ PVF w/o any extensions.
P2: PracAgg w/ PVF w/ UCE.
P3: PracAgg w/o PVF.
V1: VerSA w/ PVF w/o any extensions.
V2: VerSA w/ PVF w/ RVE.
V3: VerSA w/o PVF.

Communication

Figure 12: Comparison of costs across different extensions. n = 100, m = 100k, λ = 100, and
η = 10%.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Participants: S and User set U = {u1, u2, . . . , un}.
Public Inputs: A, µ, Ǎµ+1, αµ+1, λ, Zp, g and h. Users’ public keys for signatures {sigpki }i∈U and the server’s public key for signatures sigpkS .
Private Inputs: Original vectors {xi(t)}i∈U of t-th iteration. Users’ secret keys for signatures {sigski }i∈U and the server’s secret key for signatures sigskS .
Outputs: Surviving user set U ′,

∑
i∈U ′ xi(t).

• Phase 1 Freezing
User i ∈ U :

- pad xi(t) randomly and group the entries.
- add noise to xi(t) via Equation (10).
- calculate key vector ki(t) via Equation (14).
- calculate frozen vector yi(t) via Equation (8) and Equation (13).
- generate random vector ζi(t) = (ζ

i(t)
1 , ζ

i(t)
2 , . . . , ζ

i(t)
lλ) and calculate commitment vector ci(t) via Equation (16).

- obtain mi
1 = yi(t)(Do not send yi(t) when there is RVE)||ζi(t)||ci(t), send σi

1 → DS.sign(sigski ,mi
1) to S.

• Phase 2 SecAgg
S and Users:

- execute SAP for {ki(t)}i∈U .
* · · ·
* users get (κ1, κ2) and obtain mi

2 = ỳi(t)(κ1y
i(t))||ýi(t)(yi(t) + κ2), send σi

2 → DS.sign(sigski ,mi
2) to S.

* · · ·
- all participants receive U ′ and

∑
i∈U ′ ki(t) (or Enc(

∑
i∈U ′ ki(t))).

S:
- if DS.verify(σi

1, sig
pk
i ,mi

1) → False, abort. Otherwise, calculate
∑

i∈U ′ yi(t)(can not get
∑

i∈U ′ yi(t)) calculate
∑

i∈U ′ ỳi(t) and
∑

i∈U ′ ýi(t).
- for j ∈ [1, l], r ∈ [1, λ], reveal the commitments via Equation (17). If verification fails, abort.

• Phase 3 Thawing
Thawing on the server side
S:

- calculate sum =
∑

i∈U ′ x
i(t)
pad via Equation (9) and send sum and σ3 → DS.sign(sigskS , sum) to i ∈ U ′.

User i ∈ U ′:
- receive

∑
i∈U ′ xi(t), if DS.verify(σ3, sig

pk
S , sum) → False, abort. Otherwise, unpad and output.

Thawing on the user side
S:

- send
∑

i∈U ′ yi(t), Enc(
∑

i∈U ′ ki(t)) and σ3 → DS.sign(sigskS ,
∑

i∈U ′ yi(t)||Enc(
∑

i∈U ′ ki(t))) to i ∈ U ′.
User i ∈ U ′:

- if DS.verify(σ3, sig
pk
S ,
∑

i∈U ′ yi(t)||Enc(
∑

i∈U ′ ki(t)) → False, abort. Otherwise, verify
∑

i∈U ′ yi(t) via Equation (15). If verification fails, abort.
- decrypt Enc(

∑
i∈U ′ ki(t)).

- calculate sum =
∑

i∈U ′ x
i(t)
pad via Equation (9), unpad and output.

Figure 13: The pipline of λ-SecAgg with all 4 extensions for one aggregation. The red and
underlined parts are required in the user commitment extension. The blue and underlined parts
are required in the result verification extension.

23

	Introduction
	Related Work
	Partial Vector Freezing
	Motivation
	Main Method
	Disrupting Variables Element
	Integrating PVF with Different SAPs

	Security Analysis
	Privacy of Each Element
	Security Analysis of Entire Vectors

	Evaluation
	Theoretical Complexity Analysis
	Experimental Settings
	Performance Comparison
	Ablation Study

	Conclusion
	Notations
	Optional Extensions
	-security Extension
	Result Verification Extension
	User Commitment Extension

	Portability Analysis
	Detailed Security Analysis
	Example of improper matrix
	Supplementary Cryptographic Primitives
	Symmetric Authenticated Encryption
	Digital Signature

	Detailed explanation and proof of Theorem 1

	Additional comparison and experiment
	Theoretical complexity comparison
	More implementation details
	For FL of LLM
	The impact of padding
	Memory Usage
	Evaluation of extensions

