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ABSTRACT

In this paper, we introduce a novel self-supervised learning(SSL) approach lever-
aging pyramid layers to extract essential visual features. Employing image in-
painting as the pretext task, we empirically demonstrate the effectiveness of this
methodology by rigorously evaluating the trained network’s performance in down-
stream image classification/segmentation tasks. Our findings underscore the sub-
stantial performance improvement achieved through SSL. Furthermore, we study
the individual contributions of each self-supervised trained feature pyramid layer
to the model’s performance enhancement. Findings here, led us to conclude that
optimal number and size of feature pyramid layers vary for each model and sig-
nificantly influence overall performance.

1 INTRODUCTION

At its core, any self-supervised technique depends heavily on the model architecture. In this paper:
1) We propose a new network architecture for SSL and, 2) Do an indepth study on the contribution
of each layer to the model performance.

The architecture is based on pyramid layers and uses the encoder-decoder layers at every scale to ex-
tract the visual features using SSL. A key challenge is the optimal layer configuration in the pyramid
structure. Our findings underscore this: 1) Removing the last layer increases classification accuracy
from 28.55% to 29.59%, and 2) Eliminating the first layer improves segmentation IOU from 0.4901
to 0.4982. These results highlight the critical role of layer configuration in SSL performance.

Model Full Pyramid Layer-1 Layer-2 Layer-3

Classification(acc.) SSL 28.5575 23.9143 29.1592 29.5983
Non SSL 24.2478 25.2074 23.3534 23.1094

Segmentation(IOU) SSL 0.4901 0.4982 0.4931 0.4968
Non SSL 0.483 0.4911 0.4822 0.4871

Table 1: Comparison of classification accuracy with and without SSL for different layers removed

2 METHODS

Inpainting Foundation for Downstream Image Tasks. For the pretext task(image inpainting), we
utilize the CIFAR-10 dataset Krizhevsky (2009). To assess the network’s performance in down-
stream classification and segmentation tasks, we employ the Flowers102 Nilsback & Zisserman
(2008) and PASCAL VOC 2007 Everingham et al. (2007) datasets, respectively. In the inpaint-
ing task, a random patch is removed from an input image, and the encoder-decoder network is
tasked with generating this missing patch while maintaining the overall coherence of the entire im-
age Pathak et al. (2016).To successfully accomplish this, the network must first contextualize the
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Figure 1: Classification accuracy Figure 2: Segmentation loss over the epochs

remainder of the image, thereby necessitating the extraction of pertinent features from the input im-
age. The varying resolutions provided by each layer in the pyramid network enable the extraction of
multi-scale features, thereby enhancing the overall learning from of the inpainting task.

We assess the self-supervised model using two downstream tasks: Image Classification and Image
Segmentation. For Image Classification Evaluation, we optimize by consolidating encoders from
various pyramid layers and replacing decoders with fully-connected layer while subsequently fine-
tuning the model. Next we analyze the contribution of each layer of the pyramid to the predictive
power of SSL model. We systematically remove feature extractors generated by the encoder of each
layer, while keeping the corresponding components from the remaining two layers intact. Then, we
fine-tune the SSL model equipped with a classification head and evaluate its performance.

3 RESULTS AND DISCUSSIONS

The pyramid SSL architecture for the classification task results in an accuracy of 28.55%, 4% better
performance than Non-SSL model(24.24%). While for the segmentation task the increase the SSL
model results in IOU of 0.4901 vs 0.483 of the Non-SSL architecture.

Our findings, illustrated in 1, demonstrate that the exclusion of the first (largest resolution), second
(intermediate resolution), and third (smallest resolution) layers result in classification accuracy of
23.91%, 29.15%, and 29.59%, respectively. Interestingly, the combination of the second and third
layers, in the absence of the first, yielded performance comparable to the Non-SSL model (24.24%
accuracy), suggesting that these two layers compensate for the information loss (approximately
75%) incurred by the absence of the largest layer.

Upon removing the first layer, in classification task as shown in Figure 1 we see major drop in per-
formance whereas in the segmentation task while loss decreases in Figure 2, the IoU value improves
from 0.4901 to 0.4982 for the SSL model. This indicates that the behavior can vary across tasks
and we need to perform layer-wise analysis to know the optimal depth. Moreover, the higher ac-
curacy observed upon removing the last layer, as shown in Table1, again in both tasks suggests a
critical trade-off in the pyramid structure. This trade-off varies across applications, highlighting the
necessity for application-specific architectural optimization.

The motivation for this study stems from the ongoing debate in the ML community on the optimal
depth, Mousatov & Hartnoll (2020), Ba & Caruana (2014) and complexity of neural network archi-
tectures Lin et al. (2013), for various tasks. Our empirical findings show that more layers do not
necessarily result in better performance for self-supervised learning. Such insights contribute to the
broader understanding of effective network design in the realm of self-supervised learning.

4 CONCLUSION

Our research employing pyramid layers in self-supervised learning demonstrates significant im-
provement in model performance for downstream tasks. The study underscores the critical balance
between image scale reduction and information retention, offering key insights for the optimization
of self-supervised in computer vision. Future work will focus on extending this analysis to a va-
riety of complex neural network architectures and additional layers, larger datasets, and exploring
applications in object detection.
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A APPENDIX

A.1 DATASETS

Self-supervised learning frequently leverages extensive unlabeled datasets. In our pretext tasks,
we utilize the CIFAR10 dataset Krizhevsky (2009), which contains 60,000 32x32 color images,
equally divided into 10 classes. To assess the network’s performance in downstream classification
and segmentation tasks, we employ the Flowers102 Nilsback & Zisserman (2008) and PASCAL
VOC 2007 (Everingham et al., 2007) datasets, respectively.
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A.2 INPAINTING AS PRETEXT FOR SSL

In the inpainting task, a random patch is removed from an input image, and the encoder-decoder
network is tasked with generating this missing patch while maintaining the overall coherence of
the entire image. This choice of pretext task is motivated by the fact that the network is presented
with the complete image Pathak et al. (2016) and then challenged to predict the missing pixels.
To successfully accomplish this, the network must first contextualize the remainder of the image,
thereby necessitating the extraction of pertinent features from the input image. The height and
width of the patches are half of the image sizes and the patches are placed arbitrarily.

A.3 PYRAMID ARCHITECTURE.

In this work, we propose a novel self-supervised learning framework employing a pyramid structure
for multi-scale image representation. Our architecture, depicted in Figure 3, utilizes three resolution
layers (1, 1

2 , 1
4 ) to address the inpainting task. At each scale, we apply the self-supervised inpaint-

ing technique discussed earlier. Each scale consists of an encoder and a decoder. The encoder
comprises four convolutional layers, sequentially augmented with ReLU activation functions, com-
mencing with 3 channels and concluding with 512 channels. Subsequently, we employ the decoder
to reconstruct the original image, complete with the previously removed patch, using our neural
network. The decoder is constructed using convolutional transpose layers that correspond to the
convolutional layers in the decoder.

During the reconstruction process, features from each decoder stage are upsampled using bilinear
interpolation, followed by element-wise adaptive average pooling. This final reconstructed image
serves as the basis for computing the loss function and for facilitating backpropagation. Importantly,
our pipeline is trained end-to-end, rather than at individual stages. This design aligns with the multi-
scale feature extraction methods shown to be effective in diverse applications such as medical image
analysis and remote sensing Gan et al. (2023), Alosaimi et al. (2023).

Baseline: For the scope of this paper, we used a small model and hence the appro-
priate baseline we choose is the non SSL model which has all the layers as described
above. For further details on the architecture and baseline, refer the code made public at
https://github.com/Spra09/layered insights SSL.

Figure 3: Gaussian pyramid encoder-decoder Ar-
chitecture in the context of Self Supervised learn-
ing

The decoder utilizes convolutional transpose layers corresponding to the encoder’s configuration,
employing bilinear interpolation and adaptive average pooling for image reconstruction. This ap-
proach is inspired by techniques used in complex reconstruction tasks in holography and medical
imaging Huang et al. (2023a), Huang et al. (2023b). This reconstructed final image serves as the ba-
sis for computing the loss function and for facilitating backpropagation. Importantly, our pipeline is
trained end-to-end, mimicking real world behaviour where intermediary signals are absent Bojarski
et al. (2016).

A.4 PROOF THAT DEEPER NEURAL NETWORKS CAN RESULT IN POOR PERFORMANCE

Consider a semi-supervised learning setting with a labeled dataset Dl = {(xi, yi)}li=1 and an un-
labeled dataset Du = {xj}uj=1. Let f(x; θ) be a neural network parameterized by θ. This section
aims to show that as the depth of the network increases, the risk of overfitting increases.
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Model Full Pyramid Layer-1 Layer-2 Layer-3

Segmentation(acc.) SSL 0.9312 0.9447 0.9303 0.9299
Non SSL 0.9287 0.9447 0.9333 0.9311

Table 2: Comparison of classification accuracy with and without SSL for different layers removed

(a) Image with a Patch (b) Completed Image (c) Ground Truth

Figure 4: Inpainting SSL Task Images. Figure b) shows the results by our pre-trained model. The
results indicate that the model performs well and can generalize well for the downstream task

A.4.1 PRELIMINARIES

VC Dimension: The Vapnik-Chervonenkis (VC) dimension is a measure of the capacity of a set of
functions. For a class of functions F , the VC dimension, denoted as VCdim(F), is the maximum
number of points that can be shattered by F .

Empirical Risk Minimization: Given a hypothesis class H, empirical risk minimization seeks to
find h ∈ H that minimizes the empirical risk.

A.4.2 PROOF

The expected risk can be bounded as:

E[R(θ)] ≤ R̂(θ) + Φ(complexity of f, l), (1)

where R̂(θ) is the empirical risk, and Φ is a function that increases with the complexity of f .
Theorem 1. As the depth of a neural network increases, the risk of overfitting increases.

Proof. Consider a neural network f(x; θ) with depth d. As d increases, the number of parameters
and the expressiveness of f increase, leading to a higher VCdim(F), where F is the class of func-
tions represented by the network. Thus, the second term in the expected risk bound (Equation 1)
increases, indicating a higher risk of overfitting, especially when l (the size of the labeled set) is
small.

This proof demonstrates that deeper neural networks have a higher capacity, which can increase the
risk of overfitting, particularly in semi-supervised learning scenarios with limited labeled data.
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