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Exploring the linear separablity of syntactic and semantic information in
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Abstract

Relations between syntax and semantics are
not readily agreed upon. We seek to explore
how representations of syntax and semantic in-
formation sets manifest in BERT embeddings,
particularly the degree of the linear separability
of each other in BERT embeddings by apply-
ing Iterative Nullspace Projection (INLP) to de-
compose BERT embeddings into syntactic and
semantic subspaces. We also investigate how
important the linear component corresponding
to one information set is to solving a classifica-
tion task that targets the other information set.
Our results show that both syntactic and seman-
tics informations are not linearly represented in
BERT embeddings. Therefore INLP fails sepa-
rate syntactic and semantic space from BERT
embeddings and does not provide interpretable
results. The results also indicate a factor of
consideration when applying INLP, regarding
the rank of the projection matrix.

1 Introduction

The boundary between semantics and syntax has
been hotly debated, but do language model em-
beddings present this information in a way that is
easily separated and recognized by humans? The
objective of this project is to explore BERT’s (De-
vlin et al., 2019) reliance on certain syntactic in-
formation when handling a semantic task, and vice
versa. Specifically, we seek to quantify the impor-
tance of linearly-separable syntactic or semantic
information when performing semantic or syntactic
classification, respectively.

To achieve our goal, we apply a novel method
Iterative Nullspace Projection (INLP from here)
(Ravfogel et al., 2020)for removing information
from an embedding. INLP iteratively trains
linear models on a specific classification task,
and projects the input on the intersection of the
nullspaces of those linear models.

Our experiment scheme follows Elazar et al.,
2020, which employs INLP to investigate whether
BERT uses part-of-speech (POS) information when
solving language modeling (LM) tasks. Similarly,
we construct a linear probing system for a task and
then employ INLP to generate a new embedding de-
void of information learned from the probing task.
We then evaluate the performance of this new em-
bedding on another downstream task. Then we will
perform the same procedure but switch the probing
task and downstream evaluating task. To evaluate
the separability of syntactic and semantic represen-
tation, we need two tasks that could extract those
information on word level. Hence, we choose Com-
binatory Categorical Grammar (CCG from here on)
tagging (Hockenmaier and Steedman, 2007) as the
syntactic task and semantic tagging (Abzianidze
and Bos, 2017) as the semantic task.

Our objective is that, by applying the INLP pro-
cedure to a syntactic task, we are able to separate
the representation into a syntactic space and a non-
syntactic space. We then compare the performance
of a linear classifier for semantic labels using the
original BERT embeddings with an otherwise iden-
tical model trained on embeddings projected onto
the non-syntactic space. Conversely, we can define
a semantic and non-semantic space by probing a
semantic task, and then investigate the performance
of embeddings projected onto those spaces when
performing a syntactic classification task. The per-
formance of these embeddings on their opposing
classification tasks will give us an indication of how
linearly separable the two information sets are.

The remainder of the paper proceeds as follows:
Section 2 explores previous work related to our
experiment. Section 3 provides a description of the
probing and evaluation tasks and gives an overview
of the experiment pipeline. Section 4 reviews our
experiments and affiliated results. Section 5 dis-
cusses the implications of those results. Finally,
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section 6 gives an overview of the entire process
and outlines possible next steps.

2 Related Work

The separation and overlap between syntax and se-
mantics has been of interest to linguists for years.
More recently, with the growing popularity of large
language models, computational linguists have be-
gun to explore how large language models deal
with the boundaries of these information sets.

Huang et al., 2021 use paraphrase pairs and new
target syntax to train a semantic encoder, syntactic
encoder and decoder to learn separate represen-
tations of the semantic and syntactic information
contained in BART embeddings, in order to create
semantically equivalent paraphrases with the new
syntactic structure. Alongside the encoders they
also train an adversarial syntax discriminator to
try and predict the source syntax from the seman-
tic embeddings, thus encouraging the disentangle-
ment of the semantic and syntactic information by
training the semantic embedder to remove as much
syntactic information as possible. Their results
show that disentanglement of some information is
possible. Though they do not achieve perfect sepa-
ration of the two information sets. Other non-linear
approaches to syntactic-semantic information dis-
entanglement have been carried out in Chen et al.,
2019

Unlike the aforementioned studies, we seek to
explore the linear separability of syntactic and se-
mantic information in large language model em-
beddings at the word level. To accomplish this task
we apply the INLP method to syntactic (CCG) and
semantic tasks in order to define the syntactic and
semantic components of BERT embeddings that
will be used in our downstream classification tasks.

INLP, introduced in Ravfogel et al., 2020, is a
method to define a linear guarding function that
masks all the linear information in a word embed-
ding that may be used for a downstream classifi-
cation task. In the original paper the authors use
this method to remove gender bias from BERT
embeddings of biographical descriptions and then
measure how easy it is to determine an individ-
ual’s gender from the guarded embedding by using
various downstream classification methods. Be-
yond this example, the authors hypothesize several
additional use cases for this procedure, including
information disentanglement.

The authors of Elazar et al., 2020 use INLP

for exactly this task. They use INLP to separate
and guard certain linguistic information sets from
BERT embeddings in order to better understand
what information is being used by large language
models, and not just what is encoded. The main
premise behind this paper is that if a particular prop-
erty is used to solve a task, then the removal of that
property should negatively influence the model’s
ability to solve that task. Specifically, Elazar et al.,
2020 seeks to quantify the importance of the infor-
mation sets used for part-of-speech tagging, syntac-
tic dependency labeling, named entity recognition
and syntactic constituency boundaries on BERT’s
ability to perform the language modeling task.

We take a similar approach to Elazar et al.,
2020 by separating the information sets used for
CCG tagging and semantic tagging from word-
level BERT embeddings, and test how the removal
of these information sets impacts the embeddings’
performance on these tasks.

3 Experiment

To isolate the syntactic and semantic information
from word-level BERT embeddings efficiently, we
implement INLP using method described in sec-
tion 3.1. CCG tagging and semantics tagging are
probing tasks for INLP to extract relevant infor-
mation from embeddings, which are described in
section 3.2,3.3 . We also conduct experiments us-
ing BERT embeddings from different layers to see
which layer might contain more syntactic or seman-
tics information, as described in 3.5.

3.1 The Iterative Null-Space Projection
method

The INLP method first introduced in Ravfogel et al.,
2020, is used to create a guarding function that
masks all the linear information contained in a set
of vectors, X , that can be used map each vector to
c ∈ C, where C is the set of all categories. This
is accomplished by training a linear classifier, a
matrix W , that is applied to each x ∈ X in order
to predict the correct category c with the greatest
possible accuracy. Once W is determined, for any
x ∈ X we can remove the information that W uses
to predict c by projecting x onto the null-space of
W , N(W ) = {x|Wx = 0}. Call this projection
function P1 and let x̂ = P1(x). This removes all of
the linear information in x that W used to predict
the category c.

We iteratively apply this process until no lin-
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ear information remains in x̂, i.e. a linear clas-
sifier is unable to predict the correct category c
with any probability greater than that achieved
by guessing the majority class1. The final x̂ =
Pn(Pn−1(. . . P1(x))) contains no linear informa-
tion about the categories in C and we call P (x) =
Pn(Pn−1(. . . P1(x))) the guarding function.

The projection matrix P derived by matrix mul-
tipcliaitons Pn · Pn−1 . . . P1 can be susceptible to
numerical errors, therefore Ravfogel et al., 2020
utilized the following formula using rowspace pro-
jection2 proposed by Ben-Israel, 2015 to compute
the intersection of null spaces of weight matrix.
Then projection matrix P is derived from null space
projection of the intersection, P = P∩n

i=1N(Wi),
instead. Our experiment follow the same computa-
tion.

∩n
i=1N(Wi) = N(

∑n
i=1(PR(Wi)))

3.2 Data

We use the English Parallel Meaning Bank v4.0
(Abzianidze et al., 2017) to test the linear separa-
bility of the semantic and syntactic information in
word-level BERT embeddings. This dataset con-
sists of gold standard and silver standard word-
level semantic tags. The gold standard contains
5,438 sentences with annotations that are manually
verified while the silver standard contains 62,739
sentences with autogenerated annotations. All of
our experiments are conducted on gold standard
data with standard train/dev/test split3.

The original dataset does not include CCG tags,
however Abzianidze et al., 2017 utilized a CCG
parser to produce CCG tags. We follow a similar
procedure and apply a CCG parser (Yoshikawa
et al., 2017) to develop word-level CCG tags. Once
we obtain both CCG tags and semantic tags for
the dataset, we can perform word-level syntactic
and semantic probing tasks as desired. The total
number of labels in CCG tags and Semantics tags
are 159 and 72 respectively.

1The stopping criterion follows Elazar et al., 2020, itera-
tions will stop if the linear classifier achieve within one point
above majority accuracy on development set.

2PR(Wi) in the formula means row space projection of
weight matrix W .

3Gold standard dataset contains total of 34706 words, with
80% of training and dev data, and 20% of testing data

3.3 Probing tasks

The probing task involves training a linear classi-
fier4 on the final layer BERT embeddings in or-
der to predict the CCG tag or semantic tag asso-
ciated with each word. We will use this classifier
in the INLP algorithm in order to create a guard-
ing function for the information that is necessary
to complete the task. Take CCG tag as an exam-
ple: for a given embedding, vorig, the projection
that results from applying this guarding function,
Psyn or Psem, to the embedding will represent
the non-syntactic information contained in the em-
bedding and will from now on be referred to as
the “non-syntactic component” of the embedding,
vnosyn = Psynvorig.

Similar to the above, the semantic probing task
involves training a linear classifier on the final layer
BERT embeddings in order to predict the seman-
tic tag associated with each word. This classifier
is used in the INLP algorithm in order to create a
guarding function, Psem, for the information nec-
essary to complete the semantic tag labeling task.
As described in the syntactic probing task, we use
the resulting guarding function to compute a “non-
semantic embedding”, vnosem = Psemvorig.

3.4 Evaluation tasks

Our goal is to determine which information sets
captured in the BERT embeddings are relevant for
our evaluation tasks. We thus use the components
derived from the probing tasks to create new em-
beddings that isolate specific types of information.
These embeddings are then evaluated on the syntac-
tic and semantic tasks that were used for probing,
and their performance is compared to that of the
original embeddings. We also compare the per-
formance of each model trained on one of these
embeddings with another trained on new embed-
dings that are created by randomly removing the
same number of dimensions from the original em-
beddings as are removed by the INLP guarding
function. In doing so we can test the extent to
which the loss of the particular information set of
interest is responsible for the drop in performance,
as opposed to a general loss of information.

We will assess each of the non-syntactic and non-
semantic embedding types, the original BERT em-

4The linear classifier will use Adam as optimizer (Kingma
and Ba, 2014) implemented in torch (Paszke et al., 2017).
Therefore the total number of parameters will be dimensions
of BERT embeddings · number of labels, which will be 122112
for syntactic task and 55296 for semantics.
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beddings and the embeddings created by randomly
removing directional information on the CCG and
semantic labeling tasks that were used in the probes.
All the embeddings are listed in table 1.

Expression Description
vorig Original BERT em-

beddings
vnosem = Psemvorig Gained after INLP

with semantic task
vnosyn = Psynvorig Gained after INLP

with syntactic task
Rand(v, n) Embeddings v with

n random directions
removed

Table 1: Description of Embeddings

3.5 Layer-wise evaluation

In addition to the final layer BERT embeddings,
we perform a similar analysis on the embeddings
derived from different layers of the BERT archi-
tecture, in order to determine the separability of
these information sets at each layer. For embed-
ding vorigi from layer i, a linear classifier is trained
for each probing task to acquire guarding functions
Psyni and Psemi , respectively. Applying these pro-
jection functions, we are able to acquire vnosyni

and vnosemi . Subtracting them from the original
embedding, we get the semantic representation
vsemi and the syntatic representation vsyni . We also
randomly remove the same number of dimensions
in the original embedding for comparison.

By comparing the experiment results across dif-
ferent information sets and different layers, we
hope to better understand how BERT processes
different types of linguistic information throughout
the encoding process.

4 Results

We first evaluate our two tasks on the original em-
beddings, and determine that linear classifiers can
successfully predict both CCG tags and semantic
tags (around 85% and 89% testing accuracy, re-
spectively), as shown in table 2. We then apply the
INLP method to derive the guarding matrices Psyn

and Psem, which are used to project the original
embeddings onto the complements of the syntactic
information sub-space and the semantic informa-
tion sub-space. By applying linear transformations
to the original embeddings and their projections,

we are able to extract the embeddings described in
table 1.

To ensure a fair assessment of the impact of
the information loss, we conduct experiments for
which we start with the original BERT embeddings
and randomly remove the same number of direc-
tions that our derived embeddings lost, and train
the linear classifiers on these embeddings. The test-
ing accuracies from our experiments can be found
in table 2. Curiously, our linear classifiers for eval-
uation tasks cannot do bettet than majority class.

On the intermediate layers, linear classifiers are
generally able to achieve a test accuracy greater
than 85% for both CCG tagging and semantics
tagging. However, we observe the same major-
ity case accuracy across all layers for each eval-
uation task. Evaluations of Rand(vi, |vnosyni |)
and Rand(vi, |vnosemi |) result in the same majority
class accuracy.

5 Discussion

We are surprised to find out that we are unable
to fully remove the syntactic/semantic informa-
tion from the embeddings by training the linear
classifier to make prediction that is no better than
the majority, without removing more ranks than
BERT’s hidden size. However, removing more
ranks than BERT’s hidden size, whether through
the INLP algorithm or randomly, results in a degen-
erate embedding where every element is reduced
to an extremely small magnitude that the linear
probe on the evaluation task will only reach the
majority class accuracy. This is true on all layers
of BERT. This seems to reveal that, the target infor-
mation is not linearly separable from the original
embeddings.

Upon a close inspection of the INLP process and
the projections of the original embeddings, vnosem
and vnosyn, we realize that, the INLP process con-
tinues to run even if it already removes more ranks
than BERT’s hidden size, which is 768 in our case,
because the desired dev accuracy is still not met.
Once the rank of the projection matrix reaches the
limit, the INLP process simply reduces the magni-
tude of each elements in the embeddings. In most
cases, the process eventually zeroes out the embed-
dings, which explains the identical yet trivial result
we get from the evaluation tasks across all layers.
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Embedding Directions Removed CCG Tagging Semantic Tagging
vorig 0 84.75% 88.56%

Majority Guess N/A 16.57% 22.93%

Rand(vorig, |vnosem|) 792 16.57% 22.93%
Rand(vorig, |vnosyn|) 795 16.57% 22.93%

vnosem 792 16.57% 22.93%
vnosyn 795 16.57% 22.93%

Table 2: Experiment Result of Different Embeddings

6 Conclusion

It has been established that linear classifiers are
successful in various linguistics probing tasks (Liu
et al., 2019). Our experiment has confirmed that
linear classifiers can perform CCG tagging and se-
mantic tagging on the Parallel Meaning Bank data
set (Abzianidze et al., 2017) with a fairly high rate
of success. We then employed INLP to guard the
information contained in BERT embeddings that
linear classifiers use to perform the aforementioned
classification tasks.

Using the INLP-derived guarding functions we
were able to explore the importance and separa-
bility of the syntactic and semantic information
contained in BERT embeddings. We evaluated the
classification tasks on various derived embeddings
and concluded that not only is the syntactic and
semantic information essential for their respective
classification tasks, these information sets are also
very crucial for the opposing classification tasks as
well. Thus the two information sets are not linearly
separable from the original embeddings. Attempts
to remove the information sets by INLP will re-
sult in projection matrices whose ranks are higher
than the rank of embeddings. Applying the projec-
tion matrices will result in degenerate embeddings
where all information is removed.

Our results indicate that besides using the ma-
jority class accuracy as the stopping condition, re-
searchers hoping to use INLP to guard information
from BERT embeddings should also make sure the
loop stops before too many ranks are removed. If
the rank of the projection matrix P is higher than
the rank of the embedding matrix, only trivial re-
sults will be achieved.

Though INLP successfully produces interesting
results on various tasks, it is worth noting that our
dataset is relatively small compared to the number
of parameters in the linear classifier. Reproduing
this experiment at a larger scale will be helpful in

further validating the experiment results. Addition-
ally, the variety of training and evaluation tasks can
be increased for a broader understanding of how
syntactic and semantic information is encoded in
BERT embeddings.

Ethical Consideration

Scientific Artifacts
Below is a list of scientific artifact used along with
the names of their licenses. None of these artifacts
restrict use for research purposes. We are not using
this work for commercial purposes.

• Parallel Meaning Bank(Abzianidze et al.,
2017) - ODC-BY 1.0

• BERT(Devlin et al., 2019) – Apache License
Version 2.0

• Deccg(Yoshikawa et al., 2017) - MIT License

• PyTorch(Paszke et al., 2017) - PSF License
Agreement

Of the artifacts used, the only data source is the
Parallel Meaning Bank, which does not contain
any sensitive information. We used only English
data from the PMB, which is intended for syntax
and semantics research and makes no attempt, as
far as we are aware, to balance the demographic
groups represented. This is not a problem for our
work because we are not using the PMB to generate
anything.

Computational Experiments

The parameters used are the word embeddings and
syntactic/semantic tags; this yields 122,112 param-
eters for the syntactic model and 55,296 parameters
for the semantic model. The models altogether took
two GPU models to run, and the results reflect a
one-time run on a computing cluster. The run time
is around 5 minutes for a single probing task.
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