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ABSTRACT

Unsupervised domain adaptation (UDA) adapts a model from a labeled source
domain to an unlabeled target domain in a one-off way. Though widely applied,
UDA faces a great challenge whenever the distribution shift between the source
and the target is large. Gradual domain adaptation (GDA) mitigates this limitation
by using intermediate domains to gradually adapt from the source to the target
domain. However, it remains an open problem on how to leverage this paradigm
when the given intermediate domains are missing or scarce. To approach this
practical challenge, we propose Generative Gradual DOmain Adaptation with Op-
timal Transport (GOAT), an algorithmic framework that can generate intermediate
domains in a data-dependent way. More concretely, we first generate intermediate
domains along the Wasserstein geodesic between two given consecutive domains
in a feature space, and apply gradual self-training, a standard GDA algorithm, to
adapt the source-trained classifier to the target along the sequence of intermediate
domains. Empirically, we demonstrate that our GOAT framework can improve the
performance of standard GDA when the given intermediate domains are scarce,
significantly broadening the real-world application scenarios of GDA.

1 INTRODUCTION

Modern machine learning models suffer from data distribution shifts across various settings and
datasets [Gulrajani & Lopez-Paz, 2021; Sagawa et al., 2021; Koh et al., 2021; Hendrycks et al., 2021;
Wiles et al., 2022], i.e., trained models may face a significant performance degrade when the test data
come from a distribution largely shifted from the training data distribution. Unsupervised domain
adaptation (UDA) is a promising approach to address the distribution shift problem by adapting
models from the training distribution (source domain) with labeled data to the test distribution (target
domain) with unlabeled data [Ganin et al., 2016; Long et al., 2015; Zhao et al., 2018; Tzeng et al.,
2017]. Typical UDA approaches include adversarial training [Ajakan et al., 2014; Ganin et al., 2016],
distribution matching [Zhang et al., 2019; Tachet des Combes et al., 2020], optimal transport [Courty
et al., 2016; 2017], and self-training (aka pseudo-labeling) [Liang et al., 2019; 2020; Zou et al., 2018;
2019]. However, as the distribution shifts become large, these UDA algorithms have been observed
to suffer from significant performance degradation [Kumar et al., 2020; Sagawa et al., 2021; Abnar
etal., 2021; Wang et al., 2022a]. This empirical observation is consistent with theoretical analyses
[Ben-David et al., 2010; Zhao et al., 2019], which indicate that the expected test accuracy of a trained
model in the target domain degrades as the distribution shift becomes larger.

To tackle a large data distribution shift, one may resort to an intuitive divide-and-conquer strategy,
e.g., breaking the large shift into pieces of smaller shifts and resolving each piece with a classical
UDA approach. Concretely, the data distribution shift between the source and target can be divided
into pieces with intermediate domains bridging the two (i.e., the source and target). In settings, e.g.,
gradual domain adaptation (GDA) [Kumar et al., 2020; Abnar et al., 2021; Chen & Chao, 2021; Wang
et al., 2022a; Gadermayr et al., 2018; Wang et al., 2020; Bobu et al., 2018; Wulfmeier et al., 2018],
where the intermediate domains with unlabeled data are available to the learner, Kumar et al. [2020]
proposed a simple yet effective algorithm, Gradual Self-Training (GST), which applies self-training
consecutively along the sequence of intermediate domains towards the target. For GST, Kumar et al.
[2020] proved an upper bound on the target error of gradual self-training, and Wang et al. [2022a]
provided a significantly improved bound under relaxed assumptions, corroborating the effectiveness
of gradual self-training in reducing the target domain error with unlabeled intermediate domains.
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Figure 1: A schematic diagram comparing Direct Unsupervised Domain Adaptation (UDA) vs.
Gradual Domain Adaptation (GDA), using an example of Rotated MNIST (60° rotation).

However, although the unlabeled intermediate domains have been shown to be useful for domain
adaptation both empirically and theoretically, they are scarce in many real-world applications, hinder-
ing the wide deployment of GDA methods to overcome large distribution shifts. Hence, it is natural
to ask, in cases of insufficient intermediate domains, is it possible to generate more intermediate
domains useful for gradual domain adaptation? How should we generate these intermediate domains?

In this paper, we provide an affirmative answer to the first question along with an effective solution
to the second, which we term Generative Gradual Domain Adaptation with Optimal Transport
(GOAT). Our solution for intermediate domain generation is inspired by a theoretical insight from the
generalization error of gradual self-training in Wang et al. [2022a]:

In order to minimize the generalization error on the target domain, the sequence of
intermediate domains should be placed uniformly along the Wasserstein geodesic
between the source and target domains.

At a high-level, GOAT contains the following steps: i) generate intermediate domains between each
pair of consecutive given domains along the Wasserstein geodesic in a feature space, ii) apply gradual
self-training (GST) [Kumar et al., 2020], a popular GDA algorithm, over the sequence of given and
generated domains.

Empirically, we conduct experiments on Rotated MNIST and Portraits [Ginosar et al., 2015], two
benchmark datasets commonly used in the literature of GDA. The experimental results show that
our GOAT significantly outperforms vanilla GDA, especially when the number of given intermediate
domains is small. The empirical results also confirm the theoretical insights from Wang et al. [2022a]:
1). when the distribution shift between a pair of consecutive domains is small, one can generate more
intermediate domains to further improve the performance of GDA; 2). there exists an optimal choice
for the number of generated intermediate domains.

2 PRELIMINARIES

Notation We refer to the input and output space as X', ), respectively, and we use X, Y to represent
random variables that take values in X', ). A domain corresponds to an underlying data distribution
w(X,Y) over X x Y. As we focus on unlabeled samples, we use 1(X) to denote the marginal
distribution of X. Classifiers from the hypothesis class H : X +— ) are trained with the loss function
£(-,-). We use 1,, to refer to a n-dimension vector with all 1s. 1[] stands for the indicator function.

Unsupervised Domain Adaptation (UDA) In UDA, we have a source domain and a target domain.
During the training stage, the learner can access m labeled samples from the source domain and n
unlabeled samples from the target domain. In the test stage, the trained model will then be evaluated
by its prediction accuracy on samples from the target domain.

Gradual Domain Adaptation (GDA) Most UDA algorithms adapt models from the source to
target in a one-step fashion, which can be challenging when the distribution shift between the two
is large. Instead, in the setting of GDA, there exists a sequence of additional 7" — 1 unlabeled
intermediate domains bridging the source and target. We denote the underlying data distributions of
these intermediate domains as 1 (X,Y), ..., ur—1(X,Y), with uo(X,Y) and p7(X,Y) being the
source and target domains, respectively. In this case, for each domain ¢ € {1,...,T}, the learner
has access to Sy, a set of n unlabeled data drawn i.i.d. from p;(X'). Same as UDA, the goal of GDA
is still to make accurate predictions on test data from the target domain, while the learner can train
over m labeled source data and nT" unlabeled data from {S;}7_;. To contrast the setting of UDA and
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GDA, we provide an illustration in Fig. 1 that compares UDA with GDA, using the Rotated MNIST
dataset as an example.

Gradual Self-Training (GST) When there are multiple intermediate domains available to the learner,
one classic algorithm for GDA is gradual self-training: first, train a classifier on labeled source data
with the empirical risk minimization (ERM) principle to obtain a source-trained classifier hy € H.
Then, fit it to the set of unlabeled target data, .S;, with self-training to obtain the classifier h:

hy = ST(h, S1) = argmin Y £(f(x), ho()), (1)

fGH r€S,

where ST denotes the process of self-training and ho(z) represents the pseudo-label provided by hg
on each unlabeled target sample . The above process will then be repeatedly applied to each pair of
consecutive domains (¢, (41 ), until one obtains a final classifier for the target domain p7. Note
that in this process, at each stage ¢, the classifier h;_; from the last stage will be used to generate
pseudo-labels for the unlabeled data S;, hence the name gradual self-training.

Intuitively, one can expect that when the distribution shift between each consecutive pair of intermedi-
ate domains is large, the quality of the pseudo-labels obtained from the previous classifier can degrade
significantly, hence hurting the final target generalization. This scenario is particularly relevant when
the number of given intermediate domains is relatively small.

Theoretical Guarantees Kumar et al. [2020] provided the first target domain error bound for gradual
self-training under certain assumptions, theoretically justifying the effectiveness of GST. However,
the error bound of Kumar et al. [2020] grows exponentially in 7' (the number of domains), which
contradicts empirical observations that the optimal number of intermediate domains is relatively large
over multiple GDA datasets [Abnar et al., 2021; Chen & Chao, 2021; Wang et al., 2022a]. To resolve
this issue, Wang et al. [2022a] proved a significantly improved error bound for GST under weaker
assumptions than those of Kumar et al. [2020], expressed as

~ T 1
5T(hT) < e9t+0O <TA+\/H+M> s 2)

where ¢, (h) stands for the population loss of classifier A € 7{ in domain ¢ (i.e., g¢(h) = ¢, (h)
Ez you, [L(h(x), y)]) and A is the average p-Wasserstein distance between consecutive domains, i.e.,

L

1

A= T ZWP (l—1(X,Y), e (X,Y))  forp > 1. @)

t=1

Note that in GDA, we cannot directly measure A since it requires access to the joint distributions of
the intermediate domains, whereas only unlabeled data are available to us. In order to bridge the gap,
in this paper, we make the following assumption of the intermediate domains: there exists a feature
space Z such that the covariate shift assumption holds over Z, i.e., the conditional distribution of ¥’
given the feature Z is invariant across all the intermediate domains. Note that this assumption is also
consistent with a line of recent works under the principle of invariant risk minimization [Arjovsky
et al., 2019; Rosenfeld et al., 2020; Wang et al., 2022b] that seek to find features from the inputs
such that the covariate shift assumption holds. Under this assumption, the Wasserstein distance
between the joint distance W), (1,—1(Z,Y), u(Z,Y)) reduces to the one between the marginal
feature distribution W), (ut—1(Z), pe(Z2)).

3 GENERATIVE GRADUAL DOMAIN ADAPTATION WITH OPTIMAL
TRANSPORT

Inspired by the theoretical results in (2), in this section, we shall present our algorithm to automatically
generate a series of intermediate domains between any pair of consecutive given domains, with the
hope that when applied to the sequence of generated intermediate domains, GST could lead to better
target generalization. Before presenting the proposed algorithm, we first formally introduce several
notions that will be used in the design of our algorithm. First, given two distributions, one can
transform one to another with a push-forward operator.
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Definition 1 (Push-forward Operator). Consider a continuous map T : X +— X and arbitrary
probability measures |1, v on X. When T pushes |1 forward to v, we denote it with Ty p = v, which
means that for any measurable set A C X,

V(A)=p(z e X :T(z) € A) =pn(T 1(A4). “)

Monge [1781] formalized the optimal transport problem in 1781, which is a problem to find the
push-forward operator that minimizes a total transport cost.

Definition 2 (Optimal Transport). Given measures ., v over X and a cost function ¢ : X X X
[0, 00), the optimal transport map T* is the one that attains the infimum of the total transport cost:

inf { /X o, T(2))du(x) ’T#uu}. )

T:X—X

One can create a path of measures that interpolates the given two, and the theory of optimal transport
can help us find the optimal path that minimizes the path length measured with the Wasserstein
metric, i.e., the sum of Wasserstein distance between pairs of consecutive measures along the path.
This optimal path is termed the Wasserstein geodesic, which is formally defined below.

Definition 3 (Wasserstein Geodesic). Given two measures vy, vy over X a optimal transport map
T : X — X such that ’7;;1/0 = vy, the (constant-speed) Wasserstein geodesic between them
under Euclidean metric can be defined by the path P(vp,v1) = {vn : 0 < XA < 1}, where
vy=((1-XMId+ )\T*)# vo, and 1d is the identity mapping.

3.1 MOTIVATIONS

The target domain error bound of gradual self-training proved by Wang et al. [2022a], i.e., Eq. (2),
has a dominant term T'A, which can be interpreted as the length of the path of intermediate domains
connecting the source and target. Interestingly, we find that this path is related to the Wasserstein
geodesic between the source g and target u7, and we formalize our findings as follows.

Proposition 1 (Path Length of Intermediate Domains). For arbitrary intermediate domains
Wiy .- WT—1, the following inequality holds,

T
TA = ZWP(Mt—lvﬂt) > Wp(,U/OHU/T)a (6)

t=1
where the equality is obtained as the intermediate domains (i1, . . ., pp—1 sequentially fall along the

Wasserstein geodesic between g and .

Without explicit access to the intermediate domains, gradual domain adaptation cannot be applied.
Interestingly, Proposition | sheds light on the task of intermediate domain generation to bridge this
gap: the generated intermediate domains should fall on or close to the Wasserstein geodesic in order
to minimize the path length.

3.2 COMPUTATION WITH OPTIMAL TRANSPORT

From Def. 3, we know that one has to solve an optimal transport problem to generate intermediate
domains along the Wasserstein geodesic. Here, we consider the problem of optimal transport between
a source domain and a target domain.

Solving Optimal Transport with Linear Programming In unsupervised domain adaptation (UDA),
the source and target domains have finite training data. Hence, we can consider the measures of the
source and target to be discrete, i.e., (g and pr only have probability mass over the finite training
data points. More formally, denoting the source dataset as So = {xo;}!"; and target dataset as

St = {xr;}7—,, the measures 1o and 17 can be expressed as
m

1 1 ¢
po = — > d(xoi), pr= -~ > o(zry), (7
i=1 i=1

where J(z) represents the Dirac delta distribution at « [Dirac et al., 1930]. Under the discrete case,
the push-forward operator 7* that pushes po forward to pp can be obtained by solving a linear
program [Peyré et al., 2019].



Under review as a conference paper at ICLR 2023

Algorithm 1 Generative Gradual Domain Adaptation with Optimal Transport (GOAT)

Require: Sg* = {xo;}1",, 52 = {zr;}1,; Encoder &; Source-trained classifier hg

ENCODE DATA: S§ = {20i = £(w0:) biem)s ST = {215 = E(215)} jeim)
OPTIMAL TRANSPORT (OT): Solve for the OT plan v* € RZ" between S§ and S%
CUTOFF: Use a cutoff threshold to keep O(n+m) elements of v* above the threshold and zero
outtherest //Only applies to the entropy-regularized version of OT
INTERMEDIATE DOMAIN GENERATION:
fort=1,...,Tdo

Initialize an empty set S7

for each non-zero element ;; of v* do

2 Ttag + Lapy; Add (2,77;) 10 Sy
GRADUAL DOMAIN ADAPTATION:
fort=1,...,Tdo
= ST(h¢-1, St) //Can also apply sample weights to losses based

on 7

Output: Target-adapted classifier hp

Proposition 2. Consider o over source data {xo;}7", and pr over target data {xr;}}_,. Given
a transport cost function ¢ : X x X — [0,00), there exists an optimal transport map T*, which
satisfies T 1o = pir. Furthermore, for i € [m], T* maps xo; as follows,

Ti6(z0;) Z V50 (), ©)
where v* € R’Z”OX" is the optimal transport plan, a non-negative matrix of dimension m x n. The
plan ~v* can be obtained by solving the following linear program,

. 1 1
~* = arg man'yi,jc(in,ij) s.t. y1, = —1,, and ’yTlm =-1, 9)
mxn “ m n
YERST™ 4,5

Generating Intermediate Domains with Optimal Transport Proposition 2 demonstrates that one
can use linear programming (LP) to solve the optimal transport problem between a source dataset
and a target dataset. With the optimal transport plan v*, one can leverage Definition 3 to generate
intermediate domains along the Wasserstein geodesic. Specifically, fort = 1,...,T — 1, the measure
of the intermediate domain ¢ can be obtained by the following push-forward

T t
e = (Tld-i‘ 7—* #Mo 2%7 ( To; + Tij) (10)

Intuitively, ;4; can be interpreted as a discrete measure over n.~ data points with data weights assigned
by 7;;, where ny» == 37, . 1[y;; > 0] is the number non-zero entries in the matrix 7.

Space Complexity Clearly, one needs to store the optimal transport plan matrix v* € RZ", in
order to generate intermediate domains with (10). Thus, the space complexity appears to be O(mn).
However, by leveraging the theory of linear programming, one can show that the maximum number
of non-zero elements of the solution v* to the LP (9) is at most m + n — 1 [Peyré et al., 2019]. Thus,
the space complexity can be reduced to O(m + n) when using a sparse matrix format to store v*.

Time Complexity For simplicity, let us consider m = n. Then, the current time complexity of
solving the LP (9) is known to be O(n?3 log(n)) [Cuturi, 2013; Pele & Werman, 2009].

3.3 PROPOSED ALGORITHM

We present our proposed algorithm in Algorithm 1. Notice that Algorithm 1 directly generates
intermediate domains between the source and target domains. However, in practice, there might be a
few given intermediate domains that can be used by GDA. In this case, one can simply treat each
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(a) Generation in the input space. (b) Generation in the feature space.

Figure 2: Random samples from the generated intermediate domains.
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Figure 3: Illustration of the intermediate domain generation in GOAT (a) without any given intermediate
domain, (b) with one given intermediate domain.

pair of consecutive domains as a source-target domain pair in a sub-level, and apply Algorithm 1
iteratively to the pairs of consecutive given domains from the source to target.

In the following, we explain some keys to our algorithm design.

Fast Computation of Optimal Transport (OT) The super-cubic time complexity of solving the
LP in (9) essentially prevents this optimal transport approach from being scaled up to large datasets.
To remedy this issue, we propose to solve an approximate objective of the OT problem (9) when it
takes too long to solve the original OT exactly. Specifically, we add an entropy regularization term to
the objective (9), turning it to be strictly convex, and the time complexity of solving this regularized
objective is reduced to nearly O(n?) from the original O(n?logn) [Cuturi, 2013]. However, the
solution to this regularized objective, i.e., the OT plan v, is not guaranteed to have at most n +m — 1
elements anymore. Thus, the space complexity increases to O(mn) from O(m + n). We design a
cutoff trick to zero out entries of tiny magnitude in v* (see details in Algo. 1), reducing the space
complexity back to O(m + n). More details regarding this part are provided in Appendix B.

Intermediate Domain Generation in a Feature Space The intermediate domain generation
approach described above directly generates data in the input space X'. However, the generation does
not have to be restricted to the input space. One can show that with a Lipschitz continuous encoder
£ : X — Z mapping inputs to the feature space Z (i.e., z < &(x) for any input z), the order of the
generation bound (2) stays the same' (the proof is provided in Appendix A).

Feature Space vs. Input Space. We use an encoder by default in Algorithm 1, since we empirically
observe that directly generating intermediate domains in the input space is usually sub-optimal (see
4a for a detailed analysis). To give the readers an intuitive understanding, we provide a demo of
Rotated MNIST in Fig. 2: if we apply the intermediate domain generation of Algorithm 1 in the input
space, the generated data do not approximate the digit rotation well; when applying the algorithm
in the latent space of a VAE (fitted to the source and target data), the generated data (obtained by

!'Some terms in the bound get multiplied by a factor of the Lipschitz constant of &.
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Table 1: Accuracy (%) on Rotated MNIST. Table 2: Accuracy (%) on Portraits.

# Given # Generated Domains of GOAT # Given # Generated Domains of GOAT

Domains 0 (GST) 1 2 3 4 Domains 0 (GST) 1 2 3 4
0 50.3+0.7 48.5+2.2 47.2+1.7 482427 47.5+2.8 0 73.3+1.3 74.0+1.3 735422 73.6+£2.5 74.242.5
1 56.3+1.9 55242.6 54.6+1.6 57.1+2.2 56.2+1.9 1 745+1.6 764+1.3 7554+2.6 76.8+1.5 74.7+1.7
2 61.6+2.1 68.0+1.4 67.0+2.2 68.1£2.2 70.3+2.4 2 77.0+1.3 77.442.1 79.4+2.4 79.9+1.2 77.240.9
3 66.3+2.0 74.0+1.1 74.4+1.8 73.2+£2.0 74.0+2.3 3 80.7+2.3 80.9+1.6 81.8+1.3 82.3+1.3 81.3+1.5
4 75.5+2.0 83.842.0 84.0+1.6 86.4+2.0 82.7+1.8 4 82.0+1.4 82.8+1.5 83.6+1.5 824+14 81.8+1.6

the decoder of the VAE) captures the digit rotation accurately. Fig. 3a explains this superiority
of the feature space over the input space with a schematic diagram: the input-space Wasserstein
geodesic may not approximate the ground-truth distribution shift (e.g., rotation) due to the linearity
of optimal transport; with a proper encoder &, the feature-space Wasserstein geodesic can capture the
distribution shift more accurately.

Leveraging Given Intermediate Domain(s). With a given intermediate domain, we generate interme-
diate domains with GOAT between the two pairs of consecutive domains, respectively, Fig. 3b shows
that this approach can make the generated domains closer to the ground-truth path of distribution
shift, explaining why GOAT benefits off given intermediate domains.

Gradual Domain Adaptation (GDA) on Generated Intermediate Domains With generated data of
intermediate domains, one can run a GDA algorithm consecutively over the source-intermediate-target
domains in the feature space. As for the choice of GDA algorithm, we adopt Gradual Self-Training
(GST) [Kumar et al., 2020], since it is simple, popular, and powerful. Nevertheless, one can freely
apply any other GDA algorithm on top of the generated domains.

4 EXPERIMENTS

Our goal of the experiment is to demonstrate the performance gain of training on generated intermedi-
ate domains in addition to given domains. We compare our method with gradual self-training [Kumar
et al., 2020], which only self-trains a model along the sequence of given domains iteratively. In
Sec. 4.4, we further analyze the choices of encoder £ and transport plan v* used by Algorithm 1.
More details of our experiments are provided in Appendix C.

4.1 DATASETS

Rotated MNIST A semi-synthetic dataset built on the MNIST dataset [LeCun & Cortes, 1998],
with 50,000 images as the source domain and the same 50,000 images rotated by 45 degrees as the
target domain. Intermediate domains are evenly distributed between the source and target.

Portraits [Ginosar et al., 2015] A real-world gender classification dataset consisting of portraits
of high school seniors from 1905 to 2013. Following Kumar et al. [2020], the dataset is sorted
chronologically and split into a source domain (first 2000 images), 7 intermediate domains (next
14000 images), and a target domain (last 2000 images).

4.2 IMPLEMENTATION

Our code is developed in PyTorch [Paszke et al., 2019], and our experiments are run on NVIDIA
RTX A6000 GPUs. We use a convolutional neural network (CNN) of 4 convolutional layers of 32
channels followed by 3 fully-connected layers of 1024 hidden neurons, with ReL.U activation. We
also adopt common practices of Adam optimizer [Kingma & Ba, 2015], Dropout [Srivastava et al.,
2014], and BatchNorm [Ioffe & Szegedy, 2015]. To calculate the optimal transport plan between the
source and target, we use the Earth Mover Distance solver from [Flamary et al., 2021]. Notice that
the number of generated intermediate domains is a hyperparameter, and we show the performance for
1,2,3 or 4 generated domains between each pair of consecutive given domains. Following practices
[Kumar et al., 2020], in self-training, we filter out the 10% data where the model’s prediction is least
confident at.

As for the implementation of GOAT (Algorithm 1), we take the first two convolutional layers as the
encoder &, and treat the last layers as the classifier h. Sec. 4.4 explains why use this encoder.
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Figure 4: Ablation studies on Rotated MNIST with 2 given intermediate domains. (a) Different neural net layers
as encoders for the intermediate domain generation of GOAT. One can see that input space is not suitable for
intermediate domain generation, and the second convolutional layer (CONV-2) is optimal. (b) Different transport
plans the intermediate domain generation of GOAT. Obviously, our optimal transport (OT) plan significantly
outperforms the baseline transport plans (Random & Uniform), and its performance is even close to the oracle.

4.3 EMPIRICAL RESULTS

We empirically compare our proposed GOAT with Gradual Self-Training (GST) [Kumar et al., 2020].
The results on Rotated MNIST and Portraits are shown in Table 1 and Table 2. Each experiment is run
5 times with 95% confidence interval reported. The leftmost column corresponds to the performance
of GST only on given intermediate domains, which is equivalent to GOAT without any generated
intermediate domain.

In Table 1| and 2, the columns (“# Generated Domains of GOAT”) represent the number of generated
intermediate domains between each pair of consecutive given domains, while the rows (“# Given
Domains”) indicate the number of given intermediate domains.

Observations i) From the columns of both Table 1 and 2, we can observe that the performance of
GOAT monotonically increases with more given intermediate domains, indicating that GOAT indeed
benefits from given intermediate domains. ii) From the rows of both Table 1 and 2, we can see that
with a fixed number of given domains, our GOAT can consistently outperform Gradual Self-Training
(GST). The only exception is the case of Rotated MNIST without any given intermediate domain,
which might be due to the challenge illustrated in Fig. 3(a).

Overall, the empirical results shown in the two tables demonstrate that our GOAT can consistently
improve gradual self-training (GST) with generated intermediate domains when only a few given
intermediate domains are available.

4.4 ABLATION STUDIES

Choice of Encoder (£) Here, we study how the choice of the encoder (i.e., feature space) affects
the performance of GOAT. Since we use a CNN, we can take each network layer as the feature
space. Specifically, we consider the four convolutional layers and input space as candidate choices
for the encoder. Once choosing a layer, we take all layers before it (including itself) as the encoder.
In this ablation study, we use Rotated MNIST dataset with 2 given intermediate domains, and let
GOAT generate 4 intermediate domains between consecutive given domains. From Fig. 4a, we can
observe that directly applying GOAT in the input space performs significantly worse than the optimal
choice, CONV-2 (i.e., the second convolutional layer). This result justifies our use of an encoder for
intermediate domain generation (instead of directly generating in the input space). Notably, Fig. 4a
shows that deeper layers are not always better, showing a clear increase-then-decrease accuracy curve.
Hence, we keep using CONV-2 as the encoder for GOAT in all experiments.

Choice of Transport Plan (v*) In our Algorithm 1, the data generated along the Wasserstein geodesic
are essentially linear combinations of data from the pair of given domains, with weights (for each
combination) assigned by the optimal transport (OT) plan «v*. To validate that the performance gain
of GOAT indeed comes from the Wasserstein geodesic estimation instead of just linear combinations,
we conduct an ablation study on GOAT in Rotated MNIST with 2 given intermediate domains.
Specifically, we consider four approaches to provide the transport plan v*: i) a random transport plan
(weights are sampled from a uniform distribution), ii) a uniform transport plan (weights are the same
for all combinations), iii) the optimal transport (OT) plan provided by Algorithm 1, iv) the oracle
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transport plan’, which is the ground-truth transport plan in this study. For a fair comparison, When
constructing the random and uniform plans, we ensure that the number of non-zero elements is the
same as that of the oracle plan (i.e., keeping the number of generated data the same). See more details
in Appendix C.

From Fig 4b, we observe that, in general, the random and uniform plans do not obtain non-trivial
performance gain compared with the baseline, the vanilla Gradual Self-Training (GST) without any
generated domain. In contrast, our OT plan is significantly better and achieves similar performance
as the oracle, demonstrating the high quality of the OT plan and justifying our algorithm design with
the Wasserstein geodesic.

5 RELATED WORK

Unsupervised Domain Adaptation (UDA) One of the most popular approaches is invariant repre-
sentation learning, which minimizes the distribution distance between the source and target domains
under a certain metric in some feature space with either adversarial training [Ajakan et al., 2014;
Ganin et al., 2016] or divergence minimization [Sun & Saenko, 2016; Zhang et al., 2019]. The goal
of this approach is to learn representations invariant over the source and target domains, and it enjoys
theoretical guarantees [Ben-David et al., 2010; Zhao et al., 2019]. Self-training (i.e., pseudo-labeling)
is another popular approach for UDA [Zou et al., 2018; 2019; Liang et al., 2019; 2020], which utilizes
a source-trained model to offer pseudo-labels for unlabeled target samples and further finetunes the
model with these pseudo-labels. It is notable that even having achieved remarkable successes over
a wide range of datasets, modern UDA approaches may still become ineffective as the distribution
shifts are large enough [Kumar et al., 2020; Sagawa et al., 2021; Abnar et al., 2021].

Gradual Domain Adaptation (GDA) Most UDA approaches (e.g., the ones introduced above)
adapt models directly from the source to the target in a one-step style, so they are also addressed
as Direct UDA [Kumar et al., 2020; Chen & Chao, 2021]. Gopalan et al. [2011] introduces the
notion of intermediate domains to the area of domain adaptation. In fact, Gopalan et al. [2011]
studies the standard UDA task with labeled source data and unlabeled target data, and fits PCA to the
source and target data to obtain two linear representations of the two domains. They constructed the
intermediate domains via linear interpolation between the two PCA subspaces, and then concatenated
the linear representations of all domains to a classifier upon them. A series of follow-up works of
Gopalan et al. [2011] were proposed [Zheng et al., 2012; Gong et al., 2012; Hoffman et al., 2014;
Cui et al., 2014] in the following years. In the deep learning era, some empirical GDA algorithms
are proposed [Gadermayr et al., 2018; Wulfmeier et al., 2018; Gong et al., 2019] in computer vision,
leveraging modern deep learning techniques, but they lack theoretical guarantees. Recently, Kumar
et al. [2020] proposes gradual self-training (GST), a simple yet effective GDA algorithm that enjoys
theoretical guarantees, building on the self-training technique [Yarowsky, 1995; Lee et al., 2013].
Abnar et al. [2021]; Chen & Chao [2021] develop more powerful empirical GDA algorithms based
on GST, and Wang et al. [2022a] significantly improves the theoretical guarantees of GST. In parallel
to GST, another GDA approach is proposed [Wang et al., 2020], which also enjoys certain theoretical
guarantees.

6 CONCLUSION

Gradual domain adaptation (GDA) attempts to address large distribution shifts between the source
and target domains by adapting models along a sequence of intermediate domains. However,
GDA becomes unreliable as the number of given intermediate domains is insufficient. To address
this limitation of GDA, we propose a novel algorithmic framework, Generative Gradual Domain
Adaptation with Optimal Transport (GOAT), which automatically generates intermediate domains
along the Wasserstein geodesic (between consecutive given domains) and applies GDA on the
generated domains. Our algorithm is motivated by the recent theory of Wang et al. [2022a] on
gradual domain adaptation, and we develop practical computation techniques to implement the
algorithm. Empirically, we show that GOAT can significantly outperform vanilla GDA when the
given intermediate domains are scarce. Essentially, our GOAT is a promising framework that
augments GDA with generated intermediate domains, leading GDA to be applicable to more real-
world scenarios.

’The target data of the Rotated MNIST dataset are obtained by rotating training data. Thus there is a
one-to-one mapping between source and target data. The oracle plan is built from the one-to-one mapping, i.e.,
an element +;; is non-zero if and only if xo; is rotated to z7;.
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A THEORETICAL ARGUMENTS

On Proposition 1  The inequality in (6) holds true since the Wasserstein distance metric W), is
known to enjoy the property of triangle inequality. In (6), the equality is obtained as the intermediate
domains 1, . . ., up—1 sequentially fall along the Wasserstein geodesic between g and pp, since the
geodesic is defined as the shortest path of distributions connecting 1o and g7 under the 1, metric.

On Proposition 2 This linear program (LP) formulation of optimal transport is also called Kan-
torovich LP in the literature. One can find details and proof of Kantorovich LP in [Peyré et al.,
2019].

On the Encoder With a pg-Lipschitz continuous encoder £ : X — Z mapping inputs to the
feature space Z (i.e., z «+ &(x) for any input x), the order of the generation bound (2) stays the
same. The reason is as follows: The bound (2) is linear in terms of pj, , which is the Liphschitz
constant of the classifier h; With the encoder £, one can effectively view the whole encoder-classifier
model as f : X — ) such that f(x) = h(E(x)); Then, the Liphschitz constant of f is obviously
p = pepn since f is a composite function of h o &; Finally, replacing h with f in the analysis of
Wang et al. [2022a], one can see that the order of the bound (2) stays the same, with some terms
getting multiplied by a factor of pg (i.e., equivalent to replacing the term py, with p = pgpy, in the
bound).

B MORE DETAILS ON THE PROPOSED ALGORITHM

To reduce the O(n3logn) complexity of the exact OT calculation to O(n?), we can solve the
entropy-regularized OT problem Cuturi [2013] instead. Consider source data {xzq; }/; and target
data {x7;}!"_,, the entropy-regularized OT plan ~} under the transport cost function c is obtained by
solving

TN = afgminZ%,jC(CITOi79€Tj) + )\Z%,j log 7,5,

YERZG " i i,j (11)

1 1
st. 1, = —1,, and 771,, = —1,,,
m n

where ) is a regularization coefficient. The low computational complexity comes at the cost of a dense
optimal transport plan, i.e., 7 is generally a dense matrix rather than a sparse one*. Thus, O(mn)
non-zero entries will be generated in +y3, and this quadratic space complexity becomes intractable for
large datasets. To remedy this issue, we design two methods to zero out insignificant entries in 3 to
reduce the space complexity:

1. Small-value cutoff. Although the transport plan v} resulted from entropy-regularized OT
is dense, most entries still have values close to 0. Those entries of tiny magnitude can be
zeroed out without having a noticeable impact on the final results.

2. Confidence cutoff. Consider the one-hot encoded matrix of source labels Y, €
{0, 1}m>x#lass and the entropy-regularized OT plan vx- The logits of target prediction
by optimal label transport is

Yr =47, (12)

Then, we can calculate a confidence score for each target prediction by the logits. Using a
certain confidence threshold, the target samples that the transport plan is unconfident with
can be filtered out, making the transport plan more sparse.

With proper choices of cutoff values, those methods can reduce the space complexity from O(mn) to
O(m + n) without noticeable compromise on the final performance.

3The dependence on py, is hidden with the big-O notation in (2)
*As we discussed in Sec. 3.2, 4* has at most n + m — 1 non-zero entries, thus it is a sparse matrix.
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C MORE DETAILS ON EXPERIMENTS

Network Implementation. For the 4-layer CNN encoder used in experiments on Rotated MNIST
and Portraits, we use convolutional layers with kernel size 3 and SAME padding. During self-training,
we train on each domain for 10 epochs. Empirically, we verify that regularization techniques are
important for the success of gradual self-training, including using dropout layers and early stopping.

For the VAE used to produce Fig. 2, we use 4 convolutional layers with kernel size 3 and max-pooling,
followed by a fully-connected layer with 128 neurons as the encoder. For the decoder, we use four
deconvolutional layers with kernel size 3 [Kingma & Welling, 2014]. We use ReL.U activation for the
layers. The encoder and decoder are jointly trained on data from source and target in an unsupervised
manner with the Adam optimizer [Kingma & Ba, 2015] (Iearning rate as 10~* and batch size as 512).

Encoder Pretraining. We pretrain an encoder on the given domains. During pretraining, we use
a 3-layer MLP on top of the encoder and perform self-training on the given domains. Specifically,
we first fit the model on the source domain, then iteratively use the model to pseudo-label the next
domain and self-train on it. After pretraining, the MLP is discarded and the encoder is fixed to
provide features for the downstream tasks.

OT ablation. When designing different plans, we make sure that the number of non-zero entries is
equal so that in the domains generated by those plans, the amount of data is the same. For the random
plan, we first initialize a zero matrix, then sample the same amount of entries as the ground-truth plan
in the matrix, and fill in a weight value between 0 to 1 uniformly at random. For the uniform plan, we
use the same procedure except that we fill in the same weight for each sampled entry. In the end, we
normalize the matrix.
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