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Abstract

Time-series data is essential in various science and industry domains, like
environmental analysis, agriculture, transportation, and finance. Researchers need
to use their domain knowledge to conduct insight mining from time-series data
to study scientific topics. However, this process is time-consuming and highly
depends on expert knowledge. This paper proposes a large-scale multimodal
model (LMM), Insight Miner, to generate decent and comprehensive time-series
descriptions with domain-specific knowledge. To introduce rich time-series
insights to Insight Miner, we propose a time-series analysis dataset, TS-Insights,
composed of time series and textual insight pairs. In the TS-Insights dataset,
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we include 100k time series windows sampled from 20 forecasting datasets
spanning a wide variety of domains and granularities. Through a meticulous
combination of heuristics and statistical tools, we preprocess each raw time series
window and use GPT-4 to generate a coherent trend description based on the
extracted features. After training with the TS-Insights dataset via instruct tuning,
the Insight Miner model performs better in generating time series descriptions
and insights compared with state-of-the-art multimodality models, such as
LLaVA [1] and GPT-4. Our findings suggest a promising direction of leveraging
LMMs for time series analysis and potentially offering avenues for efficient
insight mining in scientific domains. The TS-Insights dataset is available here:
https://drive.google.com/drive/folders/1qGXigxE5GvmF1oLuGXaqLMkRgwoQfZ7V?usp=sharing.

1 Introduction

Time series data has been widely studied in a wide range of domains. Traditionally, researchers have
relied on the statistical tools to analyze time series data. Methods such as autoregressive integrated
moving average (ARIMA) [2], seasonal decomposition of time series (STL) [3], and the state space
models [4] have long been employed for forecasting, detecting seasonality, and understanding the
underlying trends in time series datasets. The use of these techniques have been particularly prevalent
in fields like economics, meteorology, and transportation to provide effective interpretation of time
series data.

Recently, many studies have explored the usage of LLMs for time-series tasks. For example, there
are studies leveraging the pretrained LM (GPT2 model) for various time-series tasks (forecasting,
classification, anomaly detection, etc.) [5, 6] and achieved the state-of-the-art performance, which
demonstrates the universality of pretrained LMs. Another study designed structured prompts to
enable zero-shot or few-shot inferences by LLMs [7, 8]. However, the above works mainly focus on
tasks where the output is time series or scalars. Directly training LLMs to perform traditional time
series tasks such as forecasting or classification does not enable LLMs to handle tasks where the
output involves natural language.

On the other hand, the emergence of multimodal LLMs like LLaVA [9] has inspired researchers to
investigate approaches to better align domain-specific time-series data with LLM. One such example
is the FinVis-GPT [10], which was built on top of the LLaVA model and generated a financial task
oriented dataset for alignment and instruction tuning. The proposed FinVis-GPT demonstrates the
feasibility of utilizing multimodal LLMs in analyzing financial charts. Our work is also motivated by
the success of multimodal LLMs but not limited to a certain domain. We focus on constructing a
time series analysis dataset for LMMs. To the best of our knowledge, there is no such dataset for the
purpose of aligning time-series data with comprehensive textual descriptions.

In summary, the main contributions of our work are two-fold: 1) we present a time series analysis
dataset that enables LLMs to generate faithful time series descriptions, and 2) the proposed dataset is
the first large-scale repository that allows time-series data to be aligned into the language embedding
space, paving the way for future studies on using large multimodal models to analyze time-series
data and provide language insights.

2 TS-Insights Dataset

To our knowledge, there are no existing large-scale datasets of time series and language description
pairs, let alone for time series analysis. To bridge this gap, we design and generate the first dataset,
TS-Insights Dataset, with time series and language pairs for general time series analysis.

Formally, given N time series datasets {Di}Ni=1, where each dataset Di has Ti total time steps and Mi

features, i.e., Di = {Xj}Ti
j=1 and Xj ∈ RMi , the goal is to generate a question-answer pair for each

time series window Wk ∈ Rmk×τk randomly sampled from the N datasets, where τk represents the
number of time steps and mk represents the number of features, which are both randomly subsampled
from the chosen dataset.3 Each training sample consists of a time series window Wk, a question LQ

k ,

3To generate the current dataset, τk is randomly sampled from 30 to 500.
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and an answer LA
k . Using (Wk, L

Q
k , L

A
k ), we create a single-round instruction-following example

[1]:
Human: Wk\n LQ

k < STOP > \n Assistant: LA
k < STOP > \n. (1)

To generate such datasets for modalities such as images [1] or biomedical images [11], the common
practice is to prompt language-only GPT-4. For example, LLaVA [1] asks GPT-4 to generate multi-
turn conversations given the image caption and the bounding boxes of the objects in the image.
However, the time series modality presents unique challenges since 1) there are no original captions
available for a time series window, 2) existing tools cannot readily convert a time series segment into
an input format that is suitable for language-only GPTs, and 3) the semantic meanings of time series
windows are more difficult to be described in natural languages.

Figure 1: Trend dataset generation workflow.

To address the third challenge, we focus on time
series windows that contain a single feature, i.e.,
Wk ∈ R1×τk , and following traditional time
series analysis [12], we generate descriptions
based on the trend, the seasonality, and the resid-
uals that are present in the window. A naive so-
lution is to feed in the raw time series as a vector
when prompting GPT-4, e.g., "Given the time
series [0.52, 0.98, 0.95, 0.91, 1.24, ..., 1.32],
generate a description about its trend, season-
ality, and volatility." However, we found that
GPT-4 fails to accurately extract each compo-
nent from the raw vector.4 Instead, we lever-
age a statistical Seasonal-Trend Decomposition
(STL) model to decompose the original time se-
ries into a trend component, a seasonality com-
ponent, and a residual component, and generate
a description only based on one component at
a time. As a proof of concept, we focus on the
trend description in the current version of this
paper.

2.1 Trend Generation Workflow

To generate the trend description for a given
time series window Wk ∈ R1×τk , we first apply
an STL decomposition to extract the trend

Wk = Tk + Sk +Rk, (2)

where Tk, Sk, and Rk denote the extracted
trend, seasonality, and residual components, re-
spectively. Denote the value at each individ-
ual time step of the extracted trend as Tk =
(ŷ1, ŷ2, · · · , ŷτk).
In some cases, Wk might not have any season-
alities. In such cases, we fit a Gaussian Process
(GP) to the τk time steps in the window. Let
Wk = (y1, y2, · · · , yτk), where yi is the value
at each time step. Wk is modeled by a standard
zero-mean GP, whose covariance structure is de-
fined by a kernel K(., .). Here, the kernel used
is a combination of a RBF kernel to model the dependency among different time steps and a white-
noise kernel to model the observational noise. That is, Wk ∼ GP (µ(x),K(x, x′)), where µ(x) = 0,
K(x, x′) = RBF (x, x′) + σ2

eδx,x′ , RBF (x, x′) = σ2
rexp(−

(x−x′)2

2γ ) and δx,x′ is the Kronecker
delta. The parameters σ2

r , l and σ2
e are estimated from the data by maximizing the likelihood. We

4Examples are shown in Appendix B.
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then compute the fitted mean of the Gaussian Process regression at the respective time steps to get
Tk = (ŷ1, ŷ2, · · · , ŷτk) as the extracted trend.

We then apply a Gaussian kernel Fk = [F1,F2, · · · ,Fwk
], where wk is a hyperparameter for the

kernel size, to further smooth out the trend, and followed by downsampling with stride size sk
5:

ỹi =

wk//2∑
j=−wk//2

ŷsk·i−j · Fwk//2+j (3)

for i = 1, 2, · · · , τk//sk.

Finally, we round each entry of (ỹ1, ỹ2, · · · , ỹτk//sk) to one decimal place and feed it to GPT-4. As
such, one data sample pair consists of the original time series window Wk and the trend description
generated by GPT-4. An overview of the workflow and the exact prompt we use is shown in Figure 1.

2.2 Trend Description Dataset

Using the approach above, we generate 10k samples based on twenty-nine datasets from Monash
Time Series Forecasting Archive [13], and leave the other eleven datasets as holdout sets, which
are only used for evaluation but not for training. The twenty-nine datasets span a wide range of
domains, such as energy [14], weather, traffic [15], and healthcare [16]. Notably, we only sample
windows from the train split of each dataset, defined to be the first 70% of the time steps in temporal
order. Some datasets contain multiple levels of seasonalities, e.g., daily and weekly. Under the
original granularity, each window might not contain enough time steps to discern the higher level of
seasonalities, since at least two full cycles are required to conclude there to be a seasonality. As trends
should be described after seasonalities are removed, for each dataset, we also aggregate multiple time
steps into one time step in order to introduce samples with more diversified patterns.

To further increase the number of training samples in a cost-efficient manner, for each GPT-4 labeled
sample pair, we additionally apply nine different random augmentations to the original time series
window Wk such that the trend description is still applicable to the augmented samples. We then
rephrase the original description generated by GPT-4 using GPT-3.5-turbo in order to increase the
language diversity. Therefore, for each original sample, we now have nine augmented samples,
resulting in 100k total training samples. A detailed list of test and holdout datasets, the number of
samples we generate for each aggregated granularity level, as well as a list of augmentation methods
can be found in Appendix A.

3 Insight Miner

We use the checkpoint from LLaVA [1], a general-domain vision-language multimodal conversation
model as a starting point, and continue finetuning the LLaVA weights to the time series domain. We
use the same neural network architecture as LLaVA: we first convert the time series window into an
image using lineplot, feed the image into the vision encoder, and then use a linear projection layer to
map the vision output into the language embedding space, finally, the language model takes in the
projected image embeddings concatenated with the language instructions as the input and returns the
language response.

To align the time-series images with the LLM, we only finetune the linear projection layer, while
keeping both the vision encoder and the language model frozen. For each training sample, we show
the original time series to the model in the form of a line plot and the language instruction is to ask
it to describe the trend, and the goal is to predict the description generated by the GPTs. The final
model is named Insight Miner.

Note that the training cost of Insight Miner is relatively affordable as it was trained using 8 × A100
40GiB GPUs. Each epoch takes around an hour to train. Once the model finishes training, it can be
easily deployed at a low inference cost.

5We choose stride size sk so that τk//sk = 25.
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4 Experiments

We conduct experiments to evaluate how well the trend dataset can enable large multimodal models to
generate trend descriptions that are faithful to the original time series. More specifically, we sample
119 total windows for evaluation. Among these, 69 examples are from the test split (last 30%) of the
same datasets we used for training, and the other 50 examples are from the holdout datasets which
are not used for training entirely. The models we include for comparison are:

• LLaVA [1]: using the checkpoint publicly available on HuggingFace.

• Vision (3 epochs): finetuned from the above LLaVA checkpoint for three epochs using the
generated trend dataset. It takes in the original time series window plotted using the lineplot
function in the Seaborn package.

• Vision (1 epoch): finetuned from the above LLaVA checkpoint for one epochs using the
generated trend dataset.

• Engineering GPT: GPT-4 that takes in the extracted features as described in Section 2.1.

Here, Vision (3 epochs) and Vision (1 epoch) are two versions of our Insight Miner trained using a
different number of epochs. As we observed feeding the raw time series vector into GPT-4 leads to
inferior descriptions compared to Engineering GPT, we do not include it for evaluation in this section,
but it is included in the eight case studies shown in Appendix B, along with the other four models.

For each of the 119 samples, we generate one description using each of the above models, and ask
three domain experts to manually score the descriptions generated. When presented to the domain
expert, the descriptions from different models are shuffled in a random order for each sample. A score
of 2 is given if the description matches the original time series, a score of 1 is given if the description
is partially correct, and a score of zero is given if the description is not correct. We sum the scores
from all human evaluators for all test (holdout) samples and normalize it to 0− 1 to produce the final
score for each model. The results are summarized in Figure 2.

Figure 2: Description evaluation of different models by
domain experts.

As we see, both of our models, Vision
(3 epochs) and Vision (1 epoch), signif-
icantly outperforms the original LLaVA
model. Additionally, training for more
epochs seems to lead to a better perfor-
mance. In fact, using the vision encoder
trained for three epochs can lead to a per-
formance that is competitive to GPT-4,
although the latter requires first prepro-
cessing the time series using heuristics
and statistical tools. Notably, Vision (3
epochs) outperforms GPT-4 on the hold-
out datasets. We hypothesize that this
is because the holdout datasets contain
more datasets with complicated seasonal-
ities than the test datasets. Even though
Engineering GPT-4 has access to the ex-
tracted features, it essentially still performs zero-shot inference. In comparison, our model is finetuned
using the proposed TS-Insights dataset and can better leverage the abundance of labeled samples.

5 Discussions

This work presents the first large dataset with 100k training samples for general time series analysis
in the form of time series and natural language pairs. We show that the proposed dataset can enable
existing large multimodal models to align time series data with textual descriptions and perform
detailed analysis.

In addition to the models evaluated in Section 4, we also tried to use OneFitsAll [5] as the time-series
encoder to replace the vision encoder in LLaVA. Our initial attempt shows that using a time-series
encoder causes the model to fail to generate coherent descriptions for most samples, which is likely
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due to that unlike the original vision encoder, the time-series encoder is not pretrained. Therefore, we
leave the pretraining of the time-series encoder as future work. It will be interesting to see whether
the proposed dataset can enable large multimodal models to improve forecasting or classification
accuracies, since the generated dataset allows them to associate the raw time series vector with
common statistical concepts in the form of natural languages.

In terms of the dataset itself, our workflow for generating trend descriptions sheds the light on how
descriptions regarding other time series properties can be generated, e.g., the change in volatility,
or outlier identification using the extracted residuals. A more challenging task will be to generate
descriptions for time series with multiple features, such as by studying their cross-correlations [17].
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A Trend Dataset Details

The 20 datasets involved in generating the TS-Insights dataset are listed below.

Dataset Name Granularity Number of Samples
saugeenday_dataset daily 201
rideshare_dataset_without_missing_values hourly 1001
pedestrian_counts_dataset hourly 752
oikolab_weather_dataset hourly 1141
nn5_daily_dataset_without_missing_values daily 301

tridaily 51
weekly 51

m1_yearly_dataset yearly 100
m1_quarterly_dataset quarterly 121
m1_monthly_dataset monthly 351
london_smart_meters_dataset_without_missing_values half-hourly 1000
kdd_cup_2018_dataset_without_missing_values hourly 800
kaggle_web_traffic_weekly_dataset weekly 800
kaggle_web_traffic_dataset_without_missing_values daily 800
hospital_dataset monthly 500
fred_md_dataset monthly 201
elecdemand_dataset half-hourly 102

hourly 102
two-hourly 80
three-hourly 76
four-hourly 72
six-hourly 64
eight-hourly 17
twice-daily 17
daily 9

covid_mobility_dataset_without_missing_values daily 318
covid_deaths_dataset daily 280
cif_2016_dataset monthly 76
bitcoin_dataset_without_missing_values daily 376
australian_electricity_demand_dataset half-hourly 600

Total 10360

The following augmentations maybe applied to a given time-series window each with a probability of
50%:

• Jittering: Adding a Gaussian noise to the original time series, where the standard deviation
of the Gaussian noise is set to be the standard deviation from a local rolling window of size
4.

• Scaling: Multiplying the original time series with a constant.
• Shifting: Adding a constant to the original time series.
• Smoothing: Convolving the original time series window with an average kernel of a ran-

domly sampled size.
• Downsampling: Only keeping every other k steps, where k is another randomly sampled

integer.

Note that multiple augmentations can be applied to get the final augmented window.

The holdout datasets are Electricity Demand (hourly, three-hourly, six-hourly, weekly), M3 (monthly,
quarterly, other), M4 (hourly, daily, weekly, monthly, quarterly), Traffic (hourly, bi-hourly, four-
hourly), and Weather (daily).

B Case Studies
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