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Abstract

Contrastive learning has been successfully001
adopted in VRL (visual representation learning)002
by constructing effective contrastive pairs. A003
promising baseline SimCSE has made notable004
breakthroughs in unsupervised SRL (sentence005
representation learning) following the success006
of contrastive learning. However, considering007
the difference between VRL and SRL, there008
is still room for designing a novel contrastive009
framework specially targeted for SRL. We pro-010
pose a novel angle-based similarity function for011
contrastive objective. By examining the gradi-012
ent of our contrastive objective, we show that013
an angle-based similarity function incites better014
training dynamics on SRL than the off-the-shelf015
cosine similarity: (1) effectively pulling a posi-016
tive instance toward an anchor instance in the017
early stage of training and (2) not excessively018
repelling a false negative instance during the019
middle of training. Our experimental results on020
widely-utilized benchmarks demonstrate the ef-021
fectiveness and extensibility of our novel angle-022
based approach. Subsequent analyses establish023
its improved sentence representation power.024

1 Introduction025

Contrastive learning has achieved promising re-026

sults in VRL (visual representation learning) (Had-027

sell et al., 2006; Dosovitskiy et al., 2014; Oord028

et al., 2018; Bachman et al., 2019; He et al., 2020;029

Chen et al., 2020). However, the adoption of con-030

trastive learning in SRL (sentence representation031

learning) has suffered from several limitations such032

as inherently difficult data augmentations due to033

a discrete nature of NLP (natural language pro-034

cessing) (Li et al., 2022) and a limited property035

of PLMs’ (pre-trained language models) represen-036

tation spaces (Gao et al., 2018; Ethayarajh, 2019;037

Wang et al., 2019; Li et al., 2020a). Unlike earlier038

attempts to construct positive pairs (Zhang et al.,039

2017; Wei and Zou, 2019; Xie et al., 2020; Sun040

et al., 2020; Zhang et al., 2020b, 2021b; Giorgi041
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Figure 1: Difference between contrastive learning for
unsupervised sentence representation using different
similarity functions. Compared to the widely-utilized
cosine similarity function (SimCSE), our novel angle-
based similarity function shows different training dy-
namics, which lead to a better alignment and mitigate
a sampling bias by not repelling the negative instance
strongly. We infer that this phenomenon is due to the
gradient property of the angle-based similarity function
as seen in (b).

et al., 2021; Kim et al., 2021; Yan et al., 2021), 042

which are similar to the works in VRL, SimCSE 043

(Gao et al., 2021) found using the independently 044

sampled dropout (Srivastava et al., 2014) mask 045

is simple but effective for augmentations for un- 046

supervised contrastive learning and can alleviate 047

the problem of anisotropy − a narrow cone-like 048

representation space leads to a lack of expressive- 049

ness (Ethayarajh, 2019; Li et al., 2020a; Gao et al., 050

2021). A number of studies based on SimCSE re- 051

ported a successful utilization of contrastive learn- 052

ing in SRL (Zhou et al., 2022; Zhang et al., 2022a; 053

Chuang et al., 2022; Zhang et al., 2022b; Wu et al., 054

2022; Liu et al., 2023). 055

However, indeed there are differences between 056

SRL and VRL (Nie et al., 2022), which suggests 057

that consideration of the nature of SRL should pre- 058

cede a blind adoption of VRL’s success. Among 059

several points that differentiate SRL, we focus on 060

two important points: (1) the number of in-batch 061

negative instances; (2) the property of training dy- 062

namics as SRL usually uses pre-trained models. 063
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More specifically, several works utilize a smaller064

number of negative instances (e.g., 64 ∼ 512 (Gao065

et al., 2021; Zhou et al., 2022; Zhang et al., 2022a;066

Chuang et al., 2022; Wu et al., 2022; Liu et al.,067

2023)), while the larger number of negative in-068

stances (e.g., 4096 ∼ 65536 (He et al., 2020; Chen069

et al., 2020)) is used in VRL. Also, the number of070

training epochs is relatively smaller (e.g., 1 ∼ 4071

(Gao et al., 2021; Zhou et al., 2022; Zhang et al.,072

2022a; Wu et al., 2022; Liu et al., 2023)) to train073

pre-trained language models (PLMs). Consider-074

ing the differences, we aim to design a novel con-075

trastive objective with better properties for SRL.076

Towards this end, we first investigate which com-077

ponent of the contrastive objective is effective for078

SRL. By analyzing a gradient of the contrastive ob-079

jective, we find that a temperature value of normal-080

ized temperature-scaled cross entropy (NT-Xent)081

loss (Chen et al., 2020) and a derivative of the sim-082

ilarity function has a correlation with a magnitude083

of gradient. This indicates that both of them affect084

training dynamics. Conforming to previous works085

that have reported the role of temperature (Wang086

and Liu, 2021; Zhang et al., 2021a), we focus more087

on exploring better similarity functions that take088

into account the nature of PLMs and SRL.089

In this regard, we design a novel angle-based090

similarity function for contrastive learning of un-091

supervised sentence representation. Comparing the092

derivatives of the naive cosine similarity function093

used in SimCSE and the proposed angle-based094

function, we find an interesting property from the095

derivative of our angle-based function − it expo-096

nentially increases (absolute value) from 90 to 0097

degrees. We expect that this property could lead098

to following positive impacts: (1) the angle-based099

approach improves the alignment during the early100

stages of training due to the anisotropic space of101

PLMs with smaller angles; (2) the angle-based102

approach mitigates the problem of inappropriate103

in-batch negative sampling (i.e., false negative104

(Chuang et al., 2020; Robinson et al., 2020; Zhou105

et al., 2022)) during the middle of training as it106

does not strongly repel the negative instances with107

higher angle differences (see Figure 1).108

Under the assumption that the angle-based ap-109

proach can solve some issues, we propose a simple110

angle-based approach for contrastive sentence111

embedding framework (SimACE), which equips112

with the aforementioned angle-based function. The113

proposed method is straightforward. We change the114

vanilla cosine similarity function to the angle-based115

function by applying an inverse function of cosine 116

(arccosine) and adjusting its range suitable for soft- 117

max logits of contrative objective. SimACE out- 118

performs the baseline SimCSE on off-the-shelves 119

unsupervised sentence representation benchmark, 120

with relatively small in-batch negative instances. 121

Also, SimACE shows more robust performance 122

and even outperforms the baseline in a multi-task 123

benchmark for sentence representation. In addition, 124

we apply our novel design to recent state-of-the-art 125

methods based on SimCSE and show that simply 126

replacing the original cosine similarity function 127

with our angle-based similarity function can im- 128

prove the performance. These results demonstrate 129

the extensibility of our work. To verify the differ- 130

ence between SimCSE and SimACE and the rea- 131

son for improved performance, we conduct several 132

experimental analyses, including semantic space 133

visualization, reporting uniformity and alignment, 134

and training dynamics in terms of angle. We note 135

that the reason for SimACE’s success is that the 136

angle-based approach is appropriate especially for 137

unsupervised SRL, though it shows unprecedented 138

results and tendencies that are not in line with prior 139

works in VRL (Wang and Isola, 2020; Wang and 140

Liu, 2021; Zhang et al., 2021a). 141

2 Related Works and Preliminary 142

Unsupervised SRL In SRL, high-quality rep- 143

resentation greatly correlated with human eval- 144

uations on similarities and has been proven to 145

be effective when transferred to downstream 146

tasks. Despite the success of transformer-based 147

PLMs on transfer tasks (Devlin et al., 2018; Liu 148

et al., 2019), PLMs-based representations under- 149

performed conventional static word embeddings, 150

such as Word2Vec (Mikolov et al., 2013) and its 151

augmented version (Pennington et al., 2014), partic- 152

ularly in sentence representation benchmark (STS 153

tasks (Cer et al., 2017)). As PLMs turned out to 154

have high-dimensional conical space (Ethayarajh, 155

2019), post-processing methods (Li et al., 2020b; 156

Su et al., 2021) instantly tried to mitigate the prob- 157

lem in PLMs, but were limited to improving the 158

performance. Contrastive learning-based methods 159

aim at smoothing the bottleneck of its anisotropic 160

property, by constructing finely tailored contrastive 161

pairs (Yan et al., 2021; Gao et al., 2021; Zhou et al., 162

2022; Zhang et al., 2022a; Wu et al., 2022; Chuang 163

et al., 2022; Zhang et al., 2022b; Liu et al., 2023) or 164

designing an apt contrastive objective (Gao et al., 165
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2021; Zhang et al., 2022b). In unsupervised con-166

trastive learning, it mainly falls into two compo-167

nents in terms of achieving these goals: 1) con-168

structing the well-crafted pairs; 2) designing an169

appropriate contrastive objective. Most efforts have170

focused on constructing the former (Zhang et al.,171

2022a; Zhou et al., 2022) or adding auxiliary objec-172

tive on contrastive loss (Chuang et al., 2022; Zhang173

et al., 2022b; Wu et al., 2022; Liu et al., 2023).174

Preliminary In unsupervised SRL, SimCSE sys-175

tematically proposed the major components for176

learning sentence representations, and many re-177

cent works (Zhou et al., 2022; Zhang et al., 2022a;178

Chuang et al., 2022; Zhang et al., 2022b; Wu et al.,179

2022; Liu et al., 2023) are originated from the fol-180

lowing framework. First, given a collection of sen-181

tences D = {xi}mi=1, positive views are derived182

from independently passing xi to encoder twice183

(i.e., dropout augmentation), while negative pairs184

through in-batch negative sampling (Chen et al.,185

2017). Secondly, they use NT-Xent loss, which is186

based on similarity function sim(zi, zj):187

li = −log
e
sim(zi,z

′
i)/τ

∑N
j=1 e

sim(zi,z′j)/τ
, (1)188

where zi, z′i, and z′j(i ≠ j) denotes the hidden rep-189

resentation of the anchor, positive instance, and190

negative instance. The hidden representation with ′
191

means the augmented view of instance, which is a192

dropout-based one in SimCSE, and τ dictates tem-193

perature. Although there have been several works194

dealing with understanding the contrastive learning195

(Wang and Liu, 2021; Zhang et al., 2021a) in the196

field of VRL, little is known about the unique prop-197

erty of contrastive learning for SRL. Regardless of198

the progress in the area of SRL, the major problem199

of grounding based on deeper analysis, such as the200

role of temperature or the possibility of different201

similarity functions, persists.202

3 Angle-based Contrastive Learning203

3.1 Motivation204

In this section, we first investigate the gradient of205

contrastive loss to find which factors affect the train-206

ing dynamics in SRL. For simplicity, we consider207

z as input hidden representation like Equation 1,208

which then can be reformulated using the softmax209

probability. Treating the sim(zi, z′i)/τ in Equa-210

tion 1 as the logit of a vanilla Cross-Entropy loss,211

we can define the probability (λi) of each negative212

sample as below: 213

ki,j = sim(zi, z′j)/τ, ∀i = 1, ...,N, ∀j = 1, ...,N,

λi =
e
ki,i

∑N

j=1 e
ki,j

, ∀i = 1, ...,N, ∋

N

∑
j=1

e
λj

= 1.

(2) 214

We can simply calculate the gradient according 215

to the derivative of the softmax function as follows: 216

217
li = −log(λi),

∂li
∂ki,j

= −
1

λi

∂λi

∂ki,j
,

where
∂λi

∂ki,j
= λi

∂log(λi)
∂ki,j

= λi(1{i = j} − λj).

(3) 218

Using the chain rule, we can compute the gradient 219

for zi as follows: 220

∂ki,j
∂zi

=
1
τ
∂sim(zi, z′j)

∂zi
,

∂li
∂zi

=
∂li
∂ki,j

⋅
∂ki,j
∂zi

=
1
τ (λj − 1{i = j})

∂sim(zi, z′j)
∂zi

.

(4) 221

In Equation 4, we can find that both the derivative 222

of the similarity function and the value of tempera- 223

ture influence the gradient of loss. The role of the 224

temperature has been covered in the asymptotic 225

analysis of several previous studies (Wang and Liu, 226

2021; Zhang et al., 2021a), most notably finding 227

that it is strongly related to entropy, determining 228

the gradient weight for negative instances. 229

In contrast, we focus on the influence of the 230

similarity function and assume that a change in the 231

similarity function will also lead to a significant 232

change in the training dynamics. 233

3.2 Angle-based Similarity Function 234

Most of the works, including SimCSE, use a naive 235

cosine similarity (cossim) for similarity function 236

(sim). Nevertheless, there have been several at- 237

tempts to deal with other candidates of the sim- 238

ilarity function; e.g., RBF (radial basis function) 239

(Zhang et al., 2020a), angular distance (Zhang et al., 240

2022b), or hyperbolic distance (Ge et al., 2023). 241

Among them, we focus on an angular relation be- 242

tween different sentence representations, where 243

the previous work has raised the issue of gradi- 244

ent dissipation with regard to angle in SRL (Nie 245

et al., 2022). To model the angular similarity be- 246

tween hidden representations, we apply arccosine 247

(cos−1) to the dot product of two normalized repre- 248

sentations1. Given a mini-batch {si}ni=1, we denote 249

cossim(zi, zj) as the cosine similarity function of 250

1A ℓ2 normalized dot product is analogous of cosine simi-
larity function.
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two hidden representations for two samples si, sj .251

Then the straightforward angle similarity (θ) can252

be described as:253

θi,j = cos
−1(cossim(zi, zj)), (5)254

where θi,j represents the angular distance between255

hi and hj . Note that this vanilla form of angle256

relation is not appropriate for contrastive learning,257

since it is not an increasing function. The modified258

version of the angle-based similarity function will259

be introduced in Section 3.3.260

We now compare the derivative of the cosine261

similarity (cossim) and the newly designed angle-262

based one (θ). The derivative of each similarity263

function can be derived as follows:264

∂cossim(zi, z′j)
∂zi

=
z′j

∥zi∥∥zi∥
− cossim(zi, z′j)

zi
∥zi∥2

,

θi,j
∂zi

= −
1√

1 − cossim(zi, z′j)2
⋅
∂cossim(zi, z′j)

∂zi
.

(6)265

The derivative of arccosine (cos−1(x)) is − 1√
1−x2

266

for -1 < x < 1. The range of values for this func-267

tion is negative infinity and -1 for 0 and 90 degrees268

respectively, and the function is concave (see Fig-269

ure 1(b)). So, if we use the angle-based similarity270

function for InfoNCE loss, we can infer that the271

strength of both pulling positive instance and re-272

pelling negative instance is stronger for small an-273

gles, while the strength of pulling and repelling274

becomes weaker as the angle gets larger since the275

magnitude of the gradient decreases accordingly.276

Based on this intuition, we expect that the gradient277

property of the angle-based function can be effec-278

tive especially for contrastive learning in SRL for279

the following two reasons. First, since the embed-280

ding spaces of several PLMs are anisotropic such281

that sentence representations are converged into282

narrow cone (Gao et al., 2018; Ethayarajh, 2019;283

Wang et al., 2019; Li et al., 2020a), we believe284

that strongly repelling negative instances while285

pulling positive instances will be effective in im-286

proving the alignment of the semantic space during287

the early stages of training. Secondly, since the re-288

pelling power of negative instance is exponentially289

decreased as the angle gets larger in the middle290

of training, angle-based contrastive learning can291

mitigate the problem of false negative instance2
292

(Chuang et al., 2020; Robinson et al., 2020; Zhou293

2An in-batch negative sampling of unsupervised con-
trastive learning may lead to repelling the semantically-closed
instance, unintentionally.

et al., 2022). In this regard, we believe that differ- 294

ent instances will not be separated by more than 295

a certain threshold angle, and assume that the em- 296

bedding space of the model after angle-based con- 297

trastive learning is narrower than that of the model 298

trained by cosine similarity-based contrastive loss. 299

Our methodology may appear similar to method 300

used in Zhang et al., 2022b due to the use of angular 301

space. However, the motivation behind the previ- 302

ous work is entirely derived from VRL method, 303

named ArcFace Loss (Deng et al., 2019). In con- 304

trast, the foundation for our proposed SimACE is 305

a comprehensive understanding and consideration 306

of SRL characteristics, coupled with mathemati- 307

cal reasoning and subsequent analyses to validate 308

it. Detailed analyses of the angle-based function’s 309

characteristics which can back up our assumptions 310

are covered in Section 5. 311

3.3 SimACE 312

Now, we propose SimACE: simple angle-based ap- 313

proach for contrastive sentence embedding frame- 314

work. It adopts the angle-based similarity function 315

suitable for unsupervised contrastive learning. Be- 316

fore directly leveraging the angle-based function 317

(θ) defined in Equation 5, we modify the range of 318

θ by subtracting a value from π
2

. This is because 319

of the nature of contrastive learning with the cross- 320

entropy objective, which involves increasing the 321

similarity of a positive pair and decreasing that of a 322

negative pair. This adjustment shifts the similarity 323

range from [-1, 1] to [π
2

- π, π
2

- 0] = [-π
2

, π
2

]: 324

θi,j =
π

2
− cos

−1(cossim(zi, z′j)), (7) 325

Then, the new loss function based on our angle- 326

based similarity function is defined as follows: 327

Lang = −log
e
θi,i′ /τ

∑N

j=1 e
θi,j′ /τ

. (8) 328

In addition, to mitigate the issue of the relatively 329

narrower space (mentioned in Section 3.1), we ap- 330

ply a margin penalty to the angle between the an- 331

chor and the positive sample, leveraging its inher- 332

ent property of angle-based similarity. We simply 333

subtract the angular margin (m) between the anchor 334

(zi) and the positive pair (z′i). Subtracting the mar- 335

gin term to the hidden representation of the positive 336

instance is in line with the adversarial perturbation, 337

an effective scheme for semantic space interpola- 338

tion (Hadsell et al., 2006; Chen et al., 2021; Robin- 339

son et al., 2021). We expect this negative pertur- 340
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase first-last ♣ 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70

SimCSE ♣ 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
ArcCon∗ 71.76 82.77 76.81 83.56 78.87 79.36 71.16 77.76
SimACE∗ 71.63 83.44 76.65 83.85 79.95 79.99 71.86 78.20

BERTlarge SimCSE ♣ 70.88 84.16 76.43 84.50 79.76 79.26 73.88 78.41
ArcCon∗ 73.38 84.94 76.74 84.28 80.19 80.02 72.96 78.93
SimACE∗ 73.89 85.07 77.67 84.87 79.18 79.96 74.61 79.32

RoBERTabase first-last ♣ 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
SimCSE ♣ 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57
ArcCon∗ 69.01 81.30 73.02 81.47 81.54 80.43 68.94 76.53
SimACE∗ 70.50 84.16 76.33 83.38 82.45 82.24 69.69 78.39

RoBERTalarge SimCSE ♣ 72.86 83.99 75.62 84.77 81.80 81.98 71.26 78.90
ArcCon∗ 70.03 83.15 75.26 83.76 81.43 80.64 70.22 77.78
SimACE∗ 72.12 84.41 77.25 85.05 81.92 83.35 71.37 79.35

Table 1: Performance of several unsupervised contrastive learning methods using different similarity functions on
STS tasks (Spearman’s correlation). Each bold number and underlined number indicates the best and second-best
performance within the PLMs, respectively. We reproduce the results of ArcConLoss (proposed by ArcCSE (Zhang
et al., 2022b)), following configurations with a grid search for their hyper-parameters. ♣: Results from Gao et al.,
2021. ∗: Results of our experiments.

PLMs SimCSE ArcCon SimACE
BERTbase 75.97±0.69 76.76±0.76 77.46±0.47
BERTlarge 77.62±0.58 78.66±0.21 79.02±0.26
RoBERTabase 76.77±0.18 76.27±0.75 77.87±0.44
RoBERTalarge 78.29±0.32 N/A 79.14±0.15

Table 2: Mean and standard deviation across 5 different
runs of different methods with random seeds. Unfor-
tunately, since RoBERTa-large models trained by Arc-
ConLoss with different random seeds show a gradient
explosion, we report these results as N/A (Not Appli-
cable or Not Available). We report p-values for each
baseline in the Appendix (Table 9), which are highly
statistically significant (p < 0.001).

bation can lead to a discrimination of the positive341

pair’s feature space and enhance the alignment.342

Consequently, the final form of our SimACE’s343

training objective is:344

Lang = −log
e
(θi,i′−m)/τ

e(θi,i′−m)/τ +∑N

j≠i e
θi,j′ /τ

. (9)345

4 Experiments346

4.1 Unsupervised Corpus and Benchmark347

Following the literature, we train SimACE348

on datasets randomly sampled from English349

Wikipedia (106) same with the baseline SimCSE350

(Gao et al., 2021). Then, we evaluate SimACE on351

7 STS tasks: STS 2012-2016 (Agirre et al., 2012,352

2013, 2014, 2015, 2016), STS Benchmark (STS-B)353

(Cer et al., 2017) and SICK Relatedness (SICK-R)354

(Marelli et al., 2014). These datasets contain pairs355

of two sentences along with a gold score ranging356

PLMs SimCSE SimACE
BERTbase 46.16±0.36 48.19±0.27
BERTlarge 50.35±0.22 51.62±0.13
RoBERTabase 47.33±0.09 49.46±0.24
RoBERTalarge 50.43±0.17 51.66±0.08

Table 3: Performance of averaged results on MTEB
benchmark (total 56 datasets). Results are highly statis-
tically significant (p < 0.001). Detailed results can be
found in Appendix (Table 12).

from 0 to 5 whose scores represent their seman- 357

tic similarity. We obtain these datasets from the 358

SentEval (Conneau and Kiela, 2018) toolkit. 359

4.2 Implementation Details 360

Training Setups We follow standard practices 361

and conduct a preliminary grid search using the 362

STS-B development dataset to determine the hyper- 363

parameter configuration. We carry out a grid search 364

of learning rate ∈ {1e-5, 3e-5}, temperature (τ ) 365

∈ [0.06, 0.07], and batch size ∈ {32, 128}. Then, 366

we set the same training hyper-parameters for all 367

experiments with 10 (radians) for the margin. We 368

train our models for 1 epoch and evaluate the model 369

every 125 steps on the development set. A server 370

equipped with a single GPU (NVIDIA A100, 40GB 371

memory) was used for all our experiments. Detailed 372

hyperparameter settings can be found in Table 7. 373

Evaluation Setups We evaluate SimACE on 7 374

STS tasks as introduced in Section 4.1. For the 375

need of reproducibility, we update the baselines’ 376

scores which are different from those reported in 377

the original paper. In addition, we also report the 378
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averaged results of different random seeds to en-379

sure a fair comparison to the baseline, considering380

a reported problem that the performance of unsu-381

pervised SimCSE is unstable depending on random382

seeds (Jiang et al., 2022).383

Network Implementation We train SimACE384

with the pre-trained checkpoints of BERT (Devlin385

et al., 2018) and RoBERTa (Liu et al., 2019) down-386

loaded from Huggingface’s Transformers (Wolf387

et al., 2019). Each encoder consists of 12 and 24388

Transformer layers for the base and large sizes, re-389

spectively. The base model has a hidden size of 768390

and 12 attention heads, while the large model has a391

hidden size of 1024 and 16 attention heads. Follow-392

ing the literature (Gao et al., 2021), we choose the393

representation of the [CLS] token as the sentence394

representation during training, and use the [CLS]395

output without the pooler for evaluation.396

4.3 Comparative Results397

We aim to compare our angular similarity func-398

tion with other candidates: we employed the origi-399

nal cosine similarity function from SimCSE, and400

ArcConLoss from Zhang et al., 2022b of which401

loss functions are based on cosine similarity and402

the modified cosine similarity inspired by ArcFace403

(Deng et al., 2019), respectively. Experimental re-404

sults on STS tasks are shown in Table 1. Despite405

the fewer in-batch negative instances than SimCSE,406

SimACE improves the average score on STS from407

76.95 to 78.20 for BERT-base and from 78.46 to408

79.32 for BERT-large, respectively. Interestingly,409

SimACE shows more powerful performance on410

RoBERTa-base and RoBERTa-large, which further411

pushes the results from 76.64 to 78.39 and 78.53 to412

79.35, respectively. These results imply that train-413

ing dynamics can be differentiated depending on414

PLMs. We will do a deep dive into the grounding415

of SimACE’s capability in Section 5.416

4.4 Robustness of Angular-based Approach417

To ensure the robustness with regard to different418

random seeds, we conduct 5 runs of model training419

with the configurations outlined in Appendix (Ta-420

ble 7), each initialized with distinct random seeds.421

Subsequently, we calculate the mean and standard422

deviation values. The results provided in Table 2423

show both the superior performance and the robust-424

ness of our method compared to the baselines using425

different similarity functions.426

4.5 Results on MTEB benchmark 427

To validate a generalization ability of SimACE, 428

we evaluate our method in the additional sentence 429

embedding benchmark, named Massive Text Em- 430

bedding Benchmark (MTEB) (Muennighoff et al., 431

2022). This benchmark consists of total 56 tasks: 432

10 semantic textual similarity (STS) tasks, 12 clas- 433

sification tasks, 11 clustering tasks, 3 pair classifi- 434

cation tasks, 4 reranking tasks, 15 retrieval tasks, 435

and 1 summarization tasks. As seen in Table 3, 436

SimACE shows better performance compared to 437

the baseline SimCSE within all PLMs. 438

4.6 Extension to SOTAs 439

In the previous section, we reported the compara- 440

tive results to confirm the superiority of our method. 441

From now on, we aim to confirm the effectiveness 442

of our angle-based similarity function from a differ- 443

ent perspective. We employ several recent state-of- 444

the-arts and replace their cosine similarity function 445

with our angle-based one. Specifically, we utilize 446

PCL (Wu et al., 2022) and RankCSE (Liu et al., 447

2023). A detailed explanation of each method can 448

be found in Section D. Concretely, we use 3 ver- 449

sions of modified SimCSE objectives: group-wise 450

relations (P-Cf) loss (Eq. 12), and two different 451

ranking distillation losses (Eq. 14). As a result, we 452

replace sim(⋅, ⋅) of PCL and RankCSE with our 453

θ(⋅, ⋅) (Eq. 5). Furthermore, other loss terms and 454

training details including hyperparameter settings 455

are the same as in the original papers. 456

Comparative Results Table 4 reports the results. 457

We can observe that our angle-based versions of 458

PCL and RankCSE outperform their original co- 459

sine similarity version in terms of the average STS 460

score. Interestingly, we can observe that RankCSE- 461

listMLE with our angle-based similarity function 462

shows the best result on all PLMs. These results 463

show that our angle-based similarity function is 464

adaptable across different SRL methods on differ- 465

ent PLMs. As before, we report the robustness of 466

random seeds in the Appendix (Table 10). 467

5 Analysis 468

5.1 Difference of Semantic Space between 469

PLMs 470

From Table 1, we can see that our angle-based sim- 471

ilarity function (SimACE) encourages the PLMs 472

more suitable for computing correct similarities be- 473

tween two sentence representations, regardless of 474
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase PCL 72.44 82.16 74.69 82.09 79.13 79.30 71.95 77.39

+ angle 73.29 82.39 74.48 82.22 78.77 79.24 72.24 77.52
RankCSElistNet 69.02 82.88 73.54 80.18 77.65 77.73 73.22 76.32

+ angle 71.06 84.46 75.49 82.60 78.91 79.53 74.06 78.02
RankCSElistMLE 74.47 85.77 78.09 84.71 81.48 81.76 74.40 80.06

+ angle 75.83 85.48 78.46 85.19 81.02 81.94 73.60 80.22
BERTlarge RankCSElistNet 72.78 85.38 77.15 83.89 79.46 80.46 74.31 79.06

+ angle 73.10 85.89 77.78 84.67 80.39 80.80 74.70 79.62
RankCSElistMLE 73.97 86.18 78.73 85.15 80.91 81.24 74.68 80.11

+ angle 74.35 85.97 78.41 85.18 80.77 81.38 74.83 80.13
RoBERTabase PCL 68.20 81.05 72.68 81.23 80.02 79.58 69.82 76.08

+ angle 70.30 81.48 72.78 81.18 80.07 79.37 68.41 76.23
RankCSElistNet 72.45 83.79 74.36 82.92 81.12 81.81 69.88 78.05

+ angle 73.26 83.81 75.38 84.27 81.78 82.33 70.53 78.77
RankCSElistMLE 73.52 84.35 75.76 83.91 82.65 82.88 70.88 79.14

+ angle 74.24 84.54 76.07 84.41 82.67 82.86 70.74 79.36
RoBERTalarge RankCSElistNet 71.80 82.09 73.76 81.96 79.03 80.41 70.57 77.09

+ angle 73.19 84.01 75.91 84.81 81.11 82.76 70.82 78.94
RankCSElistMLE 73.86 84.14 76.41 85.25 81.99 83.11 71.65 79.49

+ angle 74.60 84.86 77.15 85.42 81.67 82.99 71.81 79.79

Table 4: Performance of original PCL and RankCSE, and their angle-based version (denoted as ‘+angle’). We
conduct each experiment using 5 different random seeds and report the average of the results, whose mean and
standard deviation are reported in the Appendix (Table 10). We cannot run PCL based on the large models due to a
shortage of our GPU memory (40GB). We report p-values for each baseline in the Appendix (Table 9), most of
which are highly statistically significant (p < 0.001) except PCL and RankCSE-ListMLE on BERT-large.
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Figure 2: Visualization of 2D manifold representation
space of (a) BERT-base and (b) RoBERTa-base, with dif-
ferent methods (PLMs: ▪, SimCSE: •, SimACE: ⬩). We
use 1000 random samples from the train dataset (Wiki),
and apply PCA (Pearson, 1901) to approximate sentence
embeddings. (b): RoBERTa-base model shows relatively
narrower space, which may lead to high-performance
gain of our angle-based approach.

their size. Interestingly, SimACE is more effective475

in RoBERTa, which motivates us to explore the476

geometrical difference of semantic space between477

PLMs, as shown in Figure 2. From the visualization478

of two base models (BERT-base and RoBERTa-479

base), we suggest the following two intuitions.480

Firstly, although the vanilla RoBERTa-base has481

a more anisotropic space than the vanilla BERT-482

base, the performance improvement for RoBERTa-483

base with SimACE is much larger than the perfor-484

mance improvement for BERT-base with SimACE.485

It seems likely that SimACE may be more discrim-486

inative in a narrow semantic space than SimCSE,487

as it densely aligns positive pairs to a greater ex-488
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Figure 3: ℓuniform − ℓalignment plot for contrastive
methods with different similarity functions measured
on the STS-B dev set. The colors of the points represent
the average Spearman score on 7 STS tasks.

tent. Secondly, we can observe that the semantic 489

space optimized by SimACE is narrower than that 490

of cosine similarity-based contrastive loss (Sim- 491

CSE), which supports our intuitions that different 492

instances will not be separated than a certain an- 493

gular threshold. This also implies that there are 494

meaningful factors rather than the wider size of the 495

semantic space (i.e., uniformity), and we will dis- 496

cuss these factors in the aspect of training dynamics 497

in Sections 5.2 and 5.3. 498

5.2 Uniformity and Alignment Analysis 499

Firstly introduced into SRL by SimCSE (Gao et al., 500

2021), uniformity and alignment are the widely 501
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(a) SimCSE vs SimACE (b) SimCSE (c) SimACE
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Figure 4: Change of angle (y-axis) between anchors
and positive (a) and negative ((b)&(c)) instances during
training on BERT-base. We average the angle values of
all in-batch negative instances. We compare SimCSE
(•) and SimACE (•). (a): SimCSE shows larger angle
of positive instance (mean for SimCSE = 32.22 / mean
for SimACE = 25.43) than SimACE. (b)&(c): SimCSE
also shows a smaller change in the angle of negative in-
stances (standard deviation for SimCSE: 4.67 / standard
deviation for SimACE: 6.40).

utilized quantitative evaluation metrics that mea-502

sure the quality of sentence representation after503

contrastive learning. Optimizing these two losses504

turned out to be equivalent to optimizing the con-505

trastive loss under the assumption of infinite neg-506

ative instances (Wang and Isola, 2020), where the507

former indicates how well the representation vec-508

tors are uniformly distributed, while the latter com-509

putes the distance between the anchor and the posi-510

tive instance given the distribution of positive pairs.511

For both uniformity and alignment, the lower value512

indicates well-trained by contrastive learning. Each513

loss can be formulated as:514

luniform ≜ log E
xi,xj∼Pdata

e
−t∥f(xi)−f(xj)∥2

2 . (10)515

516
lalignment ≜ log E

xi,xj∼Ppos

∥f(xi) − f(xj)∥α
2 .

(11)517

Figure 3 shows the uniformity-alignment plot518

for the baselines employed in Section 4.3. Aligned519

with our intuitions, SimACE enhances alignment in520

all PLMs by giving more attention to positive pairs.521

Notably, SimACE consistently exhibits a higher522

uniformity loss compared to the cosine similarity-523

based approaches. This occurs because SimACE524

non-aggressively pushes away negative instances525

with higher angle differences during the middle526

of training. These findings diverge from the afore-527

mentioned research which suggests that better uni-528

formity leads to superior sentence representations,529

based on cosine similarity function (Gao et al.,530

2021; Chuang et al., 2022; Zhou et al., 2022; Zhang531

et al., 2022b). As a result, this prompts us further532

to explore the training dynamics of the gradient533

property.534

5.3 Effect of Our Angle-based Approach 535

Among the several components that determine the 536

training dynamics of contrastive learning, our study 537

aims at developing a simple but more effective sim- 538

ilarity function than the off-the-shelf cosine similar- 539

ity. Although both SimACE and SimCSE achieve 540

the goal of contrastive learning, there exists a vis- 541

ible difference in a gradient property during opti- 542

mizing the loss function, as mentioned in Eq. 6. 543

Figure 4 visualizes the difference by plotting the 544

change of angle between representations to explore 545

the difference in training dynamics. 546

In line with the contrastive objective, SimACE 547

is also well-optimized toward the right direction 548

(θi,j > θi,i′). Specifically, the results show that the 549

hidden representation zi derived from SimACE is 550

strongly pushed toward the area where θi,i′ is much 551

smaller (around 25 degrees) than that of SimCSE 552

(around 32 degrees). It confirms our intuition that 553

the angle-based similarity function has a strong 554

gradient signal at relatively small angles, which 555

tends to pull similar sentences more strongly, as 556

shown in Figure 1. Meanwhile, we can observe that 557

SimACE has a more diverse similarity distribution 558

for negative instances, as shown in Figure 4 (b) and 559

(c). At the points where the angle gets larger, the 560

strength of pulling and repelling becomes weaker 561

since the magnitude of the gradient decreases. It 562

aligns with the findings of Nie et al., 2022 that 563

weak gradient signals at the area (θi,j > θi,i′) play 564

a key role in contrastive learning for SRL. 565

6 Conclusion 566

We have proposed a novel angle-based similarity 567

function for unsupervised contrastive learning of 568

sentence representation, whose property delivers a 569

more positive impact on training dynamics in SRL. 570

Through extensive experiments, we have demon- 571

strated that angle-based similarity can be a promis- 572

ing alternative to the traditional cosine similarity 573

function. After finding different aspects of unifor- 574

mity and alignment, we have also performed ad- 575

ditional experiments dealing with training dynam- 576

ics and visualization of semantic space to gain a 577

deeper understanding. Furthermore, we have found 578

that our idea can be effectively plugged into the 579

recent state-of-the-art in SRL, boosting their per- 580

formances. We hope that our work will be an im- 581

portant milestone for future research. 582
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7 Limitation583

While our proposal focuses on leveraging an angle-584

based distance between instances as a function for585

calculating a similarity between two different in-586

stances, it is important to note that there exist other587

alternatives that can be utilized to achieve the same588

objective, as shown in Appendix F.589

We argue our main contribution lies in the fact590

that we introduce the framework of using an angle-591

based similarity function for predicting similar-592

ity between different sentences. In addition, we593

show that the utilization of the angle-based simi-594

larity function serves as a notable example of en-595

hancing off-the-shelves methodologies. Therefore,596

we expect that researchers within the community597

can collaborate to improve the contrastive learning598

framework shortly by exploring several similarity599

functions in contrastive learning for unsupervised600

sentence representation learning. Moreover, there601

is abundant space for further progress in improv-602

ing our angular-based contrastive learning. Further603

studies of analyzing the property of contrastive604

learning, such as gradient analysis, need to be un-605

dertaken for a deeper understanding of the frame-606

work.607

On top of that, we believe it is feasible since608

our method builds on the foundational literature609

of the SimCSE baseline, which is extendable to610

multilingual settings (Wang et al., 2022), although611

we have not performed a multilingual scenario with612

our method. There is also scope for further analy-613

sis of contrastive learning and BERT-based models614

from both mathematical and theoretical perspec-615

tives.616

8 Ethical Consideration617

Considering intellectual property, we utilize sam-618

pled data and pre-trained models in huggingface619

for only scholar purpose. Like the previous study,620

there can be reported negative biases from training621

data (Wiki) of PLMs (Bender et al., 2021) used in622

our works. Besides them, we do not see any other623

ethical problems.624
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A Detailed Explanation of Datasets1073

We report the statistics of train, validation, test1074

datasets of STS and 7 transfer tasks which are1075

utilized in Section J: MR (Pang and Lee, 2005),1076

CR (Hu and Liu, 2004), SUBJ (Pang and Lee,1077

2004), MPQA (Wiebe et al., 2005), SST-2 (Socher1078

et al., 2013), TREC (Voorhees and Tice, 2000) and1079

MRPC (Dolan and Brockett, 2005). Each detailed1080

Dataset train valid test
STS12 - - 3108
STS13 - - 1500
STS14 - - 3750
STS15 - - 3000
STS16 - - 1186
STS-B 5749 1500 1379

SICK-R 4500 500 4927

Table 5: Detailed configuration of STS datasets.

Dataset train valid test
MR 10662 - -
CR 3775 - -

SUBJ 10000 - -
MPQA 10606 - -
SST-2 67349 872 1821
TREC 5452 - 500
MPRC 4076 - 1725

Table 6: Detailed configuration of 7 transfer datasets
from SentEval.

configuration can be found in Table 5 and Table 6, 1081

respectively. Following the literature, we use test 1082

sets for Table 1 results without using any additional 1083

validation sets. 1084

B Implementation Details 1085

Following SimCSE, which is a widely used base- 1086

line for unsupervised settings, we train SimACE 1087

using the two representative PLMs, BERTbase & 1088

BERTlarge and RoBERTabase & RoBERTalarge. We 1089

use the [CLS] token as the sentence representation 1090

for training and save the best model checkpoint by 1091

using the validation score on the development set 1092

of STS-B. 1093

Unsupervised STS tasks We conduct all Sim- 1094

CSE experiments based on the original paper’s con- 1095

figuration. We choose a learning rate between [1e-5, 1096

3e-5], batch size between [64, 512], and tempera- 1097

ture = 0.05. In the case of ArcConLoss, We carry 1098

out grid-search of batch size between [16, 32, 64], 1099

learning rate between [1e-5, 3e-5], and temperature 1100

= 0.05. Detailed settings of SimACE’s hyperparam- 1101

eters can be seen in Table 7. 1102

Connection to Off-the-shelves For these exper- 1103

iments, we follow all settings of hyperparameters 1104

in the original paper: PCL and RankCSE. Since the 1105

introduction of the angle-based similarity function 1106

requires an additional margin term, we follow the 1107
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batch_size learning_rate max_seq eval_steps
BERTbase 64 3e-5 32 125
BERTlarge 32 1e-5 32 125
RoBERTabase 128 1e-5 32 125
RoBERTalarge 128 1e-5 32 125

temperature margin eval_metric pooler
BERTbase 0.06 10◦ stsb cls
BERTlarge 0.06 10◦ stsb cls
RoBERTabase 0.05 10◦ stsb cls
RoBERTalarge 0.05 10◦ stsb cls

Table 7: The hyperparameters that correspond to the best results of the STS tasks. stsb : Saving the best checkpoint of
the model based on validation on STS-B dataset. The unit of margin value is degree (◦). cls : Using the representation
of the [CLS] token, consisting of a linear layer and the following activation function.

same margin (m=10) as the vanilla SimACE im-1108

plementation. Furthermore, there is no other grid-1109

search for hyperparameter tuning.1110

Method Similarity Batch size Epoch Time
SimCSE Cosine 64 1 64min

ArcCon 64 1 76min
Angular 64 1 68min

PCL Cosine 64 1 134min
Angular 64 1 130min

ListNet Cosine 64 4 374min
Angular 64 4 372min

ListMLE Cosine 64 4 369min
Angular 64 4 372min

Table 8: Comparison of training time between original
cosine similarity-based method and angular similarity
function in several baselines. We report the results of
BERT-base model. Cosine : SimCSE-variants. ArcCon:
ArcConLoss-based method. Angular : SimACE-variants.
min: elapsed minutes.

C Training Efficiency1111

There may be concern about computational effi-1112

ciency when using the arccosine function for our1113

proposed angular similarity function. Dealing with1114

this issue, we report the training time of SimCSE1115

and SimACE on several baseline methods using1116

in the main paper’s experiments. We measure the1117

required time for training when using a single1118

NVIDIA Tesla A100 GPU (40GB memory). For1119

a fair comparison, we use the same experimental1120

settings, including batch size, epoch, and others,1121

although their training configurations are different1122

with each other. As seen in Table 8, we do not find1123

any meaningful difference between the angular-1124

based function and other baselines.1125

D Training Objective of Baseline Methods1126

We briefly introduce each method in Section 4.6,1127

focusing on each one’s loss function which is based1128

on the cosine similarity. We simply replace the 1129

original similarity function with our angular-based 1130

one: 1131

• PCL contrasts the anchor (xi) with aug- 1132

mented positives (Xi) from a different dis- 1133

crete augmentation set (∆(d)) and in-batch 1134

negatives, which models a group-wise rela- 1135

tion (P-Cf) for cooperation across two peer 1136

networks (f(⋅) and f
′(⋅)): 1137

p
P-Cf
f,f ′ (xi) ∶= P-Cf(xi,∆(d)

; f, f
′)

= softmax({sim(f(xi), f ′(x̂ik)/τ)}x̂i
k∼X̂

i+

{sim(f(xi), f ′(xj)/τ)}xj∼X∧j/=i),
(12) 1138

where sim(⋅, ⋅) denotes cosine similarity be- 1139

tween two different representations. 1140

• RankCSE proposed cosine similarity-based 1141

loss terms for ranking consistency and ranking 1142

distillation. The ranking consistency loss aims 1143

to minimize Jensen-Shannon (JS) divergence: 1144

Lconsistency =

N

∑
i=1

JS(Pi∣∣Qi), (13) 1145

where Pi and Qi denote the probability dis- 1146

tribution (λ) of similarity score lists (S(xi), 1147

S(xi)′) obtained from independent networks 1148

f(⋅) and f(⋅)′, respectively. In addition, this 1149

work explores two list-wise ranking methods, 1150

ListNet (Cao et al., 2007) and ListMLE (Xia 1151

et al., 2008), for ranking distillation: 1152

Lrank =

N

∑
i=1

rank(S(xi), ST (xi)), (14) 1153

where rank(⋅, ⋅) indicates the list-wise 1154

method. S(xi) and S
T (xi) denote similarity 1155
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PLMs SimCSE ArcCon PCL RankCSElistNet RankCSElistMLE

BERTbase 0.001 0.05 0.12 0.001 0.001
BERTlarge 0.001 0.01 N/A 0.001 0.85
RoBERTabase 0.001 0.001 0.57 0.001 0.04
RoBERTalarge 0.001 0.001 N/A 0.001 0.05

Table 9: Statistical significance of experimental results (p-value) across different random seeds. Most cases show
statistically highly significant in terms of performance improvement.

PLMs PCL RankCSElistNet RankCSElistMLE

Original Ours Original Ours Original Ours
BERTbase 77.39±0.22 77.52±0.39 76.32±0.12 78.02±0.26 80.06±0.08 80.22±0.06
BERTlarge N/A N/A 79.06±0.17 79.62±0.26 80.11±0.15 80.13±0.11
RoBERTabase 76.08±0.63 76.23±0.24 78.05±0.04 78.77±0.14 79.14±0.18 79.36±0.21
RoBERTalarge N/A N/A 77.09±0.28 78.94±0.20 79.49±0.35 79.79±0.18

Table 10: Mean and standard deviation across 5 different runs of different methods with random seeds. Unfortunately,
since large-size models trained by PCL with different random seeds show a gradient explosion, we report these
results as N/A (Not Applicable or Not Available). We report p-values for each baseline in the Appendix (Table 9),
which are highly statistically significant (p < 0.001).

score lists obtained from a student model and1156

a teacher model. All the aforementioned simi-1157

larity score lists are based on cosine similarity1158

sim(⋅, ⋅) between two different inputs xi and1159

x
′
i.1160

The ranking consistency loss refers to main-1161

taining consistency between two sentence rep-1162

resentations obtained using different dropout1163

masks by optimizing the Jensen-Shannon(JS)1164

divergence between two similar sentence rep-1165

resentations. RankCSE tries to guide the stu-1166

dent model to learn better sentence representa-1167

tions by distilling the listwise ranking knowl-1168

edge through ListNet (Cao et al., 2007) and1169

ListMLE (Xia et al., 2008) algorithms, which1170

minimize the cross entropy between the top1171

one probability distribution and maximizing1172

the likelihood of the ground truth permutation,1173

respectively.1174

E Statistical Results of Experiments1175

In addition to Section 4.5, we report the full sta-1176

tistical information of our experimental results.1177

These statistics include the statistical significance1178

(p-value) and the standard deviation of performance1179

on STS correlation. As seen in Table 9, most results,1180

except two PCL results and a RankCSE-listMLE1181

on BERT-large, show statistically highly significant.1182

The calculated standard deviation of results for Ta-1183

ble 4 is reported in Table 10. In line with the re-1184

sults of the main paper, plugging the angular-based1185

method shows better performance and robustness1186

compared to the original method using the cosine 1187

similarity function. 1188

F Experiments of Different Objectives 1189

We compare several candidates of different con- 1190

trastive objectives with regard to sentence represen- 1191

tation learning. These objectives include replacing 1192

the cosine similarity function with RBF, and 4 dif- 1193

ferent losses proposed in Nie et al., 2022. RBF can 1194

be defined as below: 1195

ϕ(x) = exp(−∥x − c∥2

2σ2
) . (15) 1196

Considering the contrastive pairs, we set c as the 1197

anchor instance and calculate the similarity log- 1198

its with all in-batch negative instances (x). We 1199

also properly tuned the hyperparameter value σ 1200

by conducting grid-search. We report the overall 1201

results in Table 11. As seen in the table, our pro- 1202

posed method mostly shows better performance 1203

compared to other methods, except for the case of 1204

BERT-base. We think that the angular property may 1205

play a more important role in the larger models in 1206

terms of both model size and inductive bias (in 1207

general, RoBERTa is better than BERT). 1208

G Detailed Results on MTEB benchmark 1209

We evaluate several PLMs trained by SimACE 1210

on MTEB benchmark (Muennighoff et al., 2022). 1211

MTEB benchmark is designed to provide better 1212

evaluation for sentence embedding quality. The 1213

benchmark consists of several datasets including 1214

prior works and newly introduced by the paper. 1215
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Method BERTbase BERTlarge RoBERTabase RoBERTalarge
Ours(SimACE) 77.46 79.02 77.87 79.14

RBF 76.04 77.58 76.58 78.32
DCL♡ 71.13 72.73 73.18 72.43
MPT♡ 77.25 77.35 76.42 78.84
MET♡ 78.38 78.38 77.38 78.71
MAT♡ 77.76 77.76 76.95 78.82

Table 11: Comparative results of different optimization objectives, including different similarity functions and
modified contrastive objectives. We report the averaged performance of different random seeds same with the
Table 2. Each bold number and underlined number indicates the best performance within PLMs. DCL: Debiased
contrastive objective. MPT: Minimum Dot Product Triplet Loss. MET: Minimum Euclidean Distance Triplet Loss.
MAT: Minimum Angle Triplet Loss. ♡: Results from Nie et al., 2022.

PLMs Method Clas Clus Pair Rank Retr STS Sum Avg.
BERTbase original 61.66 30.12 56.33 43.44 10.59 54.36 29.82 38.33

SimCSE 62.28 29.04 74.65 53.96 20.29 74.33 30.10 46.16
SimACE 63.56 33.87 75.25 54.92 22.09 75.70 29.51 48.19

BERTlarge SimCSE 64.50 35.62 76.15 55.96 28.08 74.94 31.00 50.35
SimACE 64.83 38.09 77.26 54.95 30.15 75.97 30.14 51.62

RoBERTabase SimCSE 64.00 34.32 74.65 53.96 19.82 73.96 28.43 47.33
SimACE 64.51 37.79 75.25 54.92 23.12 75.78 29.68 49.46

RoBERTalarge SimCSE 65.28 36.55 76.93 55.44 25.42 77.42 30.84 50.43
SimACE 64.98 38.92 77.33 54.82 28.44 77.79 29.21 51.66

Table 12: Performance of SimACE on MTEB benchmark. A bold face number indicates the best performance within
the PLMs. We report averaged results of different random seeds. Considering the space, we use abbreviation for a
task name: Clas: 12 classification tasks, Clus: 11 clustering tasks, Pair: 3 pair classification tasks, Rank: 4 reranking
tasks, Retr: 15 retrieval tasks, STS: 10 sts tasks, Sum: 1 summarization tasks.

There are all 56 datasets: 12 classification datasets1216

are AmazonCounterfactual (O’Neill et al., 2021),1217

AmazonPolarity (McAuley and Leskovec, 2013),1218

AmazonReviews (McAuley and Leskovec, 2013),1219

Banking77 (Casanueva et al., 2020), Emotion (Sar-1220

avia et al., 2018), Imdb (Maas et al., 2011), Mas-1221

siveIntent (FitzGerald et al., 2022), MassiveSce-1222

nario (FitzGerald et al., 2022), MTOPDomain (Li1223

et al., 2020c), MTOPIntent (Li et al., 2020c), Toxi-1224

cConversations3, and TweetSentimentExtraction4,1225

11 cluster datasets are ArxivClusteringS2S, Biorx-1226

ivClusteringS2S, BiorxivClusteringP2P, Medrx-1227

ivClusteringP2P, MedrxivClusteringS2S 56, Red-1228

ditClustering (Geigle et al., 2021), RedditClus-1229

teringP2P, StackExchangeClusteringP2P (Muen-1230

nighoff et al., 2022), StackExchangeClustering1231

(Geigle et al., 2021), and TwentyNewsgroupsClus-1232

tering7, 3 pair classification datsets are SprintDu-1233

plicateQuestions (Shah et al., 2018), TwitterSe-1234

3
https://www.kaggle.com/competitions/

jigsaw-unintended-bias-in-toxicity-classification
4
https://www.kaggle.com/competitions/

tweet-sentiment-extraction
5
https://arxiv.org/help/api/

6
https://api.biorxiv.org/

7
https://scikit-learn.org/0.19/datasets/

twenty_newsgroups.html

mEval2015 (Xu et al., 2015), and TwitterURL- 1235

Corpus (Lan et al., 2017), 4 reranking tasks are 1236

AskUbuntuDupQuestions8, MindSmall (Wu et al., 1237

2020), SciDocsRR (Cohan et al., 2020), and Stack- 1238

OverflowDupQuestion (Liu et al., 2018), 15 re- 1239

trieval datasets are from Thakur et al., 2021, 10 1240

STS datasets are 8 from STS benchmark, STS229, 1241

and BIOSSES10, and 1 summarization dataset is 1242

SummEval (Fabbri et al., 2021). 1243

We report the averaged results within tasks in 1244

Table 12. As seen in Table, models trained by 1245

SimACE show considerable performance com- 1246

pared to SimCSE. Specifically, 2 base PLMs 1247

trained by SimACE show better performance on all 1248

tasks, while 2 large PLMs trained by SimACE show 1249

better performance on most tasks except classifica- 1250

tion, reranking, and summarization task. Nonethe- 1251

less, SimACE outperforms SimACE on STS, along 1252

the lines with results of main experiment (Table 1). 1253

8
https://github.com/taolei87/askubuntu

9
https://competitions.codalab.org/

competitions/33835
10urlhttps://tabilab.cmpe.boun.edu.tr/BIO

SSES/DataSet.html
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PLMs Method MR CR SUBJ MPQA SST TREC MRPC Avg.
BERTbase SimCSE 81.37 86.49 94.46 88.66 84.95 87.60 74.32 85.41

with MLM 81.64 86.81 95.76 88.32 85.94 89.40 73.74 85.94
ArcCon 81.31 85.80 94.44 88.96 88.56 87.40 74.43 85.41
with MLM 82.26 87.74 95.57 88.45 85.72 91.60 74.84 86.60
SimACE∗ 81.19 85.22 94.42 89.14 86.05 86.60 75.71 85.48
with MLM∗ 82.63 87.92 95.68 88.91 86.33 91.00 76.41 86.98

BERTlarge SimCSE 84.30 87.98 94.86 88.78 89.51 93.00 74.61 87.58
with MLM 85.78 89.72 95.83 87.94 90.83 93.00 72.87 88.00
ArcCon 85.34 88.98 95.32 89.58 91.27 89.40 75.71 87.94
with MLM 85.77 90.04 95.98 89.01 91.05 93.40 75.36 88.66
SimACE∗ 84.34 89.51 95.24 89.88 90.61 92.40 76.00 88.28
with MLM∗ 86.15 90.33 95.81 88.89 91.16 92.60 75.54 88.64

RoBERTabase SimCSE 81.75 86.97 93.43 87.28 86.99 84.40 75.01 85.12
with MLM 84.14 89.04 94.49 88.07 89.24 87.20 74.38 86.65
ArcCon 81.61 87.36 93.22 87.65 87.86 85.60 76.00 85.61
with MLM 83.36 88.90 94.42 87.54 89.40 89.80 76.81 87.18
SimACE∗ 81.87 87.36 92.87 87.54 86.93 87.00 74.61 85.45
with MLM∗ 84.35 89.57 94.65 88.28 90.28 89.80 75.19 87.45

RoBERTalarge SimCSE 83.17 88.40 94.08 88.57 87.53 91.20 72.23 86.45
with MLM 83.00 87.87 94.64 87.38 87.92 90.80 75.07 86.67
ArcCon 83.30 89.38 93.59 88.59 88.63 92.40 74.03 87.13
with MLM 76.56 64.69 90.41 70.25 84.84 40.60 66.38 70.53
SimACE∗ 82.90 88.90 93.60 88.91 87.64 91.60 73.04 86.66
with MLM∗ 84.56 88.50 94.85 88.68 89.07 93.00 74.09 87.54

Table 13: Performance of different unsupervised contrastive learning methods on transfer tasks. Each bold number
and underlined number indicates the best and second performance best within the PLMs, respectively. ∗: Our
method.
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(a) BERT-Base (b) RoBERTa-Base

Figure 5: Histogram of the angle between each sentence
representation. We use the BERT-base model trained by
SimCSE (•) and SimACE (•).

To intuitively understand the characteristic of1256

SimACE, we visualize the histogram of the angle1257

between representations, as shown in Figure 5. Sim-1258

CSE plots a higher average on angles than SimACE.1259

From the results, we interpret that the lower angular1260

average results in better alignment than SimCSE1261

because it pulls the positive sample at the begin-1262

ning of training and doesn’t push the negative far1263

enough when past the middle of training.1264

Following the literature, we also plot the change1265

of uniformity and alignment during contrastive1266

learning. We observe that SimACE improves align-1267

ment more than SimCSE, while its uniformity is1268
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Figure 6: Uniformity and Alignment of BERT-base
trained by SimCSE (•) and SimACE (•).

getting worse during training. In the early stages 1269

of training, Figure 6 shows that SimACE’s align- 1270

ment drops below 0.2, which verifies our intuitions 1271

that the property of gradient and the training dy- 1272

namics of SimACE can lead to better alignment, 1273

as we have discussed in Section 5.2. Moreover, as 1274

depicted in the figure, a higher value of uniformity 1275

than SimCSE also backs up our assumption of an 1276

angle-based approach. 1277

I Training Dynamics of Angle with 1278

Different Temperatures 1279

Motivated by Section 3.1, we further analyze the 1280

role of temperature in terms of training dynam- 1281

ics. In particular, we conduct additional experi- 1282

ments similar to Section 5.3, by using BERT-base 1283

trained by SimACE with 3 different temperature 1284
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PLMs Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERTbase SimACE 71.63 83.44 76.65 83.85 79.95 79.99 71.86 78.20

+m = 0 70.20 81.76 75.56 82.44 79.52 78.94 71.09 77.08
+m = −10 64.73 78.83 70.47 79.60 74.67 74.92 70.98 73.46

BERTlarge SimACE 73.89 85.07 77.67 84.87 79.18 79.96 74.61 79.32
+m = 0 72.39 84.12 76.92 83.88 79.13 79.53 73.99 78.57
+m = −10 69.68 83.32 74.35 81.00 78.62 78.42 74.04 77.06

RoBERTabase SimACE 70.50 84.16 76.33 83.38 82.45 82.24 69.69 78.39
+m = 0 70.38 83.19 74.85 82.86 80.74 80.65 69.04 77.39
+m = −10 67.35 80.29 71.90 81.56 79.73 79.52 69.12 75.64

RoBERTalarge SimACE 72.12 84.41 77.25 85.05 81.92 83.35 71.37 79.35
+m = 0 71.92 84.12 76.95 84.76 80.99 82.98 71.14 78.98
+m = −10 67.68 80.44 72.47 81.68 78.66 79.27 71.07 75.90

Table 14: Performance of SimACE with subtracting margin values on STS tasks. A bold face number indicates the
best performance within the PLMs. All results are based on default random seed (42) same with Table 1. +m: A
different margin value is applied to SimACE. −10 indicates the additive margin (see margin term in Equation 9).

(a) SimACE τ=0.05, 0.06, 0.07 (b) SimACE (τ=0.05) (c) SimACE (τ=0.07)
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Figure 7: Change of angle between anchor and positive,
negative instance during training on BERT-base. We av-
erage the angle values of all in-batch negative instances.
We compare SimACE with different temperatures (0.05,
0.06, 0.07). (a), (b), (c): A smaller temperature (0.05,
•) leads to a narrower range of angles (larger positive
angle (mean = 28.22), smaller negative angle (mean =
88.75)), while a larger temperature (0.07, •) leads to the
wider range of angles (smaller positive angle (mean =
22.65), larger negative angle (mean = 90.90)).

values. For a fair comparison, we choose τ = 0.05,1285

which is the same as SimCSE, τ = 0.06 (original1286

SimACE’s hyperparameter as seen in Table 7), and1287

a larger value τ = 0.07.1288

As we mentioned before, the temperature is re-1289

lated to the entropy of sentence embedding since1290

it plays a role in altering gradient weight for neg-1291

ative instances. Concretely, the temperature value1292

is proportional to the entropy of the distribution. It1293

indicates that higher temperature leads to higher1294

entropy so that embedding space becomes more1295

tolerant of similar samples and thus improves the1296

alignment, while lower temperature leads to lower1297

entropy which improves uniformity.1298

Similar to findings of the role of temperature,1299

we may assume two premises: (1) InfoNCE loss1300

with high temperature will repulse every negative1301

sample equally; (2) InfoNCE loss with low temper-1302

ature will give more gradient weight to the negative1303

instance which is more similar to anchor. These as-1304

sumptions also align with our intuition from Equa-1305

tion 4. We can infer that the inverse of temperature 1306

value shows a similar pattern with the derivative of 1307

the similarity function, which we find some notable 1308

points in Section 5. Still, there is a major difference 1309

between the temperature and the similarity func- 1310

tion: the temperature is a constant value for all 1311

instances. 1312

As seen in Figure 7, the results partially satisfy 1313

our assumptions. First, higher temperature leads to 1314

improving alignment (Figure 7(a)). In contrast, it 1315

is interesting to see that a lower temperature value 1316

does not lead to an improvement in uniformity (Fig- 1317

ure 7(a) and (b)). This result is an unanticipated 1318

finding since it violates both previous studies in 1319

the field of VRL and our intuition based on gradi- 1320

ent analysis. We think that the anisotropic space of 1321

PLMs and the smaller number of negative instances 1322

may be problematic since degeneration to a simple 1323

contrastive loss due to lower temperature does not 1324

have enough power to equally push all negative 1325

instances. 1326

J Results of Transfer Tasks 1327

Following the literature, we also compare different 1328

contrastive methods on the off-the-shelves transfer 1329

tasks. We first freeze the feature extractor of sen- 1330

tence embeddings and then train a classifier. We 1331

conduct experiments using a standard configuration 1332

from SentEval(Conneau and Kiela, 2018), which 1333

uses 10-fold evaluation protocols to report the fi- 1334

nal test results. For fair comparison to the baseline 1335

SimCSE, we also train AngConLoss and SimACE 1336

with MLM (Masked Language Modeling) (Devlin 1337

et al., 2018), which is a typical pre-trained method 1338

for a BERT-like model, and report these results. 1339

As seen in Table 13, SimACE shows a perfor- 1340
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mance improvement compared to the baseline Sim-1341

CSE. Moreover, similar to the SimCSE, we find1342

that adding the MLM also improves the perfor-1343

mance of vanilla SimACE. This backs up experi-1344

mental results about the extensibility of SimACE,1345

which was mentioned before in Section 4.6.1346

K Ablation of Angular Margin1347
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Figure 8: Histogram of the angle between each sentence
representation. We use BERT-base model trained by
SimACE with different margins: • is m=10 (original), •
is m=0 (no margin), and • is m=-10 (additive margin).

In addition to Figure 8, we also evaluate sev-1348

eral SimACE with different margins on STS bench-1349

marks within PLMs. Specifically, we compare 31350

cases: our proposed subtractive margin, additive1351

margin (m = −10) similar to ArcCSE (Zhang1352

et al., 2022b), and no margin (m = 0). As seen1353

in Table 14, SimACE method with the original1354

subtractive margin shows the best averaged per-1355

formance on STS tasks. While a vanilla SimACE1356

with no margin shows comparable performance to1357

the baseline, the method with an additive margin1358

suffers severe performance degradation.1359

-2

-2.5

-3

-3.5

-4
2k 4k 6k

Uniformity

Steps
8k 10k 12k 14k

(a) Uniformity

0.5

0.4

0.3

0.2

0.1
2k 4k 6k

Alignment

Steps
8k 10k 12k 14k

(b) Alignment

Figure 9: Uniformity and Alignment of the BERT-base
model trained by SimACE with different margin (•:
m = 10 (original), •: m = 0 (no margin), and •:
m = −10 (additive margin)). Averaged STS correla-
tion scores for the original SimACE, SimACE with no
margin, and with additive margin are 78.20, 76.69, and
73.46, respectively.

In addition, we drag the observation into the1360

angular margin to further understand the relation-1361

ship between angular distribution and alignment.1362

Therefore, we conduct supplementary experiments1363

to plot uniformity and alignment of SimACE with 1364

varying margin m ∈ {-10, 0, 10}. As shown in 1365

Figure 9 (a), the angular margin leads the induc- 1366

tive bias against alignment, showing that margin 1367

penalty for negative perturbations encourages the 1368

representations to well-align due to the property 1369

of large gradient magnitude at the beginning of 1370

training. 1371
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