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Abstract

As a pivotal direction driving artificial intelligence into the physical world, embod-
ied intelligence is drawing great research attention across academia and industries;
yet the scaling law driving the success of many large Al models in the past decade
has not been observed in pursuing embodied intelligence, partly due to the scarcity
of multi-modal, heterogeneous, and physics-related data required for learning it.
In this perspective paper, we analyze the reasons behind and derive an efficiency
law that is more demanded in this context. To meet the law, we first propose world
models of generative simulation (GS-World) that are expected to model and predict
the world dynamics in a perfectly physics-accurate manner, by generative learning
of physics simulation, including the 3D assets, the environments, and the physical
rules governing their dynamic interactions. Based on such a GS-World engine,
we propose an efficient, engine-driven learning paradigm for pursuing embodied
intelligence, which is characterized by an automated pipeline of data generation
and streaming, training of vision-language-action models, model verification, and
model deployment, termed as Engine-driven, Sim2Real VLA. Task-oriented em-
bodiments can also be optimized backwardly, given the differentiable nature of the
learning pipeline. We will showcase the paradigm by releasing a prototype engine
of GS-World and automatically trained Sim2Real VLAs. We call for the collective
community contributions to this promising umbrella of research fields.

1 Introduction

To advance the robotic learning research, in this perspective paper, we first present an efficiency law,
which is an empirical power law derived from the scaling law [[1} 2]; it characterizes how model
performance is related to the efficiency of data generation. Give potential ways to improve the data
generation efficiency, we favor those based on generative world models, and propose world models of
generative simulation (GS-World) (cf. an illustration in Fig@ that learn to generate all the internal
controlling ingredients required for modeling and predicting action dynamics in a physics-accurate
manner, including the 3D assets, the environment, and the physical rules governing their dynamic
interactions; GS-World generates a simulation world strictly adhering to physical laws, where robotic
agents can act, interact with the environment, and themselves evolve for task-optimal embodiments.
We give potential technical approaches for learning a GS-World.

To meet the efficiency law, we also propose an efficient, engine-driven learning paradigm for pursuing
embodied intelligence, based on the proposed engine of GS-World. The paradigm is characterized by
an automated pipeline of data generation and streaming, training of vision-language-action (VLA)
model, model verification, and model deployment, which we term as Engine-driven, Sim2Real VLA
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(cf. Fig[T]for an illustration); task-oriented embodiments can also be optimized backwardly, given
the differentiable nature of the learning pipeline. GS-World can optionally absorb knowledge and
priors from real-world observations. By playing in such a generative simulation world, robotic skills
can be discovered and learned in either analytic or generative manners, where a rich set of scene-,
object-, and affordance-level attributes can be automatically computed. This gives the paradigm an
opportunity to learn attribute-enhanced VLAs; our Sim2Real VLA models favor the neural design of
a high-level, VLM-based planner and a low-level actor of policy model, which are bridged by the
automatically computed mid-level attributes. A suite of online and continual learning algorithms
connect these pipeline modules and learn embodied intelligence with data streamed on the fly. In
summary, our proposed paradigm has nice properties, including 1) automation and efficiency, 2)
scalability and elasticity, 3) physics accuracy, 4) robustness to disturbance, 5) support of various
embodiments via hardware calibration, 6) sim2Real transferability, and 7) evolution of embodiments;
details are given in Section 2.1}

We will showcase the paradigm by releasing a prototype engine of GS-World and automatically
trained Sim2Real VLAs. The remainder of this paper goes as follows. Section[2]presents an efficiency
law which motivates us to propose the paradigm of Engine-driven Sim2Real VLA in Section
Details of GS-World is presented in Section [3] and in Section[4} we present how robotic skills can be
discovered in GS-World. Section[5]and Section[6] give the architecture of Sim2Real VLAs and the
framework for designing the robot’s morphological structure.

2 An Efficiency Law for Pursuing Embodied Intelligence and A Proposed
Learning Paradigm

In the past decade, the fascinating progress of generative models [3, 4} S]] is largely driven by
increasing the sizes of neural models and the corresponding budget of compute for training. Empirical
analyses on progress of LLMs also establish the scaling law [1} 2], which is an empirical power law
characterizing the relations between model performance and the size of model, the size of dataset, and
the amount of compute used for training; given a fixed compute budget, the scaling law also suggests
optimal allocations among these factors, e.g., to allocate the compute budget more on training larger
models on modest amounts of data with early stops, which are less influenced by other training
practices (e.g., choices of architectures and training algorithms).

These insights are obtained under the regime of unlimited training data. However, subsequent research
identifies violation of the neural scaling law when either the training data are insufficient or they are of
low quality [[6}[7]]. This matters for learning generative models beyond LLMs. For learning embodied
intelligence, especially, it requires multi-modal, heterogenous data including various sensory inputs
(e.g., visual, force-torque, and/or tactile ones), proprioceptive states of robots, in addition to the
language commands. Data collection, cleaning, and calibration for training robotic models (e.g.,
vision-language-action models [8]) are much more time-consuming and costly than training LLMs,
since text data are massively available on the Internet and new data are daily added by Internet
users, even though analysis also projects that publicly available, human-generated text data would be
consumed to an end very soon [9].

How efficiently data are generated indeed matters for learning generative models. To better character-
ize its importance, we introduce the notion of data-generation rate, denoted as rp, which precisely
measures how many tokens are generated per time unit — for simplicity, we here do not differentiate
among difference choices of tokenizers and tokens for data of different modalities. In the context of
scaling law [1} 2]}, the following empirical law can be derived for an allowed amount of time ¢p

l(rp) = (ep-rp-tp)~ "7, 1
where ap and cp are model- and task-dependent constants that establish a power law w.r.t. the loss
l. We term equation (1) as efficiency law, which states that the model performance, measured by [,
improves with a higher data-generation rate rp, given a fixed amount of allowed time. We note that
is empirically established only when rp > r3i i.e., when enough data are generated for training
models. When considering data generation together with the model size, measured by its number P
of parameters, we can derive the following empirical relation

I(rp,P) = ((cp - P)~?/*? 4 (¢p-rp - tp) )", 2

where ap and cp are also model- and task-dependent constants. One may refer to [1} 2] for how the
original neural scaling laws are established.



The efficiency law suggests that rp plays a decisive role in learning better models. Given a fixed
amount of time allowed to generate the data, a lower rp would make the learning under the data-
scarcity regime, and correspondingly, advanced techniques, such as mode reusing [6] and data pruning
[LO], should be used in order for the model performance to obey the scaling law. Conversely, when
higher enough 7, is possible, data amounts would not be an issue, and (2)) will have a degenerate
version that tells a power relation of [(P) = (cp - P)~ %%, i.e., larger models are able to be used to
have better performance.

Given the multi-modal, heterogenous data nature of robotic learning, possible ways to increase
rp include 1) investment on building up data factories where robotic data can be obtained by tele-
operation, 2) invention of new business models that can amortize the costly data collection with cheap
and colectively efficient crowd-sourcing manners, 3) relying on generative models including world
models, and 4) mixing of the above manners. While other manners are useful, in this paper, we favor
the third manner and propose a learning paradigm, with an automated data generation and model
training pipeline, powered by a proposed world model of generative simulation (GS-World).

2.1 The Paradigm of Engine-driven Sim2Real VLA using GS-World

Challenges indicated by the efficiency law suggest that, if we aim for continuously advancing the
levels of machine intelligence [11] towards AGI, we must resolve the issue of data scarcity in a
more efficient manner. Fortunately, the blessing from many practical applications of high value is
that what we really need is those agents that are generally knowledgable while being specialized in
certain fields (i.e., specialized generalists [12]]). When such specialized generalists can be developed
across various application field, it would probably pave a more efficient way towards achieving
AGI. While this philosophy applies to large foundation models of various kinds, it is in particular
illuminating for learning those of embodied intelligence. In fact, different from generative foundation
models of LLMs and multimodal LLMs that are usually deployed on clouds serving for more general
purposes, embodied Al models (e.g., VLAs) would be deployed at end sites for certain application
scenarios requiring bounded generalization, and be better calibrated to hardware configurations of the
embodiments for lower costs.

In this perspective paper, we propose a new paradigm of learning embodied intelligence that addresses
the curse brought by efficiency law, termed Engine-driven Sim2Real VLA. Fig. [T|gives the illustration.
The proposed paradigm is anchored on a novel engine termed Generative Simulation of World
Models (GS-World), which pursues generative learning of physics simulation that simulates a world
complying with physical laws, where robotic agents can act, interact with the environment, and
themselves evolve for task-optimal embodiments; details of GS-World are given in Section E}

The forward pipeline of engine-driven sim2real VLA goes by streaming into GS-World few seeding
data of heterogeneous, real-world priors, including those related to semantics, scene structures, object
articulations, physical properties, action dynamics, and/or to hardware calibrations, if necessary.
GS-World itself is a trained foundation model that, given a natural language description (optionally
the aforementioned real-world priors) of a robotic task, generates all the ingredients necessary for
learning embodied intelligence in a perfectly physics-accurate manner, including 3D assets of various
forms (e.g., rigid, non-rigid, soft bodies, and/or fluids), and their task-plausible layout, dynamics,
and physical properties; Fig. [2]illustrates different implementations of GS-World. Robotic skills are
autonomously discovered by enabling the robot to act within and interact with the generated envi-
ronment. This process is structured through LLM-based subtask decomposition and the automated
design of objectives and reward functions, which, in turn, drive skill acquisition via reinforcement
learning or motion-planning algorithms [13\[14} [15]]. The discovered robotic skills are represented as
trajectory data to train/fine-tune a VLA model. Our VLA architecture stacks a low-level actor on
top of a high-level planner, and is featured by the bridging intermediate representations of scene-,
object-, and affordance-level attributes — these attributes can be automatically computed given the
core engine of GS-World. The trained VLA policy is verified in the same engine before deploying it
into the real-world scenario. Note that the VLA model may also be pre-trained by leveraging online,
action-relevant videos or those generated by 2D video generation [4,16]]. The whole forward pipeline
goes automatically in an online, data-streaming fashion, which enables quite a few nice properties to
be discussed shortly.

Given the differentiable nature of the GS-World engine, the backward pipeline can optimize, for any
specified task, the VLA policy, the GS-World foundation, and even the robotic embodiment itself, by



back-propagating error signals from policy verification; details are given in Section[6] Our proposed
paradigm of Engine-driven Sim2Real VLA has the following nice properties for pursuing embodied
intelligence.

* Automation and Efficiency. The proposed paradigm is featured by its automated pipeline rolling
out seed-feeding of real-world priors, generation of the simulation environment, robotic skill
discovery, trajectory data streaming, and VLA policy learning and verification. Such an online,
data-streaming fashion pushes through the bottleneck in the existing data-driven learning paradigm,
where data collection itself is of low efficiency and costly, especially for the collection of robotic
data via tele-operation . Given enough compute budget, the proposed paradgim can effectively
addresses the issue brought by efficiency law and scale up the learning of embodied intelligence.

* Scalability and Elasticity. In the preceding paragraphs, we elaborate on how the proposed engine-
driven learning paradigm works for a specified robotic task. Since the learning pipeline is automated
and efficient, assuming enough capacity of the VLA model and use of effective learning algorithms,
it is possible to scale up the learning for as many and diverse robotic tasks as demanded, until
achieving a generalist robot policy. From an economical perspective of high-value applications, we
might instead favor specialized generalists [12], and the proposed paradigm is the very one that
supports elastic learning of robotic skills tailored for special applications.

* Accuracy of Physics. The proposed paradigm is anchored on GS-World, the engine of the world
model that enforces physics accuracy by learning to generate the underlying controlling factors
of the world, including those physical properties governing action dynamics and how states of
the world would be changed by these actions. Even when some real-world priors optionally fed
into GS-World is of less physics accuracy, the engine would generate a world of perfect physics
accuracy that closely matches the priors. Robotic skills are subsequently discovered and verified in
this physics-accurate world. This is in contrast to world models of video generation [4[16] that can
only be used either to generate data for pre-training of VLA models or to filter obviously wrong
policies.

* Robustness to Disturbance. To learn a policy that is robust against environmental changes and
disturbances, the policy must be learned in an environment that is subject to as many changes and
disturbances as possible. GS-World generates state changes of the environment efficiently, which
supports policy verification such that a less mature policy can be updated to become a more robust
one. In contrast, robust policy learning in real-world environments is costly, less generalizable
across tasks, and brittle to changes in environmental conditions.

* X-embodiment via Hardware Calibration. The promise to be deployed on multiple robots is
one of the properties that characterize a generalist policy. Existing learning paradigms aim for
this property by collecting tele-operated data from as many and diverse robots as possible [17]].
We argue that this is both prohibitively costly and unnecessary, since new robots are continuously
designed for emerging demands, and it is less possible to cover all the configuration spaces of robots.
In this paper, we argue for what may appear to be a reverse approach: the precise calibration of the
simulation engine, its generated data, and the trained policy to the specific robot and its associated
sensors. The rationale behind this perspective is that, because GS-World enables automated and
efficient data generation, the demand for relearning policies for each new hardware embodiment is
substantially reduced.

* Sim2Real Transferability. The GS-World framework naturally supports robust Sim2Real transfer
by representing both simulated and real-world environments in an affordance-driven latent space.
Instead of aligning raw sensory streams or complex continuous trajectories, GS-World projects
object dynamics and robot interactions into compact affordance attributes that are semantically
consistent across domains. This representation mitigates the discrepancies caused by sensor
noise, physical dynamics, and unmodeled environmental factors, thereby narrowing the Sim2Real
gap. More importantly, the automated construction of these affordance labels in simulation (via
privileged object-level annotations) provides abundant supervision to train affordance extractors,
which can later be deployed to parse real-world observations without additional manual labeling.
Consequently, GS-World enables reliable transfer of policies and skills from synthetic rollouts to
real-world deployments, ensuring both sample efficiency in simulation and robustness in execution.

* Evolution of Embodiments. GS-World enables the evolutionary co-design of robotic morphology
and control policy within a unified Sim2Real framework. Instead of fixing robot structures as
static priors, the backward pipeline adaptively searches, evaluates, and refines embodiments in
response to task requirements and environmental dynamics. By representing robotic morphology in



graph-based latent variables and integrating them into VLA learning, GS-World permits structure-
aware policy optimization. Moreover, strategic exploration methods replace inefficient random
search in morphology space, accelerating convergence toward practical robot configurations that
balance dexterity, mobility, and robustness. Through this iterative evolution of bodies and behaviors,
GS-World cultivates adaptable embodied agents whose physical structures grow hand-in-hand with
their cognitive policies, improving transferability to real-world deployment.
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Figure 1: The proposed engine-driven learning paradigm for pursuing embodied intelligence, where
the engine is based on the proposed world models of generative simulation (GS-World) (cf. Figure [2)).
The pipeline connects several key components: GS-world for constructing the learning environments
(Section [3), embodied reasoning for skill acquisition (Section ), a dual-system VLA model for
Sim2Real transfer (Section [3), and dedicated modules for designing the robot’s morphological
structure (Section[6). In this paradigm, indicate utilizing of the GS-world and dark
arrows denote the working flow.
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In the literature, there exists no precise definition of world models. They generally refer to those
models capturing common sense knowledge of the world, enabling simulation of world dynamics by
modeling its internal working mechanism, and being able to be used for the prediction of future world
states. World models are explicitly stated in [18]] as a neural, generative modelling approach emulating
our humans’ cognitive system; it learns latent representations of the world in an unsupervised manner,
which are used to support policy learning of actors via reinforcement learning in such latent world
representations. In [19]], LeCun argues for a configurable world model towards learning autonomous
machine intelligence, which can be trained to predict future states of the world, where training is
based on a joint embedding predictive architecture (JEPA) framework via self-supervised learning.

Ingredients of world models are reflected in recent auto-regressive or diffusion-based generative
foundation models such as LLMs [20, 21]], multimodal LLMs [22]], and video generation models
[4} 116l 23]. For example, several LLMs demonstrate the presence of intuitive world knowledge (e.g.,
spatio-temporal understanding and reasoning, similar to human cognitive map [24]), which is useful
for them to make predictions about physical conditions [20} 21]]. Starting from the prominent work
of Sora [4]], video generation models advance rapidly to be able to generate long-horizon videos
containing visual dynamics of various environments; to a large extent, these models are considered as
world models since they can generate temporally consistent and visually plausible results, and some
of them also capture causal effects and physical intuitions. Video generation models are subsequently
extended to integrate other modalities [25} 23], support interactive generation [23| 26} 27], and be
action-controllable [28] [29]]; these capabilities can be obtained either in a training-free manner [27]]
or by collective training on foundational language and video generation models using diverse sets of
videos with rich dynamics [23| |26} 28 29]. In particular, the capability to generate videos of action
consequences enables them to be used for dynamic decision-making and policy learning [30} [28]].
For a specified goal of policy learning, sequential action sequences can be generated in a roll-out
manner, which can be used either directly for extraction of actions [31] or as a reward signal to
learn the policy. As such, world foundation models [[L6] are even pre-trained on massive amounts
of action related videos, such as driving sequences, hand motion and manipulation, navigation, and
natural dynamics, which can then be fine-tuned for various downstream application scenarios of
policy learning, refinement, and policy verification.

As such, these video generation models show the promise as a scalable approach for learning
embodied intelligence. While this might be useful in some cases for learning coarse actions such as
driving behaviors and robot navigation, learning of many robotic tasks involving finer manipulations
requires generation and simulation that should strictly adhere to the physical laws. Due to the
in-distribution nature of the diffusion-based generative learning in the raw signal spaces (e.g., the
RGB color space), video generation models might produce visually plausible results, such as shadow
effects, surface reflection of light, although not precisely accurate, there are many other physical
properties that are the causing factors of world dynamics but not directly visual observations, such as
surface friction, mass distribution of different objects, articulation of non-rigid objects, deformation
of soft bodies, fluid and thermal dynamics, among others. For these physical phenomena, these
methods may produce counterfactual results violating physical rules. In fact, as analyzed in [32]], even
by restricting the analysis in the scope of classical mechanics laws in the 2D space, video generation
models fail to adhere to these laws consistently; the analyses show that its behaviors of generalization
are confined within the distribution of training data, and its generation of video dynamics relies more
on retrieval from training dynamics than on governance by physical laws. Similar analysis is given in
[33]] by establishing the Physics-IQ benchmark for video generation methods.

These analyses indicate that statistical generative learning for the objective of visual realism does
not translate directly as learning of correct physical principles. As such, quite a number of existing
methods aim for improving physical correctness into the generation, by explicitly injecting physical
constraints into the learning and generation process. For example, physical plausibility is improved in
[34] by expanding a video generation model with depth and normal channels; integration of physics
simulators with diffusion-based video generation is also used for simulation of rigid-body dynamics
[35] and action-conditioned object dynamics [[36]]; generation of 3D object assets with compatible
physical properties (e.g., absolute scale, material, affordance, and kinematics) is also presented in
[37].

In this paper, we argue that many physical AGI tasks, including embodied intelligence, must be
learned in strictly physics-aware manners, since, unlike LLLM-based agents, physical agents are
deployed in a real world governed by physical laws. Consequently, world models that support such



learning must evolve beyond producing merely visually plausible video sequences; instead, they
must capture the underlying mechanisms of physical dynamics and enable their precise simulation,
whether explicitly or implicitly. Such models should be capable of computing the internal states of
simulated entities (e.g., acceleration changes under external forces and the resulting velocity and
position obtained through time integration, all of which are observable and learnable by the agent),
reasoning about changes in externally unobserved or occluded elements, maintaining long-term
consistency across extended horizons, and supporting the saving and restoration of world states to
facilitate accurate simulation and planning. Toward this goal, we categorize the proposed potential
approaches as follows.

Explicit Enforcement of Physical Constraints. Perhaps the most straightforward manner is to
enforce physical constraints into existing statistically learned generative models in a hard and explicit
manner. For example, consistent video generation across multiple viewpoints can be induced by
enforcing epipolar geometries [38]; objects, other entities, and their relational dynamics contained
in videos can be generated by preserving their sharp boundaries and relations of occlusion, with
alteration of only their appearance. A shortcoming of such a manner is that physically-correct
properties are enforced in a one-by-one, ad-hoc manner. We note that existing generative learning
methods perform far from satisfactory even for the very basic physics-accurate requirements of
spatio-temporal consistency [39, 40].

Compatible Learning with Physics Simulators. A list of physics simulators and engines [41}42] [43]]
exist that implement mathematical modeling and numerical simulation of physical processes, such
as rigid-body dynamics with collision and joint constraints, elastic and plastic deformations of soft
bodies, and interactive fluid dynamics capturing splashing effect. Generative world models that
strictly follow physical rules can be learned relying on these simulators, for example, by learning
to generate 3D assets and learning to predict hyper-parameters controlling physical simulations
via differentiable physics engines, together with statistical learning for rich variations of visual
appearance. By doing it this way, consistency of 3D shapes, motions adhering to space gravity,
physics-correct scene configurations, external forces, and simulations of causal dynamics can be
achieved automatically. More precisely, such a hybrid approach gives a world model that is internally
governed by the simulator affiliated with the predicted hyper-parameters, which are differentiable
and learnable, and is by nature interactively controllable with instructions of different formats, whose
past, current, and future states of world dynamics can be precisely computed from the simulator as
well; images or videos from arbitrary viewpoints are merely projections of these simulation dynamics
via differentiable rendering (eg, 3D-GS). A few recent methods [36} 135|137, 44| pursue this direction
and more research is advocated for a truly physics-accurate world model.

Learning with a Unified Neural Representation. While off-the-shelf physics simulators guarantee
strict adherence of generated world dynamics to the physical laws, the scope and flexibility of such
generated dynamics are bounded by the laws specified by the simulators. To increase flexibility,
taking simulation of rigid-body dynamics as the simplest example, neural differential equations
(NDE?s) [45] can be used to model motions, providing the opportunity to learn the laws of motion
dynamics and making them adaptive to various real-world phenomena, while still benefiting from
strict physical constraints. This approach can be extended to other physical simulations as well: for
soft-body dynamics, NDEs can learn complex material constitutive behaviors or update operators
in finite element analysis (FEM) or material point method (MPM) frameworks; for fluid dynamics,
NDEs can model governing dynamics such as turbulence or viscous effects that are difficult to capture
explicitly, while particle-based frameworks like smoothed-particle hydrodynamics (SPH) can be
enhanced by neural operators that approximate local particle interactions; more generally, a single
neural representation can encode and learn the governing dynamics of diverse physical systems,
including rigid bodies, soft bodies, and fluids, capturing unknown forces, contact interactions, and
simulation hyper-parameters in an end-to-end, differentiable manner. Taken together, this leads to a
unified neural representation of 3D assets and their governing laws, since the 3D assets themselves
can also be represented [46]] and learned by neural generative models. In fact, differentiable equations
specified in physics simulators often fail to precisely capture real-world dynamics, and the way to
make it learnable has the additional benefit of closing the simulation gap.

?We note that various neural simulation methods have been proposed in the literature, covering from rigid/non-
rigid bodies [47], articulated objects [48]], to soft bodies [49], and fluids [50]; these methods are typically tailored
to specific types of simulation methods, without consideration in the context of generative world models.



Both the above second and third approaches (i.e., learning the simulator hyper-parameters or the laws
themselves) can be implemented as learning from real-world observations (e.g., video observations)
using self-supervised or reinforcement learning methods. Since the learned models would be universal
ones capturing internal mechanisms of world dynamics, supporting physics-accurate computation of
world states, and are based on generative simulation, we term them as World Models of Generative
Simulation (GS-World), Fig[2] gives the illustration. In this paper, we use GS-World as a generative
engine in our proposed engine-driven learning pipeline. We note that such a GS-World also enables
convenient learning of both VLMs and language models compatible with embodied tasks, similar to
what have been done in [31]].

4 SKkill Acquisition via Embodied Reasoning with the World Model

The VLA model is designed to acquire robotic skills across diverse tasks and environments. In
particular, the skill acquisition can be built upon the underlying world models of generative simulation
(GS-World), which provides a physics-grounded generative simulation of the environment, enabling
bodies and objects to interact in a causally consistent manner. Rather than relying solely on supervised
demonstrations or task-specific rewards, the proposed pipeline employs embodied reasoning within
the simulated world as guided by the world model to automate the process of discovering and refining
skills. These learned skills constitute the fundamental building blocks for complex, long-horizon
tasks, forming a closed loop between reasoning, action, and simulation.

In robotic practice, completing a goal-directed task usually requires executing a structured chain
of sub-level objectives [52]]. For instance, the task of brewing a cup of coffee may require: (1)
recognizing and grasping a cup, (2) positioning it under the coffee machine, (3) pressing the brew
button, and (4) serving the completed drink. To achieve robust learning over such long-horizon
activities, tasks are decomposed into a series of atomic subtasks, which are then solved independently
using physically realistic simulation under the guidance of the world model. The following paragraphs
describe the main components of this pipeline.

Chain-of-Affordance Reasoning for Task Decomposition. In the task decomposition, complex
actions are divided into atomic units by inferring the causal and physical dependencies between
objects, agents, and the environment. To achieve this, we favor a physically grounded reasoning
mechanism termed Chain-of-Affordance (CoA) reasoning [53]], which extends the idea of modular
Chain-of-Thought reasoning into an embodied context. Rather than operating purely over symbolic
text, CoA reasoning leverages the internal state of the world model to infer a structured sequence of
sub-goals connected through object- and action-level affordances.

The decomposition relies on three key categories of affordances represented in the simulated envi-
ronment. 1) Object affordances identify manipulable entities in the world, describing their location,
geometry, material, and articulation; under simulation, these affordances are precisely derived from
the latent world state. 2) Manipulation affordances define allowable interactions, specifying the
modes of contact or control available to the robot’s embodiment (e.g., grasp, press, turn). These
affordances are physically validated through the world model’s generative dynamics, ensuring real-
istic and consistent results [54,[55]]. 3) Spatial affordances describe the relational topology among
objects, pathways, and manipulation zones in 3D space, reflecting navigable regions or feasible object
placements. Figure[]illustrates the examples of affordance in the task of water pouring.

Figure 3: Examples of (1) object affordance (left), (2) manipulation affordance (middle), and (3)
spatial affordance (right).

Together, these affordances allow the world model to perform grounded Chain-of-Affordance rea-
soning, wherein task decomposition is both semantically interpretable and physically compliant.



Affordance attributes can be derived by (i) distilling them from large-scale foundation models [56],
(ii) retrieving relevant information from affordance memory banks [57], or (iii) extracting and en-
coding them from demonstration trajectories [38]]. Since the world model maintains full physical
parameterization of the environment, this pipeline ensures that decomposed subtasks are dynamically
feasible and consistent with real-world affordances.

Task-Level Reasoning for Oracle Design. Once tasks are decomposed into atomic components,
the system must determine whether and when each subtask has been achieved. The evaluation of
completion relies on an oracle function, which quantitatively measures progress based on internal
states simulated by the world model. The oracle serves as a bridge between physical simulation and
learning, providing reward signals or structured feedback for each atomic skill.

In the context of world-model-based skill acquisition, the oracle function O(s;) : R™ — R compares
simulated states s; to desired conditions derived from affordance constraints. When used for motion
planning [59], such functions can explicitly encode physical metrics such as contact distances or joint
configurations; when used in reinforcement learning [[60], they function as differentiable black-box
evaluators producing scalar reward feedback. To automate their creation, we adapt large language
models as oracle generators [61], prompting them with structured task descriptions, affordance
attributes, and environmental conditions present in the world model. The generated functions can be
directly executed within the simulation to compute dynamic reward signals such as object proximity,
stability, or adherence to target kinematics. As the world model provides access to intrinsic state
variables (e.g., poses, velocities, forces), the oracles computed therein remain physically precise and
differentiable, forming an essential component of the learning process.

Automatic Skill Learning for Atomic Tasks. Following the generation of subtasks and their oracle
functions, automatic skill discovery is performed within the simulated world. A skill is defined as a
learnable policy that maximizes the oracle-associated reward given a specific subtask configuration.
Through generative simulation under the world model, policies are trained under physically accurate
rollouts, ensuring both realism and control consistency across skills.

Two major categories of skills are learned: Mobility Skills, which concern with locomotion and
spatial navigation, and Manipulation Skills, which concern with physical interaction and object
handling. For mobility-oriented skills, the world model provides predictive affordance maps that
indicate feasible navigation paths and spatial boundaries [[14]. Wheeled agents employ path-planning
solutions guided by oracle rewards, while legged or humanoid agents adopt reinforcement learning
strategies to optimize cumulative returns E. [}, 7|, where r; is obtained from simulation feedback.
The resulting joint-angle trajectories are stabilized by controllers such as proportional—derivative (PD)
schemes that ensure physically consistent torque control. For manipulation tasks, simpler operations
such as grasping or pick-and-place are executed using inverse kinematics guided by the oracle-defined
grasp points, whereas more complex object interactions leverage reinforcement learning in the world
model’s simulation engine. To align simulated movements with human-like preferences, imitation
regularization is introduced through loss minimization on policy divergence, Dy 1, (g |7+ ), relative
to reference policies derived from demonstrations.
e DesTcaris:lion W]
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performed from each node to estimate the long-term success

rate, which serves as the reward signal. The search process follows an Upper Confidence Bound (UCB)
criterion [63]] for balancing exploration and exploitation, enabling efficient identification of error
sources or suboptimal design decisions. Once detected, problematic components are reconsidered and
regenerated, either by adjusting affordances or redefining oracle logic, after which learning resumes
from the refined configuration. This reflective embodied reasoning process results in self-improving
skill structures that progressively enhance scalability and reliability over successive learning cycles.
Figure[]illustrates an example of reflective embodied reasoning.

Taken together, the proposed skill acquisition pipeline, grounded in the generative simulation of
the world model, forms an integrated system for scalable embodied intelligence. Through chain-
of-affordance reasoning, physically faithful oracle design, reinforcement-based skill optimization,
and reflective search, this approach learns reusable, environment-consistent skills that generalize
across diverse embodiments and tasks. Critically, since learning occurs within a world model that
enforces the laws of physics, the resulting skills correspond not merely to visual plausibility but
to physically realizable, causally coherent strategies. This establishes a principled framework for
developing embodied agents whose learned behaviors arise from—and adhere to—the underlying
mechanisms of world dynamics, advancing the path toward physics-grounded AGI.

5 Sim2Real Transferable VLA Models Built upon World Models

In pursuit of embodied intelligence, vision-language-action models represent a class of multimodal
foundation policies that integrate visual perception, linguistic understanding, and motor control into a
unified reasoning—action framework [{8]]. Unlike conventional vision-language models that operate
solely on symbolic or statistical correlations, VLA models must interpret the dynamic, physically
governed nature of the world. When trained purely on visual or linguistic correlations, they often
lack awareness of underlying causal mechanisms, resulting in weak generalization and poor transfer
to real-world environments. To overcome this limitation, we propose grounding VLA models on the
proposed GS-World, thereby unifying multimodal reasoning and physically consistent control within
a shared world-simulation framework.

The central goal of this design is to construct a world-aware VLA system capable of learning within
simulation while maintaining zero-shot transfer to real-world environments. In our formulation, the
GS-World serves as a generative physics prior that encodes differentiable dynamics of embodied
interactions by generating latent representations of geometry, contact, and action consequence through
generative simulation. These representations are reused across both the planning and acting modules
of a dual-level VLA structure, ensuring that the entire reasoning—control loop remains consistent
with the fundamental physical constraints defined by the world model. In effect, the VLA becomes
an extension of the GS-World: the planner conducts physics-aware reasoning over latent simulation
states, while the actor performs control actions constrained by those same latent dynamics, jointly
forming a closed perception—action loop that is compliant with both semantics and physics.

An ideal GS-World-based VLA model is designed to fulfill several desiderata: 1) Physics-aware
Consistency: predictions and actions comply with simulated and learnable world dynamics, preserving
causal coherence; 2) Unified Representational Space: both reasoning and execution share latent
parameters derived from world simulation, linking perceptual semantics to physical outcomes; 3)
Zero-Shot Sim2Real Transferability: embodied policies learned in simulation are executable in the real
world through domain-invariant physical embeddings; 4) Affordance Interpretability: intermediate
reasoning relies on human-understandable affordances, promoting transparency, transfer, and modular
skill reuse.

Architecture of the Sim2Real VLA Model Our proposed architecture follows the bi-system
(dual-level) design commonly adopted in cognitive robotics frameworks [64, |65, |66l |67]], where
the high-level planning model (System 2) and the low-level actor model (System 1) are jointly
coupled through the latent simulation states inherited from the GS-World. Both systems interact over
shared physical priors derived from the generative simulation, including mass distribution, contact
constraints, frictional forces, and motion dynamics. This shared foundation guarantees that semantic
reasoning and control behaviors remain physically coherent and causally meaningful.

10



The planning model, referred to as the World-Conditioned Planning Model (WCP), performs task
understanding, reasoning, and decomposition through simulated rollouts within the world model’s
differentiable latent space. Given a sequence of observations o;_ f.;, proprioceptive input p;, and
language goal I;, the WCP predicts a structured sequence of affordance chains, A; = {a},...,ak},
where each element corresponds to a feasible object—action relation (see Section ). Distinct from
traditional symbolic or chain-of-thought reasoning [52]], WCP conducts simulation-infused reasoning:
it evolves potential future states §;y using the GS-World’s learned differential dynamics s = fy(s, a),
directly predicting which object interactions satisfy physical constraints and task goals. Parameters
of the state-transition network, including its temporal attention mechanisms and physics-based
encoders, are reused from GS-World’s internal simulator module, ensuring that reasoning remains
grounded in physically faithful representations of motion and causation. The planner’s outputs,
including affordance attributes (shape, grasp pose, torque axis, or spatial relation) and textual subgoal
annotations, serve as physically consistent intermediate representations passed to the actor.

The actor model, named Affordance-Guided Execution Policy (AGEP), generates low-level robot
actions a; based on current perception, proprioceptive signals, and the affordances supplied by the
planner. Specifically, the policy can be formulated as:

ld
ag = W(thhzymr aAt)a

where the proprioceptive state p, provides the internal state of the robot’s body, complementing the
external sensory observation o; (e.g., camera images), and z°"'¢ denotes the shared latent state
vector projected from the GS-World. The SGEP employs a generative diffusion or transformer-based
decoder [68] [69] augmented with physical priors to produce motor actions that are dynamically
stable, ensuring torque consistency and adherence to realistic motion constraints. While the WCP
updates affordances and high-level goals at a lower frequency, the SGEP executes reactive, high-
frequency control aligned with the simulated dynamics. This asynchronous coupling allows the
VLA to blend deliberate planning with responsive execution, representing a hallmark of embodied
reasoning consistent with the laws of physics.

Learning Paradigm for Sim2Real Adaptation The training of GS-World-based VLA models
operates entirely within the simulated world environment, drawing on the skill acquisition pipeline
described in Section[d] By leveraging the generative simulation engine of GS-World, the system has
access to privileged internal information, including contact forces, potential energies, and dynamic
coefficients of object interactions. These physical signals act as dense supervision for both planning
and control modules, yielding a physically grounded self-supervised learning process.

Each learned policy is optimized through a hybrid loss:

Lyiacs = Layn + AagrLafr + Matign Llatent-align,

where Layn enforces simulation-consistent predictions of next-state dynamics, Ly optimizes matching
between predicted and simulated affordances, and Liaent-align €ncourages domain invariance between
simulated and real-world latent states. Thus, affordances serve as both the unit of reasoning and the
supervisory signal bridging simulation and real execution.

A key to Sim2Real transfer lies in the affordance-driven latent alignment enabled by the GS-World.
The shared latent representation z’°"'? encodes object—robot interactions abstracted from raw visual
data by capturing geometric correspondence, contact mechanics, and actuation features that are
largely invariant to environmental differences such as lighting or texture. Based on such knowledge,
affordances form a physically interpretable basis linking simulated and real environments. During
deployment, sensory inputs from the real robot are projected through the GS-World encoder, situating
them within the same simulation manifold used during training. As long as the inferred affordance
attributes A; = {a},...,al*} remain consistent (e.g., grasp surface normals, reachable regions,
or constraint boundaries), the policy executes identically in the real world without additional fine-
tuning or domain randomization. This shared physics-centric abstraction not only bridges the
simulation—reality divide but also allows the system to engage in reflective reasoning similar to
the skill refinement process described in Section[d] where failed interactions trigger self-consistent
adjustments of affordance predictions or action policies.

Toward Engine-driven Learning for VLA Model. Since our learning paradigm operates entirely
within a simulated world (i.e., GS-World), it can proceed in a fully automated and parallelized manner,
allowing the VLA model to be fine-tuned simultaneously across multiple robots, environments, and
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manipulation tasks (as illustrated in Figure[3] right). This engine-driven learning paradigm leverages
a generative simulation engine to autonomously produce diverse, physics-consistent experiences for
continuous model training. In contrast, traditional approaches to training VLAs remain bounded by
the availability and diversity of offline datasets, such as real-world collections [70,[17]] and synthetic
reconstructions [[13,[71]], which remain orders of magnitude smaller and less varied than the web-scale
corpora used to train LLMs or VLMs (see Figure[3] left).

Data-Driven VLA Engine-Driven Sim2Real VLA

Environment Dataset Robot 1 €

Skill Generation
: Collect Project i
Simluated
\ Env. 1 - Engine — “ VLA Model
Finetuning ............ Finetuning
Parallel Runnin
VLA Model <« Robot unning >

» Robotn g Project s Skill Generation
) - roject .
0\_{\0 Deploy t%l E = ! Simluated . l

N an v QR T e

Figure 5: The data-driven VLA (left) relies on manually collected or web-crawled offline datasets
to train the VLA model. In contrast, the engine-driven Sim2Real VLA (right) simulates the target
robot and its environment within a physics-based engine. This simulation allows for parallelized and
automated generation of robot manipulation skills, which can be used to train or fine-tune the VLAs.

The proposed shift from data-driven to engine-driven learning redefines the nature of scalability in
embodied Al Rather than passively consuming static offline data, the learning process is continuously
fueled by a physics-grounded data engine that generates rich, task-relevant skill trajectories on de-
mand. These trajectories encapsulate realistic sensorimotor experiences, affordance interactions, and
environmental dynamics—serving as ever-expanding supervision for embodied model improvement.
In effect, the simulation engine functions as a self-sufficient data generator, autonomously creating
and streaming training data while ensuring fidelity to physical laws.

As illustrated in Figure |1} this engine-driven pipeline for Sim2Real VLA learning consists of several
key components: 1) automated generation of task-specific simulation worlds via the GS-World engine,
2) continuous skill acquisition and adaptation through embodied reasoning, 3) dynamic data streaming
and model fine-tuning across parallel environments, and 4) integrated verification and deployment
loops for Sim2Real transfer. Together, these components form an end-to-end, engine-driven learning
system capable of scaling embodied intelligence beyond the limitations of static datasets—enabling
perpetual, self-improving learning cycles that combine physical realism, automation, and efficiency.

6 Morphological Co-Design through Physics-Grounded World Model

Most existing generalist robotic frameworks, including VLA models, treat the robot body as a
fixed input and optimize only the control policy defined over it. Consequently, the search for
optimal robot structures relies heavily on handcrafted design and trial-based engineering. However,
just as biological organisms evolve their body morphologies to achieve adaptive fitness in specific
environments, embodied agents should co-evolve their physical configurations in accordance with
environmental dynamics and task objectives [[7/2]. The world model provides a natural substrate for
this co-design process: as it simulates physically consistent interactions between the robot and the
environment, structural modifications can be continuously evaluated by analyzing how changes in
morphology influence dynamics, stability, and task success. In this sense, morphological co-design
within a world model generalizes the concept of evolutionary optimization into a differentiable,
physics-aware framework for embodied learning.

In this section, we introduce a physics-grounded framework for morphological co-design, where
the robot’s structural parameters are optimized jointly with its control policies within a world model.
This establishes a closed-loop design of body—brain co-evolution, ensuring that both morphology and
behavior emerge under consistent physical principles simulated by the world model.
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Co-Design Formulation with World-Model Coupling. Let ¢ denote the morphological parameters
of the robot (e.g., link lengths, joint configurations, mass distribution, or actuation capacity), and
mp represent the control policy with learnable parameters 6. The unified optimization objective is
expressed as:

max J(mg, Me) = max B, (T 110)~Me [Z vor(se, at)] (3)
’ ’ t=0

where M refers to the world model parameterized by &, r is the reward function measuring task
progress, and 7y denotes the policy model (e.g., the VLA model in Section[5). Unlike traditional
simulators, M enables bidirectional gradient propagation: morphological parameters are embedded
directly within the differentiable world simulation, allowing learning signals to flow from behavioral
outcomes back to structural representations. As a result, both body and policy parameters can
be updated jointly or alternately, yielding morphology—policy pairs that are dynamically compati-
ble, causally coherent, and task-specialized. Figure|l|(bottom) provides an overview of this joint
optimization pipeline, which consists mainly of the following steps.

1) World-Model-Driven Evolutionary Reasoning. While gradient-based optimization provides local
fine-tuning of morphology, global exploration of the design space remains crucial for discovering
novel and structurally diverse configurations. The world model enables an embodied evolutionary
reasoning mechanism in which simulated populations of robot morphologies are evaluated under
consistent physical dynamics. Analogous to natural evolution, candidate morphologies undergo
virtual reproduction, mutation, and selection within simulation rollouts, where fitness signals are
derived directly from oracle evaluations built upon the world model. This process is efficiently
organized as a Monte Carlo Tree Search (MCTS) structure [63], where each node represents a
distinct morphology—policy pair, and rollout trials simulate their performance across varied physical
conditions. Guided by an upper-confidence criterion and assisted by affordance-conditioned priors,
this search identifies design topologies yielding maximal generalization across task classes, effectively
turning the world model into a self-contained evolutionary simulator for robotic design.

2) Morphology Representation under Differentiable Dynamics. To enable structured optimization,

robot morphologies are represented as parameterized graphs Ge = (V, £), where nodes correspond to
limbs and actuators, and edges represent joint connections with annotated physical attributes (e.g.,
torque limits, damping coefficients, material stiffness). Each morphological graph is embedded into a
latent structural manifold via a graph neural encoder 73], producing differentiable embeddings that
interface with the policy model and the world model alike. In simulation, these structural embeddings
are bound to dynamic parameters within the physics simulator, such as inertia matrices or deformation
tensors, enabling the world model to continuously recompute physical dynamics as morphology
changes. The representation thus bridges geometric configuration and dynamic simulation, ensuring
that morphology updates yield physically meaningful outcomes.

3) Physics-Grounded Optimization via GS-World. Within the paradigm of GS-World [[16} 35} [37],
morphology optimization is driven not merely by visual plausibility but by rigorous physical compu-
tation. Each candidate morphology is instantiated within the GS-World, where forward dynamics
are computed via differentiable physics solvers [42, [43]]. During rollout, world states, including
contact forces, energy consumption, and joint stress, are continuously monitored to assess structural
feasibility. Importantly, gradients of performance metrics (e.g., manipulation success rate or gait
stability) with respect to morphology are automatically propagated through the GS-World simulation.
This allows robot morphology to evolve naturally toward designs that minimize energy cost, maximize
control stability, or satisfy specified task constraints. As GS-World captures accurate causal relations
between control and dynamics, learned morphologies inherently obey real-world physics, improving
their transferability in Sim2Real scenarios.

The proposed morphology—policy co-design on a physics-grounded world model can be interpreted
as an instantiation of embodied evolution within a controlled generative framework. By embedding
morphology into the latent physical space of the world model, and allowing physical consistency,
affordance reasoning, and simulated evolution to jointly drive optimization, one obtains a scalable
route toward the autonomous synthesis of both bodies and behaviors. In essence, the same generative
simulation engine that supports skill acquisition for control (Section ) is now extended to drive self-
optimization of embodiment, thereby closing the feedback loop between structure and intelligence.
As the GS-World continues to improve its physical fidelity and differentiable simulation capability,
the boundary between morphology learning and policy learning will gradually dissolve, leading to
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an integrated paradigm of physics-grounded robotic co-design, where embodied agents evolve
holistically under the same laws that govern the physical world.

7 Conclusion

In this paper, we present GS-World, as well as the engine-driven Sim2Real VLA paradigm, which
forms a blueprint for achieving scalable, physics-grounded embodied intelligence. By shifting from
static, data-driven training to a generative, engine-driven simulation loop, the proposed system
directly addresses the core limitations of current robotic learning—data scarcity, inefficiency, and
weak physical grounding. Through the introduction of the efficiency law, the work articulates a
quantitative foundation linking model performance to data-generation efficiency, thus motivating
the use of generative simulation engines as perpetual sources of multimodal, physically accurate
experiences.

Under this paradigm, GS-World serves as a universal engine that produces coherent 3D environments,
dynamic interactions, and physically faithful trajectories in a differentiable manner. As a result, skill
acquisition, policy learning, model verification, and embodiment evolution can operate continuously
in a closed-loop process. The integration of Chain-of-Affordance reasoning, reflective embodied
learning, and morphology—policy co-design enables robots not only to act intelligently but also to
evolve their structures and strategies through self-supervised adaptation.

Ultimately, GS-World redefines the pathway toward physical AGI by unifying generative modeling,
physical simulation, and embodied reasoning within a shared computational framework. This
engine-driven approach transforms simulation into a foundational engine of knowledge, allowing
embodied agents to autonomously learn, test, and improve in diverse virtual worlds before seamlessly
transferring their intelligence to the real world.
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