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ABSTRACT

RNA is a dynamic biomolecule crucial for cellular regulation, with its function
largely determined by its folding into complex structures, while misfolding can
lead to multifaceted biological sequelae. During the folding process, RNA tra-
verses through a series of intermediate structural states, with each transition occur-
ring at variable rates that collectively influence the time required to reach the func-
tional form. Understanding these folding kinetics is vital for predicting RNA be-
havior and optimizing applications in synthetic biology and drug discovery. While
in silico kinetic RNA folding simulators are often computationally intensive and
time-consuming, accurate approximations of the folding times can already be very
informative to assess the efficiency of the folding process. In this work, we present
KinPFN, a novel approach that leverages prior-data fitted networks to directly
model the posterior predictive distribution of RNA folding times. By training on
synthetic data representing arbitrary prior folding times, KinPFN efficiently ap-
proximates the cumulative distribution function of RNA folding times in a single
forward pass, given only a few initial folding time examples. Our method offers
a modular extension to existing RNA kinetics algorithms, promising significant
computational speed-ups orders of magnitude faster, while achieving comparable
results. We showcase the effectiveness of KinPFN through extensive evaluations
and real-world case studies, demonstrating its potential for RNA folding kinetics
analysis, its practical relevance, and generalization to other biological data.

1 INTRODUCTION

Ribonucleic acid (RNA) plays a pivotal role in various biological processes, serving as a crucial
intermediary between DNA and proteins while exerting significant regulatory functions through di-
verse mechanisms (Fu, 2014). Composed of four nucleotides – Adenine (A), Cytosine (C), Guanine
(G), and Uracil (U) – the functionality of RNA is closely tied to its structure (Lodish et al., 2005):
An RNA molecule adopts one or more native conformations that are essential for its biological ac-
tivity (Fang et al., 2015). The dynamic process of how RNAs acquire their functional structure is
known as the kinetic folding of RNA. During this process, the RNA strand transitions through sev-
eral intermediate structural states, driven by intra-molecular interactions (Flamm et al., 2000; Yu
et al., 2018). Since misfolding can lead to significant dysfunctions and diseases (Conlon & Manley,
2017), the study of RNA folding kinetics is highly relevant for biomedical applications.

An important aspect of folding dynamics is the study of the rates and pathways through which
RNA molecules achieve their native structures (Chen, 2008). A common measure to quantify these
processes are first passage times (FPTs), i.e. the time required to acquire a certain structure for
the first time, and their cumulative distribution functions (CDFs) (Flamm et al., 2000; Wolfinger
et al., 2004). These functions are derived from extensive simulations, requiring thousands of folding
iterations to capture the probabilistic behavior of RNA molecules. While essential for understanding
RNA dynamics, calculating FPT CDFs is computationally expensive (Wolfinger et al., 2004; Badelt
et al., 2023), posing a significant barrier to real-time applications such as kinetic RNA design, which
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is critical for drug discovery. While deep learning methods could improve the state of the art in RNA
folding (Fu et al., 2022; Franke et al., 2024) and RNA design (Runge et al., 2024; Patil et al., 2024),
they are not yet used in modeling RNA kinetics.

In this work, we present KinPFN, a novel deep learning-based approach that dramatically accel-
erates the computation of RNA first passage times. KinPFN leverages prior-data fitted networks
(PFNs) (Müller et al., 2022) trained on synthetic datasets of RNA folding times to predict the en-
tire CDF of folding times from just a few context examples in a single forward pass. By providing
fast and accurate distribution approximations, KinPFN can be integrated with existing RNA kinetics
simulators, offering comparable performance at a fraction of the computational cost. These speed-
ups make KinPFN a valuable tool for the study of RNA folding kinetics, offering novel routes for
applications in kinetic RNA design, which was previously intractable due to exponential runtimes
of kinetic folding simulators, and promising fast analysis of RNA folding behaviors across multiple
applications in drug discovery, medicine, biotechnology and synthetic biology.

Our main contributions are summarized as follows:

• We propose a new synthetic prior to sample datasets of RNA folding times. We use this syn-
thetic data to train a prior-data fitted network to learn to predict the distribution of RNA first
passage times, conditioned on a small set of context examples (Section 4.1).

• We introduce KinPFN, a new deep learning model for RNA kinetics. KinPFN provides accurate
predictions of RNA first passage time distributions, accelerating kinetic simulations by orders
of magnitude (Section 4.2).

• We evaluate KinPFN’s performance on synthetic and real-world RNA data (Section 5), demon-
strating its practical utility through two case studies: an analysis of eukaryotic RNAs (Sec-
tion 5.2) and a study of RNA folding efficiency (Section 5.3).

• In addition to its application to RNA folding kinetics, we assess KinPFN’s ability to generalize
to different biological data sources by approximating gene expression data obtained from a
previous smFISH (Femino et al., 1998; Raj et al., 2008) wet-lab analysis (Bagnall et al., 2020),
demonstrating its potential to accelerate experimental protocols (Section 5.4).

We provide an overview of KinPFN in Figure 1. Our source code, data, and trained models are
publicly available at https://github.com/automl/KinPFN.
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Figure 1: Graphical abstract. a: KinPFN is trained on synthetic RNA folding time distributions
drawn from parameterized multi-modal Gaussians by minimizing the negative log-likelihood (NLL).
b: KinPFN accelerates RNA kinetics simulators by predicting the RNA folding time distribution in
a single forward pass, given a few folding times as context.
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2 BACKGROUND

RNA First Passage Times Kinetic RNA folding is typically approximated by Monte-Carlo sim-
ulation techniques (Flamm & Hofacker, 2008). However, this is computationally expensive since
enough stochastic simulations need to be accumulated to get a statistically representative time evo-
lution of the state probabilities. Depending on the number of different structural states, which is
typically huge, the path during folding, and the energy barriers between the states, the time to reach
a certain structure for the first time, i.e., the first passage time, can differ across multiple kinetic sim-
ulations for a given RNA. By comparing the first passage time CDFs of different RNA molecules
or under varying conditions, differences in the folding dynamics can be revealed and better under-
stood. This comparison provides insights into the efficiency and stability of the different folding
processes, examining the impact of various modifications, such as chemical alternations or evolu-
tionary changes (Flamm et al., 2000). In this work, we use the term folding time as a synonym for
first passage time and focus on RNA folding kinetics based on secondary structure information.

Prior-Data Fitted Networks Prior-data fitted networks (PFNs) (Müller et al., 2022) use a
transformer-based model to perform approximate Bayesian inference. PFNs are trained to predict
an output y ∈ R, conditioned on an input x and a training set Dtrain of input-output pairs. Dur-
ing training, these samples are drawn from a prior distribution over datasets p(D), optimizing the
Cross-Entropy loss for a PFN qθ with parameters θ,

ℓθ = E(x,y)∪Dtrain∼p(D) [− log qθ(y | x,Dtrain)] , (1)

for predicting the label y, given x and Dtrain. As shown by Müller et al. (2022), this approach
directly minimizes the Kullback-Leibler (KL) divergence between the prediction of the PFN and the
true posterior predictive distribution when training on many samples of the form (x, y) ∪Dtrain. In
this work, we adapt this strategy to tackle the prediction of RNA first passage time distributions,
accounting for the specific challenges of the probabilistic behavior of RNA molecules that is also
reflected in kinetic simulators by renouncing quantile information. For more details, see Section 4.2.

3 RELATED WORK

In silico analysis of RNA folding kinetics can be divided into nucleotide-resolution and coarse-
grained approaches. While the first yields a high level of simulation details, the latter typically allows
studying larger systems, i.e. longer RNA chain lengths. The first publicly available tool for comput-
ing RNA folding kinetics at nucleotide resolution is Kinfold (Flamm et al., 2000), a Markov-chain
Monte Carlo (MCMC) method that is still considered one of the most accurate approaches avail-
able (Fukunaga & Hamada, 2019). This accuracy, however, comes at the cost of runtime as Kinfold
MCMC simulations typically require a large number of trajectories to obtain reliable results. While
it is possible to simulate the folding kinetics of RNA chains of several hundreds of nucleotides, such
calculations require substantial compute (Fukunaga & Hamada, 2019). This limitation inspired ac-
celerating techniques like memoization and parallelization (Aviram et al., 2012), or shortcuts for the
energy calculations of RNA secondary structures as implemented in Kfold (Dykeman, 2015). In con-
trast, we develop KinPFN as an extension to existing kinetic RNA folding simulators to massively
speed up every kinetic simulator that produces first passage times.

An Alternative to KinPFN are probabilistic density estimators like kernel density estimation
(KDE) (Bishop, 2006), Gaussian Mixture Models (GMM) (Bishop, 2006) or Bayesian Gaussian
Mixture Models, also known as Dirichlet Process GMMs (DP-GMM), which utilize a Variational
Bayesian estimation of Gaussian mixtures (Blei & Jordan, 2006). Similar to KinPFN, GMM and
DP-GMM aim to model the posterior predictive distribution as a multi-modal Gaussian distribution.
While GMMs struggle with complex data structures, especially when the number of modes is un-
known, Bayesian approaches like DP-GMM can dynamically adjust the number of mixture compo-
nents (McLachlan et al., 2019; Neal, 2000). Alternatively, kernel density estimation (KDE) offers a
non-parametric approach by estimating probability densities through the summation of kernels, like
Gaussians, over data points (Bishop, 2006). From a deep learning perspective, methods based on
normalizing flows (Rezende & Mohamed, 2015), variational autoencoders (VAEs) (Kingma, 2013),
or a probabilistic transformer as proposed in Franke et al. (2022), would be well suited for proba-
bility density estimation of RNA folding kinetics. However, these methods typically require large
amounts of training data which is not available for RNA folding kinetics. Instead, we approach the
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problem of folding time prediction using a synthetic prior to train a PFN for direct approximation of
the CDF of folding time distributions.

While, to the best of our knowledge, KinPFN is the first deep learning approach for RNA folding ki-
netics, PFNs were previously applied to multiple problems like few shot image classification (Müller
et al., 2022), classification for small tabular datasets (Müller et al., 2022; Hollmann et al., 2023), ex-
trapolation of learning curves (Adriaensen et al., 2023), Bayesian optimization and hyperparameter
optimization (Müller et al., 2023; Rakotoarison et al., 2024), and time series forecasting (Dooley
et al., 2024). For more discussions on related work, please see Appendix A.

4 APPROXIMATION OF RNA FOLDING TIME DISTRIBUTIONS

We consider the problem of learning the posterior predictive distribution (PPD) of first passage times
for an RNA molecule ϕ ∈ {A,G,C,U}l of length l, conditioned on a small set of initial examples,
to approximate the cumulative distribution function (CDF). Formally, the first passage time t is
the time required for the RNA ϕ to fold from an initial structure ωstart into a stop structure ωstop
while transitioning through arbitrary intermediate structural states. Running M folding simulations
under the same conditions (for RNA sequence ϕ, ωstart, and ωstop) yields distinct first passage times
t1, . . . , tM . By aggregating these times, we compute the fraction of molecules ϕ folded by time T ,
denoted Fϕ(T ), where Fϕt (T ) = P (t ≤ T ) represents the CDF of the stochastic variable t.

The problem we consider in this work can be formulated as follows: Given N ≪ M observed
first passage times t1, . . . , tN and a prior distribution over first passage times from which we can
generate samples, we aim to approximate the PPD q(t | t1, . . . , tN ). With an approximated PPD,
we can compute the predicted CDF F̂ϕ(T ), which approximates the true CDF Fϕ(T ); the fraction
of molecules folded by time T .

In the following sections, we describe our approach to define a synthetic prior of first passage time
distributions that allows us to approximate the PPD of folding times (Section 4.1) and explain the
development of KinPFN in detail (Section 4.2).

4.1 A SYNTHETIC PRIOR FOR RNA FOLDING TIME DISTRIBUTIONS

Obtaining large amounts of prior RNA kinetics data to train a deep learning model, particularly for
longer RNAs, is currently infeasible due to the exponential runtime of accurate kinetic simulators
(see Figure 7 in Appendix B). This hinders us from using traditional Bayesian approaches for the ap-
proximation of RNA first passage times, e.g., by training a variational autoencoder (VAE) (Kingma,
2013). Therefore, we take an alternative approach, training a PFN solely on a synthetic prior of
RNA first passage time distributions. However, developing a synthetic prior for molecular problems
is challenging since it seems impossible to generate meaningful synthetic combinations of molecule
features with posterior information from a process depending on these features. We, therefore, de-
velop KinPFN independent of molecular features and restrict its input to first passage times only.
This offers the advantage that we can apply KinPFN to predict first passage time distributions at test
time, independent of the underlying data-generating process.

For the development of our synthetic FPT prior, we leverage the observation that RNA first pas-
sage time distributions often exhibit CDFs with regions of slower growth interspersed with steeper
transitions, leading to distinct plateaus and multiple changes between convex and concave sections
representing inefficiencies in the corresponding folding pathway (Flamm et al., 2000; Wolfinger
et al., 2004). These patterns make multi-modal distributions a natural choice to model the complex-
ity of such processes synthetically, as they are designed to capture data with multiple local maxima
or modes (Hartigan & Hartigan, 1985). We thus construct a prior distribution over RNA first pas-
sage times as a family of multi-modal Gaussian distributions {Pψk

| k ∈ {2, 3, 4, 5}, ψk ∈ Ψk}.
Each multi-modal distribution in this family comprises k Gaussian components, each character-
ized by its own mean µi and standard deviation σi, i = 1, . . . , k. The parameter space Ψk
thus defines the family of distributions, with each specific distribution parameterized by a vector
ψk = ((µ1, σ1), (µ2, σ2), . . . , (µk, σk)) within Ψk. We illustrate a synthetic bi-modal PDF along-
side its corresponding CDF and examples of synthetic first passage time CDFs in Figure 8.

4



Published as a conference paper at ICLR 2025

Since we cannot make any further assumptions about the distribution of folding times, especially
when generating synthetic data, x and y of a prior distribution p(ψk) are considered completely
independent. Consequently, we decide to assign a value of zero to all variables x, representing
no prior information, while the y variables are ultimately sampled from the aforementioned multi-
modal distributions. As the targets y represent synthetic first passage times, they will be referred to
as t from this point forward. We set the range of possible first passage time values t ∼ p(ψk) to
[10−6, 1015], a range that covers a large fraction of possible folding processes based on observations
from preliminary kinetic simulations. To mimic realistic first passage time distributions, we choose
bounded uniform base means µbase

i ∼ U(−5, 16), and uniformly distributed standard deviations
σi ∼ U(0.1, 4.2) based on preliminary experiments. To increase the variability of the prior, we
introduce a uniformly distributed shifting parameter δ ∼ U(−6, 15), which is sampled only once
and fixed for all i = 1, . . . , k. The final means µi are then given by:

µi = µbase
i + δ , (2)

with the probability density function (PDF) of the multi-modal Gaussian distribution parameterized
by ψk expressed as

p(ψk, x) =

k∑
i=1

exp

(
− (log x− µi)

2

2σ2
i

)
, (3)

for a value x.

To sample first passage times (FPTs) from these PDFs, we generate the PDF over a logarithmically
spaced range of x-values within the provided FPT bounds and employ the inverse transformation
method, known as the Smirnov transformation. The required series of calculations to derive the
CDF, its quantile function CDF−1, different normalizations to properly scale the functions, and
logarithmic transformations are detailed in Appendix C.1. The prior distribution over synthetic
RNA first passage times used in this work is then represented by the log-encoded samples from a
multi-modal Gaussian distribution p(ψk) ∈ Pψk

:

Y = log10
({

CDF−1(ψk) (U(0, 1)) | p(ψk)
})
. (4)

4.2 PFNS FOR THE APPROXIMATION OF RNA FOLDING TIME DISTRIBUTIONS

We propose to use PFNs (Müller et al., 2022) to accelerate kinetic simulations for RNA first pas-
sage time distributions. During training, the PFN qθ with model parameters θ is presented with M
synthetic first passage times, {(0i, ti)}Mi=1, sampled from the prior distribution p(ψk). To enable
the model to generalize across varying amounts of training data instead of a fixed number of con-
text folding times, this example set is split at a random cutoff point N ∼ U(0,M − 1), resulting
in a training subset Dtrain = {(0i, ti)}Ni=1, while the remaining first passage times are held out via
masking. These held-out times, ttest = {tN+1, . . . , tM}, are then used as targets for prediction by
minimizing the prior-data negative log-likelihood (NLL) according to Equation 1:

ℓθ = E(0,ttest)∪Dtrain∼p(ψk) [− log qθ(ttest|0test, Dtrain)] . (5)

Figure 2 schematically illustrates this training process of KinPFN for a single batch of size B, along
with its application in approximating the posterior predictive distribution (PPD) of RNA first passage
times using N real folding times as context obtained from a kinetic simulator.

KinPFN Architecture and Hyperparameters We adopt the transformer-based (Vaswani et al.,
2017) PFN architecture as proposed by Müller et al. (2022) and treat each pair (0, t) as a separate
token. To learn the distribution of the targets rather than their specific ordering, we deliberately omit
positional encoding to maintain permutation invariance according to Müller et al. (2022). Since
the first passage times t have already been log-encoded to the range [−6, 15] in the prior distribu-
tion p(ψk) (see Section 4.1), we encode the input with a linear layer after normalizing the data to
zero mean and a standard deviation of one while preserving the distributional properties. Follow-
ing Müller et al. (2022), we mask the attention matrix s.t. each position only attends to the training
positions. This ensures that only training examples influence each other while test samples remain
independent. We use the Adam optimizer (Kingma & Ba, 2015) with a cosine decay (Loshchilov
& Hutter, 2017) and a linear learning rate warm-up over 25% of the training steps as previously
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Sample synthetic first passage times D(j) ∼ p(ψk) ∈ Pψk

D(1) = {(0i, ti)}Mi=1 =

{(0i, ti)}Ni=1 ∪ {(0i, ti)}Mi=N+1 =

D
(1)
train ∪ {(0(1)test , t

(1)
test)}

...

D(B) = {(0i, ti)}Mi=1 =

{(0i, ti)}Ni=1 ∪ {(0i, ti)}Mi=N+1 =

D
(B)
train ∪ {(0(B)

test , t
(B)
test )}

Train KinPFN by minimizing

−
∑B
j=1 log qθ(t

(j)
test|0

(j)
test, D

(j)
train)

N real first passage times
and test input for inference up to a certain

number of folding simulations M Bayesian inference via the trained
KinPFN, with the actual training

data and test points as input:

qθ∗(ttest|0test, Dtrain) ≈ p(ttest|0test, Dtrain)

({(0i, ti)}Ni=1, {(0i)}Mi=1) = (Dtrain, 0test)

KinPFN with parameters θ∗

Figure 2: A schematic visualization of KinPFN. Diagram based on Müller et al. (2022).

proposed (Müller et al., 2022; Adriaensen et al., 2023). KinPFN outputs a discretized distribu-
tion qθ(t|0, Dtrain) (Riemann distribution; see Müller et al. (2022)) using a finite number of buckets
with equal likelihood of containing t; a hyperparameter that is included in our hyperparameter op-
timization (HPO) procedure leading to a final number of 1,000 buckets for KinPFN, initialized on
a batch of 100,000 prior samples. A visualization of the discretized distribution qθ can be found
in Appendix H.4. Further hyperparameters, like the number of layers, the embedding size, or the
learning rate are inherited from the Transformer architecture. Given the infinite nature of synthetic
training data, we set the dropout rate and the weight decay to zero. We tune hyperparameters in
two separate runs using Neural Pipeline search (NePS) (Stoll et al., 2023). More details regarding
hyperparameters, hyperparameter optimization, and the final configuration of KinPFN can be found
in Appendix D. The final model of KinPFN was trained for roughly five hours on a single A40 GPU.

5 EXPERIMENTS

KinPFN was trained on synthetic datasets of RNA folding times to learn to predict the distribution
of first passage times, conditioned on a few examples. Therefore, the predictions only depend on
example folding times for a given RNA but not on other features, e.g., its length, sequence com-
position, structure, or energy parameters. In this section, we show that this feature of KinPFN is
a main contributor to its practical relevance. First, we confirm its ability to transfer from the syn-
thetic prior data to realistic scenarios using a test set of simulations for randomly generated RNAs
(Section 5.1). Then, we demonstrate the practical importance of KinPFN in two case studies: We
show that KinPFN is capable of approximating first passage time distributions of natural RNAs
(Section 5.2) and analyze the folding efficiency of different RNA sequences (Section 5.3). Finally,
we assess KinPFN’s ability to generalize to different biological data by approximating gene expres-
sion data from a previous study (Bagnall et al., 2020) (Section 5.4). Preliminary evaluations for
the predictions on samples from the synthetic prior are shown in Appendix H.1. We report per-
formance in terms of prior-data negative log-likelihood (NLL) between the approximated posterior
predictive distribution (PPD) and the true first passage time distribution and mean absolute error
(MAE) between the CDF of the approximated PPD F̂ (t) and the true target CDF F (t). More infor-
mation about these measures can be found in Appendix F. All experiments analyzing runtimes were
benchmarked on a single AMD Milan EPYC 7513 CPU with 2,6 GHz.

5.1 KinPFN TRANSFERS TO REAL-WORLD SCENARIOS

We assess the general capabilities of KinPFN to transfer from synthetic data to data obtained from
kinetic simulators. In particular, we analyze the robustness of KinPFN to changes in the sequence
length of the RNA, the start and stop structure, and different kinetic simulators. To do so, we
create a novel test set of 635 randomly generated RNA sequences with lengths between 15 and 147
nucleotides, run Kinfold (Flamm et al., 2000) for 1,000 simulations on each of the test samples and
extract first passage times (FPTs) from the simulations. We compare KinPFN to GMMs and DP-

6



Published as a conference paper at ICLR 2025

a

cb

Figure 3: KinPFN approximations of first passage time distributions for simulation data of random
RNA sequences across different settings. a: KinPFN testing set PPD mean NLL losses along with
the CDF MAEs across RNA sequence length ranges. Error bars show the standard deviation of the
losses. b: Example approximation for an alternative folding path of a 75 nucleotide RNA sequence
with ground truth data obtained from Kinfold simulations. c: Example approximation for a 56
nucleotide RNA using Kfold simulation data as ground truth. We use N = 25 context first passage
times for all experiments. Approximation examples show the mean and standard deviation around
the mean for 20 predictions with different context examples sampled at random.

GMMs across multiple modes as well as KDE on this dataset, evaluating their performance across
varying amounts of context using identical context first passage times. The modes we use for the
GMMs align with our assumption in the synthetic prior for KinPFN (Section 4.1). Information
about hyperparameter optimization for the competitors can be found in Appendix E. To analyze the
performance of KinPFN for arbitrary folding paths that do not include the unfolded or minimum
free energy structural states, we additionally run Kinfold on a randomly generated RNA sequence
of 75 nucleotides and predict the PPD of first passage times for alternative folding paths. For the
evaluation of KinPFN’s robustness to changes of the simulator, we use the Kfold (Dykeman, 2015)
kinetic simulator to obtain FPTs for a randomly generated RNA of length 56. We provide more
details about our novel test set in Appendix G. Predictions with different context lengths, more
competitor evaluations, and results for additional RNAs are reported in Appendix H.2 and H.3.

Results Table 1 provides a comparison of KinPFN with the GMM, DP-GMM and KDE on our
introduced test set with respect to NLL. Please find results for mean absolute error (MAE) and
Kolmogorov-Smirnov (KS) statistic as well as explanations about these metrics in Appendix H.2
and F, respectively. Across all three metrics, KinPFN consistently demonstrates lower mean losses
from a sample size of 25 onwards, outperforming the other approaches across various context
first passage times (N ∈ {25, 50, 75, 100}). Consistent with our expectations, the performance
of KinPFN constantly improves with more context FPTs. For a context size of ten, KinPFN
performs slightly worse than KDE in terms of MAE and KS, achieving the second best per-
formance while still outperforming KDE in terms of NLL. However, while we do observe vi-
sually strong approximations with a context size of ten in later experiments with KinPFN (see
e.g. Section 5.3), we note that these results should be taken with care due to relatively large
KS values, indicating that the predicted distributions do not strongly match with the ground truth
distributions at a context size of ten. As shown in Figure 3a, KinPFN performs well across
all sequences of the test set independent of the sequence length, given only 25 context points.
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Table 1: Evaluation of KinPFN, KDE, and multiple GMMk and
DP-GMMk models with different initial modality assumptions
k ∈ {2, 3, 4, 5} on a newly introduced testing set comprising 635
real-world first passage time distributions in terms of prior-data
negative log-likelihood loss (lower is better) with context first
passage time cutoffs N ∈ {10, 25, 50, 75, 100}.

Method First Passage Times N
10 25 50 75 100

KinPFN 1.3739 1.2435 1.2047 1.1916 1.1858
GMM2 2.3122 1.3612 1.2355 1.2036 1.1933
GMM3 5.2469 1.5830 1.2838 1.2132 1.1910
GMM4 13.1325 1.9922 1.3676 1.2480 1.2119
GMM5 37.5845 2.7708 1.4957 1.2953 1.2374
DP-GMM2 1.6285 1.3529 1.2618 1.2305 1.2150
DP-GMM3 1.6268 1.3549 1.2653 1.2323 1.2155
DP-GMM4 1.6294 1.3558 1.2663 1.2337 1.2169
DP-GMM5 1.6256 1.3572 1.2675 1.2337 1.2175
KDE 1.4370 1.2559 1.2133 1.2003 1.1957

This is an important finding
since especially simulations for
long RNAs could benefit from
accelerations with KinPFN.
Similarly, we observe a very
good fit of the approximation of
the CDF of first passage times
for folding paths between alter-
native structures (Figure 3b) and
the application of KinPFN to
simulations obtained from Kfold
instead of Kinfold (Figure 3c).
Our results thus indicate that
KinPFN seems to general-
ize across different sequence
lengths, start and stop struc-
tures, and different simulators.
Notably, the approximations
with KinPFN only require 2,5%
of the compute budget of the
original simulators to achieve
comparable results. However,
the accuracy of the KinPFN approximations across all experiments can be further improved as we
observe better performance with an increasing number of context examples (see also Table 8, 9,
and 10 in Appendix H.2). This, however, comes at the cost of additional simulator runtime.

5.2 KinPFN APPROXIMATES FIRST PASSAGE TIMES OF EUKARYOTIC RNAS

While we observed robust performance of KinPFN for randomly generated RNA sequences, pre-
dictions for natural RNAs might be more challenging. In particular, highly structured RNAs like
transfer RNAs (tRNA) or ribosomal RNAs (rRNA) might show different folding behavior com-
pared to random RNA sequences due to million years of evolutionary pressure (Vicens & Kieft,
2022; Herschlag, 1995). We, therefore, decide to evaluate KinPFN on a tRNAphe of 76 nucleotides
(RNAcentral Id: URS000011107D 4932) and a 5S rRNA of 121 nucleotides (RNAcentral Id:
URS000055688D 559292) from Saccharomyces cerevisiae, one of the most extensively studied eu-
karyotic model organisms in molecular and cell biology, commonly known as brewer’s yeast. For
our experiments, we again use 1,000 Kinfold simulations as the ground truth data.

Figure 4: KinPFN first passage time CDF approximations for Saccharomyces cerevisiae tRNAphe.
We show the mean and standard deviation for 20 predictions of KinPFN, each using 50 randomly
sampled context times (left). On the right side, we show the runtime of Kinfold for 50 and 1,000
kinetic simulations for the tRNAphe.
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Figure 5: RNA folding efficiency analysis. The left plot shows the ground truth CDFs F (t) for three
sequences ϕ0, ϕ1 and ϕ2, representing the fraction of molecules folded into the MFE conformation
(shown in dot-bracket notation (Hofacker et al., 1994)) over time t. The right plot displays the
KinPFN approximations F̂ (t) with ten Kinfold times as context.

Results Figure 4 shows the first passage time CDF approximations of KinPFN for the tRNAphe

(left). We observe that KinPFN is capable of approximating the ground truth data nearly perfectly
using only 50 context first passage times. The runtime plot in Figure 4 (right) visualizes the decrease
of the computational demands as the approximations of KinPFN result from using only 5% of the
original compute budget, reducing the required CPU time from approximately 2,686 minutes (1000
simulations) to 170 minutes (50 simulations) while achieving nearly identical results. More predic-
tions with different context times, as well as similar results for the 5S rRNA and further RNA types,
are shown in Appendix H.5 and H.6. We conclude that KinPFN is capable of accurately approxi-
mating the CDFs of first passage times for real-world, structured RNAs like tRNA and rRNA.

5.3 CASE STUDY: RNA FOLDING EFFICIENCY ANALYSIS

To demonstrate the utility of KinPFN, we conduct a case study focused on comparing the folding
efficiency of three 43 nucleotide long RNA molecules (ϕ0, ϕ1, ϕ2) that are predicted to fold into the
same minimum free energy (MFE) structure. Alterations in the RNA sequences, such as mutations
or modifications – often driven by evolutionary optimization – can have a significant effect on the
folding dynamics (Flamm et al., 2000). A comparison of the CDFs of first passage times can distin-
guish molecules that fold more or less efficiently and provide information about how alternations in
the molecules impact the folding behavior, an important aspect for RNA-based therapeutics (Mollica
et al., 2022). For our experiment, we simulate 1,000 folding trajectories from the open chain to the
MFE structure using Kinfold and calculate the ground truth first passage time CDFs shown in the
left plot of Figure 5 for each of the 3 RNA molecules.

Results We find that KinPFN captures the general folding behavior of the RNAs accurately, as
shown in Figure 5 (right). However, while it captures the saddle points of the CDFs of ϕ1 (orange)
and ϕ2 (green) arguably well, it is slightly less accurate for the most efficiently folding RNA, ϕ0
(blue). Remarkably, the KinPFN approximations were obtained using only ten context times, mark-
ing a 100× speed-up compared to each of the three individual simulation trajectories. Results for
more approximations using different context lengths are shown in Appendix H.7.

5.4 KinPFN GENERALIZES TO GENE EXPRESSION DATA

Besides their usage in RNA folding kinetics analysis, CDFs of different distributions are a common
tool for the analysis of biological data. For example, Bagnall et al. (2020) analyzed the messenger
RNA (mRNA) expression of interleukin-1-α (IL-1α), interleukin-1-β (IL-1β), and tumor necrosis
factor-alpha (TNF-α) to study inducible gene expression in the immune toll-like receptor (TLR) sys-
tem. Using single-molecule fluorescence in situ hybridization (smFISH) (Femino et al., 1998; Raj
et al., 2008) analysis of the cumulative probability distribution of IL-1α, IL-1β, and TNF-α mRNA
expression in two cell lines (established RAW 264.7 macrophage cells and bone-marrow-derived
macrophages (BMDM)) stimulated with lipid A, Bagnall et al. (2020) demonstrate conserved vari-
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Figure 6: Approximation of mRNA expression of IL-1α, IL-1β and TNF-α in RAW 264.7 and
BMDM cells. We plot approximations using only 25 context data points per gene.

ability in the TLR system across cell types, suggesting different modes of regulation of IL-1β and
TNF-α expression. We use this experiment to analyze the capability of KinPFN to generalize to dif-
ferent biological data. Specifically, we use the raw count data of 447, 718, and 356 RAW 264.7 and
447, 732, and 322 BMDM cells for IL-1α, IL-1β, and TNF-α, respectively, to predict the cumulative
probability functions of mRNA expression to replicate the outcome of the smFISH experiment of
Bagnall et al. (2020) with KinPFN while using only a fraction of the data.

Results Figure 6 illustrates the approximations of the mRNA expression of IL-1α, IL-1β, and TNF-
α. We observe that KinPFN can approximate the gene expression with high accuracy, using only
roughly 8% of the expression data. These results suggest that – besides its application to RNA
folding kinetics – KinPFN could be a valuable tool for different types of analysis across biological
questions, including the potential to speed up even wet-lab experiments (see also Appendix H.8).

6 CONCLUSION, LIMITATIONS & FUTURE WORK

We present KinPFN, the first work that uses prior-data fitted networks for biological data. Trained on
a synthetic prior, we show that our novel approach can accurately model RNA folding kinetics while
accelerating RNA first passage time analysis by orders of magnitude. Moreover, we demonstrate that
KinPFN generalizes to gene expression data obtained from wet-lab smFISH analysis, suggesting
that KinPFN could be applicable to the analysis of a wide range of different biological questions.

Limitations While showing impressive accuracy across multiple tasks, KinPFN also has limita-
tions. Since it is purely trained on synthetic first passage time data, it depends on a data-generating
approach like kinetic simulators during inference. Consequently, KinPFN’s performance is bounded
by the accuracy of the simulator. Incorporating other features, like the RNA sequence, structure, or
energy information, could mitigate this issue. However, it is an open problem to implement the
required information in a synthetic prior without using external data sources. Additionally, KinPFN
would benefit from larger-scale evaluations, e.g., on longer RNAs, to confirm its independence of
RNA features like sequence length. However, obtaining this kind of data is currently infeasible
due to the large computing demands of available simulators and the problem’s complexity. Further,
KinPFN is limited to a bounded range of time values; however, so far, we have not experienced this
limitation to be a major problem, and the training time of KinPFN is moderate, allowing retraining
on adapted ranges. Similar to GMMs and KDEs, the performance of KinPFN strongly depends
on the provided context. We tried to compensate for that by showing mean and standard deviation
around the mean across 20 context inputs to quantify the variation in KinPFN approximations.

Future Work Using synthetic data for biological applications appears very promising. Unlike
GMMs or standard KDEs, KinPFN is not limited to predefined kernels or Gaussian distributions;
we consider the definition of synthetic priors using different distributions as future work. Generally,
PFNs could play an important role in the field of structural biology, with the potential to substantially
impact biological analysis, offering tremendous possibilities to accelerate scientific discovery.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have made our source code, the trained model, and
datasets publicly available at https://github.com/automl/KinPFN. The repository con-
tains detailed instructions for setting up the required conda environment and package installs (see
README.md). Model checkpoints of KinPFN are provided in the models directory. The valida-
tion and test sets are stored in the neps validation set and kinpfn testing set direc-
tories, respectively. We provide notebooks (along with the required experiment data) to demonstrate
the training and evaluation of KinPFN and for reproducing results in the notebooks directory.
We recommend using a single GPU with at least 48GB of memory for training KinPFN. However,
for inference, a single CPU should be sufficient. Following the provided instructions, it should be
straightforward to reproduce our environment, train and evaluate KinPFN, and replicate our experi-
ments with minimal effort.
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A FURTHER BACKGROUND & RELATED WORK

In the following, we outline further background information and related work on RNA folding dy-
namics.

The folding dynamics of RNA can be described as a stochastic process in a state space, comprised of
a set of structures or conformations a given RNA sequence may assume, a move set that defines the
allowed elementary transitions between conformations in the state space, and transition rates for all
allowed transitions. Mathematically, this compiles into a continuous time Markov process governed
by the following master equation for the state probabilities Px(t) of observing state x at time t

dPx(t)

dt
=

∑
y ̸=x

[Py(t)kxy − Px(t)kyx]

where kxy is the transition rate from state y to state x. For RNA sequences of moderate length, the
master equation becomes too high dimensional to be solved analytically; therefore, it is approxi-
mated by Monte-Carlo simulation techniques (Flamm & Hofacker, 2008), which is, however, very
time-consuming since enough stochastic simulations need to be accumulated to get a statistically
representative time evolution of the state probabilities. Alternatively, acceleration has been proposed
through a more macroscopic structural description of RNA by helix kinetics methods (Xayaphoum-
mine et al., 2005; Danilova et al., 2006).

A different approach to simulating the dynamics of RNA folding is through analysis of the underly-
ing folding landscape. Such a landscape can be constructed from complete suboptimal folding with
barriers (Flamm et al., 2002), which provides an exact partitioning of the RNA conformation space
into basins of attraction, i.e., local optima of the energy landscape. These macro-states provide a nat-
ural coarse-graining of the folding landscape and allow to re-formulate the dynamics on a reduced
number of states, resulting in a massive speedup of computation time at comparable levels of detail.
This idea is implemented in the tool treekin, which models the complete folding dynamics of RNA
molecules of length up to approximately 100 nucleotides as a continuous-time Markov process that
is solved by numerical integration (Wolfinger et al., 2004).

For molecular dynamics (MD) simulations, AI methods have already been applied in different parts
of the MD pipeline. Deep learning methods like graph neural networks (GNNs) (Gilmer et al., 2017)
or variational autoencoders (VAEs) (Kingma, 2013), as well as reinforcement learning (RL) (Sut-
ton, 2018) are regularly used in these scenarios to e.g. enhance the sampling techniques during
MD simulations, replace quantum mechanical force field simulations, or analyze the MD trajecto-
ries (Prašnikar et al., 2024). However, current approaches mainly focus on small molecule data due
to the complexity of MD simulations for larger macromolecules and have the disadvantage that they
require large amounts of simulation data for training (Prašnikar et al., 2024). For more information
on AI-based methods in the field of MD simulations, we refer the interested reader to a detailed
review of the field by Prašnikar et al. (2024).
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B EXPONENTIAL Kinfold RUNTIME

Figure 7 shows the mean CPU times (in minutes), along with the upper bound standard deviations,
for simulating 10, 25, 50, 75, and 1000 folding processes — transitioning from an open chain to the
minimum free energy conformation — with the mean times calculated for different RNA sequence
lengths based on 50 distinct artificial RNA molecules per length. Despite the logarithmic scale on
the CPU time axis, the mean CPU time still shows a linear increase, highlighting the exponential
growth in the computational time required for these simulations. The calculations for Figure 7 were
performed on a single core of an AMD Milan EPYC 7513 CPU with 2.6 GHz.

Figure 7: Kinfold mean CPU times (in minutes), including the upper bound standard deviations for
simulating 10, 25, 50, 75, and 1000 folding processes over different RNA sequence lengths, based
on 50 distinct artificial RNA molecules per length.
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C SYNTHETIC FOLDING TIME DISTRIBUTION PRIOR DETAILS

In the following, we will describe our proposed synthetic prior and the method for sampling a single
batch of synthetic first passage times from it in more detail. The synthetic first passage times t
are sampled from a distribution p(ψk) generated from a family of multi-modal distributions Pψk

as
introduced in Section 4.1. The possible first passage time values across all p(ψk) range from 10α

to 10β , with α = −6 and β = 15, thereby limiting T ∈ [Tstart, Tstop] by min(Tstart) = 10−6 and
max(Tstop) = 1015, as we observed that this time range covers a very high fraction of possible RNA
folding processes.

Each distribution p(ψk) ∈ Pψk
is characterized by k Gaussian components, each with a mean µi and

a standard deviation σi, for i = 1, . . . , k. The base means µbase
i are uniformly distributed between

α + 1 = −5 and β + 1 = 16, and the standard deviations σi are uniformly distributed between
0.1 and β−α

5 = 4.2. Further, we introduce a shifting parameter δ, which is uniformly distributed
between α and β, i.e., δ ∼ U(−6, 15) and is fixed for all i = 1, . . . , k. The final means µi are then
given by:

µi = µbase
i + δ.

Given the parameters ψk and a value x, the probability density function (PDF) of the multi-modal
Gaussian distribution is expressed as:

p(ψk, x) =

k∑
i=1

exp

(
− (log x− µi)

2

2σ2
i

)
.

C.1 SAMPLING FROM THE SYNTHETIC PRIOR OF RNA FIRST PASSAGE TIMES

To sample a batch of synthetic first passage times of sizeB with a fixed number of times, i.e., number
of simulations per training example of M from a multi-modal distribution p(ψk), we employ the
inverse transformation method also known as the Smirnov transformation. To do so we generate the
PDF p(ψk, x) over a logarithmically spaced sequence x of length M from 10α to 10β . Then, to
normalize this PDF and therefore ensure a valid probability distribution, we calculate:

p̂(ψk, x) =
p(ψk, x)∫ 10β

10α
p′(ψk, τ) dτ

. (6)

Next, we compute the cumulative distribution function (CDF):

CDF(ψk, x) =
∫ x

10α
p̂(ψk, τ) dτ. (7)

To ensure the CDF ranges from 0 to 1, we normalize it by dividing by the integral over the entire
range from 10α to 10β :

CDF(ψk, x) =

∫ x
10α

p̂(ψk, τ) dτ∫ 10β

10α
p̂(ψk, τ) dτ

. (8)

This normalization ensures that the CDF is properly scaled, with CDF(ψk, 10β) = 1.

By inverting the CDF, we obtain the quantile function CDF−1(ψk). To generate samples, we draw
uniform samples ui from a uniform distribution U(0, 1) for i = 1, . . . ,M and transform these
samples using the inverse CDF:

ti = CDF−1(ψk, ui),

where ti are the sampled values from the distribution. We then encode these samples by applying a
logarithmic transformation:

t̂i = log10(ti).

Finally, constructing the prior output, for a batch of size B and a fixed number of first passage times
per example M , we generate the independent variables X and Y as follows:

X = 0B×M×1,

Yi,: = [t̂1, t̂2, . . . , t̂M ] for i = 1, . . . , B.
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Figure 8: Examples of the synthetic prior of RNA first passage times. We show an example of
a single CDF (red) and the corresponding multi-modal probability density function (PDF) (blue;
dotted line) generated from the synthetic prior (left). The distribution is bi-modal (k = 2) with
the parameters ψk = ((10.86, 1.36), (2.38, 2.48)). The right plot visualizes ten example CDFs
generated from the synthetic prior.
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D KinPFN DETAILS

D.1 KinPFN HYPERPARAMETER

All hyperparameters in the KinPFN model are inherited from the transformer-based architec-
ture (Vaswani et al., 2017) of prior-data fitted networks (PFNs) as proposed by Müller et al. (2022).
These include the number of layers (nlayers), attention heads (nheads), embedding size (emsize), the
number of neurons in each hidden layer (nhidden), the learning rate for the Adam optimizer (Kingma
& Ba, 2015) (learning rate), the number of steps per epoch (steps), and the total number of epochs
(epochs). However, it is not entirely accurate to refer to ”epochs” in this context, as we are training
on synthetic data sampled from a prior, resulting in a single, infinite epoch. In the context of PFNs,
the loss is updated after each step, which is why we describe these steps as hyperparameterized steps
per epoch. The term ”epochs” is used here primarily because it serves as a hyperparameter within
the code, providing a mechanism to control the training process. Another crucial parameter is the
sequence length (seq len) of the input, representing the number of folding simulations (i.e., first
passage times M ) fed into the Transformer. This sequence length indicates the number of samples
drawn from a prior distribution p(ψk) ∈ Pψk

, as defined in Section 4.1. Additionally, given the infi-
nite nature of synthetic training data and the singular epoch, we set the dropout rate and the weight
decay to zero.

D.2 HYPERPARAMETER OPTIMIZATION

Given the uncertainty about the significance of each parameter in the final model’s performance,
we decided to utilize Neural Pipeline Search (NePS) (Stoll et al., 2023) for the hyperparameter op-
timization (HPO) of the KinPFN architecture. NePS is an open-source Python library that offers
state-of-the-art HPO methods, including Bayesian Optimization and multi-fidelity methods like Hy-
perband (Li et al., 2017). In our setup, we chose Hyperband as our HPO technique. Hyperband
optimizes the search process by dynamically allocating resources, enabling faster identification of
the best configurations. It strikes an effective balance between exploration and exploitation. Initially,
it explores a wide range of configurations with minimal resources, then progressively concentrates
resources on the most promising candidates while discarding poor-performing ones early through a
process of successive halving (Li et al., 2017).

As a performance metric for Hyperband to assess the quality of hyperparameter configurations,
we utilize the prior-data negative log-likelihood (NLL), as outlined in Section 2. This approach
is equivalent to calculating the Kullback-Leibler divergence between the approximated posterior
predictive distribution (PPD) and the true target PPD (Müller et al., 2022). Each configuration
trained by Hyperband is evaluated on a newly introduced validation set, discribed in Section G.

We conducted two final iterations of the NePS Hyperband process, evaluating a total of 261 con-
figurations. After completing the first iteration, we made slight adjustments to the search space.
Additionally, we set N = 25 for the validation pipeline in the first iteration and N = 10 for the
second iteration, representing the number of context first passage times for each approximation. To
ensure comparability across the validation of different hyperparameter configurations, we fixed the
indices of theseN context first passage times within the available time points, which, in a real-world
scenario, would typically be randomized since first passage times are usually obtained without any
order when running kinetic folding algorithms like Kinfold (Flamm et al., 2000).

Table 2 and 3 outline the hyperparameter search space used for our optimization process in iteration
one and two, respectively (differences are highlighted in blue). In the first iteration, we used a fixed
batch size of 50. However, in the second iteration, we reduced the batch size to 40 to accommodate
the adjusted search space, which brought us to our GPU memory limit. Since Hyperband requires a
fidelity parameter to represent resource usage — in this case, computing time — we designate the
epochs hyperparameter as the fidelity parameter, defining its range between 250 and 3000. This is
directly related to the steps per epoch, as the model runs a specified number of steps during each
epoch, with each step involving training on a single batch. By tuning both the number of epochs
and steps per epoch, we control the amount of synthetic data sampled from the prior that our model
sees during training. Additionally, we adjust the learning rate for the Adam optimizer (Kingma &
Ba, 2015), setting a range between 10−5 and 10−3. This range is informed by preliminary training
sessions, where we observed that higher learning rates resulted in highly irregular learning curves
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Table 2: Hyperparameter search space for NePS Hyperband iteration 1.
Differences to iteration 2 are highlighted in blue

Hyperparameter Type Values/Range
epochs Integer [250, 3000] (hyperband fidelity)
steps Integer [50, 100]
learning rate Float [10−5, 10−3] (log scale)
seq len Categorical {200, 300, 500, 700}
buckets Categorical {100, 1000, 10000}
emsize Categorical {256, 512}
nheads Categorical {4, 8}
nhidden Categorical {512, 1024}
nlayers Categorical {2, 3, 4, 6, 8, 12}

Table 3: Hyperparameter search space for NePS Hyperband iteration 2.
Differences to iteration 1 are highlighted in blue

Hyperparameter Type Values/Range
epochs Integer [250, 3000] (hyperband fidelity)
steps Integer [50, 100]
learning rate Float [10−5, 10−3] (log scale)
seq len Categorical {200, 300, 500, 700, 1000, 1400}
buckets Categorical {100, 1000, 5000, 10000}
emsize Categorical {256, 512}
nheads Categorical {4, 8}
nhidden Categorical {512, 1024}
nlayers Categorical {2, 3, 4, 6, 8}

and, consequently, poor performance. We also evaluate models using different Transformer input
sequence lengths — specifically 200, 300, 500, 700, 1000, and 1400 — as this parameter represents
the number of first passage time samplesM drawn from each prior distribution p(ψk). Furthermore,
we assess the models with 100, 1000, 5000, and 10000 buckets over which we discretize the learned
posterior predictive distribution. For the embedding size, we evaluate options of 256 and 512, and
we asses 4 and 8 Transformer attention heads, which split the embedded input into smaller segments
for focused attention. We also explore various model complexities by varying the number of neurons
per hidden layer (512 and 1024) and the total number of layers, considering a broad range from 2 to
12 layers.

After both Hyperband iterations we identified four highly promising KinPFN architectures
{KinPFN1, . . .KinPFN4}. Among these, KinPFN1 and KinPFN3 demonstrated the minimal NLL
in the first and second NePS Hyperband iteration with 1.1761 (N = 25) and 1.2101 (N = 10),
respectively. Table 4 shows the NLL performance metrics of the found configurations across vari-
ous cutoffs N ∈ {10, 25, 50, 75, 100}. For each distribution example in the proposed validation set,
we randomly selected the N context times from the pool of M = 1000 available times, ensuring a
broader and more generalizable evaluation, as the Hyperband validation pipeline was only based on
fixed N first passage times with fixed indices within M .
While KinPFN4 was the configuration with the second-best mean NLL loss with 1.2102 (N = 10)
after KinPFN3 in the second NePS iteration, KinPFN2 adopted the configuration of KinPFN1 but
trained on a larger Transformer input sequence length of 1400.

In the model analysis, KinPFN1 shows the best performance with N = 10 context first passage
times. However, for all other values of N (N ∈ {25, 50, 75, 100}), KinPFN2 surpasses it. Addition-
ally, KinPFN2 outperforms both models from the second NePS iteration, KinPFN3 and KinPFN4,
based on the NLL losses, as demonstrated in Table 4. Based on these results, we selected KinPFN2

as our final KinPFN model that was utilized in all experiments, as it shows the best overall perfor-
mance.
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Table 4: Comparison of four promising KinPFN hyperparameter configurations identified in two
NePS (Stoll et al., 2023), i.e., Hyperband (Li et al., 2017) iterations in terms of prior-data negative
log-likelihood loss (lower is better) with context first passage time cutoffsN ∈ {10, 25, 50, 75, 100}.

Configuration Parameters First Passage Times N

10 25 50 75 100

KinPFN1 seq len=700, epochs=1000, steps=86, learn-

ing rate=2.5588748050825984 × 10−5,

buckets=1000, emsize=256, nheads=4, nhidden=512,

nlayers=8, batch size=50

1.348 1.254 1.225 1.216 1.210

KinPFN2 seq len=1400, epochs=1000, steps=86, learn-

ing rate=2.5588748050825984 × 10−5,

buckets=1000, emsize=256, nheads=4, nhidden=512,

nlayers=8, batch size=50

1.378 1.246 1.207 1.195 1.189

KinPFN3 seq len=1400, epochs=1000, steps=72, learn-

ing rate=3.867480144966054 × 10−5,

buckets=10000, emsize=256, nheads=4, nhid-

den=1024, nlayers=4, batch size=40

1.384 1.255 1.219 1.208 1.202

KinPFN4 seq len=1400, epochs=333, steps=85, learn-

ing rate=7.062252166123585 × 10−4,

buckets=10000, emsize=512, nheads=4, nhid-

den=1024, nlayers=2, batch size=40

1.418 1.259 1.215 1.202 1.194

Final KinPFN Configuration The final KinPFN model consists of 4.86 million parameters, fea-
turing a total of 8 layers, each with a hidden size of 512, 4 attention heads, an embedding size of
256, a learning rate of 2.5588748050825984× 10−5, and 1000 buckets. The model was trained for
1000 epochs, each consisting of 86 steps (with a batch size of 50), resulting in a total of 4,300,000
seen examples (calculated as 1000 x 86 x 50). Each example comprised M = 1400 (synthetic)
first passage times from (theoretical) folding simulations, which represent the Transformer input
sequence length.
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E KDE AND DP-GMM DETAILS

To ensure an optimal comparison of KinPFN with Kernel Density Estimation (KDE) and the Dirich-
let Process Gaussian Mixture Model (DP-GMM), we performed a random search hyperparameter
optimization (HPO). For KDE, we tuned the bandwidth hyperparameter over a logarithmic search
space ranging from 10−3 to 101, while for DP-GMM, we optimized the weight concentration prior
within a logarithmic range of 10−4 to 102. Both methods were evaluated using 1,000 configurations,
selecting the one with the lowest mean negative log-likelihood on our validation set, consisting of
2,019 real RNA first passage time distributions (Appendix G) using 25 context times for each ex-
ample. Figure 9 illustrates the HPO results for KDE (left) and DP-GMM (right). As a result of the
HPO, we selected a bandwidth of 0.352 with a Gaussian kernel for KDE and a weight concentra-
tion prior of 9.79e-4 for DP-GMM and allowed a maximum of 100,000 iterations of Expectation-
Maximization (EM).

Figure 9: Hyperparameter optimization for Kernel Density Estimation (KDE) on the bandwidth
parameter (left) and for Dirichlet Process Gaussian Mixture Models (DP-GMM) on the weight con-
centration prior parameter (right).
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F METRICS

In our experiments and evaluations, we rely on the prior-data negative log-likelihood (NLL) between
the approximated posterior predictive distribution (PPD) and the true first passage time distribution
as a primary performance metric, consistent with its use during training and hyperparameter opti-
mization (HPO) (Section 4.2):

ℓθ = E(0,ttest)∪Dtrain∼p(ψk) [− log qθ(ttest|0test, Dtrain)] . (9)

When comparing KinPFN to other methods, such as Gaussian Mixture Models (GMM), Dirichlet
Process Gaussian Mixture Models (DP-GMM), and Kernel Density Estimation (KDE), we consis-
tently use the mean negative log-likelihood (NLL) as the evaluation metric. This choice is motivated
by the fact that the mean NLL reflects how effectively each method has learned the underlying pos-
terior predictive distributions (PPDs) of the first passage times. Minimizing the NLL aligns with
minimizing the Kullback-Leibler (KL) divergence between the estimated PPD and the ground truth
PPD (Müller et al., 2022), making it a robust measure of model performance.

As our main objective is approximating the CDFs of the first passage times, we additionally evalu-
ate the performance by measuring the mean absolute error (MAE) and Kolmogorov-Smirnov (KS)
statistic between the CDF of the approximated PPD F̂ (t) and the true target CDF F (t). For a single
CDF approximation of KinPFN, the mean absolute error (MAE) is defined as the average of the ab-
solute differences between the predicted CDF values and the ground truth CDF values for a specific
sequence of folding times. Mathematically, it can be expressed as:

MAE =
1

M

M∑
i=1

∣∣∣F̂ (ti)− F (ti)
∣∣∣ , (10)

where M is the number of available ground truth first passage time points for the particular example
RNA sequence, F̂ (ti) is the predicted CDF value at the i-th first passage time ti, computed by
KinPFN, F (ti) is the ground truth CDF value at the i-th first passage time ti.

Similarly, the KS statistic is calculated as the maximum absolute difference between the predicted
and true CDFs:

KS Statistic = max
ti

∣∣∣F̂ (ti)− F (ti)
∣∣∣ ,

where lower values indicate a better fit of the model to the true distribution.
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G VALIDATION AND TEST DATA

We introduce two new datasets: a validation set and a test set, both consisting of real RNA first
passage times. The validation set contains 2,016 randomly generated RNA sequences, while the test
set includes 635 sequences. The times were acquired by simulating the folding process of the RNAs,
starting from an open-chain conformation and progressing to the molecule’s minimum free energy
conformation with the kinetic folding simulator Kinfold (Flamm et al., 2000). Figure 10 illustrates
the distribution of RNA sequence lengths across both datasets. The validation set, used throughout
all NePS (Stoll et al., 2023) iterations (i.e., Hyperband (Li et al., 2017)), is shown in dark blue,
while the test set, shown in dark red, is reserved for final KinPFN model evaluations (see Section
5.1). Importantly, these two datasets are mutually independent in terms of RNA primary sequences
and secondary structures.

Figure 10: Number of examples by RNA sequence length ranges for the custom validation set used
in all NePS (Stoll et al., 2023) i.e., Hyperband (Li et al., 2017) iterations and the custom testing set
used for final KinPFN model evaluations (Section 5.1). Both sets are independent of each other with
respect to RNA primary sequence and secondary structures.
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H ADDITIONAL EVALUATIONS

H.1 SYNTHETIC PRIOR APPROXIMATIONS

We evaluate our proposed model using synthetic data generated from the same prior distribu-
tion employed during training (see Section 4.1). We approximate 10,000 synthetic first pas-
sage time distributions, varying the cutoff points for the number of context first passage times
N ∈ {10, 25, 50, 75, 100}. This allows us to evaluate the model’s performance as the number
of context points provided to KinPFN increases. For each case, we sample M = 1000 first passage
times from the prior distribution. The performance is measured in terms of the posterior predic-
tive distribution (PPD) mean negative log-likelihood (NLL) and the cumulative distribution function
(CDF) mean absolute error (MAE), computed over all 10,000 examples at each cutoff N . Table 5
presents the results of this evaluation. We observe significant improvements in both the NLL and
MAE when increasing the number of context points from N = 10 to N = 25 and from N = 25
to N = 50. Beyond N = 50, while the loss continues to decrease, the rate of improvement slows
down as the context size grows from N = 75 to N = 100.

Table 5: Performance evaluation of KinPFN on 10,000 synthetic first passage time distributions.
Metrics are shown for different context first passage time cutoffs N ∈ {10, 25, 50, 75, 100}, mea-
sured in terms of negative log-likelihood (NLL) and mean absolute error (MAE). Lower values
indicate better performance.

Performance Metric First Passage Times N
10 25 50 75 100

Mean Prior-Data NLL 2.4265 2.1364 2.0596 2.0388 2.0281
Mean Absolute Error 0.0878 0.0553 0.0388 0.0321 0.0275

H.2 COMPARISON KinPFN, GMM, DP-GMM AND KDE

To further evaluate our model, we compare KinPFN against multiple Gaussian Mixture Models
(GMMs) and Dirichlet Process Gaussian Mixture Models (DP-GMMs) using various initial modal-
ity assumptions. Specifically, we consider mixture models with modalities k ∈ {2, 3, 4, 5}, align-
ing with the assumptions outlined in our synthetic prior (Section 4.1), denoted as GMMk and
DP-GMMk. For all evaluations, the models were provided identical context first passage times.
Both GMM and DP-GMM models were allowed a maximum of 100,000 iterations of Expectation-
Maximization (EM). Additionally, we compare KinPFN to a Kernel Density Estimator (KDE) that
we optimized for its bandwidth hyperparameter (Appendix E), as discussed in Section 5.1. The
results for MAE and KS are shown in Table 6 and 7, respectively. We observe that KinPFN outper-
forms all other methods from context size of 25 FPTs onwards. Results on larger context sizes
are shown in Table 8, 9 and 10 demonstrating a constant improvement of the predictions with
growing context sizes. Finally, we also compare KinPFN with GMM ensembles with modalities
k = {2, 3, 4, 5} and k = {2, 3, 4}, weighted according to their marginal likelihoods, across differ-
ent context sizes. The results are shown in Table 11 and 12 for NLL and MAE, respectively.
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Table 6: Evaluation of KinPFN, KDE, and multiple GMMk and DP-GMMk models with different
initial modality assumptions k ∈ {2, 3, 4, 5} on a newly introduced testing set comprising 635 real-
world first passage time distributions in terms of mean absolute error (lower is better) with context
first passage time cutoffs N ∈ {10, 25, 50, 75, 100}.

Method First Passage Times N
10 25 50 75 100

KinPFN 0.0843 0.0561 0.0393 0.0333 0.0296
GMM2 0.1003 0.0848 0.0790 0.0773 0.0756
GMM3 0.0988 0.0866 0.0815 0.0801 0.0778
GMM4 0.0952 0.0860 0.0816 0.0799 0.0777
GMM5 0.0929 0.0842 0.0809 0.0797 0.0778
DP-GMM2 0.0866 0.0774 0.0761 0.0756 0.0745
DP-GMM3 0.0867 0.0774 0.0763 0.0762 0.0751
DP-GMM4 0.0865 0.0770 0.0763 0.0763 0.0751
DP-GMM5 0.0860 0.0768 0.0762 0.0760 0.0751
KDE 0.0813 0.0690 0.0653 0.0644 0.0630

Table 7: Evaluation of KinPFN, KDE, and multiple GMMk and DP-GMMk models with different
initial modality assumptions k ∈ {2, 3, 4, 5} on a newly introduced testing set comprising 635
real-world first passage time distributions in terms of Kolmogorov-Smirnov (KS) statistic (lower is
better) with context first passage time cutoffs N ∈ {10, 25, 50, 75, 100}.

Method First Passage Times N
10 25 50 75 100

KinPFN 0.1615 0.1098 0.0809 0.0700 0.0632
GMM2 0.2084 0.1705 0.1586 0.1541 0.1510
GMM3 0.2210 0.1794 0.1644 0.1586 0.1537
GMM4 0.2293 0.1829 0.1674 0.1604 0.1547
GMM5 0.2352 0.1836 0.1695 0.1625 0.1564
DP-GMM2 0.1695 0.1505 0.1496 0.1488 0.1471
DP-GMM3 0.1694 0.1506 0.1499 0.1495 0.1475
DP-GMM4 0.1691 0.1500 0.1500 0.1496 0.1475
DP-GMM5 0.1682 0.1494 0.1499 0.1491 0.1476
KDE 0.1590 0.1344 0.1278 0.1256 0.1231
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Table 8: Evaluation of KinPFN, KDE, and multiple GMMk and DP-GMMk models with different
initial modality assumptions k ∈ {2, 3, 4, 5} on a newly introduced testing set comprising 635 real-
world first passage time distributions in terms of prior-data negative log-likelihood loss (lower is
better) with context first passage time cutoffs N ∈ {250, 500, 750, 1000}.

Method First Passage Times N
250 500 750 1000

KinPFN 1.1756 1.1716 1.1703 1.1697
GMM2 1.1764 1.1715 1.1696 1.1690
GMM3 1.1621 1.1542 1.1519 1.1508
GMM4 1.1612 1.1506 1.1476 1.1458
GMM5 1.1642 1.1499 1.1458 1.1438
DP-GMM2 1.1853 1.1735 1.1700 1.1683
DP-GMM3 1.1793 1.1627 1.1565 1.1533
DP-GMM4 1.1802 1.1631 1.1562 1.1526
DP-GMM5 1.1809 1.1637 1.1566 1.1529
KDE 1.1874 1.1841 1.1832 1.1828

Table 9: Evaluation of KinPFN, KDE, and multiple GMMk and DP-GMMk models with different
initial modality assumptions k ∈ {2, 3, 4, 5} on a newly introduced testing set comprising 635 real-
world first passage time distributions in terms of mean absolute error (lower is better) with context
first passage time cutoffs N ∈ {250, 500, 750, 1000}.

Method First Passage Times N
250 500 750 1000

KinPFN 0.0205 0.0155 0.0137 0.0126
GMM2 0.0742 0.0730 0.0730 0.0728
GMM3 0.0764 0.0756 0.0756 0.0754
GMM4 0.0763 0.0754 0.0753 0.0751
GMM5 0.0762 0.0751 0.0751 0.0747
DP-GMM2 0.0746 0.0741 0.0739 0.0736
DP-GMM3 0.0760 0.0757 0.0759 0.0757
DP-GMM4 0.0759 0.0756 0.0758 0.0756
DP-GMM5 0.0759 0.0756 0.0758 0.0756
KDE 0.0624 0.0617 0.0617 0.0615

Table 10: Evaluation of KinPFN, KDE, and multiple GMMk and DP-GMMk models with different
initial modality assumptions k ∈ {2, 3, 4, 5} on a newly introduced testing set comprising 635
real-world first passage time distributions in terms of Kolmogorov-Smirnov (KS) statistic (lower is
better) with context first passage time cutoffs N ∈ {250, 500, 750, 1000}.

Method First Passage Times N
250 500 750 1000

KinPFN 0.0484 0.0389 0.0359 0.0336
GMM2 0.1482 0.1465 0.1463 0.1460
GMM3 0.1493 0.1466 0.1467 0.1462
GMM4 0.1489 0.1462 0.1461 0.1454
GMM5 0.1499 0.1464 0.1462 0.1454
DP-GMM2 0.1474 0.1472 0.1469 0.1465
DP-GMM3 0.1483 0.1473 0.1469 0.1463
DP-GMM4 0.1481 0.1471 0.1466 0.1461
DP-GMM5 0.1482 0.1470 0.1465 0.1460
KDE 0.1217 0.1205 0.1206 0.1204
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Table 11: Evaluation of KinPFN and two GMM-Ensembles with different modality assumptions
k = {2, 3, 4, 5} and k = {2, 3, 4}, weighted according to their marginal likelihoods, on a
newly introduced testing set comprising 635 real-world first passage time distributions in terms
of prior-data negative log-likelihood loss (lower is better) with context first passage time cutoffs
N ∈ {10, 25, 50, 75, 100}.

Method First Passage Times N
10 25 50 75 100

KinPFN 1.374 1.244 1.205 1.192 1.186
GMM-Ensemble2,3,4,5 6.417 1.917 1.389 1.261 1.218
GMM-Ensemble2,3,4 4.270 1.639 1.312 1.228 1.202

Table 12: Evaluation of KinPFN and two GMM-Ensembles with different modality assumptions
k = {2, 3, 4, 5} and k = {2, 3, 4}, weighted according to their marginal likelihoods, on a newly
introduced testing set comprising 635 real-world first passage time distributions in terms of mean
absolute error (lower is better) with context first passage time cutoffs N ∈ {10, 25, 50, 75, 100}.

Method First Passage Times N
10 25 50 75 100

KinPFN 0.084 0.056 0.039 0.0333 0.030
GMM-Ensemble2,3,4,5 0.093 0.084 0.081 0.0800 0.078
GMM-Ensemble2,3,4 0.095 0.086 0.081 0.0800 0.078
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H.3 ADDITIONAL KinPFN APPROXIMATION EXAMPLES

In Section 5.1, we conducted approximations of first passage time distributions using KinPFN on
a 75-nucleotide RNA. The folding process for this RNA was simulated with the Kinfold kinetic
simulator (Flamm et al., 2000), employing custom start and stop structures. We also approximated
the folding time distribution for a 56-nucleotide RNA, for which we obtained ground truth data
using the KFold simulator (Dykeman, 2015). In all instances, the approximations were based on
just 25 context first passage times. This appendix provides additional approximations for these
RNAs, expanding the analysis by varying the number of context first passage times, specifically
N ∈ {10, 25, 50, 75}. Additionally, we performed approximations for a 93-nucleotide RNA using
the same simulation method as for the 75-nucleotide RNA (Figure 11) and extended our analysis
of the 56-nucleotide RNA to include results for a 31-nucleotide RNA (Figure 12). Additionally,
Figure 13 presents representative approximations for two RNAs from our newly introduced test set:
a 97-nucleotide RNA and a 119-nucleotide RNA, each evaluated with four different numbers of
context first passage times, N ∈ {10, 25, 50, 75}.

Figure 11: Approximations of the cumulative distribution function (CDF) for the first passage time
using KinPFN, with context times N ∈ {10, 25, 50, 75} (left to right), for an RNA sequence of
75 nucleotides (top) and 93 nucleotides (bottom). The folding process was simulated using custom
initial and final structures rather than the open chain and minimum free energy conformation.

Figure 12: KinPFN first passage time CDF approximations with context timesN ∈ {10, 25, 50, 75}
(left to right) for a 31 nucleotide long RNA (top) and a 56 nucleotide long RNA (bottom). First
passage times were obtained using the kinetic folding algorithm Kfold Dykeman (2015).
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Figure 13: KinPFN first passage time CDF approximations with context timesN ∈ {10, 25, 50, 75}
(left to right) for a 97 nucleotide long RNA (top) and a 119 nucleotide long RNA (bottom) that are
part of the newly introduced test set.
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H.4 KinPFN RIEMANN DISTRIBUTION VISUALIZATION

To provide a more intuitive understanding of the actual KinPFN predictions, Figure 14 illustrates
two CDF approximations for different RNA molecules, each with N = 25 context first-passage
times, compared against the ground truth CDF based on 1,000 Kinfold (Flamm et al., 2000) times
(left) alongside the probability density function (PDF) of the corresponding approximated posterior
predictive distribution (PPD), also known as the Riemann distribution (right) (Müller et al., 2022).
As discussed in Section 4.2, the PFN predicts a continuous distribution, which we discretized into
a finite number of buckets, forming the PDF bars. Each bar represents a bucket, and in our final
KinPFN model, we used 1,000 buckets, a hyperparameter defined in Section 4.2.
By examining the approximated PPD PDFs, we can observe the multi-modal nature of the learned
first-passage time distributions. For instance, the distribution for a 65 nucleotide long RNA in Fig-
ure 14 (top) shows bi-modality with two distinct peaks, while another first passage time distribution
for a 86 nucleotide long RNA in Figure 14 (bottom) exhibits tri-modality with three peaks. Notably,
the calculated CDFs for these multi-modal PPDs align closely with the ground truth CDFs from the
1,000 real first-passage times, demonstrating the effectiveness of our proposed prior, specifically, the
family of multi-modal Gaussian distributions introduced in Section 4.1. This prior, from which we
sampled synthetic first-passage time distributions to train KinPFN, enabled a strong generalization
to real-world RNA first-passage time distributions.

Figure 14: KinPFN PPD CDF approximations (left) along with the corresponding multi-modal PPD
PDFs (right) for two RNA molecules with lengths of 65 (top) and 86 (bottom) nucleotides.
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H.5 EUKARYOTIC TRANSFER AND RIBOSOMAL RNA

We present additional results for the first passage time distribution approximations using KinPFN
for tRNAphe and 5S rRNA from the eukaryote Saccharomyces cerevisiae, also known as brewer’s
yeast. Figure 15 displays the cumulative distribution function (CDF) approximations of first passage
times for tRNAphe (top) and 5S rRNA (bottom), with varying numbers of context first passage times,
N ∈ {10, 25, 50, 75}, as inputs to KinPFN. Additionally, Figure 16 illustrates the CPU time required
(in minutes) to compute 10, 25, 50, 75, and 1,000 first passage times for both tRNAphe (blue) and 5S
rRNA (red) using the kinetic simulator Kinfold (Flamm et al., 2000).

Figure 15: KinPFN first passage time CDF approximations with context timesN ∈ {10, 25, 50, 75}
(left to right) for Saccharomyces cerevisiae tRNAphe (top) and 5S rRNA (bottom).

Figure 16: Kinfold CPU time (in minutes) vs. number of folding simulations for Saccharomyces
cerevisiae tRNAphe and 5S rRNA.
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H.6 APPROXIMATIONS FOR ADDITIONAL RNA TYPES

In this section, we show the results of the first passage time distribution approximations using
KinPFN on two further RNA types: hsa-miR-7107-3p (RNAcentral-ID: URS0000759FB2 9606)
from Homo sapiens (human) and the SAM riboswitch (S box leader) (RNAcentral-ID:
URS00002F3927 224308) from Bacillus subtilis subsp. subtilis str. 168. Figure 17 displays the
cumulative distribution function (CDF) approximations for the first passage times of these RNAs.
The top row shows results for hsa-miR-7107-3p, a 27-nucleotide microRNA, while the bottom row
illustrates results for the SAM riboswitch, a 92-nucleotide regulatory RNA. For both RNAs, the
approximations are generated using varying numbers of context first passage times as inputs to
KinPFN, with N ∈ {10, 25, 50, 75} (from left to right). These results provide additional insights
into the robustness and versatility of KinPFN across diverse RNA types.

Figure 17: KinPFN first passage time CDF approximations with context timesN ∈ {10, 25, 50, 75}
(left to right) for a hsa-miR-7107-3p microRNA from Homo sapiens (human) (top) and a SAM
riboswitch from Bacillus subtilis subsp. subtilis str. 168 (bottom).
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H.7 APPLICATION: RNA FOLDING EFFICIENCY ANALYSIS

Here we show KinPFN approximations using additional context first passage times of N ∈
{10, 25, 50} on a case study that focuses on comparing the folding efficiency of three 43-nucleotide
RNA molecules (ϕ0, ϕ1, ϕ2), each predicted to fold into the same minimum free energy (MFE)
structure (ωstop = .........................(((((....)))))....). As noted in Section 5.3, KinPFN accurately cap-
tures the overall folding behavior of these RNAs using just ten context times. We further observe
that increasing the number of context first passage times to 25 and 50 enhances the accuracy of these
approximations, as shown in Figure 18.

Figure 18: RNA folding efficiency analysis. The first plot from the left shows the ground truth CDFs
F (t) for three sequences ϕ0, ϕ1 and ϕ2, representing the fraction of molecules folded into the MFE
conformation over time t. The second, third, and fourth plot displays the KinPFN approximations
F̂ (t) with ten, 25, and 50 Kinfold times as context.
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H.8 KinPFN GENERALIZES TO GENE EXPRESSION DATA

In this section, we present supplementary approximations of mRNA gene expression data for
interleukin-1-α (IL-1α), interleukin-1-β (IL-1β), and tumor necrosis factor-alpha (TNF-α). These
additional results build upon the experiment described in Section 5.4, where KinPFN was applied to
predict cumulative probability functions for gene expression in RAW 264.7 and BMDM cells using
a subset of context data points. The approximations shown here utilize further numbers of context
data points (10, 25, 50 and 75) and a different seed, providing a more comprehensive understanding
of the predictive capabilities of KinPFN across different biological datasets. The results in this sec-
tion serve to reinforce the main findings and demonstrate the robustness of KinPFN in accurately
replicating the outcomes of experiments such as those conducted by Bagnall et al. (2020) while
using minimal input data.

Figure 19: Approximation of mRNA expression of IL-1α, IL-1β and TNF-α in RAW 264.7 and
BMDM cells. We plot approximations using only 10, 25, 50 and 75 context data points per gene.
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