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ABSTRACT

Molecular representation learning underpins computational chemistry and drug
discovery, yet standard graph-based approaches struggle with oversmoothing and
limited long-range interaction modeling. We explore topological deep learning
(TDL) as an alternative, leveraging hypergraphs and cell complexes to incorporate
higher-order molecular structures. By systematically comparing these represen-
tations against graph-based models, we evaluate their capacity to mitigate over-
smoothing and capture richer molecular features. Our empirical analysis across
QM9 and ZINC benchmarks demonstrates that topological representations en-
hance predictive performance, particularly in complex molecular graphs. These
findings highlight the potential of TDL for more expressive and structurally aware
molecular learning frameworks.

1 INTRODUCTION

Understanding molecular representations is fundamental to computational chemistry and drug dis-
covery, where predicting chemical properties, drug efficacy, and biomolecular interactions relies on
the quality of learned representations. Early descriptor-based approaches, such as Extended Con-
nectivity Fingerprints (ECFP) (Rogers & Hahn, 2010) and MACCS keys, are built on predefined
structural motifs but struggle to capture molecular flexibility and interactions beyond local patterns.
The rise of deep learning techniques has transformed this landscape, shifting from static features to
data-driven representations that model the underlying structure-function relationships of molecules.

Language models designed for molecular representations, such as MolBERTa (Balaji et al., 2023)
and MoLFormer (Wu et al., 2023), leverage self-supervised learning over SMILES strings, mimick-
ing homologous natural language processing models. These models have demonstrated remarkable
improvements in virtual screening and property prediction by capturing chemical syntax and im-
plicit molecular rules. However, the sequential nature of SMILES inherently discards 3D structural
information and introduces artifacts from redundant molecular notations, limiting its generalizability
(Andronico et al., 2011). To address this, hybrid architectures like MolTrans (Huang et al., 2020) in-
tegrate self-attention and convolutional layers, seeking to balance sequence-based expressivity with
structural awareness.

Graph neural networks (GNNs) offer an alternative, encoding molecular structures as graphs where
atoms serve as nodes and bonds as edges. Architectures like GROVER (Rong et al., 2020),
Graphormer (Ying et al., 2021), and GeomGCL (Li et al., 2022) incorporate self-supervised and
geometric learning paradigms to enrich molecular graph representations. Yet, despite their suc-
cess, GNNs face inherent challenges, particularly oversmoothing and oversquashing. oversmoothing
causes node embeddings to converge, diminishing their discriminative power and leading to feature
homogenization (Qureshi et al., 2023; Rusch et al., 2023; Keriven, 2022). Oversquashing, on the
other hand, restricts the capacity to model long-range dependencies by compressing distant molec-
ular interactions into low-dimensional representations. This bottleneck prevents the network from
capturing rich molecular features, ultimately hindering downstream performance (Jiang et al., 2021).
While transformer-based models and geometric deep learning have been explored as alternatives,
these challenges persist, highlighting the need for further innovation in molecular representation
learning.

In response to these limitations, topological deep learning (TDL) has emerged as a promising direc-
tion, introducing higher-order representations that extend beyond traditional graph structures. These
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higher-order structures provide a more expressive framework to model molecular interactions, cap-
turing multi-atom relationships that cannot be fully described by pairwise graphs alone. By leverag-
ing hypergraphs and cell complexes, TDL allows interactions between more than two nodes through
hyperedges or hierarchical relationships via 2-cells (faces) (Hajij et al., 2023; Papillon et al., 2024;
Papamarkou et al., 2024). These structures naturally align with molecular architecture, as molecular
rings can be represented as interactions involving three or more atoms, with hyperedges capturing
group-level relationships and 2-cell elements modeling closed molecular cycles in hypergraphs or
cell complexes.

Building on this idea, (Battiloro et al., 2025) propose representing molecules as combinatorial com-
plexes by integrating rings with 2-cells and functional groups as hyperedges, demonstrating com-
petitive results on the QM9 molecular property prediction benchmark using equivariant topological
neural networks.

Given TDL’s recent emergence, it still faces several open challenges, characteristic of its early devel-
opment stage. One of the most pressing issues is the lack of standardized topological benchmarks.
Additionally, the molecular representation field lacks a unified framework for defining and repre-
senting interactions between higher-order cells. Unlike graph-based models, which benefit from
well-established datasets like QM9 (Ruddigkeit et al., 2012) and Open Graph Benchmark (OGB)
(Hu et al., 2020), TDL still lacks diverse, large-scale datasets to evaluate model performance across
different applications consistently.

Furthermore, there remains a gap in comparative analyses between various TDL architectures and
their corresponding cell-lifting strategies (Papamarkou et al., 2024; Bernárdez et al., 2024). This ab-
sence of systematic benchmarking impedes the development of universally applicable design prin-
ciples, a foundation that has already been well-established in classical graph theory.

Addressing these limitations requires not only theoretical advancements but also empirical ap-
proaches. In this work, we introduce a novel, systematic approach to validate the relevance of
topological information in molecular representations. Our approach follows a structured pipeline.
We begin by loading molecular datasets, representing molecules using different topological struc-
tures such as graphs, hypergraphs, and cell complexes. Next, we apply specialized neural network
architectures tailored to each representation. Additionally, we assess the impact of oversmoothing in
these representations by analyzing the behavior of embeddings across model depths, comparing the
resilience of graphs, hypergraphs, and cell complexes to this phenomenon. Finally, we perform an
extensive benchmarking analysis to compare these representations against traditional graph-based
models. Through this process, we aim to assess the impact of the added topological information and
determine whether these higher-order features yield measurable improvements in molecular prop-
erty prediction.

2 METHODS

2.1 DATASETS

Our study utilizes two well-established molecular datasets, QM9 and ZINC, to evaluate the im-
pact of higher-order molecular representations. QM9 comprises 134,000 small organic molecules
containing up to nine heavy atoms, serving as a benchmark for quantum chemistry due to its 19
quantum-mechanical property annotations derived from density functional theory (DFT) calcula-
tions (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014). To extend our analysis to larger and
more structurally diverse molecules, we incorporate a curated subset of the ZINC database, consist-
ing of 250,000 drug-like molecules with up to 38 heavy atoms (Irwin & Shoichet, 2005). ZINC is
widely used in drug discovery and virtual screening due to its pharmacologically relevant chemical
diversity.

For the ZINC database benchmark, we define the target variable as a composite molecular property,
calculated as:

y = logP − SAS − cycles (1)
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where logP represents the octanol-water partition coefficient, quantifying hydrophobicity; SAS
denotes the synthetic accessibility score, reflecting the ease of synthesis; and cycles count the num-
ber of molecular rings containing more than six atoms, which penalizes overly complex structures.
This formulation provides a balanced measure of molecular drug-likeness by discouraging excessive
lipophilicity, synthetic intractability, and high molecular rigidity.

2.2 MOLECULAR REPRESENTATIONS

Molecular graphs. Classical molecular representations leverage molecular graphs G = (V,E),
where nodes v ∈ V correspond to atoms, and edges e ∈ E represent chemical bonds. This formu-
lation allows encoding of molecular topology using adjacency matrices A ∈ R|V |×|V | and feature
matrices X ∈ R|V |×d, where each node is associated with a feature vector capturing atomic prop-
erties such as atomic number, hybridization, and partial charge. The molecular graph formulation
supports graph-based neural networks but remains limited in capturing higher-order molecular in-
teractions beyond local relations.

To extend molecular graphs into higher-order topological domains, we apply a topological lifting
that maps the initial graph structure into cell complexes and hypergraphs. This transformation intro-
duces new topological objects, such as faces (2-cells) and hyperedges, while preserving the original
graph’s atomic and bonding information.

The lifting process constructs these higher-dimensional structures by identifying molecular rings as
closed 2-cells in a cell complex or as multi-node hyperedges in a hypergraph. During this map-
ping, node-level features are propagated to these newly created topological entities, while additional
domain-specific descriptors (e.g., ring size, aromaticity, or heteroatom composition) are computed
to capture higher-order molecular properties.

Cell complexes. To enhance molecular representation, we extend graphs to cell complexes, a topo-
logical generalization that incorporates higher-dimensional structures. A cell complex C consists of
nodes (0-cells), edges (1-cells), and faces (2-cells), enabling hierarchical part-whole relationships.
The boundary operator ∂k : Ck → Ck−1 formalizes these relationships, where edges are defined by
their boundary nodes, and faces by their boundary edges:

∂2(f) =
∑
e∈f

wee, ∂1(e) =
∑
v∈e

wvv, (2)

where we and wv are orientation coefficients. Molecular rings, represented as 2-cells, preserve
geometric and chemical constraints, providing an enriched structural descriptor beyond edge-based
connectivity.

Hypergraphs. Hypergraphs H = (V,EH) generalize graphs by introducing hyperedges eh ∈ EH

that connect multiple nodes simultaneously, including edges which are limited to 2 nodes connec-
tions. This structure enables a more expressive modeling of multi-atom interactions, particularly
in conjugated and delocalized electron systems. The incidence matrix H ∈ R|V |×|EH | encodes
node-hyperedge relationships, where each entry Hve indicates node membership in a hyperedge.

Each topological domain is enriched with domain-specific features, capturing various molecular
properties at different structural levels. At the node level, atomic descriptors such as atomic num-
ber, degree, formal charge, hybridization state, aromaticity, atomic mass, and chirality provide a
detailed characterization of individual atoms within the molecular graph. At the edge level, bond-
specific properties including bond type, conjugation status, and stereochemistry encode the nature
of atomic connectivity, ensuring accurate representation of molecular bonding interactions. Beyond
these conventional features, higher-order structures such as hyperedges and 2-cells, which repre-
sent molecular rings, contribute additional descriptors such as ring size, aromaticity, presence of
heteroatoms, saturation status, hydrophobicity, electrophilicity, nucleophilicity, and polarity. These
higher-order attributes enable a richer characterization of molecular complexity, allowing for a more
detailed understanding of chemical and structural properties in molecular representations.
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2.3 MODELS

To effectively model higher-order molecular representations, we employ architectures that extend
beyond conventional GNNs to incorporate hypergraphs and cell complexes, capturing richer struc-
tural and relational information. It is important to clarify that we use simple GNN architectures as a
raw baseline, focusing on their fundamental performance without introducing additional complexi-
ties.

At the foundation, the Graph Convolutional Network (GCN) (Kipf & Welling, 2016) serves as a
baseline, leveraging spectral graph convolutions to aggregate information from local atomic neigh-
borhoods. Formally, given a molecular graph G = (V,E) with node features X , the propagation
rule for GCN is:

H(l+1) = σ
(
D̃−1/2ÃD̃−1/2H(l)W (l)

)
(3)

where Ã = A + I is the adjacency matrix with self-loops, D̃ is its diagonal degree matrix, H(l)

represents node embeddings at layer l, and W (l) is the learnable weight matrix.

To capture multi-atom interactions beyond pairwise relations, the Hypergraph Message Passing Neu-
ral Network (HMPNN) (Heydari & Livi, 2022) extends the graph structure by introducing hyper-
edges. Given a hypergraph H = (V,EH), where hyperedges eh connect multiple nodes simultane-
ously, message passing is defined by:

H(l+1)
v = σ

( ∑
eh∈EH

1

|eh|
W (l)

eh
H(l)

eh
+W (l)

v H(l)
v

)
(4)

where messages are weighted across hyperedges and nodes by their respective learnable matrix
W

(l)
e , W (l)

v , allowing efficient encoding of higher-order molecular dependencies.

For even more expressive modeling, CW Networks (CWN) (Bodnar et al., 2021) extend GNNs to
operate over cell complexes. These networks generalize message passing beyond nodes and edges to
include faces (2-cells), enabling hierarchical information flow. Given a cell complex C , the update
rule for cell embeddings is defined as:

H(l+1)
c = σ

 ∑
c′∈N (c)

W (l)
c H

(l)
c′

 (5)

where N (c) denotes the neighborhood of cell c, including lower-dimensional and higher-
dimensional adjacent structures across different ranks. This enables molecular rings, represented
as 2-cells, to propagate features in a way that captures topological constraints and part-whole rela-
tionships.

2.4 EXPERIMENTAL SETUP

To investigate oversmoothing and oversquashing effects, we conducted multiple experiments, ex-
ploring all possible combinations for a vast number of layers and hidden channels. Beyond these
two key hyperparameters, we also explored additional configurations, adjusting various parameters.
All these combinations are detailed detailed in A.

To systematically evaluate these models, we benchmark performance using standard regression met-
rics, including the coefficient of determination (R2), Spearman Rank Correlation, Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Relative Error. These metrics ensure robust
comparison across datasets, quantifying the effectiveness of higher-order representations in molec-
ular property prediction.
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3 RESULTS AND DISCUSSION

3.1 OVERSMOOTHING IN MOLECULAR DATA

GCNs suffer from oversmoothing when the depth of the network increases, leading node embed-
dings to become indistinguishable. While this phenomenon is well-documented in traditional graph
tasks, molecular graphs exhibit distinct oversmoothing characteristics due to their inherent structural
constraints and localized connectivity.

For molecular datasets such as ZINC and QM9, our results show that oversmoothing manifests at
different depths depending on the dataset. On ZINC, a regression task with complex molecular
structures, oversmoothing becomes apparent beyond N = 10, where train loss begins to increase.
This suggests that deeper layers propagate information excessively, reducing the network’s ability
to distinguish molecular features. Conversely, in QM9, which involves quantum chemical property
prediction, oversmoothing occurs more gradually, with a noticeable but less severe degradation at
N ≥ 9 (Figure 1.

Unlike traditional social or citation networks, it is thought that molecular graphs are inherently
sparse and chemically constrained, which should impact the effectiveness of message passing. How-
ever, in traditional networks, oversmoothing typically occurs at 3-5 layers, whereas we observed that
molecular graphs can sustain effective message passing up to 3-8 layers before feature collapse.

(a) ZINC GCN train loss.

(b) QM9 GCN train loss.

Figure 1: Comparison of GCN train loss on ZINC and QM9 datasets.
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(a) QM9 Cell Complex representation: CWN train loss.

(b) QM9 Hypergraph representation: HMPNN train loss.

Figure 2: Comparison of GCN train loss on ZINC and QM9 datasets.

3.2 MOLECULAR GRAPHS SHOW FUNDAMENTALLY DIFFERENT CONNECTIVITY
POTENTIALLY AFFECTING INFORMATION PROPAGATION

While oversmoothing has been extensively studied in social and citation networks, molecular graphs
introduce a distinct structural paradigm that reshapes how this phenomenon unfolds. In order to gain
insight in the information propagation of these graphs, we analyze the Laplacian spectrum across
datasets with differing topologies—specifically, citation graphs (Cora and PubMed) and molecular
datasets (QM9 and ZINC).

The Laplacian gap, a measure of eigenvalue separation, serves as a spectral indicator of a graph’s
connectivity and the ease with which signals propagate. A larger gap suggests better-separated
eigenvalues, often correlating with reduced oversmoothing and more stable learning dynamics. In
contrast, a near-zero or negative gap may indicate spectral degeneracy, where nodes converge to
indistinguishable embeddings within a few layers.

In our analysis, Cora exhibits a strikingly small Laplacian gap (−5.16 × 10−14), suggesting that at
least two eigenvalues are nearly identical. This is characteristic of dense community structures and
scale-free connectivity in citation networks, where a handful of highly connected nodes dominate in-
formation flow. Consequently, oversmoothing occurs rapidly, as signals diffuse too uniformly across
the network, leading to an early collapse of node representations. PubMed, while still susceptible
to oversmoothing, presents a slightly larger gap (−0.0275), implying marginally improved spectral
separation, possibly due to its more dispersed connectivity compared to Cora.

Molecular graphs, by contrast, exhibit fundamentally different spectral properties. QM9 presents a
significantly larger Laplacian gap (−0.3559, with a standard deviation of 0.1304), suggesting that
its graph structures maintain a broader eigenvalue distribution. This aligns with the rigid connectiv-
ity imposed by atomic valency constraints and the presence of cyclic motifs, particularly aromatic
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rings, which introduce additional structural regularity. These topological features reshape the Lapla-
cian spectrum, often mitigating the rapid spectral collapse observed in citation networks. The ZINC
dataset, which contains more complex drug-like molecules, exhibits an intermediate gap magni-
tude (−0.0468), reflecting a balance between larger molecular structures and diverse connectivity
patterns. While still susceptible to oversmoothing in deep architectures, the presence of rings and
functional groups offers alternative pathways for information flow, delaying the onset of feature
collapse compared to social graphs.

Table 1: Laplacian Gap Results for Different Datasets

Dataset Gap Std Dev
PubMed -0.02752 —
Cora -5.16e-14 —
QM9 -0.3559 0.1304
ZINC -0.04677 0.02675

3.3 TOPOLOGICAL REPRESENTATIONS ARE ABLE TO CAPTURE BETTER REPRESENTATIONS
THAN THEIR GRAPH COUNTERPARTS

Topological networks display better results in molecular endpoint prediction. Our results show
that topological representations, such as cell complexes and hypergraphs, provide enhanced molec-
ular embeddings compared to traditional graph-based approaches. The ability to model higher-order
molecular interactions, including aromaticity, conjugation, and multi-atom dependencies, enables
more effective feature propagation and mitigates the limitations of standard GNNs.

The comparison of endpoint performance across different architectures, GCNs, CWNs, and
HMPNNs reveals significant differences. While GCNs exhibit gradual degradation in performance
as depth increases, CWNs and HMPNNs show varied improvements. CWNs, which encode rings as
2-cells, initially outperform GCNs but exhibit instability at high depths. HMPNNs maintain consis-
tent performance across depths, suggesting that hypergraph message passing effectively preserves
long-range molecular interactions (Figure 1).

TNNs and their liftings scale better with width. The number of hidden channels influences
smoothing behavior significantly. GCNs show a rapid decline in feature diversity as hidden chan-
nels increase, leading to uniform embeddings that reduce predictive power. In contrast, CWNs and
HMPNNs scale more effectively with increased feature dimensionality, maintaining distinct repre-
sentations across layers. This suggests that incorporating topological structures provides a more
stable inductive bias that allows models to leverage higher-dimensional feature spaces efficiently.

Oversmoothing seems mitigated by topological learning in molecules. Network depth plays
a critical role in determining model stability. GCNs exhibit progressive oversmoothing beyond 8
layers, where node representations become nearly indistinguishable. CWNs experience increasing
variance in performance beyond 10 layers, likely due to overcomplicated message pathways within
high-dimensional complexes. HMPNNs, however, exhibit robust behavior across depths, leveraging
hyperedges to prevent feature collapse and maintain meaningful differentiation between molecular
structures. The resilience of hypergraph-based methods suggests that they offer a more scalable
solution for deep molecular learning tasks.

Topological representations mitigate oversmoothing but still struggle with molecular com-
plexity. The fitting behavior observed across QM9 and ZINC highlights key differences in how
graph-based and topological representations generalize across molecular structures. In QM9, where
molecular graphs are smaller and structurally constrained, GCNs exhibit moderate oversmoothing
at deeper layers, while CWNs and HMPNNs maintain stable performance, effectively capturing
ring structures and long-range dependencies. However, in ZINC, which consists of larger and
more chemically diverse molecules, GCNs struggle with overfitting, and CWNs display high vari-
ance across depths, indicating that simple graph convolutions may be insufficient to model com-
plex molecular interactions. HMPNNs, while effective in QM9, show signs of instability in ZINC,
suggesting that hypergraph message passing requires additional constraints when applied to highly
heterogeneous molecular graphs. These findings emphasize the data specific nature of topological
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deep learning methods. In QM9, structured topologies like CWNs and HMPNNs enable better fea-
ture propagation without excessive smoothing, aligning well with the dataset’s limited molecular
complexity. Conversely, in ZINC, the increased connectivity and variability of molecular structures
introduce challenges for both graph-based and topological models, with deeper networks prone to
over-parameterization (see figures Appendix C).

Embedding similarity shows richer representations learned trough topological networks. For
QM9, we observe that the Euclidean distance between GCN and CWN embeddings varies signifi-
cantly with network depth and hidden dimensionality. Notably, distances are highest at intermediate
depths (4–8 layers) and larger hidden channels (1024–2048), suggesting that CWNs produce distinct
representations that diverge from traditional graph embeddings, particularly when richer feature ca-
pacity is available. The comparison between HMPNN and CWN further reinforces this, showing
substantial shifts in embedding space at larger depths, indicating that hypergraph-based models in-
troduce non-trivial transformations to molecular representations. Conversely, distances between
HMPNN and GCN remain relatively lower, implying that while hypergraphs capture additional
topological features, their representations still retain some similarity to graph-based encodings.

For ZINC, the embedding distances display a different pattern. Here, the divergence between GCN
and CWN embeddings is smaller, particularly at greater depths, implying that deeper CWNs may
be converging towards GCN-like representations in highly complex molecular graphs. However,
distances remain relatively high in the low-depth, high-dimensional regime, indicating that CWNs
initially leverage additional topological structure before eventual feature collapse at depth. The
hypergraph-based HMPNN, in contrast, demonstrates significant shifts from both GCN and CWN
embeddings across all configurations, particularly in the mid-depth, high-channel range. This sug-
gests that hypergraph-based methods offer unique structural representations in larger molecular
graphs, diverging more markedly from traditional graph-based methods than they do in QM9. Com-
plete results for similarity comparisons between representations can be found at Appendix B.

4 CONCLUSIONS

Our findings highlight the advantages of topological deep learning in molecular representation learn-
ing, demonstrating that higher-order structures such as hypergraphs and cell complexes provide
richer molecular embeddings compared to conventional graph-based models. By capturing multi-
atom interactions beyond pairwise connectivity, TDL-based architectures mitigate key limitations of
graph neural networks, including oversmoothing and restricted information propagation.

Empirical evaluations across QM9 and ZINC reveal that topological representations enhance predic-
tive performance in molecular property tasks, particularly in capturing long-range dependencies and
preserving structural information. Hypergraph message passing networks maintain more stable per-
formance across network depths, while combinatorial complex-based architectures, such as CWNs,
demonstrate competitive results but exhibit increased variance in complex molecular graphs. These
observations suggest that the choice of topological domain significantly influences model expressiv-
ity and generalization.

Despite their advantages, topological representations introduce additional modeling complexity and
mild computational overheads, requiring further optimization for large-scale applications. Stan-
dardized benchmarks and a unified framework for topological molecular learning remain open chal-
lenges, necessitating systematic evaluations across diverse datasets.

MEANINGFULNESS STATEMENT

A meaningful representation of life should capture all possible degrees of complexity of the object
it is modelling. Thus, we see topological representations as a leap forward in the modelling capacity
that graph representations offer in molecular representation. This work aims to establish a first
comparison from an empirical lens of such representations and architectures over more traditional
counterparts with a will of pushing forward research in this field.
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A HYPERPARAMETER TUNING

In order to do a fair comparison between the different dataset, we have applied the same train,
validation, and test split in both QM9 and ZINC datasets: 70%, 5% and 15%, respectively. This has
been chosen after benchmarking different splits. All runs were executed on NVIDIA H100 GPUs.

Table 2: Hyperparameter configurations used in models.

Hyperparameter Value
Optimizer Adam
Learning rate [0.001, 0.0001]
Weight Decay 1e-5
Batch size [4, 8, 16, 32, 64, 128, 256]
Epochs 1000
Early Stopping Patience 50
Number of Layers [1 - 10, 12, 15, 20]
Hidden Channels [256, 512, 1024, 2048]

This systematic exploration ensured that each model was effectively trained for its respective repre-
sentation.
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B MODEL EMBEDDING COMPARISON

(a)

(b)

(c)

Figure 3: Comparison of embeddings for five training points from the QM9 dataset across three
different topological liftings and their corresponding models.
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(a)

(b)

(c)

Figure 4: Comparison of embeddings for five training points from the ZINC dataset across three
different topological liftings and their corresponding models.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review for LMRL Workshop at ICLR 2025

C MODEL RESULTS

C.1 HYPERGRAPH MESSAGE PASSING NEURAL NETWORK RESULTS

Figure 5: QM9 Hypergraph representation: Train Loss

Figure 6: ZINC Hypergraph representation: Train Loss
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C.2 CW NETWORK RESULTS

Figure 7: QM9 cell complex representation: Train Loss

Figure 8: ZINC cell complex representation: Train Loss
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