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ABSTRACT

Amortized Bayesian inference (ABI) with neural networks can solve probabilistic inverse
problems orders of magnitude faster than classical methods. However, ABI is not yet
sufficiently robust for widespread and safe application. When performing inference on
observations outside the scope of the simulated training data, posterior approximations are
likely to become highly biased, which cannot be corrected by additional simulations due to
the bad pre-asymptotic behavior of current neural posterior estimators. In this paper, we
propose a semi-supervised approach that enables training not only on labeled simulated
data generated from the model, but also on unlabeled data originating from any source,
including real data. To achieve this, we leverage Bayesian self-consistency properties that
can be transformed into strictly proper losses that do not require knowledge of ground-
truth parameters. We test our approach on several real-world case studies, including
applications to high-dimensional time-series and image data. Our results show that semi-
supervised learning with unlabeled data drastically improves the robustness of ABI in the
out-of-simulation regime. Notably, inference remains accurate even when evaluated on
observations far away from the labeled and unlabeled data seen during training.

1 INTRODUCTION

Theory-driven computational models (mechanistic models) are highly influential across numerous branches
of science (Lavin et al.,[2021)). The utility of computational models largely stems from their ability to fit real
data x and extract information about hidden parameters 6. Bayesian methods have been instrumental for this
task, providing a principled framework for uncertainty quantification and inference (Gelman et al., |2013).
However, gold-standard Bayesian methods, such as Gibbs or Hamiltonian Monte Carlo samplers (Brooks
et al., [201 1)), remain notoriously slow. Moreover, these methods are rarely feasible for fitting complex models
(Dax et al.l 2021) or even simpler models in big data settings with many thousands of data points in a single
dataset (Blei et al., [2017)), or when thousands of independent datasets require repeated model re-fits (von
Krause et al.,|2022)).

In recent years, deep learning methods have helped address some of these efficiency challenges (Cranmer
et al., 2020). In particular, amortized Bayesian inference (ABI; |Gershman & Goodman, [2014; |Le et al.}
2017; \Gongalves et al.,[2020; |[Radev et al.| 2023} |Gloeckler et al., 2023} |[Elsemiiller et al., 2024; |[Zammit+
Mangion et al.|[2024) has received considerable attention for its potential to automate Bayesian workflows by
training generative neural networks on model simulations, subsequently enabling near-instant downstream
inference on real data. However, due to the reliance on pre-trained neural networks, ABI methods can become
unreliable when applied to data that is unseen or sparsely encountered during training. In particular, posterior
samples from amortized methods may deviate significantly from samples obtained with gold-standard MCMC
samplers when there is a mismatch between the simulated training data and the real data (Ward et al.|, 2022}
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Schmitt et al.| 2023} |Siahkoohi et al., 2023 |Gloeckler et al., 2023} [Frazier et al., [2024)). This lack of robustness
limits the widespread and safe applicability of ABI methods.

In this work, we propose a new robust semi-supervised approach to ABI. The supervised part learns from a
“labeled” set of parameters and corresponding synthetic (simulated) observations, {6, x }, while the unsuper-
vised part leverages an “unlabeled” data set of real observations {x* } without parameters. In contrast to other
methods aiming to enhance the robustness of ABI, our approach does not require ground-truth parameters 6*
(Wehenkel et al.,[2024), post hoc corrections (Ward et al., 2022} |Siahkoohi et al.,2023)), or specific adversarial
defenses (Gloeckler et al., 2023)), nor does it entail a loss of amortization (Ward et al., 2022} |Huang et al.}
2023)) or generalized Bayesian inference (Gao et al.,|2023; [Pacchiardi et al.| [2024).

While Schmitt et al.| (2024) introduced self-consistency (SC) losses to improve simulation efficiency in a
fully supervised, simulation-only setting, we extend self-consistency losses to unsupervised training on
real observations, enabling robust inference without access to ground-truth parameters. We prove that self-
consistency losses are strictly proper, target the true analytic posterior, and are agnostic to the data distribution.
These properties allow them to be seamlessly integrated with any simulation-based loss for semi-supervised
training without introducing a trade-off in the training objective. Empirical results on diverse tasks, including
high-dimensional time series and images, show that our method preserves ABI’s characteristic speed while
achieving strong robustness, even with as few as four unlabeled real-world observations. Posterior estimates
remain accurate and well-calibrated, generalizing beyond both labeled and unlabeled training data.

2 METHODS

2.1 BAYESIAN SELF-CONSISTENCY

Self-consistency leverages a simple symmetry in Bayes’ rule to enforce more accurate posterior estimation
even in regions with sparse data (Schmitt et al.| 2024} Ivanova et al.,[2024). Crucially, it incorporates the
likelihood (when available) or a surrogate likelihood during training, thereby providing the networks with
additional information beyond the standard simulation-based loss typically employed in ABI (see below).

Under exact inference, the marginal likelihood is independent of the parameters §. That is, the Bayesian
self-consistency ratio of likelihood-prior product and posterior is constant across any set of parameter values
60, b,
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However, replacing p(6 | «) with a neural estimator ¢(6 | x) (and analogously for the likelihood) leads to
undesired variance in the marginal likelihood estimates across different parameter values on the right-hand side.
Since this variance is a proxy for approximation error, we can directly minimize it via backpropagation along
with any other ABI loss to provide further training signal and reduce errors guided by density information.
Our proposed semi-supervised approach builds on these advantageous properties.

2.2 SEMI-SUPERVISED AMORTIZED BAYESIAN INFERENCE

The marginal likelihood identity in Eq. is straightforward, but practically never used in traditional
sampling-based methods (e.g., MCMC) because they do not provide a closed-form for the approximate
posterior density (6 | ). In contrast, we can readily evaluate ¢(6 | ) in ABI when using a neural density
estimator that allows efficient density computation (e.g., normalizing flows, Kobyzev et al.|(2020)). Thus, we
can formulate a family of semi-supervised losses of the form:
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Figure 1: Contour plot of the normal means problem using standard NPE (red) or our semi-supervised
approach (NPE + SC, blue), with the analytic posterior in gray. Symbols indicate posterior mean estimates
(red cross: NPE only; blue square: NPE + SC; gray triangle: reference). Each subplot shows posterior
inference on observed data that are increasingly distant from the labeled training data (fiprior = 0). Only
the first two dimensions of the 10-dimensional posterior are shown. While standard NPE collapses to zero
variance for pops > 2, adding the self-consistency loss preserves accurate posterior estimates even far beyond
both training spaces (14obs > 3). Training was performed using the default configuration (see Section @)

where S is a strictly proper score (Gneiting & Rafteryl[2007) and C is a self-consistency score. The neural net-
works to be optimized are a generative model ¢ and (optionally) a summary network h extracting lower dimen-
sional sufficient statistics from the data. We will call the first loss component, E g ,)~p(0,2) [S(q(0 | h(x)),0)],
the (standard) simulation-based loss, as it forms the basis for standard ABI approaches using simulation-based
learning. E.g., this is the maximum likelihood loss for normalizing flows (Kobyzev et al., 2020; |Papamakarios
et al.L 2021)) or a vector-field loss for flow matching (Liu et al., 2023} |Lipman et al., 2023)). We will refer to
the second loss component as the (Bayesian) self-consistency loss.

In practice, we approximate the expectations in Eq. (2)) with finite amounts of simulated and real training data.
That is, for N instances (0,,, x,,) ~ p(6, z) and M instances z}, ~ p*(z), we employ

N
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where ) is the self-consistency weight described in Appendix [Bl Asymptotically for N — oo, that is, for
infinite training data generated from the simulator p(6, ), a universal density estimator (Draxler et al.,|[2024)
minimizing a strictly proper simulation-based loss (Gneiting & Raftery, [2007) is sufficient to ensure perfect
posterior approximation for any data. By this, we mean that the posterior approximation becomes identical to
the posterior we would obtain if we could analytically compute p(6 | ) = p(z | )p(0)/p(x). This analytic
posterior is sometimes also referred to as “true” or “correct” posterior (of the specified statistical model). In
practice, the posterior is rarely analytic, but we can still verify the accuracy of an approximation by comparing
it with the results of a gold-standard approach (if available), such as a sufficiently long, converged MCMC
run (Magnusson et al., 2024).

n=1

While neural posterior approximation is perfect asymptotically, its pre-asymptotic performance, that is, when
training ¢(6 | h(zx)) only on a finite amount of simulated data, can become arbitrarily bad (Frazier et al.,[2024;
Schmitt et al., [2023)). For any data * that is outside the data space implied by p(6, ), for instance, when
the model is misspecified (see Appendix [B]for definition), the posterior approximation ¢(¢ | h(z*)) may be
arbitrarily far away from the analytic posterior p(6 | *). As a result, a simulation-based loss is insufficient to
achieve robust ABI in practice. This is where the self-consistency loss comes in: As we will show, the latter
greatly improves generalization to atypical data at inference time.
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One particular choice for C is the variance (with respect to 6 ~ pc(6)) of the log Bayesian self-consistency
ratio (Schmiutt et al., [2024):

o (p(fﬂ* 1 6) p(6)
q(0 | h(z*))

which is motivated by theoretical results by [Kothe| (2023)), who show that minimizing the variance of the
Bayesian self-consistency ratio also minimizes the KL divergence between true and approximate posterior.
pc(0) can be any proposal distribution over the parameter space. In practice, two natural choices for pc(6)
are either the prior p(6) or the current approximate posterior ¢;(6 | h(z*)) at training iteration ¢. Because the
largest contributions to C' are expected to be in high-density regions of the approximate posterior, we choose
q+(0 | h(z*)) for all of our experiments, see Appendix [B|for further details on practical considerations.

) = Vargp. () log p(z™ | 0) +log p(f) —log q(6 | h(z"))], @)

2.3  SELF-CONSISTENCY LOSSES ARE STRICTLY PROPER

Below, we discuss the strict properness of Bayesian self-consistency losses, showing that they can be used
alongside simulation-based losses without altering the target posterior. To simplify the notation, we denote
posterior approximators simply as ¢(6 | =) without considering architectural details such as the use of
summary networks h(x). All theoretical results and their proofs remain valid if « is replaced by h(z),
provided that the summary network is expressive enough to learn sufficient statistics from .

Proposition 1. Let C' be a score that is globally minimized if and only if its functional argument is constant
across the support of the posterior p(6 | x) almost everywhere. Then, C applied to the Bayesian self-
consistency ratio with known likelihood
x| 0)p(6
C (P<>P<>> 5)

q(0 | z)
is a strictly proper loss: It is globally minimized if and only if (0 | x) = p(0 | ) almost everywhere.

In particular, the variance loss () fulfills the assumptions of Proposition i}

Proposition 2. The loss {@) based on the variance of the log Bayesian self-consistency ratio is strictly proper
if the support of pc(0) encompasses the support of p(0 | ).

The proofs of Propositions [I] and [2] are provided in Appendix [A]l The strict properness extends to semi-
supervised losses of the form (2)), which combine standard simulation-based and self-consistency losses.

Proposition 3. Under the assumptions of Proposition|l| the semi-supervised loss (2) is strictly proper for
any choice of p*(z).

The proof of Proposition 3| follows immediately from the fact that the sum of strictly proper losses is strictly
proper. Importantly, since Propositionholds independently of p*(z), it holds both in the case of a well-
specified model, where p*(z) = p(x), and also in case of any model misspecification or domain shift where
p*(x) # p(x). That is, there is no trade-off in the semi-supervised loss (2)), since both loss components are
globally minimized for the same target, that is, the analytic posterior.

In other words, adding the SC loss does not alter the underlying statistical model and continues to target the
analytic posterior of that model. As far as we are aware, all other methods aimed at improving the robustness
of ABI work by either explicitly or implicitly adjusting the statistical model or the target distribution (moving
away from the analytic posterior), thus introducing some form of regularization. In contrast, SC losses should
not be interpreted as regularizers: they are strictly proper losses that directly target the analytic posterior of
the specified statistical model (i.e., Target 1 in the taxonomy of [Elsemdiller et al., 2025]).

Our proposed semi-supervised loss combines standard simulation-based neural posterior estimation (NPE)
and unsupervised self-consistency. Both target the analytic posterior, but in complementary ways: The
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standard NPE loss facilitates network training on simulated (labeled) data where ground-truth parameters
are known. However, it does not ensure posterior accuracy on the empirical data distribution, particularly
in regions where simulated data may be sparse or unrepresentative due to model misspecification. The
self-consistency loss complements NPE by enforcing Bayes’ rule on observed data and explicitly rewards
correct marginal likelihood estimation. This ensures alignment between prior, posterior and likelihood on the
empirical data distribution—a property not guaranteed by simulation-based losses alone.

For completeness, we also define strictly proper self-consistency losses for likelihood estimators, rather than
posterior approximators.

Proposition 4. Suppose the posterior p(0 | ) is known and the likelihood is estimated by q(x | ). Then,
under the assumptions of Proposition[I} Bayesian self-consistency ratio losses of the form

a(x | 0)p(0)
¢ < (0] 2) ) ©)

are strictly proper: They are globally minimized if and only if q(x | 0) = p(x | 8) almost everywhere.

The proof of Proposition @] proceeds in the same manner as for Proposition [T} just exchanging likelihood and
posterior. Clearly, strict properness does not necessarily hold if both posterior and likelihood are unknown or
approximate because any pair of approximators ¢(# | z) and g(z | 6) that satisfy ¢(0 | 2) < q(z | 8) p(6)
minimize the SC loss. For example, the choices (6 | ) = p(f) and g(z | §) o< 1 minimize the SC loss, but
may be arbitrarily far from their actual target distributions p(f | ) and p(z | ), respectively.

In other words, if both likelihood and posterior are unknown, the SC loss has to be coupled with another loss
component, such as the maximum likelihood loss, to enable joint learning of both approximators ¢(# | ) and
q(z | 9). Nevertheless, SC still yields notable improvements: in our experiments, the semi-supervised loss (2)
considerably enhanced the robustness of ABI even when both the posterior and likelihood are unknown.

3 RELATED WORK

The robustness of ABI and simulation-based inference methods more generally has been the focus of multiple
recent studies (e.g., Frazier et al., |2020; |[Frazier & Drovandi, 2021} [Frazier et al., |2024; |Dellaporta et al.,
2022;|Ward et al., 2022; (Gloeckler et al., 2023 |[Huang et al.l 2023} |Gao et al.l 2023} [Siahkoohi et al.| 2023}
Kelly et al.,[2024; |Wehenkel et al.,|2024; Pacchiardi et al.| {2024} |Schmitt et al.,|2023)). These efforts can be
broadly classified into two categories: (a) analyzing or detecting simulation gaps and (b) mitigating the impact
of simulation gaps on posterior estimates. Since our work falls into the latter category, we briefly discuss
methods aimed at increasing the robustness of fully amortized approaches. E.g., (Gloeckler et al.| (2023)
explore efficient regularization techniques that trade off some posterior accuracy to enhance the robustness of
posterior estimators against adversarial attacks. Ward et al.[(2022) and Siahkoohi et al.|(2023)) apply post hoc
corrections based on real data, utilizing MCMC and the reverse Kullback-Leibler divergence, respectively.

Differently, |Gao et al.| (2023)) propose a departure from standard Bayesian inference by minimizing the
expected distance between simulations and observed data, akin to generalized Bayesian inference with scoring
rules (Pacchiardi et al., 2024)). Perhaps the closest work in spirit to ours is /Wehenkel et al.| (2024), which
introduces the use of additional training information in the form of a (labeled) calibration set (z*, *) that
contains observables from the real data distribution as well as the corresponding ground-truth parameters.

In contrast to the methods above, our approach (a) avoids trade-offs between accuracy and robustness, (b)
requires no modifications to the neural estimator after training, therefore fully maintaining inference speed, (c)
affords proper Bayesian inference, and (d) does not assume known ground truth parameters for a calibration
set. Thus, it can be viewed as one of the first instantiations of semi-supervised ABI.
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Figure 2: Posterior distance quantified by maximum mean discrepancy (MMD) to the analytic posterior for
variations of the default configuration. Errorbars show +1 SDs over 10 model refits.

4 CASE STUDIES

4.1 MULTIVARIATE NORMAL MODEL

We first illustrate the usefulness of our proposed self-consistency loss on a controllable toy problem (Schmitt
et al.|[2023). The prior and likelihood are given by

0 ~ Normal (ipriors 02ior Ip), &%) ~ Normal(6, o2 Ip) )

prior

The parameters § € R” are sampled from a D-dimensional multivariate normal distribution with mean

. . . 2 _ 2 _ . .
VECHOT fiprior and diagonal covariance matrix O prior Ip. Here, we fiX piprior = 0 and O prior = 1. On this basis,

K independent, synthetic data points z(*) € R” are sampled from a D-dimensional multivariate normal
distribution with mean vector 6 and diagonal covariance matrix o7, Ip. We set o = K such that the total
information in x remains constant across values of K, which simplifies comparisons across observations of
varying numbers of data points. Refer to Appendix [C|for more details on training and neural architectures.

In our numerical experiments, we study the influence of several aspects of the normal model on the perfor-
mance of NPE. To prevent combinatorial explosion, we vary the factors below separately, with all other factors
fixed to their default configuration (highlighted in bold): (1) parameter dimensionality (D = 2,10, 100), (2)
number of unlabeled observations for the self-consistency loss {x7, }M_ | (M = 1,4,32), (3) mean p* of
the unlabeled observations z, (u* = 0, 1,2,3,5), (4) inclusion of a summary network (KX = 10) or not
(K = 1), (5) likelihood function (known, estimated).

Results In Figure I} we depict the results obtained from (a) standard NPE (trained on the simulation-
based loss only), (b) our semi-supervised NPE + SC (with self-consistency loss on known likelihood),
and (c) the gold-standard (analytic) reference. We see that standard NPE already completely fails for
Zobs ~ N(tobs = 2,0.011p), and subsequently also for any larger values pons > 2. In contrast, our
semi-supervised approach achieves almost perfect posterior estimation. This holds true even in cases where
Zobs 18 multiple standard deviations away from all the training data, that is, from both the labeled dataset
{(0,,,2,)}2_, and the unlabeled dataset {x7, }A_,. These results indicate that the self-consistency criterion

m
can provide strong robustness gains even far outside the typical space of training data.

In Figure 2] we report the maximum mean discrepancy (MMD) between the approximate and true posterior
the factors parameter dimensionality and number of unlabeled observations. When varying the parameter



Under review as a conference paper at ICLR 2026

¢ NPE only
0.41 ® NPE+SC

4 nce

"o ;}1 T }I} S

—0.4+

PL CZ NL FI PT AT FR BE SE DE DK IE IT EL ES
Country code
Figure 3: Comparison of posterior estimates for 15 countries (ISO 3166 alpha-2 codes) among standard NPE
(red), NPE + SC (blue), and Stan (reference in gray; Carpenter et al.,[2017). Central 50% (thick lines) and
95% (thin lines) posterior intervals of the autoregressive component /3 are shown, sorted by lower 5% quantile

as per Stan (i.e., established benchmark). The SC loss was evaluated on data from M = 8 countries during
training, greatly enhancing ABI’s robustness in both no-misspecification scenarios and real-data evaluations.

dimensionality (Figure 2a)), including the SC loss yields nearly perfect posterior approximation up to 10
dimensions, even with extreme deviations from the initial training data. It also significantly improves accuracy
in the 100 parameter scenario. The dataset size factor (Figure 2b) shows robust gains, with clear improvements
over NPE even when using as few as four unlabeled observations (versus 1024 labeled ones). In Figure 3]
(Appendix D)), we report posterior mean and standard deviation bias as well as maximum mean discrepancy
for all the above factors. Varying the mean i,15 of the new observations shows that, as long as the data used
for evaluating the SC loss is not identical to the training data (i.e., as long as pops 7 0), including the SC loss
component enables accurate posterior approximation far outside the typical space of the training data.

In Figure[6]in Appendix D} we see that the benefits of self-consistency persist when the posterior is conditioned
on more than one data point per observation (K = 10), that is, in the presence of a summary network. Further,
we still see clear benefits of adding the self-consistency loss even when the likelihood is estimated by a neural
likelihood approximator g(z | ), trained jointly with the posterior approximator ¢(# | x) on the same training
data. However, with an estimated likelihood, posterior bias, especially bias in the posterior standard deviation,
and MMD distance to the true posterior are larger than in the known likelihood case. We also compared our
semi-supervised approach with other robustness methods - NPE-DANN, NPE-MMD, and NNPE. The results
described in Appendix [D.T|demonstrate the benefits of our approach over other methods.

4.2 FORECASTING AIR PASSENGER TRAFFIC: AN AUTOREGRESSIVE MODEL WITH PREDICTORS

We apply our semi-supervised loss to analyze trends in European air passenger traffic data provided by
Eurostat| (2022azbjc)). This case study highlights that the strong robustness gains also occur in real-world
scenarios and model classes that are challenging to estimate in a simulation-based inference setting. We
retrieved time series of annual air passenger counts between 15 European countries (departures) and the USA
(destination) from 2004 to 2019 and fit the following autoregressive process of order 1:

Yjer1 ~ Normal(e +y;.085 + uji; + w405, 95), (8)
where the target quantity ¥; ;41 is the difference in air passenger traffic for country j between time ¢ + 1
and ¢. To predict y; 41 we use two additional predictors: u;; is the annual household debt of country j
at time ¢, measured in % of gross domestic product (GDP) and w; ; is the real GDP per capita. Training

relies on a small simulation budget of N = 1024, with the self-consistency loss evaluated on real data from
M € {4,8,15} countries. Further details on model and training are provided in Appendix
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Figure 4: (a) Posterior predictive samples (gray) inferred from an out-of-simulation dataset (black). NPE only
produces highly biased predictions while NPE+SC yields accurate results. (b) Histogram of the mean absolute
bias (MAB) difference of posterior predictions computed for 1000 out-of-simulation datasets. NPE+SC has
lower bias than NPE for almost all datasets.

Results In Figure [3] we show exemplary results from standard NPE, our semi-supervised NPE + SC
(M = 8), and Stan (Carpenter et al.,[2017) as reference. We see that NPE is highly inaccurate for many
countries, whereas NPE + SC is in strong agreement with the reference for all but one country. As shown in
Table[2] adding the self-consistency loss (M = 8) strongly improves posterior estimates for all five parameters
across all metrics, on average across countries. The complete results can be found in Appendix [F

4.3 HODGKIN-HUXLEY MODEL OF NEURON ACTIVATION

To investigate the effect of the self-consistency loss on a model involving high-dimensional data, we evaluate
our approach on the Hodgkin-Huxley model, which was previously used in an ABI setting by Gloeckler et al.
(2023)). The Hodgkin-Huxley model is a classical model in neuroscience to describe neuron activation via
a set of 5 ordinary differential equations. In brief, the model has 7 parameters (electrical conductances of
different ion channels, membrane capacitance and reversal potentials), and the output y; with observation
index i is a 200-dimensional time series of the membrane potential. A full definition of the model, as well as
the training setup and a description of the neural architectures, are provided in Appendix [G|

To facilitate network training, all parameters are transformed to follow standard normal distributions
through appropriate transformations. For example, the parameter gn, with marginal prior gy, ~
LogNormal(log(110),0.1) is transformed via zg,, = (log(gna) — 10g(110))/0.1. We denote the full set
of transformed model parameters by 6. Training is performed with a simulation budget of N = 32,768.
For each loss evaluation, the self-consistency loss is computed on a random subset of 32 samples drawn
from a pool of M = 1,024 unlabeled observations. These are generated by first sampling § ~ Normal(0, 2),
applying the inverse transformations to recover the original parameter scale, and then simulating time series
of the membrane potential as above.

Results To assess the benefits of our approach in the out-of-distribution setting, Figure [da] shows posterior
predictive samples inferred from data simulated with 6 ~ Normal(—2,1). This contrasts with training
data from 6 ~ Normal(0, 1) and self-consistency evaluation data from § ~ Normal(0, 2). When training
without the self-consistency loss, the neural posterior density estimator produces samples inconsistent with
the observed data, while incorporating the loss yields accurate predictions (see Appendix [H] for further
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results). To quantify this, Figure Ab]reports mean absolute bias differences between the two estimators. The
self-consistency loss consistently and strongly improves predictions across the majority of time series. Even
in the worst cases, it is at least competitive with the estimator trained without the self-consistency loss.

4.4 BAYESIAN DENOISING OF MNIST IMAGES

Finally, we demonstrate the utility of our self-consistency loss-based semi-supervised approach in a high-
dimensional image denoising task, following a set-up similar to Elsemiiller et al.|(2025). The parameter vector
6 € R is the flattened image, and the observation = € R7®* is a blurred version generated by a simulated
noisy camera. We assume an implicit prior § ~ p(6) defined by a generative model trained on blurred MNIST
images of the digit “0” (LeCun et al.,|1998), and an implicit likelihood p(x|¢) implemented by reapplying the
same blur to each 6. This creates a challenging neural posterior-likelihood estimation (NPLE) problem.

To construct the training set, we blur all digit “0” images in the MNIST training set with a fixed Gaussian
filter and train a neural network to (i) sample blurred simulated images {6}~ ;, ~ p(f) and (ii) evaluate their
log-probabilities. For each sample 67, we then generate an observation ' ~ p(z|0*) by reapplying the same
Gaussian blur, yielding N = 12000 pairs (6%, z%) to train posterior and likelihood networks. For the SC loss,
we use 400 held-out MNIST test images blurred only by the likelihood model, (i.e., no additional prior blur),
inducing deliberate prior misspecification and enablung us to asses the robustness of SC in NPLE. More
details about the training set-up and model architecture can be found in the Appendix [I}

Results We perform inference on a separate subset of 580 MNIST test images. Figures [14] and [15]in
Appendix [J]] show randomly chosen examples alongside the posterior mean and standard deviation maps
computed from 500 posterior samples. Reconstructions using the self-consistency approach (NPLE+SC)
are smoother and more faithful to the ground-truth, whereas NPLE reconstructions are pixelated and blurry.
Moreover, NPLE+SC yields coherent uncertainty maps, with elevated variance localized along digit contours
where edge ambiguity is expected. In contrast, NPLE estimates exhibit scattered, patchy uncertainty across
the digit and background. Additional examples are reported in Appendix [J}

5 DISCUSSION

We demonstrated that Bayesian self-consistency losses significantly increase the robustness of neural amor-
tized Bayesian inference (ABI) on out-of-simulation data. Accurate inference outside the training distribution,
such as in the presence of model misspecification, has long posed a major challenge for ABI. While self-
consistency was originally introduced to improve training efficiency with slow simulators (Schmitt et al.,
2024; [Ivanova et al., [2024)), it had not been previously explored as a remedy to simulation gaps. Existing
supervised ABI approaches have been known to dramatically fail in such cases (Schmitt et al.| 2023} |Gloeckler
et al.| 2023 |[Huang et al.| 2023)), as we also illustrated in our experiments. In contrast, when optimizing for
self-consistency on unlabeled out-of-simulation data, we obtained nearly unbiased posterior estimation far
beyond the training distribution. The strong robustness gains persisted even in models with several hundred
parameters. Additionally, using a neural (i.e., approximate) in place of an analytic likelihood density also
increased the robustness significantly. Finally, as self-consistency losses do not require data labels (i.e., true
parameter values), we can use any amount of real data during training to improve the robustness of ABI.

Limitations and future directions Our variance-based self-consistency loss relies on fast density eval-
uations during training, keeping times competitive. This makes free-form methods such as flow matching
(Lipman et al.,|2023) or score-based diffusion (Song et al.,2020) less practical due to their need for numerical
integration. As a result, efficient self-consistency losses for free-form flows, along with joint learning of
posteriors and very high-dimensional likelihoods, remains an open avenue for future research.
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REPRODUCIBILITY STATEMENT

We provide all details necessary to reproduce our results. Hyperparameter settings and network architectures
are described in Sectiondand Appendices[C| D] [E]} [Gl and[l] The code to run all experiments is included in
the supplementary material and will be released upon publication. Hardware specifications are reported in
Appendix [K] All theoretical results are accompanied by complete proofs in Section [2]and Appendix [A]
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APPENDIX

A PROOFS

Proof of Proposition[l} By assumption, C'is globally minimized if and only if
p(x | 0)p(6) _
q(0 | z)

for some constant A (independent of §) almost everywhere over the posterior’s support. Accordingly, any
approximate posterior solution ¢(6 | x) that attains this global minimum has to be of the form

€))

q(0 | z) = p(z | 0) p(8) / A. (10)
By construction, ¢( | ) is a proper probability density function, so it integrates to 1. It follows that
1= [ a0 2)do = [ e 6)p(6) a0/ 4 =plz)/ A an
Rearranging the equation yields A = p(z) and thus
(0 | x) = p(x | 0) p(6)/p(x) = p(0 | x) (12)
almost everywhere. O

Proof of Proposition[2] The variance over a distribution pc (6) reaches its global minimum (i.e., zero), if and
only if its argument is constant across the support of po (). Because the log is a strictly monotonic transform,

logp(z* | 0) + logp(0) —logq(d | *) =log A (13)
for some constant A implies
p(z | 9)p(0)
! (14)
q(0 | x)
which is sufficient to satisfy the assumptions of Proposition [T} O

B FREQUENTLY ASKED QUESTIONS

Q: How do you define model-misspecification, simulation-gap, and domain shift?

We define model misspecification as a mismatch between an unknown (true) distribution of data z* ~ p*(z)
coming from a complex, real-world system, and the marginal likelihood of data p(x|M) under some model
M. Concretely, we call a model misspecified if

P@) £ ole | M= [ ol |0.M)p0| Myas, Voex.

Within this framework, a simulation gap refers to the divergence between the empirical distribution of
observed data p*(x) and the empirical distribution of simulated data p(z), where p(z) is obtained via finite
samples x ~ p(x | 6, M) for 8 ~ p(6 | M). That is, even when the model is not misspecified, limitations in
simulation coverage can create gaps in support.

A domain shift refers to any distributional discrepancy between the simulated training data (z ~ p(z | M))
and the observed data ( z* ~ p*(x)). This includes, but is not limited to, model misspecification and
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simulation gaps, and encompasses broader generalization challenges faced when deploying amortized
inference methods outside the simulation domain.

Q: What is the intuition behind using self-consistency to make the inference robust?

In a well-specified setting, the simulator accurately captures the true data-generating process and the learned
posterior matches the true posterior. In this case, neural networks only suffer from approximation error due to
finite data or model capacity. Under model misspecification, the observed data are drawn from a distribution
p*(x) # p(z), and hence the model-implied posterior p(6 | z)  p(x | 8)p(6) does not correspond to the
posterior under p*(z) but under p(x).

In such settings, neural networks face two types of error: approximation error, as before, due to imperfect
learning, and extrapolation error, because the network encounters observations x ~ p*(x) that may lie outside
the simulation support, and thus lacks guidance on how to sample from the posterior in those regions. In
this case, minimizing the self-consistency loss encourages the learned posterior ¢(6 | x) to remain internally
consistent with the assumed model p(z, 6) when evaluated on empirical samples = ~ p*(z). It enforces
that the learned posterior ¢(# | «) remains consistent with the model assumptions, effectively guiding the
network to extrapolate in a model-coherent way. That is, even when the data are out-of-distribution relative to
the simulator, the network learns to sample in a way that is self-consistent under the (misspecified) model
posterior, improving robustness despite model mismatch.

Q: Why is the self-consistency loss coupled with standard simulation-based loss when self-consistency
is strictly proper?

In principle, minimizing the self-consistency loss is sufficient to recover the true posterior, as guaranteed by
Proposition [T} However, in practice, we observe that using the SC loss as the sole training objective leads to
initialization and convergence issues. This is primarily due to the density-based nature of the SC loss. At
initialization, when the approximate posterior and/or likelihood are poorly calibrated, the self-consistency
loss can take on extreme values, often resulting in numerical instabilities, such as exploding gradients.
Consequently, optimization tends to diverge or fail to make meaningful progress. We observe that the SC
loss in tandem with the NPE loss provides a more stable and effective learning signal. The amortized loss
anchors the model early on by using supervised simulated data, while the SC loss complements it by enforcing
consistency on observed data, especially in out-of-simulation regimes.

Q: What is the motivation behind using the variance over the log Bayesian self-consistency ratio for C'?

The choice of using the variance of the logarithm of the Bayesian self-consistency ratio, evaluated over
p ~ pc(0) (Eq. E]), is motivated as follows: [Kothe|(2023) (Eq. 33) shows that a second-order Taylor expansion

of the regular NPE loss function yields K L(p(6 | z)||q(0 | z)) ~ WVarp(gm(%). From this, it
follows that minimizing Var(. . .) also minimizes the KL divergence between true and approximate posterior.
Because the denominator in Var(. .. ) can cause numerical instabilities due to vanishingly small values, we
instead target Var(log(. ..)). Minimizing this quantity via a loss function still minimizes the KL divergence

between the true and approximate posterior, which follows from Proposition [T}

Q: What is the motivation behind using the approximate posterior ¢.(6 | h(z*)) at training iteration ¢
for pc(0)?

Rearranging Bayes’ rule shows that the marginal likelihood p(z) = %

replace the true posterior p(f | ) by an approximate posterior ¢(6 | z), large fluctuations in the marginal
likelihood landscape are expected to be in high-density regions of the approximate posterior. We therefore
choose the approximate posterior as the proposal distribution.

is constant for all 6. If we

The choice of using the variance of the logarithm of the Bayesian self-consistency ratio, evaluated over
p ~ pc(0) (Eq. E]), is motivated as follows: [Kothe((2023) (Eq. 33) shows that a second-order Taylor expansion
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of the regular NPE loss function yields K L(p(0 | z)||q(0 | z)) = WVarp(gm(%). From this, it

follows that minimizing Var(. . .) also minimizes the KL divergence between true and approximate posterior.
Because the denominator in Var(. .. ) can cause numerical instabilities due to vanishingly small values, we
instead target Var(log(. .. )). Minimizing this quantity via a loss function still minimizes the KL divergence
between the true and approximate posterior, which follows from Proposition [I]

Q: How to choose the self-consistency weight \?

From the strict-properness of self-consistency losses, it follows that A does not control a trade-off between the
standard NPE loss and the SC loss, as both optimize for the same training objective. Instead, its main role is to
stabilize training by preventing initialization and convergence issues. For experiments with low-dimensional
parameter spaces, a default choice of A = 1 typically works well. However in high-dimensional settings, such
as the image-denoising experiment, the approximate posterior can be particularly bad in the early epochs,
leading to unstable training. In such cases, we found it to be effective to use a linear schedule for A that keeps
it at O for the first few epochs and then gradually increases to 1.

C DETAILED SETUP OF THE MULTIVARIATE NORMAL CASE STUDY

From the multivariate normal model described in Section[d.T| we simulate a labeled training dataset with a
budget of NV = 1024, that is, NV independent instances of 8,, (the "labels") with corresponding observations
Xy = {x;k)},{;l, each consisting of K data points. This labeled training dataset {(6,,, z,,) })_, is used for
optimizing the standard simulation-based loss component. The self-consistency loss component is optimized

on an additional unlabeled dataset {x,}*_, of M = 32 independent sequences 7, = {mﬁk)}ff:l, which,

for the purpose of this case study, are simulated from
25®) ~ Normal(u*, Ip). (15)

Since the self-consistency loss does not need labels (i.e., the true parameters having generated z;), we could
have also chosen any other source for z*, for example, real-world data. Within each training iteration ¢, the
variance term within the self-consistency loss was computed from L = 32 samples ) ~ ¢,(6 | z7,) from
the current posterior approximation.

To evaluate the accuracy and robustness of the NPEs, we perform posterior inference on completely new

observations x,ps = {xg;)s}szl , each consisting of K independent data points sampled from

2%~ Normal(ptons, 0%, = 0.011p). (16)
The mean values pons € {0,1,...,11} are progressively farther away from the training data. While
conceptually simple and synthetic, this setting is already extremely challenging for simulation-based inference
algorithms because of the large simulation gap (Schmitt et al., [2023)): standard NPEs are only trained on
(labeled) training data that are several standard deviations away from the observed data the model sees at
inference time.

The faithfulness of the approximated posteriors ¢(6 | z,bs) are assessed by computing the bias in posterior
mean and standard deviation as well as the maximum mean discrepancy (MMD) with a Gaussian kernel
(Gretton et al.} 2012)) between the approximate and true (analytic) posterior.

The analytic posterior for the normal means problem is a conjugate normal distribution

(0 | Zobs) = Normal(fipost, UgostID)v a7
where (15,04t 1s @ D-dimensional posterior mean vector with elements
i K(Zobs)a
(Npost)d _ Ugost :u'grlor + ( ;) s) , (18)
Uprior Olik
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02« is the posterior variance (constant across dimensions) given by

pos
1 K\
Tpost = (2 + z) ; 19)

Uprior Olik

and (Zops )4 is the mean over the Dth dimension of the K new data points {x(()@s}le

For the NPEs ¢(6 | ), we use a neural spline flow (Durkan et al., 2019) with 5 coupling layers of 128 units
each utilizing ReL U activation functions, L2 weight regularization with factor v = 1073, 5% dropout and a
multivariate unit Gaussian latent space. The network is trained using the Adam optimizer for 100 epochs
with a batch size of 32 and a learning rate of 5 x 10~%. These settings were the same for both the standard
simulation-based loss and our proposed semi-supervised loss. For the conditions involving an estimated
likelihood ¢(x | ), we use the same configuration for the likelihood network as for the posterior network.
For the summary network h(z) (if included), we use a deep set architecture (Zaheer et al., 2017) with 30
summary dimensions and mean pooling, 2 equivariant layers each consisting of 2 dense layers with 64 units
and a ReLU activation function. The inner and outer pooling functions also use 2 dense layers with the same
configuration. The likelihood network as well as the summary network are jointly trained with the inference
network using the Adam optimizer for 100 epochs with a batch size of 32 and a learning rate of 5 x 10~%.
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D COMPREHENSIVE RESULTS FOR THE MULTIVARIATE NORMAL CASE STUDY
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Figure 5: Bias of posterior mean, bias of posterior standard deviation and posterior distance quantified by
maximum mean discrepancy to the analytic posterior for variations of the default configuration outlined in
Section [#.1] NPE approximators with the added self-consistency loss component are shown in blue, NPE
approximators using just the standard simulation-based loss are shown in red. Irrespective of the varied
factor and for all metrics, adding the self-consistency loss component is always a drastic improvement over
the standard simulation-based loss alone. The plots show that adding the self-consistency loss component
provides strong robustness gains even in high-dimensional spaces (top row) or when the self-consistency loss
is evaluated on little data (center row). Variation of the mean of the unlabeled training data show that adding
the self-consistency loss drastically improves posterior estimation as long as data used for evaluating the
self-consistency loss is at least slightly out-of-distribution compared to the original training data (p* > 1).
Errorbars show 41 standard deviations over 10 model refits on new training data.
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Figure 6: Bias of posterior mean, bias of posterior standard deviation and posterior distance quantified by
maximum mean discrepancy to the analytic posterior when the likelihood is estimated (top row) and in
presence of a summary network (K = 10 data points; bottom row). In the setting where the likelihood
function is estimated, we observe a lower bias of the posterior mean and lower maximum mean discrepancy
to the true posterior when the self-consistency loss component is added compared to the standard simulation-
based loss alone. However, we do see some bias of the posterior standard deviation, although with reversed
signed compared to the standard loss. The self-consistency loss provides strong robustness gains in the
presence of a summary network (and known likelihood) in terms of all metrics. Errorbars show +1 standard
deviations over 10 model refits on new training data.

D.1 COMPARISON TO OTHER ROBUSTNESS METHODS

Existing approaches for enhancing the robustness of amortized Bayesian inference typically fall into one of
three categories, each with its own limitations. First, regularization-based methods (e.g., Gloeckler et al.}
2023 |Huang et al.l 2023)) introduce additional constraints inevitably altering the original training objective,
thereby deviating from the true Bayesian posterior that the self-consistency loss seeks to approximate.

Second, some methods employ supervised corrections using a small amount of real-world, labeled data
(e.g.,[Wehenkel et al., [2024)) which requires access to ground-truth parameters, shifting the setting from
semi-supervised to fully supervised learning.

Third, unsupervised domain adaptation (UDA) techniques such as NPE-DANN and NPE-MMD have been
proposed to improve robustness under domain shift by aligning the distributions of simulated and observed
data in the summary feature space (Elsemiiller et al.,|2025). These losses govern the alignment of the summary
space between simulated and observed data, effectively adjusting the observed data resulting in posteriors
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Figure 7: Bias of posterior mean, bias of standard deviation, and posterior distance quantified by maximum
mean discrepancy, relative to the analytic posterior. NPE + SC provides far more robustness gains compared
to NPE-MMD, NPE-DANN, and NNPE for the case of prior misspecification. Errorbars show 41 standard
deviations over 10 model refits on new training data.

conditioned on a transformed version of the observation (Target 2, Section 3, Elsemiiller et al., [2025)), rather
than the analytic posterior. Moreover, as shown by [Elsemiiller et al.| (2025)), these UDA methods and NNPE
(Ward et al.} 2022} exhibit notably poor performance under prior misspecification.

That said, we conducted additional experiments with NPE-MMD (Huang et al., 2023), NPE-DANN
(Elsemiiller et al., [2025)), and NNPE (Ward et al., 2022) on the two-dimensional multivariate normal model,
replicating the prior misspecification setting described in Section[d.1] Since both UDA methods rely on a
summary network for feature alignment, we employed a shared DeepSet architecture (2-layer network with 30-
dimensional output) across all methods, including NPE+SC, to ensure a fair comparison. For self-consistency
loss, we used 32 unlabeled observed data at p.,s = 3 during training. We used Adam optimizer with a
learning rate of 0.0005 trained for 40 epochs using 1,028 simulations. All the hyperparameter configurations
were kept the same as described in Section4.T|and Appendix [C] For NPE-MMD, NPE-DANN, and NNPE,
we utilized the implementation by Elsemiiller et al.| (2025).

The results clearly show that NPE-MMD, NPE-DANN, and NNPE fail under prior misspecification. Also,
with increase in misspecification, the results for these methods became even worse while NPE+SC maintains
the robustness gains. UDA methods also require large unlabeled data during training while we see strong
robustness gains in NPE+SC with as few as 4 unlabeled data points. As these methods have a different
training objective (Target 2, Section 3, |[Elsemiiller et al., [2025) rather than the analytic posterior, we do not
include them in other case study comparisons. Instead, we focus on standard simulation-based NPE and
state-of-the-art MCMC via Stan, which target the analytic posterior and serve as appropriate baseline and
benchmark, respectively, for evaluating our semi-supervised NPE+SC approach.

E DETAILED SETUP OF THE AIR TRAFFIC CASE STUDY

The parameters a; are country-level intercepts, 3; are the autoregressive coefficients, -y, are the regression
coefficients of household debt and J; are the regression coefficients of GDP per capita, and o is the standard
deviation of the noise term. This model was previously used within ABI in [Habermann et al.| (2024). As
commonly done for autoregressive models, we regress on time period differences to mitigate non-stationarity.
This is critical for simulation-based inference because when 3; > 1, exponential growth quickly produces
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unrealistic air traffic volumes. Moreover, amortizing over covariate spaces, such as varying GDP per capita
between countries, can lead to model misspecification if such fluctuations are underrepresented in training.

For the air traffic model defined in Section4.2] we set independent priors on the parameters as follows:

a; ~ Normal(0, 0.5) B; ~ Normal(0, 0.2)
~v; ~ Normal(0, 0.5) 0; ~ Normal(0, 0.5) (20)
log(o;) ~ Normal(—1,0.5).

For the NPEs ¢(6 | ), we use a neural spline flow (Durkan et al., 2019) with 6 coupling layers of 128 units
each utilizing exponential linear unit activation functions, L2 weight regularization with factor v = 1073, 5%
dropout and a multivariate unit Gaussian latent space. These settings were the same for both the standard
simulation-based loss and our proposed semi-supervised loss. The simulation budget was set to N = 1024.
For the summary network, we use a long short-term memory layer with 64 output dimensions followed by
two dense layers with output dimensions of 256 and 64. The inference and summary networks are jointly
trained using the Adam optimizer for 100 epochs with a batch size of 32 and a learning rate of 5 x 10~%.

F COMPREHENSIVE RESULTS FOR THE AIR TRAFFIC CASE STUDY

Table 1: Posterior metrics for NPE and NPE augmented with self-consistency loss (NPE + SC) relative to
Stan. For each parameter, the absolute bias in posterior means and standard deviations are reported along
with the Wasserstein distance between the posteriors, using Stan as reference. The self-consistency loss was
evaluated on data from M = 4 countries during training. Metrics are averaged over all 15 countries.

Parameter |  |p— pstan| | |0 — Ostan| | Wasserstein distance
‘ NPE NPE+SC ‘ NPE NPE+SC ‘ NPE NPE+SC

o 0.079 0.003 0.033 0.020 0.086 0.033
B 0.153 0.012 0.055 0.011 0.161 0.070
07 0.087 0.048 0.058 0.022 0.154 0.112
] 0.053 0.046 0.038 0.018 0.119 0.102
log(o) 0.215 0.207 0.049 0.058 0.304 0.282
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Table 2: Posterior metrics for NPE and NPE augmented with self-consistency loss (NPE + SC) relative to
Stan. For each parameter, the absolute bias in posterior means and standard deviations are reported along
with the Wasserstein distance between the posteriors. The self-consistency loss was evaluated on data from
M = 8 countries during training. Metrics are averaged over all 15 countries.

Parameter | | — pstan \ |o — ostan] | Wasserstein distance
‘ NPE NPE+SC ‘ NPE NPE+SC ‘ NPE NPE+SC

o 0.079 0.014 0.033 0.020 0.086 0.035
Ié] 0.153 0.031 0.055 0.004 0.161 0.054
07 0.087 0.006 0.058 0.035 0.154 0.068
] 0.052 0.042 0.038 0.031 0.119 0.064
log(o) 0.214 0.148 0.049 0.011 0.304 0.170

Table 3: Posterior metrics for NPE and NPE augmented with self-consistency loss (NPE + SC) relative to
Stan. For each parameter, the absolute bias in posterior means and standard deviations are reported along
with the Wasserstein distance between the posteriors, using Stan as reference. The self-consistency loss was
evaluated on data from M = 15 countries during training. Metrics are averaged over all 15 countries.

Parameter |  |p— pstan| | |0 — Ostan| | Wasserstein distance
‘ NPE NPE+SC ‘ NPE NPE+SC ‘ NPE NPE+SC

o 0.079 0.002 0.033 0.002 0.086 0.006
B 0.153 0.001 0.055 0.001 0.161 0.009
v 0.087 0.002 0.058 0.005 0.154 0.014
0 0.053 0.003 0.038 0.005 0.119 0.013
log(o) 0.215 0.002 0.049 0.004 0.304 0.011

Table 4: Standard error (SE) of posterior mean and standard deviation bias relative to Stan calculated across
all 15 countries. The self-consistency loss was evaluated on data from M = [4, 8, 15] countries during
training. The abbreviation SC(n) refers to NPE + SC (M = n).

Parameter | SE(|pt — pstan]) \ SE(|o — 0stan|)
‘ NPE SC@) SC(8) SC(15) ‘ NPE SC@4) SC(8) SC(15)

o 0.019 0.009 0.013 0.001 | 0.011 0.008 0.007 0.001
B 0.024 0.026 0.023 0.002 | 0.010 0.007 0.003 0.002
v
0

0.045 0.037 0.026 0.003 | 0.015 0.016 0.013 0.003
0.033 0.033 0.023 0.004 | 0.015 0.016 0.012  0.002
log(o) 0.076 0.076 0.058 0.002 | 0.015 0.017 0.008  0.002
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Figure 8: Comparison of posterior estimates between standard amortized NPE (red circles), NPE augmented
by our self-consistency loss (NPE + SC; blue squares) and Stan (reference; gray triangles). The plots illustrate
central 50% (thick lines) and 95% (thin lines) credible intervals of all five parameters for different countries,
sorted by the lower 5% quantile according to Stan. Abbreviations follow the ISO 3166 alpha-2 codes. The
self-consistency loss was evaluated on data from M = 4 countries during training.
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Figure 9: Comparison of posterior estimates between standard amortized NPE (red circles), NPE augmented
by our self-consistency loss (NPE + SC; blue squares), and Stan (reference; gray triangles). The plots illustrate
central 50% (thick lines) and 95% (thin lines) credible intervals of all five parameters for different countries,
sorted by the lower 5% quantile according to Stan. Abbreviations follow the ISO 3166 alpha-2 codes. The
self-consistency loss was evaluated on data from M = 8 countries during training.
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Figure 10: Comparison of posterior estimates between standard amortized NPE (red circles), NPE augmented
by our self-consistency loss (NPE + SC; blue squares), and Stan (reference; gray triangles). The plots illustrate
central 50% (thick lines) and 95% (thin lines) credible intervals of all five parameters for different countries,
sorted by the lower 5% quantile according to Stan. Abbreviations follow the ISO 3166 alpha-2 codes. The
self-consistency loss was evaluated on data from M = 15 countries during training.
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G DETAILED SETUP OF THE NEURON ACTIVATION CASE STUDY

G.1 MODEL DESCRIPTION

The prior and likelihood are given by
gna ~ LogNormal(log(110), 0.1%), gk ~ LogNormal(log(36),0.1?), gu ~ LogNormal(log(0.2), 0.5)
Fxa ~ Normal(50, 5?), Ex ~ Normal(—77,5%), Ejea ~ Normal(—55,5%), C,, ~ Normal(1,0.05?)
yi.+ ~ Student-t(V,,(¢),0.12, df=10),

where gna, gk, gv denote the maximum conductances (in mS/cm?) of sodium and two different types of
potassium channels; Eny,, Pk, Flea are the sodium, potassium, and leak reversal potentials (in mV) for sodium,
potassium, and leak currents; C,,, is the membrane capacitance (in ¢F/cm?). The membrane voltage V;, (t)
at time ¢ is obtained by solving a set of five ordinary differential equations. Here, X ~ LogNormal(u, o?)
denotes a log-normal distribution with log(X) ~ Normal(u, o2).

The membrane voltage V,,,(t) evolves according to the classical Hodgkin-Huxley model, extended with
an additional slow (muscarinic, M-type) potassium channel with current I,;. The total current across the
membrane is modeled as:

dv,

Om?m = INa+IK+IM+Ileak+Ii“(t)’ (21)

where Ing, Ik, Im, lieak are the sodium, potassium, M-type potassium, and leak currents respectively; and

Iy (t) is an externally applied current, which is set to be a pulse input of 3.248 nA between t,, = 10ms and
totf = 50ms. The ionic currents are calculated as:

Ina = gnamPh(Exg — Vi) (22)
I = gxn* (Bx — Vin) (23)
Iy = gmp(Ex — Vin) (24)
Teak = Greak (Ereak — Vim)s (25)

where the leak conductance is fixed to gk = O.lmS/cmz; and m, h, n, p are gating variables. The gating
variables take the form:

dr  2eo(Vip) —x
_ Zoo\¥Vm) — & 2
TR x € {n,m, h,p}, (26)

with xoo(vm) = am(vm)/(ax(vm) + 5m(vm)), and Tx(‘/m) = 1/(043c(vm) + ﬂx(vm)) for n, m and h,
where o, and /3, are voltage-dependent rate functions defined as:

_0.032 - exp(—0.2(V,, — 75))

~0.28 - exp(0.2(V;,, — 100))

an(Vm) 0.2 , Bn(vm> 0.2 >
0.32 - —-0.25(V,, — 73 0.28 - 0.2(V,, — 100
) = BB =) ) 02802 )
-V =77 4
ah(vm) =0.128- exp(%% 5h(vm) - 1+ eXp(—O.Q(V . 100))
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For the gating variable p of the M-type potassium channel, a sigmoidal steady-state activation and custom
time constant are used:

_ 1 (V) = 600
~ 1+exp(—=0.1(V,,, +£35))" P 3.3 exp(0.05(V,, + 35)) + exp(—0.05(V;, + 35))

Poo(Vin)

Numerical integration of the system is performed using a fixed-step Euler method over a time window
[0, 60] with time step At = 0.01. Voltage traces V,,(¢) are downsampled to every 30th observation, and
200-dimensional time series are simulated according to y; ; ~ Student-t(V;,(¢),0.12, df=10).

G.2 NETWORK ARCHITECTURE AND TRAINING

For the NPEs q(0|y¢,t), we use a neural spline flow (Durkan et al.|[2019) with 10 coupling layers of 256 units
each utilizing ReLU activation functions, L2 weight regularization with factor v = 10~ 3, 5% dropout and a
multivariate unit Gaussian latent space. These settings were the same for both the standard simulation-based
loss and our proposed semi-supervised loss. For the summary network, we use a long short-term memory
layer with 100 output dimensions followed by a sequence of dense layers with output dimensions of 400, 200,
100, and 50, respectively. The inference and summary network are jointly trained using the Adam optimizer
with a batch size of 256 for 100 epochs and a fixed learning rate of 5 x 10~*, followed by 100 epochs with a
fixed learning rate of 5 x 10~° and a final run of 100 epochs with a learning rate of 5 x 1076,

H COMPREHENSIVE RESULTS OF THE NEURON ACTIVATION CASE STUDY
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(a): Posterior predictive samples without (top row) and with (b): Quantitative evaluation of predictive bias.

(bottom row) self-consistency loss.

Figure 11: (a) Posterior predictive samples (gray) inferred from an in-simulation dataset (black) with
parameters 6 ~ Normal(0, 1). Both NPE only and NPE+SC produce predictions that are consistent with
the observed data. However, samples from NPE+SC are much closer to the ground truth. (b) Histogram
of the mean absolute bias (MAB) difference of posterior predictions computed for 1000 out-of-simulation
datasets. NPE+SC has lower bias than NPE for almost all datasets. Mean absolute bias is defined as
MAB (yi ¢, i) = % Zthl |yi,+ — ¥i,¢| for a time series y; ; with observation index 4 at time ¢t = 1,...,T.
Jip = & Zle p(yi.:|0¢®)) denotes the mean of the posterior predictive distribution at time ¢ computed over
S posterior samples.
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In-distribution data (6 ~ Normal(0, 1))
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Figure 12: Posterior predictive samples (gray) inferred from 5 simulation datasets following the same
distribution as the training data. Both NPE only and NPE+SC show predictions that are consistent with the

observed data.
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Out-of-distribution data (6 ~ Normal(-2, 1))
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Figure 13: Posterior predictive samples (gray) inferred from 5 out-of-simulation datasets, generated from
parameter draws 6 ~ Normal(—2,1). While NPE only produces highly biased predictions, NPE+SC is
consistent with the observed data.
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I DETAILED SETUP OF THE MNIST IMAGE DENOISING CASE STUDY

We implement the jointly amortized posterior and likelihood networks (Radev et al., 2023) using two
normalizing flows with fully connected affine-coupling layers that operate on the flattened 784-pixel vectors.
We use the same network architecture that was used by [Radev et al.| (2023). As both ¢ and z are images
whose intrinsic dimensionality is significantly lower than their raw pixel count, we use identical 4-layer
convolutional neural networks as summary networks for both posterior and likelihood networks. These
summary networks terminate in a global average-pooling layer to produce a 128-dimensional summary of the
original or blurred image, respectively. The posterior network itself is implemented as a conditional invertible
neural network (cINN) consisting of 12 conditional affine-coupling layers; each coupling layer embeds its
conditional information via an internal fully connected network with a single hidden layer of 512 units and
ReLU activations. The likelihood network adopts exactly the same conditional-coupling architecture. In both
cases, we employ a multivariate Student-T distribution in the latent space (Alexanderson & Henter} [2020j
Radev et al.,|2023)), which enables more stable maximum-likelihood training at elevated learning rates.

The prior network that was used to generate blurred MNIST simulations followed the same architecture as
the posterior network defined above. We applied the Gaussian blur with PSF = 1.0 to the 5, 923 images of
digit “0” in the MNIST training dataset to train the prior network using Adam optimizer for 120 epochs with
a batch size of 32, learning rate of 1 x 1073, and a 15% dropout. After training, we generated 12000 blurred
images () of the digit O to train the posterior and likelihood networks. A Gaussian blur with PSF = 1.0 was
further applied to these images to generate observations (x) which represent images from a noisy camera.
The posterior and likelihood networks along with summary networks were jointly trained on {6°, x*}12900
pairs for 100 epochs with a batch size of 32 using a learning rate of 1 x 10~*, and a 15% dropout.

For self-consistency loss, the MNIST test set of digit “0” was divided into two subsets comprising 400 and
580 images respectively. The subset with 400 images was used for training self-consistency loss. A Gaussian
blur with PSF = 1.0 was applied to these images to generate observations (z*). No prior blur was applied to
these images. This represents a prior misspecification scenario as the simulated images used to train NPLE
were already blurred before applying the noisy camera while the MNIST images used for inference do not
have a prior blur. This misspecification scenario depicts the effectiveness of utilising self-consistency loss to
overcome prior misspecification. The self-consistency loss was activated at epoch 21, with its weight linearly
ramped from zero to one by epoch 40. Training was performed using minibatches of 16 images, and 32
consistency samples were drawn to estimate the variance. The inference was performed on the other held-out
subset comprising 580 images and all the results in Figures and [T6]use the MNIST images from this
subset.
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J COMPREHENSIVE RESULTS OF THE MNIST IMAGE DENOISING CASE STUDY
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Figure 14: Examples of denoising results for MNIST images of digit “0” in the held-out test set. The first row
shows ten randomly selected MNIST images (6), the second row depicts the same images after applying the
Gaussian blur (), third and fourth rows depict the mean and standard deviation of 500 posterior samples
estimated from the corresponding blurry observations using NPLE + SC based model, and the fifth and sixth
rows depict the mean and standard deviation of 500 posterior samples from model based on NPLE only.
Incorporating self-consistency loss significantly improves denoising as the means of reconstructed unblurred
image are smoother, less-pixelated and better resemble the ground truth. The darker regions in the standard
deviation show the regions of higher variability in the outputs. The standard deviation maps of NPLE + SC
based approach are far more coherent showing high variability only along the edges.
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Figure 15: More example of denoising results for MNIST images of digit “0” in the held-out test set. The
first row shows ten randomly selected MNIST images (), the second row depicts images after applying the
Gaussian blur (), third and fourth rows depict mean and standard deviation (SD) of 500 posterior samples
estimated from the corresponding blurry observations using NPLE+SC, and the fifth and sixth rows depict
the mean and SD of 500 posterior samples using NPLE only. Incorporating SC loss significantly improves
denoising.
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Figure 16: Ground-truth images and the corresponding posterior draws for seven randomly selected MNIST
“0” digits from the held-out MNIST test set. In each row, the leftmost panel shows the true image (6), and the
following panels show ten independent samples from the approximate posterior. The top-figure shows the
posterior draws using the standard NPLE based model and the bottom figure shows posterior draws from
combining self-consistency loss to the NPLE based model. It can clearly be seen that NPLE+SC posterior
draws are a better reconstruction of the original image whereas NPLE based posterior samples are highly
pixelated.
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K COMPUTATIONAL RESOURCES FOR EXPERIMENTS

1. Multivariate normal model: The experiments were run on a 16-core AMD Ryzen 5950x CPU,
equipped with 32 GB of system RAM.

2. Air traffic case study: The experiments were conducted on a single MacBook Pro (M3, 2024)

equipped with Apple’s M3 chip and 16 GB of unified RAM, running macOS Sonoma 14.6. We did
not use the GPU cores.

3. Neuron activation case study: The experiments were run on a 16-core AMD Ryzen 5950x CPU,
equipped with 32 GB of system RAM.

4. MNIST image denoising: The experiments were run on a high-performance compute cluster using a
GPU-equipped compute node featuring a single NVIDIA Tesla P100-PCIE with 12 GB of dedicated
HBM?2 memory, paired with 16 GB of system RAM. The training for the longest experiment took
~ 100 minutes.
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