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ABSTRACT

Whole slide images (WSIs) pose fundamental computational challenges due to
their gigapixel resolution and the sparse distribution of informative regions. Exist-
ing approaches often treat image patches independently—discarding spatial struc-
ture—or reshape them in ways that distort spatial context, thereby obscuring the
hierarchical pyramid representations intrinsic to WSIs. We introduce Sparse Pyra-
mid Attention Networks (SPAN), a hierarchical framework that preserves spa-
tial relationships while efficiently allocating computation to informative regions.
SPAN constructs multi-scale representations directly from single-scale inputs,
enabling precise WSI modeling without sacrificing efficiency. We demonstrate
SPAN’s versatility through two variants: SPAN-MIL for slide classification and
SPAN-UNet for segmentation. Comprehensive evaluations across multiple public
datasets show that SPAN captures the hierarchical structure and contextual rela-
tionships that existing methods fail to model. Our results provide clear evidence
that architectural inductive biases and hierarchical representations enhance both
slide-level and patch-level performance. By overcoming long-standing compu-
tational barriers, SPAN establishes a new paradigm for computational pathology
and reveals foundational design principles for large-scale medical image analysis.

1 INTRODUCTION

Whole Slide Images (WSIs) have become in-
dispensable in modern digital pathology. These
high-resolution scans, typically derived from
Hematoxylin and Eosin (H&E)-stained tissue
samples, allow precise identification of cellu-
lar structures and abnormalities. By digitizing
histopathological slides, WSIs enable patholo-
gists to analyze tissue samples across multi-
ple scales, ranging from high-level tissue ar-
chitecture to fine-grained cellular morphology,
thereby supporting more accurate and efficient
diagnoses. Beyond manual examination, WSIs
facilitate computer-aided diagnosis (Campanella
et al., 2019; |Abels et al., [2019) and serve as the
foundation for a variety of computational pathol-
ogy tasks. At the patch level, localized problems
such as nuclei segmentation (Lou et al.| [2024;
Lin et al.l 2024) and tissue classification (Veel-
ing et al.,[2018) can be effectively addressed us-
ing standard computer vision methods, since the
scale is manageable and the regions of interest
are well defined.
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Figure 1: Left: A WSI is preprocessed by patch
tiling and feature extraction. Right: (a) Patches
treated as i.i.d. samples. (b) Patches reshaped
into squares or flattened. (c) Patches preserved in
their original shapes and progressively merged.

In contrast, slide-level analysis presents fundamentally different computational challenges due to the
gigapixel scale of WSIs and the sparse and irregular distribution of informative regions (Lu et al.,
2021). Key slide-level tasks include tumor detection, subtyping, and grading (Brancati et al.| 2022}
Bejnordi et al., [2017; Network et al., 2012} |2014), which rely on histologically grounded labels
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with relatively low noise. More recently, tasks such as biomarker prediction (Coudray et al., 2018;
Jin et al., 2024; |[EI Nahhas et al., [2024) and survival prediction (Chen et al., 2021} |L1 et al., 2023)
have drawn increasing interest. Biomarker prediction requires linking visual features to genetic
alterations, while survival prediction—although inherently a regression problem—is often framed
as classification via discretized survival times. In these settings, labels are derived from clinical or
genomic data and may not correspond directly to visual cues, making the discovery of non-obvious
histopathological patterns especially challenging.

Because WSIs often exceed billions of pixels, direct end-to-end analysis is computationally infea-
sible with conventional vision models. Moreover, large regions of background or non-diagnostic
content necessitate approaches that can efficiently focus on informative tissue. A widely adopted
strategy divides WSIs into smaller patches for independent analysis (Bejnordi et al., 2017} |(Cam-
panella et al.| [2019), treating them as i.i.d. samples (Campanella et al.,[2019;|Lu et al., 2021 (Figm,
Top). Alternatively, some methods reshape sparse patches into dense square grids to enable convo-
lutional processing(Shao et al., 2021} [Tang et al., [2024) (Fig Middle). However, this reshaping
disrupts true spatial relationships, since WSI regions are inherently irregularly distributed. Both
strategies either ignore or distort the hierarchical spatial organization of WSIs, which risks discard-
ing critical diagnostic information. Our approach instead constructs hierarchical representations
that preserve exact spatial relationships and capture multi-scale context (Figll] Bottom), directly
addressing these limitations.

Recent advances in deep learning, particularly Transformer-based models, demonstrate remarkable
success in modeling long-range dependencies in both language (Devlin et al., 2018} [Liuj, 2019)
and vision (Dosovitskiy et al., 2021} Hatamizadeh et al., 2024; |Darcet et al., [2024)). However, ap-
plying them directly to WSIs remains infeasible: The quadratic complexity of vanilla attention is
prohibitive at the gigapixel scale (Vaswani et all 2017)). Although sparse and hierarchical atten-
tion variants (Beltagy et al.| 2020; [Zaheer et al., |2020; Wang et al., 2021} |Liu et al., 2021)) mitigate
this in dense, regularly shaped data, they are poorly suited for WSIs, where informative content is
both sparse and irregular. Consequently, WSI-specific Transformer models attempt to circumvent
this mismatch by reshaping sparse regions into dense grids. For example, TransMIL (Shao et al.,
2021) relies on re-squaring with Nystrom attention and [CLS] tokens, while others introduce region
attention after dense reshaping (Tang et al., [2024). These approaches inevitably distort positional
information and restrict modeling to isotropic representations, failing to exploit the hierarchical
structures that have proven vital in general computer vision.

To address these challenges, we propose the Sparse Pyramid Attention Network (SPAN), a sparse-
native framework for WSI analysis. SPAN preserves exact spatial information while enabling hierar-
chical operations such as shifted-window attention and multi-scale feature downsampling, bridging
the gap between general computer vision architectures and WSI-specific needs. Its design inte-
grates two complementary modules: the Spatial-Adaptive Feature Condensation (SAC) module,
which progressively builds hierarchical representations by condensing informative regions, and the
Context-Aware Feature Refinement (CAR) module, which captures complex local and global depen-
dencies at each scale. Together, they direct computation toward diagnostically relevant areas and,
for the first time, make pyramid-style architectures from general vision effective for WSI analysis.

We validate SPAN across multiple public datasets (Network et al., 2012; [2014} |Aresta et al., [2019;
Brancati et al., 2022; |Bejnordi et al., 2017} |Bandi et al.l |2018)) on classification and segmentation
tasks. Experiments demonstrate that SPAN consistently outperforms state-of-the-art methods by
capturing spatial and contextual information more effectively. Our main contributions are:

* A sparse computational framework that preserves spatial relationships in WSIs, enabling
the direct use of hierarchical vision techniques.

* The SPAN architecture with SAC and CAR modules, which jointly build multi-scale rep-
resentations through spatial-adaptive condensation and contextual refinement, supporting
flexible task-specific variants.

» Comprehensive evaluations demonstrate that embedding hierarchical and sparsity-aware
inductive biases into the architecture substantially enhances the representation learning on
gigapixel histopathological images.
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2 PRELIMINARY: WHOLE SLIDE IMAGE ANALYSIS

2.1 ISOTROPIC PARADIGMS

WSIs inherently possess a hierarchical structure, enabling pathologists to examine tissue samples
across multiple magnification levels. This multi-scale nature of WSIs underscores the importance
of capturing and integrating information from different scales for accurate analysis. However, most
existing computational methods fail to fully exploit this characteristic, operating in an isotropic man-
ner—maintaining constant spatial resolution and feature dimensions throughout processing, without
the hierarchical downsampling that enables efficient multi-scale reasoning. Mainstream WSI anal-
ysis techniques treat patches as independent and identically distributed (i.i.d.) samples, completely
disregarding spatial relationships (lIse et al.,2018;|Lu et al.,| 2021} |Li et al.,|2021; Zhang et al.,2022;
Tang et al.,2023)). Attention-based Multiple Instance Learning (ABMIL) (Ilse et al.,[2018) serves as
a foundational approach, aggregating patch-level features for slide-level prediction. Extensions like
CLAM (Lu et al.,[2021)) and DTFD-MIL (Zhang et al.,[2022) introduce additional losses or training
strategies but still neglect spatial context.

Even methods that attempt to incorporate spatial information remain fundamentally isotropic while
introducing additional distortions. TransMIL and its variants (Shao et al., 2021} Tang et al.l [2024)
reshape sparse patches into dense 2D grids, while other approaches (Yang et al.,[2024; Zheng et al.|
20255 [Fillioux et al., |2023)) flatten patches into sequences. Both strategies forcibly convert sparse
inputs into dense representations, also distorting real positional relationships by artificially connect-
ing non-adjacent patches. Crucially, all these approaches process patches at uniform resolution with
fixed feature dimensions throughout the network, failing to leverage hierarchical modeling capabili-
ties that have proven crucial in general computer vision tasks. Consequently, WSI analysis has been
unable to benefit from key technical advances that have revolutionized general visual tasks.

2.2 HIERARCHICAL PARADIGMS

Inspired by the success of feature pyramid in general computer vision tasks, some methods have
attempted to introduce hierarchical structures to WSI analysis, such as HIPT (Chen et al., [2022)),
H2MIL (Hou et al., 2022), and ZoomMIL (Thandiackal et al., [2022)). However, these approaches
do not build a feature pyramid organically from a single-scale input as in general computer vision.
Instead, they depend on multi-scale inputs, requiring the system to process separate patches from
multiple magnification levels (e.g., 5x, 10x, 20x). This strategy introduces significant computational
and data management overhead. More importantly, within each scale, these methods still operate
isotropically, failing to form a cohesive, end-to-end hierarchical representation. This architectural
compromise means the central challenge of building a true feature pyramid from a single-scale input
remains largely unaddressed. As a result, WSI analysis has yet to fully harness the powerful and
efficient hierarchical architectures that are now state-of-the-art in the broader vision community.

3 METHOD

The core of our backbone is a rulebook-based mechanism: a pre-computed set of instructions that
explicitly defines input-output mappings for sparse data. This allows for highly efficient computation
by targeting only active features and eliminating redundant operations on empty regions. The SPAN
backbone is constructed from a repeating sequence of SAC and CAR modules that adhere to this
principle. As illustrated in Fig. [2] the SAC module performs spatial condensation and coarse-
grained feature transformation, while the subsequent CAR module employs transformer blocks with
shifted windows for fine-grained contextual refinement. This complementary design allows the
SPAN backbone to efficiently capture both multi-scale patterns and their long-range dependencies,
which can then be utilized by task-specific variants: SPAN-MIL for classification through global
token aggregation, and SPAN-UNet for segmentation through hierarchical decoding.

This hierarchical processing repeats with subsequent SAC-CAR modules operating on increasingly
condensed features, enabling SPAN to learn pyramid representations that unify multi-granularity
information with global understanding. The gradual reduction in spatial resolution also allows SPAN
to efficiently manage memory consumption at deeper layers while preserving multi-scale diagnostic
patterns.
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Figure 2: Overall architecture of SPAN. The encoder begins with a SAC module comprising Pro-
jection and Convolution components, followed by CAR that employs window attention through
LayerNorm, Multi-Head Attention, and Feed-Forward layers for local context modeling. While the
initial SAC preserves spatial dimensions with 1 x 1 convolution, subsequent SAC modules pro-
gressively downsample tokens to approximately 1/4 of their previous token count. This SAC-CAR
sequence repeats multiple times for hierarchical feature extraction and refinement. Task-specific
paths (dashed lines) enable flexible downstream applications: the decoder/segmenter path utilizes
alternating CAR-SAC modules with transposed convolutions in SAC for upsampling and patch-level
predictions, while the classifier path employs feature aggregation for WSI-level predictions.

3.1 SPATIAL-ADAPTIVE FEATURE CONDENSATION

The SAC module progressively condenses patches into more compact representations through learn-
able feature transformations. The design of SAC is motivated by two key insights: the inherent
multi-scale nature of histopathological diagnosis that pathologists perform, and the computational
efficiency required for processing large-scale WSIs. This motivates us to design an adaptive feature
extraction process that can handle the irregular spatial distribution of tissue regions.

Our condensation process maintains spatial relationships while progressively reducing spatial di-
mensions to capture multi-scale patterns. To achieve this efficiently, we implement SAC using sparse
convolutions (Liu et al.| |2015) for downsampling and hierarchical feature encoding. This choice nat-
urally aligns with the WSI structure, where significant background portions contain uninformative
regions, enabling selective computation only where meaningful features are present.

Sparse Convolution Rulebook Sparse convolution operations are typically implemented using a
rulebook-based approach, which efficiently manages the computation and memory usage for sparse
data structures. Specifically, an index matrix I=[1 2 --- N ]T corresponds to the coordinate
matrix P = [p; | i € I] € NV*2 and the feature matrix X = [2; | i € I] € RV*4 This
structured representation ensures efficient access to coordinates and their associated features during
sparse convolution operations.

For each convolutional layer, the output coordinates are computed based on the input coordinates,
the kernel size K, the dilation D, and the layer’s stride .S:

Pout = {pioul

. —(K—1)-D
Diow = {p ( g ) J , Vi, € Pin}, (1)

where | -] denotes the floor operation, and (K — 1) - D adjusts for the expansion of the receptive field
due to the kernel size and dilation. The corresponding output indices I, are assigned sequentially
starting from 1.

To determine the valid mappings between input and output indices for each kernel offset, we con-
struct a rulebook R, defined as:
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Figure 3: Schematic of CAR. Left: The input is
partitioned into overlapping 2w X 2w windows.
Attention is computed locally within windows
(green box) and globally via a learnable token
that attends to all tokens (orange box). Right:
The attention matrix visualizes this: diagonal
blocks (green) show local attention, while the
full row/column (orange) shows the global to-
ken’s unrestricted scope.
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Figure 4: Layer-wise visualization of learned
RPB in SPAN. Each heatmap shows attention
bias values as a function of relative positional
offsets (Ax, Ay) between token pairs. Coordi-
nates (x, y) represent the bias when attending to
a token at x positions horizontally and y posi-
tions vertically relative to the query token. Red
and blue indicate higher and lower attention bi-

ases, respectively.
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Rk: = {(iina iout) | Diin + k= piom} ) ke }C7 (2)

where KC is the set of kernel offsets, and p;,, and p; , are input and output coordinates, respectively.
Each entry in R, represents an atomic operation, specifying that the input position p;,, shifted by the
kernel offset k matches the output position p;,,,. The complete rulebook R = [ J,, < c R efficiently
encodes the locations and conditions under which convolution operations are to be performed.

Each sparse convolutional layer performs convolution by executing the atomic operations defined
in the rulebook Rx. An atomic operation (i, iou) € Ry transforms the input feature h;  using

the corresponding weight matrix W; (k) and accumulates the result to the output feature h;, . The
complete sparse convolution operation for a layer [ is defined as:
Rige = Y > Wilk)hi, + by, 3)

ke Rg

where h; € R is the input feature at index ii,, h;,, € R% is the output feature at index 7oy,
Wi (k) € Rwxdn js the weight matrix associated with kernel offset k, and b; € R% is the bias term
for layer [.

By utilizing this rulebook-based approach, the sparse convolutional layer efficiently aggregates in-
formation from neighboring input features by performing computations only at the necessary loca-
tions. This method effectively captures local spatial patterns in the sparse data while significantly
reducing computational overhead and memory usage compared to dense convolution operations, as
it avoids unnecessary calculations in empty or uninformative regions. For the context token, we
compute and average features with all kernel weights and biases if dimension reduction is needed.
Otherwise, we maintain an identity projection.

3.2 CONTEXT-AWARE FEATURE REFINEMENT

The CAR module builds upon the condensed feature representation to model comprehensive con-
textual relationships. While the preceding SAC module efficiently captures hierarchical features
through progressive condensation, the refined understanding of histological patterns requires mod-
eling both local tissue structures and their long-range dependencies. This dual modeling requirement
motivates us to adopt attention mechanisms, which excel at capturing both local and long-range de-
pendencies through learnable interactions between features.

To effectively implement the CAR module, we face several technical challenges in applying atten-
tion mechanisms to WSI analysis. Traditional sparse attention approaches (Liu et al.,2021; Beltagy
et al.| 2020; |[Zaheer et al.,|2020), despite their success in various domains, operate on dense feature
matrices by striding over fixed elements in the matrix’s memory layout. This approach requires den-
sifying our sparse WSI features and applying padding operations to match the fixed memory layout.
Given the high feature dimensionality characteristic of WSI analysis, such transformation would
introduce substantial memory and computational overhead while compromising the efficiency es-
tablished in the previous SAC module. Therefore, we develop a sparse attention rulebook that
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directly operates on the sparse feature representation, maintaining compatibility with the SAC mod-
ule’s index-coordinate system. Our approach leverages I and P inherited from previous layers to
define sparse attention windows, where features within each window can attend to each other without
dense transformations. This design preserves both computational efficiency and the sparse structure
compatibility established in earlier modules.

Sparse Attention Rulebook To efficiently handle sparse data representations, we formulate at-
tention computation using rulebooks following the paradigm of sparse convolutions. The first step
is to generate attention windows that define which tokens should attend to each other. For effi-
cient window generation, we temporarily densify I € N¥ into a regular grid using patch coordi-
nates P € NV*2 with zero padding. This enables efficient block-wise memory access on a low-
dimensional index matrix rather than operating on a high-dimensional feature matrix. As illustrated
in Fig. 3] we stride over the densified index matrix to generate regular and shifted windows, where
the shifting operation ensures comprehensive coverage of local contexts. The resulting W is a col-
lection of windows, where each window contains a set of patch indices excluding padded zeros.
These windows effectively define the grouping of indices for constructing an attention rulebook.

To enhance the model’s ability to capture global dependencies, we introduce a learnable global
context token that provides a shared context accessible to all other tokens. The combined hidden

features can be represented as H = [hz,h;g, ey h;';v,h;—] € RINHDXdou - where hg denotes the

global context token. For self-attention computation, we project H € R(N+1*d into Q, K, and V
using linear projections.

Having defined the attention windows, we now construct two types of rulebooks to capture both
local and global dependencies. For local attention, the rulebook R, for each window is defined as:

R =A{(i,j) [ i,j €ew}, weW, “4)

where W denotes the set of all attention windows, and ¢ and j represent the indices of the input
and output patches within the window w, respectively. Each entry (i,j) € R, represents a local
attention atomic operation between tokens ¢ and j. These atomic operations are defined by the
following equations. The attention scores are computed with a learnable relative positional bias to
account for spatial relationships:

T
qa; kj

e = 17; + B(pi — pj) &)

where q; and k; represent the query and key vectors for local tokens ¢ and j, respectively, and p; and

p; denote their positions. B(p; — p;) represents the learnable relative positional biases (RPB) (Liu

et al., 2021), parameterized by a matrix B € R(2wsize=1)X (2wsize —1) xnum-heads

The choice of positional encoding is crucial for capturing spatial relationships in WSI analysis.
RPB enhances the model’s ability to recognize positional nuances and disrupt the permutation in-
variance inherent in self-attention mechanisms while maintaining parameter efficiency. Alternative
approaches present different trade-offs: absolute positional encoding (APE) (Dosovitskiy et al.,
2021) would significantly increase the parameter count given the extensive spatial dimension of
possible positions in WSIs, while Rotary Position Embedding (RoPE) (Heo et al., 2024} |Su et al.|
2024) and Attention with Linear Biases (Alibi) (Press et al.,2022), despite their parameter efficiency
in language models, prove less effective at capturing spatial relationships in our context.

The final output of the local attention is then computed as:

exp(elocal)

local __ v .

h;™ = Z ' Z S s eXp<el_Ocal)vJ' (6)
wEW j:(i,j) ERw k:(1,k) € Riocal ik

To complement local attention with global context modeling, we introduce global attention that
operates on all patch tokens and the learnable global context token. The global attention rulebook is
defined as:

Rg:{(iaj)v(j’i)|7:E[17N]7JG{N+1}}' (7)
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The global attention mechanism employs similar formulations as equations equation [5] and equa-
tion é but excludes the positional bias term, yielding h? febal " While local attention is constrained
to windows, global attention spans across the entire feature map through the global context token,
enabling comprehensive contextual integration. The final output features combine both local and
global dependencies through:

hout hlocal + hglobal (8)

For downstream tasks, SPAN serves s a backbone that support task-specific variants: SPAN-MIL
employs global token aggregation for slide-level classification tasks, while SPAN-UNet utilizes a
U-Net-style decoder for patch-level segmentation tasks (implementation details in Appendix [B.T).

Ground Truth ABMIL TransMIL
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—

Aujiqeqoid mey

0
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Figure 5: Qualitative comparison of tumor segmentation performance on the unseen test set. The
Ground Truth panel depicts the expert-annotated tumor regions enclosed by green contours. The
heatmap indicates the predicted probability of tumor presence for each region.

4 EXPERIMENTS

We evaluate SPAN across multiple classification and segmentation tasks on public datasets using two
feature extractors. ResNet50 (~ 6 GFLOPS), a long-standing backbone in WSI analysis that con-
tinues to be used for its efficiency in immediate deployment and fast prototyping. Virchow2
mermann et al.} [2024) (~ 360 GFLOPS), a recent domain-specific foundation model that trades 60x
more computation for higher accuracy. Detailed experimental setup and implementation details are
provided in the Appendix.

Tables T]and 3] show that both SPAN-MIL and SPAN-UNet consistently achieve SOTA performance
across all tasks, demonstrating superior slide-level and patch-level representation learning capabili-
ties. Notably, this strong performance is achieved with a simple cross-entropy loss, whereas compet-
ing methods rely on additional auxiliary losses and sophisticated training strategies. This simplicity
suggests substantial headroom for further improvements in the SPAN-based models, while compet-
ing approaches may have reached a complexity ceiling with diminishing returns for additional mod-
ifications. This success stems from undistorted hierarchical spatial encoding that preserves precise
patch relationships, coupled with intrinsic multi-level aggregation for classification and a U-Net-like
decoding architecture for segmentation. This architecture allows the model to effectively leverage
multi-scale contextual information for precise spatial localization, as illustrated in the qualitative
examples in Fig. [}

SPAN’s reliability is further highlighted by its consistent performance gains with pathology-specific
Virchow? features, in contrast to baselines that show inconsistent or degraded results. This sug-
gests that SPAN’s design becomes more effective when leveraging rich, domain-specific semantic
information.

To understand the model’s internal mechanics, we visualized the learned relative position bias (RPB)
in Fig.[d] The patterns reveal a clear evolution from local attention in early layers to broad, long-
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Table 1: Classification performance across CAMELYON16, Yale-HER2, and BRACS datasets

CAMELYONI16 Dataset
Method General ResNet50 Feature Pathology-specific Virchow2 Feature
Accuracy AUC F1 Score Accuracy AUC F1 Score
ABMIL backbone
ABMIL 0.857£0.085 0.915£0.059 0.850 4 0.088 0.990+0.015 0.999 £0.001 0.989 £ 0.017

CLAM-SB  0.873 £0.040 0.9224+0.058 0.868+0.039 0.983 £0.012 0.999 &+ 0.001 0.983 +0.012
CLAM-MB 0.867+0.031 0.932+0.023 0.862+0.031 0.987£0.014 0.999 £0.001 0.986 £+ 0.014

DTFD 0.877+0.073 0.947 £0.039 0.868 +0.057 0.983+0.020 0.994 +0.009 0.982 + 0.021
DSMIL 0.887 £0.051 0.941 £0.025 0.881 +0.050 0.983 +0.000 1.000 4+ 0.001 0.983 4+ 0.001
MHIM 0.883 +£0.053 0.929 +£0.036 0.877 4+ 0.056 0.977 +0.025 0.999 +0.002 0.975 + 0.027
ACMIL 0.893 £0.015 0.936 +0.023 0.889 +0.011 0.983 +0.012 1.000 £+ 0.001 0.983 +0.012
GNN backbone

PatchGCN 0.833£0.065 0.874£0.076 0.8194+0.072 0.979+0.016 0.992+0.015 0.978 £+ 0.017

Transformer/Mamba backbone

TransMIL 0.873 +0.053 0.916 +0.056 0.867 +0.053 0.983 +£0.012 1.000 +£0.001 0.983 +0.013
RRT 0.867 +0.029 0.936 +0.038 0.862 £ 0.027 0.993 £0.009 1.000 £0.001 0.993 £ 0.009
MambaMIL 0.857 +0.048 0.940 +0.038 0.848 +0.047 0.993 +0.009 1.000 £+ 0.001  0.993 £+ 0.010

SPAN backbone
SPAN-MIL  0.903 +£0.030 0.939 +0.026 0.898 +0.032 0.993 +0.009 1.000 +0.001 0.993 + 0.010

Yale-HER2 Dataset

ABMIL 0.687£0.084 0.778 £0.078 0.664 +0.091 0.813+0.038 0.857 £0.049 0.806 + 0.062
CLAM-SB  0.713 £0.084 0.79040.052 0.699 £0.090 0.793 £0.060 0.865+ 0.071 0.778 4+ 0.064
CLAM-MB  0.693 £ 0.089 0.766 +0.105 0.684 £0.094 0.793 £0.068 0.876 & 0.055 0.784 +0.073

DTFD 0.693£0.086 0.764 £0.103 0.680 £ 0.092 0.800 £ 0.085 0.860 £0.038 0.791 £ 0.085
DSMIL 0.693 £0.060 0.764 £0.041 0.676 +0.049 0.807+£0.049 0.858 £0.042 0.793 £ 0.056
MHIM 0.706 £0.104 0.744 £0.095 0.69540.100 0.800+0.108 0.872£0.062 0.792 £ 0.104
ACMIL 0.713+£0.030 0.781 £0.059 0.68540.045 0.807+0.028 0.853 £0.032 0.787 £ 0.044

PatchGCN  0.700 £0.115 0.7314+£0.100 0.690 £0.111 0.754 £0.045 0.831 £0.033 0.689 4 0.041

TransMIL 0.672+£0.085 0.680 £0.167 0.652+0.113 0.807+0.072 0.883 £0.071 0.797 £ 0.081
RRT 0.647£0.069 0.703 £0.076 0.631+0.072 0.753+£0.051 0.838 £0.044 0.743 £ 0.049
MambaMIL  0.717 £0.057 0.7874+0.094 0.705+0.059 0.717 £0.089 0.868 &+ 0.066 0.706 % 0.095

SPAN-MIL  0.727 £0.072 0.786 £0.075 0.7204+0.070 0.827£0.086 0.888 £0.072 0.816 & 0.088

BRACS Dataset
Method General ResNet50 Feature Pathology-specific Virchow2 Feature
Accuracy Macro AUC Macro F1 Accuracy Macro AUC Macro F1
ABMIL 0.687£0.023 0.828 £0.099 0.552 4+ 0.039 0.766 +0.020 0.897 £0.017 0.689 £ 0.032

CLAM-SB  0.687 £0.044 0.8404+0.099 0.562+0.041 0.757 £0.023 0.892 £ 0.014 0.663 & 0.028
CLAM-MB  0.696 £+ 0.039 0.8474+0.085 0.545+0.049 0.773£0.033 0.897 +£0.015 0.698 4 0.061

DTFD 0.689 £0.027 0.828 £0.116 0.578 £0.034 0.768 £0.015 0.884 £0.018 0.680 £ 0.055
DSMIL 0.699 £0.035 0.826 £0.101 0.553 +0.056 0.747+0.031 0.890 £0.018 0.643 £ 0.076
MHIM 0.716 £0.028 0.847+0.103 0.560 £0.066 0.742+0.020 0.887 £0.023 0.648 + 0.030
ACMIL 0.720 £0.022  0.859 £0.085 0.604 +0.074 0.766 +0.020 0.897 £0.017 0.689 £ 0.032

PatchGCN 0.713+£0.025 0.848+0.101 0.610+£0.031 0.747£0.034 0.871£0.028 0.662 £ 0.042

TransMIL 0.692+£0.037 0.799 £0.117 0.577+0.034 0.754+0.014 0.886 £0.020 0.654 £ 0.052
RRT 0.718 £0.036 0.848+0.093 0.595+£0.065 0.761£0.036 0.895£0.031 0.683 £ 0.062
MambaMIL 0.706 & 0.047 0.8434+0.035 0.620£0.059 0.771£0.043 0.889 4+ 0.029 0.703 & 0.049

SPAN-MIL  0.725+0.038 0.853+0.077 0.641+0.076 0.778 £0.028 0.898 £0.068 0.722 £ 0.037

range attention in deeper layers. This allows SPAN to dynamically process both fine-grained cellular
details and larger tissue architectures, a flexibility not possible with fixed positional encodings.

We conducted ablation studies on the CAMELYON16 dataset with ResNet50 features to validate
the contributions of SPAN’s components (Table [2] Fig. [6). Aligning with findings in general vision,
disabling the SAC module’s hierarchical downsampling (via 1x1 convolutions), the CAR module’s
contextual attention (by setting window size to 0), or the shifted-window mechanism all led to
significant performance degradation. Surprisingly, the model performs well even without any posi-
tional encoding, possibly due to the rich spatial information inherently captured by its convolution
and shift-window attention mechanisms. The inferior performance of Axial RoPE and Alibi likely
stems from their fixed distance-decay patterns, which are directly borrowed from other tasks and
not optimized for WSI-specific spatial structures. These fixed priors may conflict with the dynamic,
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long-range attention that SPAN learns in deeper layers (Fig. [). For slide-level aggregation, we
found that directly using the global context token is simple and effective enough. Finally, as in
Fig. [6), increasing the window size beyond a certain point does not necessarily improve perfor-
mance in our settings; however, it significantly increases memory usage, which may be attributed to
insufficient training data to learn complex feature interactions effectively at larger window sizes.

Table 2: Ablations for different settings.

251 RRT —@— GPU Memory Usage

SPAN-MIL (Slide-level Representation) i ~&- Accuracy Mean res
95% Confidence Interval

Configuration Accuracy AUC L o.02
Attention Pooling 20 06D
w/o Context Token 0.893 +0.037  0.931 4+ 0.031 _ 0400 040
w/ Context Token 0.900 +0.026  0.941 + 0.041 @ 156668 20 ¢
Positional Encoding & 157 2
Axial Alibi 0.883 £ 0.039  0.920 £ 0.029 g ross’
Axial RoPE 0.880 +0.048  0.917 +0.017 2 o
None 0.890 +0.019  0.938 + 0.027 S o o863
Core Modules 2 / =
No SAC (K = § = 1) 0.879 4 0.037  0.928 + 0.026 535 | osa
No CAR (wy;ze = 0) 0.870 +0.022  0.919 + 0.038 e a71
No Shifted Window 0.883 %0030 0.923 % 0.049 5o e fif;L”;V

-0.82
SPAN-UNet (Patch-level Representation)
Configuration Dice TIoU o L o.80
Core Modules 0 2 4 6 8 10 .12 14 16 18 20
NoSAC(K =S=1)  0.826£0.059 0.7080.091 ) Window Size )
No CAR (wsize = 0) 0.831£0.056 0.713 % 0.083 Figure 6: Accuracy and memory usage of SPAN with
Skip Connection Strategy window sizes from 2 x 2 to 20 x 20. Each configura-
No Skip Connection 0.837 £0.059 0.723 +£0.088 : : :
w/ Skip Connection (Add) 0.848 + 0.056  0.739 = 0.085 tion is evaluated over 5 runs, with the mean accuracy

and peak memory usage reported.
Table 3: Segmentation performance on histopathology datasets
Method CAMELYON16 CAMELYON17 SegCAMELYON BACH
Dice ToU Dice ToU Dice ToU Dice ToU

General ResNet50 Feature
ABMIL' 0.742+£0.012  0.591+0016 0.548+0.136  0.387+0.120  0.738+0.038 0.586:£0.047 0.690+0.158 0.544::0.181
TransMIL"  0.822+0.051  0.700+0.071 0.754+0.133  0.618+0.156 0.818+0.055 0.695+0.079 0.723+0.176  0.588::0.201
RRT' 0.836+0.062 0.722+0.094 0.786+0.118 0.660+0.154  0.829+0.066 0.712+0.100 0.705+0.128  0.557+0.159
GCN 0.841+£0.006  0.726+0.010 0.754+0.080 0.610+0.103  0.809+0.068 0.684::0.098 0.695+0.169 0.552:0.191
GAT 0.795+0.029 0.661+£0.040 0.838+0.058 0.724+0.087 0.805+0.045 0.676+0.064 0.715+0.136  0.57140.168

SPAN-UNet  0.885+0.043 0.796+0.069 0.870+0.038 0.771+0.061  0.860+0.052 0.757+0.080 0.783+0.137  0.659+0.173
Pathology-specific Virchow2 Feature

ABMIL 0.809+0.021  0.679+0.029  0.717+£0.087  0.565+0.105 0.792+0.052  0.659+0.069 0.702+0.147  0.557+0.178
TransMIL 0.874+0.011  0.776+0.017 0.878+0.054 0.786+0.082 0.864+0.035 0.762+0.054 0.778+0.112  0.648+0.145
RRT 0.876+0.012  0.779+0.018  0.890+0.032  0.803+0.052  0.876+0.054 0.783+0.084 0.748+0.122  0.609+0.154
GCN 0.755+£0.070  0.611+0.091  0.876+0.024  0.779+0.038  0.809+0.068 0.684+0.098 0.753+0.121  0.615+0.155
GAT 0.860+0.015  0.754+0.024  0.853+0.038  0.746+0.058 0.852+0.066 0.747+0.100 0.734+0.158  0.598+0.194

SPAN-UNet  0.900+0.013  0.818+0.021  0.919+0.032  0.85240.053  0.884+0.052 0.795+0.084  0.814+0.096 0.695+0.132

¥ indicates its corresponding architecture: ABMIL for MLP, TransMIL for vanilla Nystromformer, and RRT for region-based Nystromformer.

Our segmentation ablations further reinforce the adaptation of general vision principles. The results
(Table[2) show that our hierarchical pyramid architecture provides a significant performance boost
for segmentation tasks, as disabling the core SAC or CAR modules individually resulted in a marked
drop in performance. Furthermore, the ablation of skip connections affirms the efficacy of our U-
Net-like segmentation design. Removing skip connections for fusing multi-scale features resulted
in a clear drop in Dice and IoU scores. Collectively, the consistent validation of these diverse,
task-specific principles demonstrates the success and flexibility of our framework in bridging the
long-standing gap between general deep learning and computational pathology.

5 CONCLUSION

We present SPAN, a sparse-native framework for WSI analysis, bridging general vision principles
and computational pathology. SPAN advances WSI modeling by (i) learning hierarchical pyramid
representations directly from single-scale inputs, (ii) preserving spatial relationships via spatial-
adaptive condensation and context-aware refinement, and (iii) supporting flexible variants for clas-
sification and segmentation. Extensive experiments confirm that SPAN delivers consistent gains,
establishing it as a WSI backbone that faithfully leverages hierarchical and sparsity-aware biases.
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ETHICS STATEMENT

This research focuses on the development of computational pathology methods (SPAN) for analyz-
ing gigapixel whole slide images (WSIs). Our goal is to improve the accuracy and efficiency of
histopathological analysis, which can aid in cancer diagnosis, grading, and subtyping.

We exclusively use publicly available and anonymized datasets, ensuring patient privacy is protected
as no new patient data was collected for this study.

Our work is intended for research purposes to advance medical image analysis. While SPAN shows
promising results, it is not a certified medical device. Any potential clinical application would
require rigorous validation and regulatory approval. We envision this method as a decision-support
tool for qualified pathologists, not as a replacement for professional medical judgment.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we are committed to releasing our code and pretrained models publicly
upon acceptance of this paper. We utilized publicly accessible datasets for all experimental work.
Comprehensive details regarding our experimental protocol, including dataset information, hyperpa-
rameter settings, and training setups, are documented in Appendix [B.2] This provision is intended
to allow other researchers to verify our findings and build upon our work.
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A RELATED WORK

Self-attention Mechanisms The Vision Transformer (ViT) (Dosovitskiy et al.,2021) successfully
adapted self-attention mechanisms from NLP (Devlin et al., 2018; Brown et al., 2020) for image
recognition. However, its quadratic computational complexity is prohibitive for the tens of thou-
sands of patches generated from a single gigapixel WSI. Subsequent work introduced more efficient
variants to handle long sequences. These include models with sparse attention patterns like Long-
former (Beltagy et al.| |2020) and BigBird (Zaheer et al., 2020), and models with window-based
attention like the Swin Transformer (Liu et al., |2021). By computing attention locally within win-
dows and building a hierarchical representation, Swin Transformer achieves linear complexity and
captures multi-scale features, leading to state-of-the-art performance on many vision tasks.

Despite these advancements, a fundamental challenge remains in applying these mechanisms to
WSIs. They are designed for dense, continuously distributed data. In contrast, the informative
patches in WSIs are sparsely and irregularly distributed across a vast, uninformative background.
This mismatch makes it inherently difficult to directly apply window-based or dense-matrix-based
sparse attention techniques, necessitating specialized approaches that can natively handle sparse data
distributions.

Pyramid Structures in General Visions Multi-scale feature representation is a cornerstone of
modern computer vision. In CNNs, this is achieved through progressive downsampling (He et al.,
2016) and explicit pyramid architectures that capture context at multiple resolutions, such as SPP-
Net (He et al., 2015), FPN (Lin et al.,[2017), and HRNet (Wang et al., 2020). This powerful paradigm
is successfully integrated into vision transformers as well. Models like Pyramid Vision Transformer
(PVT) (Wang et al.,|2021)) and Swin Transformer (Liu et al., 2021)) incorporate hierarchical designs
with efficient attention, proving the value of multi-scale feature learning for achieving state-of-the-
art results.

However, these successful pyramid structures are all designed for dense and uniformly distributed
data. They rely on regular downsampling operations (e.g., strided convolutions or patch merging)
that are fundamentally inappropriate for the sparse and irregular spatial layout of WSIs. The unique
challenges posed by vast uninformative regions prevent the direct application of general-purpose
pyramid architectures, leaving a critical gap in WSI analysis.

B IMPLEMENTATION AND EXPERIMENTAL DETAILS

B.1 TASK-SPECIFIC VARIANTS IMPLEMENTATION DETAILS
B.1.1 SPAN-MIL: CLASSIFICATION HEAD

We utilize the global context tokens introduced in the CAR module for their comprehensive repre-
sentations of the WSI across different scales. Let hi e R? denote the global context token from

layer ! € {1,..., L}. The slide-level representation is computed by:
L
hel = Z h!. )
=1

The classification prediction is obtained through:

§ = softmax(Wh + pels), (10)
where WeIs € Re%4 and b € R€ are learnable parameters, and c is the number of classes.
B.1.2 SPAN-UNET: SEGMENTATION HEAD

SPAN naturally extends to a U-Net (Ronneberger et al., 2015) architecture through its hierarchi-
cal sparse design. The decoder maintains architectural symmetry with the encoder, using sparse
deconvolution for upsampling in place of the downsampling operations.
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Let {H;,Hs,,...,Hy} denote the multi-scale feature maps from the encoder, where H; € RNixd
represents features at the [-th level.
The decoder generates features {G1, Go, ..., G}, processed at each stage through:

G, = SAC(CAR(X;)) € RN x4, (11)

For the first decoding stage, X; = Hp . For subsequent stages, we implement skip connections by
concatenating upsampled features with corresponding encoder features:

X; =Gy || Hpyqq € RN72 (12)

where || denotes feature concatenation. The final segmentation prediction at position i is:

9; = softmax(W*tG[i] + b*%), (13)

where Wseg ¢ R**d and b€ ¢ R*® are learnable parameters, and s is the number of segmentation
classes.

B.2 EXPERIMENTAL SETUP
B.2.1 CLASSIFICATION DATASETS

WSI classification involves automatically categorizing tissues based on histopathological features,
an essential process for accurate diagnosis, grading, and personalized treatment planning. We
assessed SPAN’s classification performance on three distinct diagnostic tasks, specifically tumor
detection using the CAMELYON16 dataset (Bejnordi et al., [2017), tumor grading employing the
BRACS dataset (Brancati et al., 2022), and HER2 biomarker status prediction using the Yale-HER?2
dataset Farahmand et al.| (2022).

We followed the same strategy as above: all available slides were pooled, randomly shuffled, and
split into training (~70%), validation (~15%), and test (~15%). Experiments were repeated under
five random seeds (0—4). Model selection is based on validation set performance. Crucially, final
predictions are made via direct class probability argmax, without any post-hoc threshold optimiza-
tion, to better mirror real-world clinical deployment scenarios.

B.2.2 SEGMENTATION DATASETS

Slide-level segmentation requires precise pixel-level delineation of tumor regions, a challenging
task crucial for diagnosis and prognosis. To rigorously evaluate SPAN’s performance, we used fully
annotated slides from multiple datasets: SegCAMELYON, Yale-HER?2 (Farahmand et al., [2022)),
and BACH (Aresta et al.,|2019). To construct the SegCAMELYON benchmark, we curated tumor-
positive slides from CAMELYON16 (Bejnordi et al., 2017) and CAMELYON17 (Bandi et al.,|2018),
applied exclusion masks to remove ambiguous regions, and consolidated the processed samples into
a unified dataset.

All available slides were pooled, randomly shuffled, and split into training (~70%), validation
(~10%), and test (~20%). Experiments were repeated under five random seeds (0—4) to ensure
robustness. Patches with over 20% tumor area are labeled positive for patch-level ground truth gen-
eration. For segmentation, we adopted 3-layer GCN and GAT models with 8-adjacent connectivity,
following standard WSI analysis practices (Hou et al., [2022; |Chen et al., [2021}; [Wu et al.| [2023)).
Model selection is based on validation set performance. Crucially, final predictions are made via
direct class probability argmax, without any post-hoc threshold optimization, to better mirror real-
world clinical deployment scenarios.

For segmentation training, we employed a hybrid loss that combines cross-entropy (CE) and Dice
loss. Specifically, given the predicted probability map p and the ground-truth mask y, we compute
the standard pixel-wise CE loss Lcg(p,y) and the Dice loss Lpice(p,y). The final objective is

defined as
E: (1—)\)ECE+)\£Dicev leY>07
LcE, otherwise,
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where A = 0.75 is the Dice weight. This design follow common practices in computer vision
community, encouraging accurate boundary delineation when positives are present. All baseline
methods were trained under this unified loss function for fair comparison.

B.2.3 SLIDE PREPROCESSING

Our preprocessing pipeline extends CLAM (Lu et al.|[2021) by adding a grid alignment step, adjust-
ing patch boundaries to the nearest multiple of 224 pixels for precise spatial coordinates.

To evaluate feature-space adaptability, we used two pre-trained encoders to generate patch-level fea-
tures from all datasets at 20x magnification. All patches were resized to 224 x224 pixels prior to
feature extraction. Our preprocessing pipeline addresses coordinate inconsistencies that arise from
CLAM’s background filtering mechanism. The original CLAM pipeline can generate patches with
irregular starting coordinates due to tissue contour boundaries, making it difficult to establish con-
sistent spatial relationships in a regular grid system. To resolve this, we introduced a grid alignment
step that extends tissue contours to align with 224 X224 pixel boundaries before patch extraction.

Algorithm 1: Expand Contours

global step_size = 224
def extend_contour(start x, start_y, w, h):
W += start_x % step_size
h += start_y % step_size
start_x -= start_x % step_size
start_y -= start_y % step-_size
return start_x, start_y, w, h

contour = extend_contour(contour)

This alignment ensures that all patches map precisely to a regular grid coordinate system, eliminating
potential rounding errors in spatial relationship modeling.

B.2.4 PATCH FEATURE EXTRACTOR

In all experiments, the weights of these encoders were kept frozen to ensure a consistent feature
extraction process.

ResNet50 As a standard baseline, we used a ResNet50 model pre-trained on ImageNet (He et al.,
2016). Following common practice in WSI analysis, we removed the final fully connected classi-
fication layer and used the output of the global average pooling layer. This process yields a 1024-
dimensional feature vector for each patch, representing general-purpose visual features learned from
natural images.

Virchow2 (Zimmermann et al.,|2024), a massive pan-cancer collection of over 1.5 million WSIs and
associated medical texts. This self-supervised training on domain-specific data allows Virchow?2 to
learn representations that are highly attuned to histopathological nuances.
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Algorithm 2: SPAN Backbone with Rulebook Mechanism

Input: P € NV*2 (coordinates), X € RN *? (features)

Output: Refined features and global context

for each layer in backbone do

// SAC Module: Sparse Convolution Rulebook
P oy < compute_output_coords(P, K, S, D)

Rsparse < build_sparse_rulebook(P, Py, )

X+ execute_sparse_conv(X, Rparse; W)

// CAR Module: Sparse Attention Rulebook
W < generate_windows(P, window_size)

Riocat < {(4,7) | 1,75 € w,Yw € W}

Rglobal <~ {(ZvN + 1)7 (N + 17i) | (&S [LNH

X+ execute_attention(X, Riocat, Relobal)

P < Poy

return X, global_token

Algorithm 3: Build Sparse Attention Rulebook

Input: P € NV*2 (coordinates), w (window size)
Output: Riocal, Relobal (attention rulebooks)
// Create coordinate hash mapping
hash_ids < arange(1, N + 1)
coord_transpose <— P.transpose()
spatial_bounds <— (max(coord_transpose[0]) + 1, max(coord_transpose[1]) + 1)
coord_tensor ¢ create_sparse_coo(coord_transpose, hash_ids, spatial_bounds)
index_matrix <— coord_tensor.to_dense()
// Generate attention windows via spatial indexing
if index_matrix.size() < 2w X 2w then
// Compact space: full attention
spatial_indices <— arange(num_elements)
query-idx < spatial_indices.repeat_interleave(num_elements)
key_idx < spatial_indices.repeat(num_elements)
else
// Extended space: windowed attention
window _blocks < generate_windows(index_matrix, w, mode)
block_capacity «+ (2w)?
intra_indices <— arange(block_capacity)
query-idx < intra_indices.unsqueeze(1).repeat(1, block_capacity).flatten()
key_idx < intra_indices.repeat(block_capacity)
query_hash < window_blocks.flatten()[query_idx]
| key_hash < window_blocks.flatten()[key_idx]

// Filter valid mappings and normalize hash indices
valid_mask < (query_hash # 0) A (key_hash # 0) A (query_hash # key_hash)
Riocal < (query_hash[valid_mask] - 1, key_hash[valid_mask] - 1)

// Global context rulebook

Rglobal — {(OC,N + ﬁ)a (N —|—,8,0é) ‘ [ORS [O7N - 1]vﬁ € [O,num,ctx - 1]}
return Rlocalv Rglobal
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Algorithm 4: Spatial Window Indexing

Input: index_matrix, w (window radius), mode
Output: Active window blocks
h, width < index_matrix.size()
// Compute spatial alignment padding
row-align < (2w — h mod 2w) mod 2w
col.align +— (2w — width mod 2w) mod 2w
if row_align > 0 or col_align > 0 then
| index_matrix <— spatial_pad(index_matrix, alignment_spec, mode)

// Efficient spatial tessellation

window _tessellation <— index_matrix.unfold(0, 2w, 2w).unfold(1, 2w, 2w)
// Filter active windows by occupancy

occupancy_map <— window_tessellation.sum(dim=[-2, -1])

return window_tessellation[occupancy_map > 0]

Algorithm 5: Execute Rulebook-based Attention

Input: Q, K,V (projections), Riocal; Relobal (rulebooks)
Output: H,,, (refined features)

// Local attention via spatial rulebook
for (o, 8) € Ripeas do

| Gas 952 4 B(P[a] - P[3)

Hiocal < apply_rulebook_softmax({¢as}, V, Riocal)
// Global attention via context rulebook
for (Oé, ﬂ) S Rg/,,ba[ do
a. ks

Vas = 7
Hiopa < apply_rulebook_softmax({1as}, V, Riobal)
Hout A\ Hlocal + Hglobal
return H,,,
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