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Abstract

Face aging has become a crucial task in computer vision, with applications ranging
from entertainment to healthcare. However, existing methods struggle with achiev-
ing a realistic and seamless transformation across the entire lifespan, especially
when handling large age gaps or extreme head poses. The core challenge lies in
balancing age accuracy and identity preservation—what we refer to as the Age-ID
trade-off. Most prior methods either prioritize age transformation at the expense of
identity consistency or vice versa. In this work, we address this issue by proposing
a two-pass face aging framework, named Cradle2Cane, based on few-step text-to-
image (T2I) diffusion models. The first pass focuses on solving age accuracy by
introducing an adaptive noise injection (AdaNI) mechanism. This mechanism is
guided by including prompt descriptions of age and gender for the given person as
the textual condition. Also, by adjusting the noise level, we can control the strength
of aging while allowing more flexibility in transforming the face. However, identity
preservation is weakly ensured here to facilitate stronger age transformations. In
the second pass, we enhance identity preservation while maintaining age-specific
features by conditioning the model on two identity-aware embeddings (IDEmb):
SVR-ArcFace and Rotate-CLIP. This pass allows for denoising the transformed
image from the first pass, ensuring stronger identity preservation without com-
promising the aging accuracy. Both passes are jointly trained in an end-to-end
way. Extensive experiments on the CelebA-HQ test dataset, evaluated through
Face++ and Qwen-VL protocols, show that our Cradle2Cane outperforms existing
face aging methods in age accuracy and identity consistency. Additionally, Cra-
dle2Cane demonstrates superior robustness when applied to in-the-wild human
face images, where prior methods often fail. This significantly broadens its appli-
cability to more diverse and unconstrained real-world scenarios. Code is available
at https://github.com/byliutao/Cradle2Cane.
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Figure 1: Age—ID trade-off curves across sixty age shift values. We compute the Age/ID cosine
similarities over 100 human faces across 1-60 age shift values and the corresponding harmonic means.
Existing approaches tend to favor either age accuracy or identity consistency, resulting in imbalanced
performance across the entire lifespan ages. In contrast, our method Cradle2Cane achieves a better
balance between the two objectives. More details and results are provided in Appendix A.5.

1 Introduction

Deep learning [34] has allowed a realistic alteration of the apparent age of a person [7, 12, 80],
opening promising applications in areas such as computer graphics, entertainment, forensics and
healthcare. The goal of facial age transformation is to simulate the natural aging or de-aging process
in a visually convincing manner. To this end, numerous methods have been developed to achieve
high-quality, identity-preserving age progression and regression. Recent approaches are based on
deep generative models, such as generative adversarial networks (GANS) [1, 15, 22] and Diffusion
Models (DMs) [3, 7, 26, 69, 75], and have shown promising results. However, to the best of our
knowledge, most existing methods suffer from a limited transformation range and often struggle to
maintain high-fidelity results when handling large age gaps, occlusions, or extreme head poses. As a
result, they fall short of delivering seamless cradle-to-cane face aging performance across the entire
lifespan.

In this study, we attribute the limitations of existing face aging methods to an imbalanced trade-off
between age accuracy and identity consistency—a challenge we term the Age-ID trade-off. Most prior
approaches [1, 7, 26] tend to emphasize one aspect while neglecting the other due to their unified
framework to deal with entire lifespan ages, resulting in either visually convincing age transformations
that compromise identity, or identity-preserving outputs with inaccurate aging effects. This imbalance
is evident in the trade-off curves shown in Fig. 1, where, for example, as the age difference increases,
methods such as FADING [7], CUSP [14], and Lifespan [48] tend to show improved aging realism at
the cost of reduced identity preservation, or vice versa. The fluctuating curves of harmonic means
further demonstrate this phenomenon. To address the Age-ID trade-off problem, we propose our
face aging framework built upon few-step T2I diffusion models SDXL-Turbo [59], which offer two
key advantages: 1) the few-step nature of these models [11, 35, 40, 59] enables fast inference while
maintaining high image fidelity, and 2) the flexible noise control in the forward diffusion process
allows fine-grained modulation of aging strength by adjusting the injected noise scale. As illustrated
in Fig. 2, injecting higher noise levels during the forward diffusion process increases editability,
enabling more pronounced aging transformations while downgrading the identity consistency. In
contrast, lower noise levels better preserve identity information with less aging accuracy, highlighting
the trade-off between visual age change and identity consistency. Similar identity-editing trade-offs
are also observed in image editing and generation [19, 36, 43, 70, 67, 24]. However, directly applying
the few-step diffusion models cannot achieve fine-grained face aging with identity consistency and
age accuracy, resulting from that the few-step T2I diffusion models [20, 53, 63, 38] do not inherently
support age or identity conditions.

In this paper, we propose to address the Age-ID trade-off by decoupling age accuracy and identity
preservation into a two-pass * diffusion framework Cradle2Cane, with SDXL-Turbo as the backbone
and each stage is tailored to optimize a specific objective. During the first pass, which focuses on
precise age control, we introduce an adaptive noise injection (AdaNI) mechanism guided by textual
descriptions which containing age and gender attributes. The level of noise injected is dynamically
adjusted based on the magnitude of the desired age transformation. Naturally, human identity is better
preserved with smaller age variations and tends to degrade with larger age gaps. This strategy aims
to overcome the limitations of existing methods that rely on uniform solutions for modeling aging
across the entire lifespan. In this stage, identity is only weakly preserved to allow greater flexibility

#We define a pass as the T2I inference process that generates a real image through the diffusion model.
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Figure 2: (Left) We illustrate the effects of injecting three different levels of noise into the input
image, as used in the 4-step SDXL-Turbo image-to-image pipeline. As visually evident, higher
noise levels lead to more pronounced age transformations at the cost of reduced identity preservation.
(Right) We present a statistical analysis on 100 human faces, that quantitatively demonstrates the
Age-ID trade-off inherent in face aging tasks. Specifically, we evaluate three representative noise
injection levels and measure their corresponding impacts on age accuracy and identity consistency.

in age manipulation. In the second pass, we reinforce the identity consistency of the generated face
while preserving the age-specific characteristics from the first pass. We propose to achieve this by
conditioning the few-step diffusion model with a concatenation of two identity-aware embeddings
(IDEmb): an SVR-ArcFace embedding and a Rotate-CLIP embedding. These embeddings guide
the model to denoise a minimally perturbed input, ensuring stronger identity preservation without
compromising the age transformation. It is worth noting that both stages are jointly trained in an
end-to-end manner, where the output image from the first stage is further diffused and used as the
noisy latent input for the second stage. After training, our proposed method, Cradle2Cane, is capable
of achieving high-fidelity and adaptive face aging while maintaining a superior balance between age
accuracy and identity consistency compared to existing approaches.

In our experiments, we conduct comprehensive comparisons against a diverse set of GAN-based
and diffusion-based face aging methods on the CelebA-HQ [27, 41] test dataset. We adopt both the
Face++ [14] and Qwen-VL [68] evaluation protocols to assess performance in terms of age accuracy
and identity consistency. Both evaluation pipelines consistently validate the effectiveness of our
method, Cradle2Cane, which achieves a superior balance in the age-ID trade-off with inference
speeds comparable to GAN-based methods. Furthermore, benefiting from the strong generative
capacity of text-to-image diffusion models, Cradle2Cane exhibits enhanced robustness on in-the-wild
human face images—where previous approaches often struggle—thereby significantly broadening
its range of practical application scenarios. To summarize, this paper makes the following main
contributions:

* We propose a novel two-pass approach Cradle2Cane that decouples age accuracy and identity
preservation in face aging, where the first pass applies adaptive noise injection (AdaNI) for precise
age manipulation, and the second pass reinforces identity consistency through identity-aware
embedding (IDEmb).

For the first pass, we introduce a text-guided adaptive noise injection (AdaNI) strategy that dynami-
cally adjusts the injected noise level based on the desired age transformation strength, enabling
fine-grained control over the age-ID trade-off.

* To enhance identity preservation, we design a conditioning mechanism that leverages a combination
of SVR-ArcFace and Rotate-CLIP as identity-aware embeddings (/DEmb), guiding the second-pass
denoising process for high-fidelity and identity-consistent outputs.

Extensive experiments on the CelebA-HQ test dataset demonstrate that Cradle2Cane consistently
outperforms existing baselines across age accuracy, identity consistency and image quality, while
maintaining fast inference speed. Moreover, Cradle2Cane exhibits strong generalization to in-the-
wild human face images—a challenging scenario where current methods often fail.



2 Related Work

Face Aging. Facial age editing aims to simulate the natural process of fine-grained aging in facial
images while faithfully preserving the subject’s identity. Traditional approaches relied on physical
modeling [52, 66] or attribute manipulation [30, 64], but often struggled with generalization and
photorealism. The emergence of GAN-based methods such as Lifespan [48], IPCGAN [72], and
CAAE [80] significantly improved aging realism by learning conditional generative mappings from
large-scale datasets. For instance, SAM [1] combines an aging encoder with an inversion encoder to
perform age transformations in the latent space of StyleGAN2. CUSP [14] disentangles style and
content using dual encoders and manipulates them for personalized age transformations. HRFAE [76]
introduces an age modulation network that fuses age labels into latent representations to guide high-
resolution age progression. With the recent advancements in diffusion models [21, 65], they have
emerged as powerful alternatives for high-fidelity face aging [7, 26, 31]. For example, FADING [7]
fine-tunes a pretrained LDM [53] on age-labeled datasets. During inference, it uses NTI [19, 44] to
embed input images into latent space, allowing for localized age edits. Similarly, IPFE [3] combines
latent diffusion with biometric and contrastive losses to enforce identity preservation during facial
aging and de-aging. However, we posit that face aging should adhere to a natural principle: subtle
age variations preserve facial identity more effectively, whereas significant age gaps introduce greater
identity distortion, while the current approaches generally overlook this consideration.

Semantic Latent Spaces in Generative Models. Linear latent space models of facial shape and
appearance were extensively studied in the 1990s, primarily through PCA-based representations [5,
8, 56]. However, these early approaches were limited to aligned and cropped frontal facial images.
Afterwards, the StyleGAN-family generative models [28, 29], have demonstrated powerful editing
capabilities, largely attributed to the structured and interpretable nature of their latent spaces. In
contrast, diffusion models lack an explicit latent space by design. Nevertheless, recent studies
have attempted to uncover GAN-like latent structures within them, targeting various representations
such as the UNet bottleneck [18, 33, 49, 74], the noise input space [10], and the text embedding
space [4]. For example, Concept Sliders [13] propose semantic image editing through low-rank
adaptation in weight space, guided by contrastive image or text pairs. Despite these advances, existing
disentanglement-based methods are typically limited to coarse-grained attribute control—such as
adjusting age, hair, or expression via semantical direction controls—and often struggle to achieve
precise, fine-grained manipulation of facial aging features.

Text-to-Image Models Distillation. Text-to-image (T2I) models based on diffusion [2, 9, 54, 58]
have achieved impressive progress in generating high-quality images from text prompts. Despite their
success, the inference phase remains a bottleneck—diffusion models require iterative denoising. To
mitigate this, a variety of acceleration methods have been proposed. While training-free approaches
have shown promise for both diffusion [25, 35, 42, 81], the most effective strategies often involve
additional distillation process to accelerate the sampling process beyond the capabilities of the
original base models. SD-Turbo [59] introduces a discriminator combined with a score distillation
loss to improve performance. Most of these methods depend on image-text pair datasets for training,
requiring substantial data alignment between visual and textual features. In contrast, SwiftBrush [47]
adapts variational score distillation. SwiftBrush [47] achieves the first image-free training by using
generated images as the training set, avoiding the need for paired datasets. In this paper, we build
our method, Cradle2Cane, upon SDXL-Turbo [59], which is widely adopted and demonstrate
strong performance in few-step high-quality image generation, to introduce the two-pass architecture
Cradle2Cane tailored for controllable facial age transformation.

3 Method

In this section, we present our framework Cradle2Cane for face aging. Given an source face image
X, of a person at source age a, and a target age b, our goal is to generate a realistic target face image
Xp, depicting the same identity at age b. The main challenge lies in achieving realistic aging effects
while preserving the identity (ID) of the subject. Due to the scarcity of datasets containing the same
identity across a wide age range, directly transforming x, to x; remains a difficult task. The full
pipeline of our method Cradle2Cane is visualized in Fig. 3. We first introduce the preliminaries in
Section 3.1. Then Section 3.2 presents the adaptive noise injection (AdaNI) during the first pass.



Section 3.3 details the second pass with identity-aware embedding (IDEmb) for identity preservation.
Section 3.4 defines the training objectives and loss functions.

3.1 Preliminary

Fast Sampling of T2I diffusion models. SDXL-Turbo [59] accelerates standard diffusion models [51,
55] via Adversarial Diffusion Distillation, enabling high-quality image generation in only a few
steps. Unlike DDPM [21] or DDIM [65], which typically require 50 to 1000 inference steps, SDXL-
Turbo achieves /-4 steps generation by training a compact denoiser to imitate a large teacher model,
supervised jointly by distillation and adversarial losses. The forward process perturbs an initial latent
variable zo € R? into increasingly noisy states z1, . .. , z7 using a Markov chain:

T
q(z1r | 20) = [ [ a(ze | 2e-1), (€]
t=1

where T is the denoise steps. The reverse process then reconstructs zy from z7 in 7" learned steps:

T
pO(ZOT H Zt 1 | Zt 2

where each py(z:—1 | z:) is a Gaussian parameterized by a neural network trained to approximate the
inverse of the forward noising process.

Overall pipeline of our method Cradle2Cane. To address the challenge of controllable and identity-
preserving face aging, we propose a two-pass framework, Cradle2Cane, built upon the efficient
SDXL-Turbo model. In the first stage, we perform adaptive noise injection (AdaNI) on the input
face image x,, guided by age-specific embedding, to generate an intermediate image X;, that reflects
the target age b. This step aims to synthesize realistic aging effects while maintaining essential
identity traits. However, for large age gaps, X; may exhibit partial identity drift due to the strong age
transformation. To compensate for this, the second stage focuses on enhancing identity consistency.
A lower magnitude of noise is injected into X;, and identity-aware embeddings (IDEmb) conditioning
is applied using features extracted from the original input image. This results in the final output face
image X3, which exhibits both faithful aging effects and high identity preservation.

3.2 Ist Pass: Adaptive Noise Injection (AdaNI) for Age Accuracy

We address the Age-ID trade-off by focusing on two critical aspects: age accuracy and identity
preservation. Empirically, we observe that the extent of facial modifications required during age
progression is closely correlated with the magnitude of the age gap. Specifically, larger age transitions
typically demand more pronounced structural and textural changes, while smaller transitions involve
only minor appearance adjustments. Prior works [43], as well as the left portion of Fig. 2, suggest
that the level of noise injected into the input image controls the flexibility and intensity of editing.

Building on this insight, we conduct a systematic study to examine how varying noise levels influence
the balance between identity fidelity and age realism. In particular, we apply three levels of noise
injection, denoted as z1, 22, and z3, to a set of 100 face images under age transformation tasks
spanning age shifts from 1 to 60 years. As illustrated in Fig. 2 (right), lower noise injection intensity
(21) consistently leads to superior identity preservation across all age shifts. However, it fails to
deliver accurate age progression, particularly for larger age gaps. Conversely, higher noise levels (z3)
produce more realistic age transformations but significantly compromise identity consistency. These
results highlight a clear trade-off between identity preservation and age accuracy, governed by the
noise injection intensity. Motivated by these findings, we propose an adaptive noise injection (AdaNI)
strategy that dynamically modulates the noise level based on the target age shift.

More specifically, we encode a predefined age prompt using the CLIP text encoder to obtain the text
embedding, which conditions the generation process via cross-attention. For AdaNI injection, we
divide the age transformation magnitude into three categories, using ages 5 and 20 as boundaries based
on our quantitative analysis in Fig. 2, where age accuracy drops significantly beyond these thresholds.
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Figure 3: Our method Cradle2Cane consists of two passes: the first pass employs adaptive noise
injection (AdaNI) to enhance age accuracy, while the second pass incorporates identity-aware
embeddings (IDEmb), including SVR-ArcFace and Rotate-CLIP embeddings, to improve identity
consistency. During training the MLPs and UNet-LoRA modules, we jointly optimize identity loss
between source and target face images, as well as age and quality losses over the target images.

Each category corresponds to a specific noise level applied during first-pass noise injection:

po(zo | z1), |Aage| <5,
Zo = < po(zo | 22), 5 < |Aage| < 20, 3)
po(zo | z3), [Aage| > 20,

where z1, z2, z3 represent different noise levels injected into the latent space. After completing the
diffusion process to obtain the final latent code Zg, the intermediate aged face is reconstructed via
the VAE decoder D: %X, = D(%(), which exhibits high age accuracy but relatively weak identity
preservation. This enables our model to better balance the competing objectives of age accuracy
and faithful identity preservation. Nonetheless, even with adaptive injection, identity degradation
becomes increasingly prominent with larger age transitions. To mitigate this effect, the second pass
of Cradle2Cane explicitly enhances identity consistency by refining identity-specific embeddings.

3.3 2nd Pass: Identity-Aware Embedding (IDEmb) for Identity Preservation

To further improve identity preservation, we extract identity-aware embeddings (IDEmb) from the
source face x, using both ArcFace and CLIP encoders, which are standard features [1, 3, 61] for
measuring and guiding identity information. A central challenge in this process is the inherent
entanglement between age and identity within these embeddings—both ArcFace and CLIP features
tend to encode age-related cues alongside identity information [17, 62]. To overcome this limitation,
we propose two novel embedding modules: SVR-ArcFace and Rotate-CLIP. These modules are
designed to explicitly suppress age-related components within their respective embedding spaces,
thereby disentangling identity from age.

3.3.1 SVR-ArcFace

Given a source face image x,, we generate a set of n aged face images {xl(f) }7_, by injecting different
noise levels in the first stage. These images share the same identity as x,, but exhibit different age
characteristics. Inspired by prior works [16, 37, 39], which suggest that applying Singular Value
Decomposition (SVD) followed by singular value reweighting (SVR) can enhance shared features
while suppressing divergent ones such as age, we propose a singular value reweighting technique to
refine identity features from the ArcFace embeddings. We refer to this method as SVR-ArcFace.

First, we extract ArcFace embeddings u, and {ul(f) }7_, from the source and aged face images, and
concatenate them into a matrix:

U = g, ul”,ul®, ... u{™] € RPX(H1), )



where D is the embedding dimension. We then perform Singular Value Decomposition (SVD) on U:

U= UEVT? b :diag(O'(),O'l,...,O',-), (5
where » = min(D,n + 1). Following the assumption in previous works, we treat the dominant
singular values of U as encoding the shared identity, since all embeddings in U correspond to the

same person. To suppress age-related variations and emphasize identity features, we apply a nonlinear
function for the singular value reweighting (SVR):

6; = Pe7 - 0y, (6)
where «v, 6 > 0 are hyperparameters that control the enhancement strength. The reweighted singular
value matrix is defined as 3 = diag(69, 61, ...,0r), and then the refined embedding matrix is
reconstructed as: . .

U=uUxVv"” )

Finally, we use the first column of U, denoted as 7, as the refined identity embedding to guide the
identity preservation in the second stage.

3.3.2 Rotate-CLIP

Given a source face image x, with source age a and target age b, we extract the CLIP image
embedding i, = IcLp(X,), along with the text embeddings t, = Tcrp(a) and t, = Tepwp(b),
using the pretrained CLIP image encoder Icpp(-) and text encoder T ip(-). Our goal is to shift the
age-related component in 7, toward the target age domain in CLIP space, leveraging CLIP’s joint
visual-textual alignment. A common approach, inspired by [61], is to compute the age shift vector as
the difference of text embeddings:

A=ty —t,. ®)
However, this simple subtraction may introduce semantic inconsistencies due to CLIP’s coarse age
representations [73, 77]. To address this, we propose a rotational projection using spherical linear
interpolation (slerp), which more smoothly captures semantic transitions between ages:

Al = slerp(tb, ta, A)a )
where A € [0, 1] controls the interpolation. The Rotate-CLIP embedding is then defined as:
iq =iq + A, (10)

which shifts i, toward the target age direction while preserving other identity-related information.

The refined identity embeddings u, and %a, obtained from SVR-ArcFace and Rotate-CLIP, are
projected through two MLPs to align with the text-embedding feature dimension, then concatenated
to form IDEmb before injected into the cross-attention module of SDXL-Turbo:

flq = MLP, (i), 1q = MLP;(i). (11)

3.4 Training Losses

Based on the architecture described above, we jointly optimize the MLPs and UNet-LoRA [23, 57]
modules using a weighted combination of three objectives: identity loss, age loss, and quality loss.
The ArcFace and CLIP encoders remain frozen during training.

Identity Loss. To preserve facial identity, we employ a combination of multi-scale structural
similarity (MS-SSIM) [71] and high-level identity embedding similarity. Specifically, we use a
pretrained ArcFace [12] model to extract embeddings and compute the cosine distance between the
source image X, and the generated image x;:

Lig = A1 - (1 = MS-SSIM(x4,%p)) + A - (1 — cos (fare(Xa), farc(Xp))), (12)
where fa;c(+) denotes the ArcFace encoder.

Age Loss. To ensure age accuracy, we define an age loss that measures both visual consistency
and numerical correctness. The first term computes the cosine similarity between embeddings of the
intermediate result X; and the final output x; using a pretrained MiVOLO [32] model. The second
term minimizes the L2 distance between the predicted and target ages:

Lage = A3+ (1 — cos (fri(Xp), fari (%5))) + A - [lgnti (x5) — B[ » (13)
where fi;(+) and gni(+) denote the MiVOLO feature extractor and age estimator, respectively.
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Figure 4: Qualitative comparison with existing face aging methods across lifespan ages. Our method
Cradle2Cane is even able to imitate the natural hair change while the previous methods cannot. For
comparisons on in-the-wild images, please refer to Fig. 8 in the Appendix.

Quality Loss. To improve perceptual fidelity, we combine the LPIPS metric [79], which mea-
sures perceptual similarity aligned with human vision, with an adversarial loss from a GAN [15]
discriminator to encourage photorealism:

ﬁper = )5 - LPIPS(Xa7 Xb) + X - £GAN(Xb); (14)

Overall Objective. The final training objective is a weighted sum of the three losses:
Etotal = Eid + Eage + Epera (15)

where \; through \g are scalar coefficients that balance the contributions of each component.

4 Experiments

4.1 Experimental Setups

Evaluation Benchmarks and Metrics. We evaluate our method on two datasets: a subset of
CelebA-HQ [27] and CelebA-HQ (in-the-wild) test datasets. For each dataset, we randomly select
100 face images per gender. Each image is used to generate age-progressed faces from O to 80
years in 5-year intervals, resulting in 3,200 test images per dataset. We also use Carvekit [60] to
remove background. Following prior works [14, 76], we utilize the Face++ API to quantitatively
assess age estimation accuracy, identity preservation, and image quality. In addition, we employ
large multimodal models, such as Qwen-VL [68], to conduct high-level perceptual evaluations.
These models provide interpretable assessments of perceived age, identity consistency, and visual
realism via carefully designed task-specific prompts. To jointly evaluate age accuracy and identity
preservation, we propose the Harmonic Consistency Score (HCS), a unified metric that balances both
factors. Full metric definitions and evaluation prompt templates are provided in Appendix A.

Comparison Methods. To evaluate the performance of our method, we compare it with several
state-of-the-art face aging baselines. Specifically, we include: (1) Diffusion-based methods: IPFE [3],
FADING [7]; and (2) GAN-based methods: SAM [1], CUSP [14], Lifespan [48], and HRFAE [76].
Detailed configurations and implementations of both our method and baselines are included in
Appendix A.

4.2 Experimental Results

Quantitative Comparison. As demonstrated in Table 1, Cradle2Cane consistently outperforms
existing face aging methods in both the Face++ and Qwen-VL evaluations across the CelebA-HQ
and CelebA-HQ (in-the-wild) datasets. It achieves the lowest age estimation error, the highest image
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Figure 5: (Left) While applying to in-the-wild real human faces, Cradle2Cane demonstrates better
performance while the existing methods often fail. (Right) Our Cradle2Cane can also be applied to
modify gender and emotion attributes while performing age transformation on human faces.

Table 1: Quantitative comparison using both Face++ and Qwen-VL evaluation protocols on CelebA-
HQ and CelebA-HQ (in-the-wild) test dataset. We calculate the age accuracy, identity preservation,
image quality and the Harmonic consistency score (HCS) to compare with existing face aging

methods. Best results are marked in blue , and second-best in green .

Method I ype | Face++ Evaluation (CelebA-HQ) | Qwen-VL Evaluation (CelebA-HQ) | Qwen-VL (CelebA-HQ-in-the-wild) | Inference | Train
| | AgeDiff. | IDSim. 1 Img. Quality] HCST | AgeDiff.| IDSim.1 Img Quality] HCS?T | AgeDiff. | IDSim.{ Img Qualityf HCST | Time (s) | Data

Lifespan [48] GAN +22.07 79.80 66.68 57.40 +27.99 71.99 86.03 42.38 +26.20 71.14 69.41 46.47 0.95 70K
HRFAE [76] GAN +15.12 94.32 62.28 74.95 *17.77 77.86 90.93 62.19 +19.98 77.68 84.49 60.87 0.17 300K
SAM [1] GAN +8.42 81.96 68.38 80.42 +6.31 72.15 90.70 77.72 +6.86 54.87 87.10 66.01 0.39 70K
CUSP [14] GAN +9.59 85.92 64.98 80.67 +7.45 74.44 88.06 77.84 +13.66 76.89 81.86 70.94 0.24 30K
FADING [7] | Diffusion +14.47 86.70 64.65 73.52 +7.90 75.08 90.02 77.57 +9.25 73.33 88.01 75.06 61.26
IPFE [3] Diffusion +11.95 75.14 63.55 72.54 +11.67 69.40 87.01 70.01 +12.97 65.34 88.03 66.43 8.84 -
Cradle2Cane | Diffusion +7.47 81.34 72.69 81.33 +4.62 70.29 92.37 78.33 *5.05 67.15 88.92 75.94 0.56 10K

Table 2: Ablating each component with Qwen-VL evaluation. Figure 6: User Study
AdaNI SVR-ArcFace Rotate-Clip ‘ Age Diff. | ID Sim. T Img. Quality T HCS 1 100 T T

2 N

x x x +8.87 68.92 92.00 73.10 75 67 |

v X X +3.94 59.70 92.15 71.83 50 B

X v X +9.48 70.17 92.16 73.11

v v x +6.75 63.38 92.43 71.92 25 N

v v v +4.62 70.29 92.37 78.33 I

0
Ours vs CUSP Ours vs SAM

quality scores, and the best HCS values, while maintaining competitive identity preservation. Notably,
Cradle2Cane achieves these results with a relatively small training set (10K) and a fast inference
time (0.56s). These results underscore the effectiveness and efficiency of our framework in balancing
aging realism, identity consistency, and visual quality across diverse evaluation protocols.

Qualitative Comparison. Figure 4 presents a visual comparison of face aging results between
Cradle2Cane and recent GAN- and diffusion-based baselines. Compared to other methods, our
approach demonstrates more realistic aging transitions with consistent identity preservation across
all age ranges. In contrast, prior methods often exhibit texture artifacts, age realism issues, or
identity shifts, particularly at extreme ages. Our method, however, produces natural skin aging, hair
graying, and structural changes, reflecting a superior modeling of facial aging patterns. These results
emphasize the visual fidelity and robustness of our framework.

Ablation Study. We conduct an ablation study to assess the impact of each proposed component, as
shown in Table 2. Removing our aging mechanism AdaNI results in a substantial age estimation error
(£8.87), emphasizing its critical role in achieving age accuracy. Introducing AdaNI alone significantly
reduces the error (+3.94), though it slightly compromises identity similarity. Incorporating the SVR-
ArcFace module improves identity consistency (from 59.70 to 63.38), validating its effectiveness
for identity preservation. Finally, adding Rotate-Clip further enhances identity performance and
contributes to a well-balanced trade-off across all metrics. Notably, the overall HCS score steadily
increases throughout, with the full configuration achieving the highest score (78.33).

User Study. To assess human-perceived quality, we conduct a user study comparing our method
Cradle2Cane with two state-of-the-art face aging methods: SAM [1] and CUSP [14]. We randomly
sample 20 identity images from the CelebA-HQ test set and generate 6 aging results for each, evenly
spaced from age 5 to 80. 50 volunteers are asked to perform pairwise comparisons between our
results and each baseline, considering three joint criteria—age accuracy, identity preservation, and
overall image quality. Each query follows a forced 1-vs-1 protocol with randomized display order
to prevent position bias. As summarized in Fig. 6, our method is consistently preferred by a clear
majority, demonstrating superior perceptual quality and better alignment with human judgment.



Additional Applications. Since our method Cradle2Cane is build upon the large T2I diffusion model,
it is also able to deal with various in-the-wild images while the previous methods fail (Fig. 5-(Left).
Besides facial age transformation, our method can be easily adapted to other facial editing tasks, such
as gender transformation and expression modification. As illustrated in Fig. 5-(Right), our approach
achieves gender and expression changes while maintaining high identity consistency. This further
demonstrates the versatility and generalizability of our facial editing framework.

5 Conclusion

In this work, we tackle the fundamental challenge of achieving both age accuracy and robust identity
preservation in face aging—a problem we term the Age-ID trade-off. While existing methods often
prioritize one objective at the expense of the other, our proposed framework, Cradle2Cane, introduces
a two-pass framework that explicitly decouples these goals. By leveraging the flexibility of few-step
text-to-image diffusion models, we introduce an adaptive noise injection (AdaNI) mechanism for fine-
grained age control in the first pass, and reinforce identity consistency through dual identity-aware
embeddings (IDEmb) in the second pass. Our method is trained end-to-end, enabling high-fidelity,
controllable age transformation across the full lifespan, while significantly improving inference speed
and visual realism. Extensive evaluations on CelebA-HQ confirm that Cradle2Cane achieves new
state-of-the-art performance in terms of both age accuracy and identity preservation. In addition,
Cradle2Cane demonstrates strong generalization to real-world scenarios by effectively handling
in-the-wild human face images, a setting where existing methods often fail.

6 Limitations and Boarder Impacts

Limitations While our method achieves state-of-the-art performance in balancing age realism and
identity consistency, there remain several limitations that merit discussion. In cases of extreme age
transformation (e.g., from a child to an elderly person or vice versa), the model tends to favor facial
realism and age accuracy at the cost of preserving some visual details in the original image. For
example, accessories such as eyeglasses, earrings, or clothing color may not always be faithfully
retained after editing, as they are not explicitly modeled or enforced during training. This issue stems
from the adaptive noise injection design, which purposefully increases editability for large age gaps,
potentially altering finer image semantics beyond facial identity.

Broader Impacts Our proposed face aging method provides a flexible framework for independently
controlling visual age via a two-pass diffusion process. This enables a range of positive applications,
including digital entertainment (e.g., age effects in movies or games), age-invariant face recognition,
and future appearance simulation for healthcare or counseling. All experiments are conducted on
anonymized public benchmarks under ethical research settings.

At the same time, we recognize the potential risks associated with misuse. The ability to generate
photorealistic age manipulation with identity consistency may facilitate malicious uses such as identity
spoofing, misinformation, or privacy violations. We strongly discourage unauthorized or commercial
deployment without safeguards like watermarking, traceable provenance, or human review. We hope
this work inspires further progress toward ethical and responsible generative modeling in the vision
community.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Abstract and Introduction (section 1).
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Limitations (Appendix 6).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Method (section 3).

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Experiments (section 4) and Experiments details (Appendix A).

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: Due to the privacy concerns associated with facial data and company policy
restrictions, the full dataset and complete training code cannot be released at this time.
However, we plan to release the dataset and code in the future to support community use
and facilitate reproducibility.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Experiments (section 4) and Experiments details (Appendix A).
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Experiments (section 4).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Experiments (section 4) and Experiments details (Appendix A).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have carefully checked the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: see Broader Impacts (Appendix 6).
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: see Broader Impacts (Appendix 6).
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We politely cited the existing assets and mentioned the license and terms of
use in Experiments (section 4) and Experiments details (Appendix A).

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper dose not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: See User Study Details (Appendix A.6).
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Experiments details

A.1 TImplementation Details.

Our framework is built upon the SDXL-Turbo architecture and trained on the FFHQ dataset, which
contains high-quality facial images annotated with age and gender labels. To improve background
consistency, we employ CarveKit [60] for foreground-background segmentation, replacing non-facial
regions with a uniform gray mask. During training, we guide the model using text prompts in the
format: "a face image of a {target age} years old {gender}" where gender is either female or male.
All images are generated at a fixed resolution of 512x512.

The U-Net backbone of SDXL-Turbo is fine-tuned via LoRA, and training is conducted on 8§ NVIDIA
A6000 GPUs with a batch size of 4. For hyperparameters, in SVR-ArcFace, we set o = 0.01 and
B = 1.2, while in Rotate-CLIP, we use an interpolation strength of A = 0.5. For the training loss
terms, we set the weights as A\; = 0.25, Ao = 1.2, A3 = 1.5, \y = 1.5, A5 = 0.25, and \g = 0.1.

A.2  Prompts for Qwen-VL Evaluation

To further evaluate the performance of our method, we leverage Qwen-VL [68] for perceptual
evaluation across three key aspects: age accuracy, identity consistency, and image quality. The
prompts are structured as follows:

Age Estimation
"Please detect the age of the person in the image and return in the following format:
age:{age)}."

Image Quality
"Please evaluate image quality of the face image and provide a quality score (0—100), and
return in the following format: quality:{quality_score}."

Identity Similarity
"Please evaluate if the individuals in these two images are the same person based solely
on facial structure, ignoring factors such as style, lighting, age, or background. Provide
a score between 1 (completely different) and 100 (completely identical), and return in the
following format: similarity:{similarity_score}."

Each generated image is assessed using the corresponding prompt. When calculate identity similarity,
the reference image is presented alongside the generated aged image to facilitate comparison. The
resulting textual responses from Qwen-VL are parsed to extract quantitative scores.

A.3 Harmonic Consistency Score (HCS)

To jointly evaluate age accuracy and identity similarity, we introduce the Harmonic Consistency
Score (HCS), defined as:

MAE A1

A_(l M> 100, HCS =2 A
where MAE denotes the mean absolute error between the predicted and target ages, and M is the
predefined maximum allowable age deviation (set to 40). The normalized age accuracy A € [0, 100]
reflects proximity to the target age, while I € [0, 100] is the identity similarity score, obtained by
multiplying the cosine similarity between ArcFace embeddings by 100. The harmonic formulation
ensures a balanced evaluation that penalizes degradation in either attribute. Compared to simple
averaging, the harmonic mean is more sensitive to low values, which is desirable in this context: a
high HCS can only be achieved when both age accuracy and identity similarity are simultaneously
high.
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Figure 7: Age—ID trade-off curves of different methods. As the age shift value increases, either the
Age cosine or ID cosine decreases for SAM, HRFAE, and IPFE. In contrast, our method maintains
stable Age and ID consistency, showing no significant drop.

A.4 Open-Source Implementations and Settings

For reproducibility and comprehensive comparison, we evaluate several open-source face aging
methods using their official pretrained models and inference pipelines. The following repositories are
utilized:

Method Repository Link

SAM [1] https://github.com/yuval-alaluf/SAM

IPFE [3] https://github.com/sudban3089/
ID-Preserving-Facial-Aging

FADING [7] https://github.com/MunchkinChen/FADING

CUSP [14] https://github.com/guillermogotre/CUSP

Lifespan [48] https://github.com/royorel/Lifespan_Age_
Transformation_Synthesis

HRFAE [76] https://github.com/InterDigitalInc/HRFAE

Table 3: Open-source face aging methods and their official repositories.

All models are evaluated using standardized input settings and tested on the CelebA-HQ and CelebA-
HQ (in-the-wild) test dataset. Due to the licensing terms of the CelebA [41] dataset , we are
unable to display the original input images. Instead, we present the corresponding image inversions
generated using null-text inversion [45]. We report metrics including age accuracy, identity similarity,
image quality, and the proposed HCS. This unified evaluation protocol ensures fair and consistent
performance comparison across diverse methods. For IPFE, which requires multiple images of the
same identity as input, we randomly select one reference image per subject for identity similarity
evaluation. Since both IPFE and FADING perform test-time tuning for each new input face image,
a fixed training dataset is not applicable to these methods, and thus their training data size is not
reported.

A.5 Age-ID Trade-off Evaluation Details

To quantitatively evaluate the trade-off between age accuracy and identity consistency, we selected
50 male and 50 female face images from the CelebA-HQ test dataset. For each image, we generated
aging results across age offsets ranging from —60 to 460 with a step size of 1 year, excluding the
zero offset. Identity similarity was measured using ArcFace by computing the cosine similarity
between the original and age-edited images. Age similarity was quantified based on the predicted
age error from the MiVOLO estimator. Specifically, we computed the age consistency score as

. age . —age. ., P .
age_cosine = 1 — W’ where max_age_diff is set to 40. This score ranges from O to 1,

with higher values indicating better age alignment. Comparisons with the remaining methods are
illustrated in Fig. 7. Note that IPFE [3] does not support continuous year-level age control, thus only
the provided age groups reported in the original paper were included in our evaluation.
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Figure 8: Qualitative comparison of aging results on CelebA-HQ (in-the-wild) images. Despite the
challenges posed by real-world conditions such as occlusions, varying poses, and complex lighting
and backgrounds, our method generates more photorealistic and coherent aging results, with better
preservation of identity and more accurate aging effects including wrinkle formation, hair graying,
and facial structure changes.

A.6 User Study Details

We conducted a user study to evaluate the perceptual quality of age-transformed face images generated
by our method in comparison to two state-of-the-art methods, CUSP and SAM. A total of 50
volunteers participated in the survey. We randomly selected 20 identities from the CelebA-HQ test
dataset and generated 6 age-progressed images for each, evenly spaced across ages ranging from
5 to 80 years. In each trial, participants were presented with pairs of image groups—each group
consisting of the original reference face followed by the corresponding age-transformed images. The
two groups (our method versus another method) were displayed side-by-side with randomized order
to mitigate positional bias.

As illustrated in Fig. 12, the questionnaire provided clear guidance instructing participants to jointly
assess three criteria: age realism, identity similarity, and overall visual quality. An example with
labeled groups and comparative explanations was included to familiarize participants with the
evaluation process. The study employed a forced-choice 1-vs-1 protocol, and results summarized in
the main text demonstrate a consistent preference for our approach, confirming its superior ability to
generate visually convincing and identity-preserving age transformations.

B Additional Results

B.1 Qualitative Comparison on in-the-wild Images

Fig. 8 presents a qualitative comparison of aging results on CelebA-HQ (in-the-wild) images, evalu-
ating our method against state-of-the-art GAN-based and diffusion-based approaches. Compared
to aligned datasets, in-the-wild images pose greater challenges due to diverse facial poses, complex
backgrounds, occlusions, and uncontrolled lighting conditions. Under these challenging scenarios,
the baseline methods exhibit various limitations. While CUSP and HRFAE maintain relatively high
identity consistency, they often fail to capture realistic aging cues, resulting in over-smoothed faces
with insufficient detail such as wrinkles and hair graying. LifeSpan, SAM, and Fading are prone to
producing severe artifacts and significant identity drift, particularly under large age transformations,
leading to unnatural facial structures and distorted textures. IPFE, on the other hand, generates
faces with low visual fidelity and suffers from notable identity inconsistency, often producing blurry
or distorted outputs. In contrast, our method demonstrates strong robustness and generalization in
these real-world conditions, consistently generating high-fidelity aging results that preserve identity
features while capturing fine-grained and realistic age-related changes such as wrinkle formation,
hair graying, and structural facial transitions.
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B.2 Generalization to Diverse Reference Ages

To thoroughly evaluate the age controllability and robustness of our method, we conduct face aging
experiments using a wide range of reference ages, spanning from 1 to 80 years old. Specifically, we
select reference images at 10-year intervals and generate aging results targeting six representative
ages: 5, 20, 35, 50, 65, and 80, for each reference image. As shown in Fig. 11, our model demonstrates
smooth and realistic age transformations across the entire age range, effectively handling both forward
and backward aging transitions. The generated results exhibit consistent aging patterns, such as
the gradual appearance of wrinkles, changes in skin texture, facial structural modifications, and
hair graying, while preserving identity fidelity at each age target. These results highlight the strong
generalization ability of our approach, ensuring effective age transformation across a variety of
reference faces with diverse age inputs.

B.3 Face Aging across the Entire Lifespan

To further evaluate the age controllability of our approach, we conduct experiments generating human
faces across the full age spectrum from 1 to 80 years. As shown in Fig. 9 and Fig. 10, our model
produces smooth and continuous transitions of facial features across decades, accurately reflecting
both age progression and regression. In contrast to prior works [3, 14, 76], which are typically limited
to coarse age intervals (e.g., child, adult, elderly) or restricted age ranges, our method supports
fine-grained age conditioning at each individual year without the need for additional retraining or
manual tuning.

C Additional Experiment

C.1 Additional Quantitative Experiment

To further validate the effectiveness of our approach, we conducted additional quantitative experiments
on extra datasets and baselines. Specifically, we compared our method with recent generic face-editing
systems (e.g., StyleCLIP [50] and FaceDNeRF [78]) on the standard aging datasets AgeDB-30 [46],
CACD [6], and FG-NET. For each dataset, we generated approximately 200 images per method
and evaluated them using four metrics: age difference (Age Diff.), identity similarity (ID Sim.),
image quality (Img. Quality), and Holistic Consistency Scores (HCS). The comprehensive results are
summarized in Table 4, where lower Age Diff. and higher scores on the remaining metrics indicate
better performance.

Method | AgeDB-30 | CACD | FG-NET
| AgeDiff.| IDSim.t Img Qualityt HCST | AgeDiff.| IDSim.t Img Quality? HCS? | AgeDiff.| IDSim.7 Img Quality? HCS?T

CUSP [14] 8.29 76.30 82.80 71.75 10.80 75.40 85.86 74.18 19.45 74.20 79.79 60.71
SAM [1] 872 5891 86.57 67.19 9.25 67.27 87.57 71.75 533 72.18 81.98 78.77
FADING (7] 8.10 76.00 79.22 77.82 5.16 71.27 86.44 78.39 7.22 73.15 79.43 77.30
Styleclip [50] 14.73 62.12 86.60 62.64 16.28 70.64 87.80 64.48 14.73 73.82 88.19 68.08
Facednerf [78] 12.60 53.78 91.97 60.25 13.05 59.00 92.02 62.91 13.21 56.37 9243 61.21

Cradle2Cane | 557 73.00 90.01 7900 | 463 66.73 90.02 7606 | 579 67.18 85.03 7525

Table 4: Comparison on AgeDB-30, CACD and FG-NET datasets. Best results are marked in blue ,
and second-best in green .

Our method, Cradle2Cane, demonstrates exceptional performance across all three benchmarks. On
AgeDB-30, it achieves state-of-the-art results, securing the best age accuracy and the top harmonic
score, which underscores its superior overall balance. This strong performance continues on the
CACD dataset, where our method again delivers the best age accuracy while maintaining highly
competitive scores on other metrics. Even on the highly challenging FG-NET dataset, Cradle2Cane
proves its robustness by delivering the second-best age accuracy and demonstrating strong, consistent
performance against all competitors.

C.2 Ablation Study on Threshold Selection
To investigate the rationale behind our choice of age thresholds, we conducted an ablation study

with multiple division settings. Specifically, we compared thresholds of {5,15}, {5,20}, {7,22},
{10,30}, {15,35}, and {20,40}. The results presented in Table 5 reveal a distinct trade-off between
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age accuracy and identity preservation. We observe that wider threshold intervals, such as {15,35}
and {20,40}, yield superior identity similarity (ID Sim.) and Holistic Consistency Scores (HCS).
However, this gain is achieved at the expense of age fidelity, as evidenced by the significant increase
in the Age Difference metric from a low of 4.92 to 6.71.

Given that age accuracy is the central objective of our work, we selected the {5, 20}division as our
default configuration. This setting achieves the best performance in age accuracy while maintaining a
competitive balance in identity preservation and image quality. This choice ensures our primary goal
is met and establishes a rigorous, transparent baseline for our experiments.

Table 5: Ablation study on different threshold divisions. This analysis highlights the trade-off between
age accuracy and identity preservation. Best results are marked in blue , and second-best in green .

Thresholds \ Age Diff. | ID Sim. 1 Img. Qualityt HCS T

{5, 15} 4.93 73.18 92.28 19.77
{5, 20} 4.92 73.73 92.60 80.11
{7,22} 5.06 74.82 92.89 80.60
{10, 30} 5.46 76.91 92.56 81.36
{15, 35} 5.64 77.09 92.82 81.26
{20, 40} 6.71 78.55 92.74 80.82

C.3 Ablation Study on Robustness and Architectural Contributions

To verify whether the robustness of our method on in-the-wild face images primarily comes from
background removal pre-processing (Carvekit) or from the model architecture itself, we conducted
an ablation study. Specifically, we compared our method with and without Carvekit pre-processing.
Both variants were trained for 10 epochs on 1,000 images and evaluated on the CelebA-in-the-wild
dataset. The results are shown in Table 6.

Table 6: Ablation study of the background removal pre-processing (Carvekit). The minor performance
difference highlights that robustness is intrinsic to the model architecture. Best results are marked in

blue .

Method | AgeDiff. | IDSim.1 Img Qualityt HCS?
w/ Carvekit 6.76 62.00 91.75 71.02
w/o Carvekit 7.00 62.27 91.60 70.97

As presented in the table, the performance impact of background removal is marginal. This finding
indicates that Carvekit serves as a beneficial but non-essential preprocessing step, rather than the
primary source of the model’s robustness. Instead, the method’s resilience to in-the-wild variations
is primarily attributed to its architectural design. First, the SDXL-Turbo backbone, pre-trained
on a vast and diverse dataset, provides a strong foundation for generalization across varied poses,
lighting conditions, and expressions. Second, our proposed IDEmb module systematically reinforces
identity preservation. The SVR-ArcFace component extracts a stable identity embedding that is
disentangled from transient attributes, while Rotate-CLIP executes minimal, precise modifications
within CLIP’s robust semantic space. This dual mechanism ensures that the age attribute is altered
while other original characteristics are preserved with high fidelity. In summary, this study confirms
that our model’s robustness is an intrinsic property of its architecture, with SDXL-Turbo enabling
generalization and IDEmb ensuring identity-consistent editing.
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Algorithm 1 The Proposed Cradle2Cane Framework

1:
2:

A A

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:

Input: Source image x,,, source age a, target age b.

Output: Final aged image xy.

// Pass 1: Adaptive Age Transformation

Select noise level z; based on |Aage| per (Eq. 1).

Cage — CLIP_Encoder(age prompt for b)

Denoise from noise level z; with condition c,, to get latent Zg.

5(1, — D(i())

// Pass 2: Identity Enhancement
/| — IDEmb Generation —
Generate aged variants {x\" }™_, from x,,.

ug < ArcFace(x,), ul(:)} — ArcFace({xl(f)})

U+ [ua,ulgl), . ,ul(}")]

U, %, VT « SVD(U)

3 + Reweight(X) with (Eq. 4).
U+ uxvT

Giq < U[:,0]

iq <+ Icup(Xa); ta < Terw(a); ty < Teuw ()
A’ + slerp(tp, ta, A)
g < 1q + A/

/I — Final Refinement — .

Ug + MLP,(tg); 14 + MLP;(4,)

cp < concat(g, tq)

Set low noise timestep Tiow-

z7,,, < AddNoise(E(Xp), Tiow)

fort = ﬂOW7 R 1do Zi—1 < pQ(Ztv ta CID)
end for

xp  D(z0)

Return x;.

> D is VAE Decoder; X is the intermediate image

> (Eq. 2)
> (Eq. 3)

> (Eq. 5)
> Refined SVR-ArcFace embedding

> (Eq. 7)
> Refined Rotate-CLIP embedding (Eq. 8)

> (Eq. 9)
> Form IDEmb

> E' is VAE Encoder
> Denoise with identity condition

> Get the final result
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Figure 9: Face aging results from 1 to 80 years old. Reference images are marked in red.
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Figure 10: Face aging results from 1 to 80 years old of in-the-wild images.
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Figure 11: Aging results generated from diverse reference ages. For each reference image, we
synthesize faces at six target ages: 5, 20, 35, 50, 65, and 80. Our method produces smooth and
realistic age transitions across the entire lifespan, capturing both forward and backward aging effects
while maintaining high identity consistency.

31



Facial Age Transformation Quality Survey
B instructions
In the following questionnaire, you will be shown a series of paired image sets (an original
face image and its corresponding age-transformed versions). We kindly ask you to
subjectively assess the quality of the generated images based on the three dimensions
below:

}§ Evaluation Criteria

1. Age Realism

Does the age progression or regression in the generated images resemble natural human
aging?

For example:

- Do elderly faces have realistic wrinkles or gray hair?

- Do children's faces look appropriately young and smooth?

2. Identity Similarity

Does the person in the transformed image still look like the original individual?
Focus on:

- Consistency in facial structure, shape, and distinctive features.

- Whether the identity remains recognizable across age changes.

3. Visual Realism & Quality

Do the generated images look natural and visually appealing?
Consider:

- Presence of artifacts, blurriness, or distortions.

- Overall consistency and image clarity.

&8 Image Comparison Task

In each question, you will see two groups of results labeled A and B.
Each group includes:

- One reference image (original face)

- Six generated images, representing ages from 5 to 80 years old

A performs better overall— for example, the hair color changes appear more realistic
,and the image quality is better.

Figure 12: User study setup for comparing the visual outcomes of age-transformed face images.
Participants were presented with pairs of image groups, each showing the original face alongside
age-transformed images from our method and the baselines (CUSP and SAM). They assessed three
criteria: age realism, identity similarity, and overall visual quality.
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