
Published as a conference paper at ICLR 2025

LOGQUANT: LOG-DISTRIBUTED 2-BIT QUANTIZA-
TION OF KV CACHE WITH SUPERIOR ACCURACY
PRESERVATION

Han Chen & Zining Zhang & Bingsheng He
School of Computing
National University of Singapore
21 Lower Kent Ridge Road, Singapore 119077
{chenhan, zzn}@u.nus.edu, hebs@comp.nus.edu.sg

Zicong Jiang
School of Electronic and Information Engineering
South China University of Technology
381 Wushan Road, Tianhe District, Guangzhou, 510641 P. R. China
202420111170@mail.scut.edu.cn

Pingyi Luo & Mian Lu & Yuqiang Chen
4Paradigm
#03-20 Galaxis (West Lobby),Singapore 138522
{luopingyi, lumian, chenyuqiang}@4paradigm.com

ABSTRACT

We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV
Cache in large language model (LLM) inference, delivering substantial memory
savings while preserving superior performance. Previous methods either assume
that later tokens are more important or attempt to predict important tokens based
on earlier attention patterns. Both approaches, however, can result in performance
bottlenecks or frequent mispredictions.
LogQuant takes a different approach. By applying a log-based filtering mecha-
nism, it selectively compresses the KV Cache across the entire context, achiev-
ing better performance with the same or even reduced memory footprint com-
pared to existing methods. In benchmark tests, it enhances throughput by 25%
and boosts batch size by 60% without increasing memory consumption. For
challenging tasks such as Math and Code Completion, LogQuant improves ac-
curacy by 40% to 200% at the same compression ratio, outperforming compara-
ble techniques. LogQuant integrates effortlessly with popular inference frame-
works like Python’s transformers library. Implementation can be available in
https://github.com/Concyclics/LogQuantKV.

1 INTRODUCTION

The rapid evolution of Large Language Models (LLMs) has enabled context window expansion
from 4k to 128k tokens (Meta, 2024; OpenAI, 2024a), driving demand for efficient KV cache man-
agement in applications like multi-round chatbot conversations (OpenAI, 2024a; Anthropic, 2024;
DeepSeek, 2024) and document-based question answering (Gao et al., 2023; Lewis et al., 2020),
where comprehensive contextual understanding is required. Moreover, reasoning models such as
OpenAI o1 (OpenAI, 2024b), increased the demand for even longer reasoning contexts, xacerbated
the memory challenges faced in KV cache management.

Recent studies Zhang et al. (2024); Li et al. (2024); Dong et al. (2024) reveal KV cache’s linear
memory growth with context length and even exceeds model weights in long context and batch

1

https://github.com/Concyclics/LogQuantKV

Published as a conference paper at ICLR 2025

100 200 300 400 500
Token position

0.00

0.02

0.04

0.06

0.08

0.10

At
te

nt
io

n
sc

or
e

Figure 1: The observed log-distribution pattern is evident not only in the magnitude of attention
scores but also in the positions of attention spikes. These spikes become sparser as the model
attends to tokens further from the most recent position, indicating that the model not only focuses
on nearby tokens. This phenomenon, illustrated here with Llama3-8B-Instruct (Dubey et al., 2024)
on the GSM8K dataset (Cobbe et al., 2021), is consistent across different tasks and models, as further
detailed in Section 2.

inference, posing serious deployment challenges. Existing KV Cache compression methods adopt
either eviction, (H2O (Zhang et al., 2024), Keyformer (Adnan et al., 2024), snapKV (Li et al., 2024)),
aim to reduce memory usage by selectively removing tokens deemed unimportant. or quantization
(QAQ (Dong et al., 2024), KiVi (Liu et al., 2024c)), reduce the precision of less important tokens,
retaining more data while minimizing memory costs. Both struggle with importance identification.
window-based methods (KiVi, StreamingLLM (Xiao et al., 2023)) risk missing distant important
tokens, while attention-based approaches (H2O, keyformer) suffer prediction errors from historical
scores.

Our approach addresses these shortcomings by leveraging a key insight: the positions of the atten-
tion spikes (i.e. high attention scores) follow a log distribution as shown in Figure 1, resulting in
sparser importance for tokens as they move further from the current position. By utilizing this prop-
erty, we can outperform existing methods across a wide range of tasks. Additionally, the original
absolute positions of KV cache entries can be disregarded without changing the final attention results
during the decoding phase, which allows us to enhance the speed of our log-distributed quantization
method.

The key contributions of this paper are as follows:

• Observation of Log-Distributed Attention Spikes: We observe that in various models
and downstream tasks, the positions of high attention spikes follow a log distribution, be-
coming sparser as tokens move further from the current position. This insight underpins
our approach to estimate token importance.

• Design of LogQuant: Leveraging this log-distribution observation, we introduce
LogQuant, a 2-bit quantization technique that significantly improves accuracy. LogQuant
outperforms existing methods like KiVi and H2O by better preserving important tokens,
achieving a 40% to 200% improvement in accuracy on complex tasks such as Math and
Code Completion with the same or higher compression ratio.

• Throughput Optimization: By ignoring the absolute positions of KV cache entries, our
method further optimizes the speed of quantization/dequantization process without affect-
ing the final attention results, resulting in a 25% increase in throughput and a 60% increase
in batch size.

The remainder of the paper is organized as follows: Section 2 details the core concepts behind our
proposed LogQuant methods, Section 3 present an extensive set of experiments, Section 4 summa-
rizes our findings and discusses potential directions for future work.

2

Published as a conference paper at ICLR 2025

580 600 620 640
Token position

0.00

0.25

0.50

0.75

1.00

M
ax

 a
tte

nt
io

n
sc

or
e

GSM8K

0 20 40 60 80
Token position

0.00

0.25

0.50

0.75

1.00

M
ax

 a
tte

nt
io

n
sc

or
e

OpenbookQA
Iteration

T-1
T-2
T-3

Figure 2: The maximum attention score of each token position across four consecutive decod-
ing steps, marking the high attention positions for illustrating the unpredictable nature of atten-
tion scores. This analysis was conducted using Llama3-8B-Instruct (Dubey et al., 2024) on the
GSM8K (Cobbe et al., 2021) and OpenBookQA (Mihaylov et al., 2018) datasets.

2 METHODOLOGY

In Section 2.1, we analyze the distribution of attention scores and evaluate the impact of quantization
loss, both with and without sink tokens. Section 2.2 explores the distribution of token importance
and introduces our log-based selection strategy. In Section 2.3, we compare the effects of quanti-
zation and eviction under this selection scheme, demonstrating the superiority of quantization over
eviction. To further enhance efficiency, Section 2.4 prove that attention computation is position-
agnostic. Finally, we present the implementation details of our proposed LogQuant method in
Section 2.5.

2.1 PRELIMINARY STUDY OF KV CACHE AND ATTENTION SCORES

There are two well-established observations in recent works particularly relevant to KV cache com-
pression. First, many tokens exhibit consistently low attention scores, indicating that their KV cache
entries can be safely compressed with minimal impact on performance (Liu et al., 2024c). Second,
predicting token importance based on previous decoding steps is unreliable, as attention scores can
vary significantly across iterations, making it difficult to accurately identify which tokens should be
preserved (Dong et al., 2024; Jiang et al., 2024). This is also demonstrated in Figure 2.

Inspired by the observation of sink tokens (Xiao et al., 2023), which are the first few tokens that
consistently receive high attention scores (Figure 3), we included these tokens in the set maintained
at original precision to improve accuracy in 2-bit quantization. However, as shown in Table 1,
this adjustment yielded minimal improvement. This suggests that while sink tokens play a role in
defining the conversational context, maintaining high precision for only these tokens is insufficient,
indicating that tokens beyond the first few are also crucial for preserving model performance.

Table 1: Impact of retaining the first two tokens (referred to as ”Sink”) at original precision.
The final answer accuracy results on GSM8K (Cobbe et al., 2021) are presented. We present the

improvement as ∆Sink. Both methods maintain the recent 128 tokens at original precision.

Model baseline(BF16) KiVi(4-bit) KiVi(2-bit) KiVi(2-bit)+Sink(BF16) ∆Sink

Llama3.1-8B-Instruct 71.41 67.24 18.04 18.49 +0.45
Qwen1.5-7B-Chat 57.24 52.27 39.80 39.42 -0.38

2.2 THE LOG-DISTRIBUTED ATTENTION PATTERN

As mentioned in Section 1, our analysis of attention heads reveals a log-distributed high-attention
pattern, which motivates the development of a quantization scheme that follows this distribution. We
introduce a selection scheme where a window of size 2W retains the most recent consecutive tokens
in full precision. Following this, another window of size W/2 selects tokens spaced one token apart,

3

Published as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7N-128 to N
Token position

0.0

0.2

0.4

0.6

At
te

nt
io

n
sc

or
e

Figure 3: Attention distribution across different token positions, represented as boxplots based on
25% quantiles across all attention heads. The median and overall distribution of attention scores
for sink tokens (Xiao et al., 2023) (tokens 0 and 1) are greater than the sum of the most recent 128
tokens. The attention scores are derived from experiments using Llama3-8B-Instruct (Dubey et al.,
2024) and the GSM8K (Cobbe et al., 2021) dataset.

128 192 256
Reserved length

0.000

0.002

0.004

0.006

At
te

nt
io

n
/ r

es
er

ve
d

to
ke

n Llama3-8B-Instruct

128 192 256
Reserved length

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

At
te

nt
io

n
/ r

es
er

ve
d

to
ke

n Qwen2-7B-Instruct

128 192 256
Reserved length

0.000

0.002

0.004

0.006

0.008

At
te

nt
io

n
/ r

es
er

ve
d

to
ke

n Phi-3-mini-128k-Instruct

LogQuant KiVi Streaming H2O

Figure 4: The attention coverage without the first two sink tokens for different selection meth-
ods (Liu et al., 2024c; Xiao et al., 2023; Zhang et al., 2024) and different models (Dubey et al.,
2024; Yang et al., 2024; Abdin et al., 2024), tested on a subset of the GSM8K (Cobbe et al., 2021)
dataset. Details of LogQuant will be introduced in Section 2.5.

and then a window of size W/4 follows the similar pattern and so on. Finally, a window of 3W
tokens is reserved in full precision. This creates a log-distributed token selection scheme.

We compare this log-distributed selection to other methods: KiVi, which selects only the most recent
3W tokens; StreamingLLM, which selects the most recent 3W tokens plus the first four sink tokens;
and H2O, which uses previous attention scores to select the top 3W tokens. To evaluate these
methods, we define token coverage as the average attention score captured by the selection scheme:

Token Coverage =

∑3W
i=1 Attention Score of Selected Tokens

3W
. (1)

Figure 4 presents the results, where we exclude the first two tokens for calibration, as they typically
have high attention scores but contribute minimally to overall model performance (see Section 2.1).

The results demonstrate that our log-distributed selection scheme covers high-attention tokens more
effectively. This suggests that filtering tokens for quantization based on this log distribution leads to
better token importance preservation.

4

Published as a conference paper at ICLR 2025

460 480 500 520 540 560 580 600
10 6

10 5

10 4

10 3

10 2

10 1

Original Precision
LogQuant (2-bit quantization)
LogQuant (Eviction)

Figure 5: Eviction and Quantization Loss on Attention Distribution

2.3 COMPARISON OF QUANTIZATION AND EVICTION STRATEGIES

When implementing log-distributed token selection for KV Cache compression, two primary ap-
proaches emerge: quantization and eviction. These methods differ fundamentally in their operation.
Quantization reduces the numerical precision of individual tokens, whereas eviction removes tokens
entirely, thereby shortening the sequence length.

This distinction becomes critical due to the nature of the attention mechanism. The softmax function
normalizes attention scores such that their sum equals 1. Consequently, removing tokens through
eviction creates larger deviations from the original attention distribution compared to precision re-
duction via quantization. Specifically, eviction eliminates certain tokens from the attention compu-
tation entirely, while quantization retains all tokens with reduced numerical accuracy.

As demonstrated in Figure 5, this behavioral difference is visually apparent. Quantitative results
on the GSM8K dataset using Llama3.1-8B (see Table 2) show that eviction-based methods produce
twice and higher attention errors than quantization. Based on these findings, we select quantization
as the compression strategy.

Table 2: Comparison of L1 error with original attention for eviction and quantization.

LogQuant (2-bit) KiVi (2-bit) LogQuant (Eviction) KiVi (Eviction)

432.50 556.10 1076.70 1612.56

2.4 POSITION-AGNOSTIC ATTENTION CALCULATION

LLM inference involves two phases: prefill and decoding (Section A). As described in Yuan et al.
(2024), the decoding phase is computationally expensive and memory-bound due to the use of the
KV Cache. In the prefill phase, the model processes the input prompt in a single pass. However,
during decoding, new tokens are generated one at a time, and each generation step requires access
to the entire KV Cache. This leads to inefficiencies in both memory usage and execution time.

To mitigate these inefficiencies, we plan to accelerate the attention procedure. The attention opera-
tion can be expressed mathematically as follows:

A = Softmax(Q ·KT)

O = A · V,
(2)

where A is the attention distribution, a 1×N vector resulting from the softmax operation applied to
the product of Q and the transpose of K and O is the output, a 1×d vector calculated by multiplying
the attention distribution A with the Value matrix V .

Since the attention distribution A aggregates values over all N tokens, the specific ordering of tokens
in the Key and Value matrices does not affect the final output. This property allows us to permute or

5

Published as a conference paper at ICLR 2025

1 new
token

View of their original positions

KVCache Accumulation KVCache Quatization 3W

W

Quantized
KVCache

Full-Precision
KVCache

Yes

2W

Full-Precision
KVCache full?

Example of W = 4

 1 2 3 4 5 6 7 8 9 10 11 12

 1 3 5 7 9 10 11 12 13 14 15 16

 1 3 5 7 9 10 11 12

 1 5 9 11 13 14 15 16

Before
After

Before

After

KVCache

3W

Empty at
the start

4 states of Full-Precision KVCache

3W

During
Accumulation

3W

Right After
Quantization

3W

Full
2W

2W

2 4 6 8

Dequant.

2 4 6 8 3 7 10 12

3 7 10 122 4 6 8

2 4 6 8

Concat. 2 4 6 8 3 7 10 12

Quant.

No

2 4 6 8 3 7 10 12

1124
 1 5 9 11 13 14 15 16

Log-Sparse

Token 1-12
arrival

Token 13-16
arrival

Figure 6: LogQuant’s KV cache compression workflow. The number of reserved original-precision
tokens increases from 2W to 3W . We then apply a log-sparse strategy to filter the first 2W tokens,
quantize half of these tokens, and compress the reserved token length back to 2W .

reorder the Key and Value caches without any loss of accuracy. By leveraging this insight, we can
optimize the KV Cache by concatenating high-precision tokens with quantized tokens while disre-
garding their original positions. This approach enhances memory locality and processing efficiency
while maintaining the correctness of the attention computation. This leads to the relation:

A · V = AP · VP , (3)

where P is a permutation of the indices {1, . . . , N}. This enables us to optimize the KV Cache
effectively.

2.5 LOGQUANT: ALGORITHM AND IMPLEMENTATION

Algorithm. After comparing different logarithmic bases logN , we found that a base-2 logarithmic
implementation is sufficiently effective for our purposes. To maintain logarithmic sparsity within
a specified length, we adopt this base-2 logarithmic approach. We fix a window length configura-
tion W , allowing us to retain up to 3W tokens at original precision. Each time the length limit is
reached, we reduce the density of tokens in the first two windows (each of length W) by retaining
tokens at regular intervals, effectively halving the density. This process reduces the number of re-
tained tokens in the first two windows from 2W to 2W

2 = W . Subsequently, we add W new tokens,
resulting in a full-precision window size of 2W

2 + W = 2W . At this point, the densities become
densityW1

= 1
2p and densityW2

= p, where p is the initial density and Wi denotes the i-th window.
By continuously adding new tokens, LogQuant naturally forms a log2 sparsity selection within the
constrained length. The detailed selection process is described in Algorithm 1. Using this approach,
the length of retained full-precision tokens fluctuates between 2W and 3W , providing a more stable
compression ratio compared to KiVi, where the length fluctuates between 0 and R, with R being the
length of retained full-precision tokens in KiVi. We illustrate the workflow in Figure 6, which visu-
ally represents the KV cache management process, enhancing the understanding of our algorithm’s
implementation.

Implementation. Popular inference frameworks, such as Hugging Face’s transformers library,
have encapsulated KV Cache management into dedicated classes, which simplifies the integration of
new methods. To leverage this modular design, we implemented LogQuant as a derived class of the
Cache class in the transformers library. This approach ensures seamless compatibility with
various quantization backends, including Quanto (Face, 2024) and HQQ (Badri & Shaji, 2023). For
our implementation, we utilized Quanto as the quantization backend, adopting the Key-per-channel
strategy. Furthermore, we integrated LogQuant into Hugging Face’s inference pipeline, enhancing
its usability for efficient and precise inference workflows.

6

Published as a conference paper at ICLR 2025

Algorithm 1 Log-based Filtering Token Selection Strategy

1: Input: A (list of original precision tokens), a* (new token), W (window length)
2: Output: A (updated list of tokens)
3: procedure APPENDTOKEN(A, a∗, W)
4: if length(A) < 3W then
5: A← concat(A, a*)
6: else
7: A← concat(A[0:2W:2], A[2W:3W])
8: A← concat(A, a*)
9: end if

10: return A
11: end procedure

3 EXPERIMENTS

3.1 SETTINGS

Models. We evaluate KiVi and LogQuant on three popular model families: Llama3,
Llama3.1 (Dubey et al., 2024), Qwen1.5, Qwen2 (Bai et al., 2023; Yang et al., 2024), and Mi-
crosoft Phi3 (Abdin et al., 2024). Qwen1.5 and Phi3 adopt Multi-Head Attention, while Llama3/3.1
and Qwen2 use Group-Query Attention. Quantization group size G follows the Hugging Face de-
fault of 64, with INT2 precision. KiVi reserves R = [128, 192, 256] original-precision tokens, while
LogQuant limits window length W to ⌊R/3⌋ to match KiVi’s reservation budget.

Datasets. We use GSM8K (Cobbe et al., 2021) and LongBench (Bai et al., 2024), widely adopted
for KV cache quantization evaluation. GSM8K is tested with 5-shot prompts from the training set,
input lengths between 600–1700 tokens, and exact-match answer evaluation. LongBench evaluation
follows its original pipeline across 21 datasets covering six task types. Dataset details are shown in
Table B5.

3.2 ACCURACY AND EFFICIENCY ANALYSIS

3.2.1 ACCURACY COMPARISON ON DIFFERENT PRECISION

To illustrate the impact of quantized data precision, we evaluate the accuracy loss using Llama3.1-
8B-Instruct under both 2-bit and 4-bit quantization for KiVi and LogQuant methods on LongBench.
As shown in Table 3, both methods achieve performance comparable to the baseline across all tasks
with 4-bit quantization. However, 2-bit quantization results in a noticeable drop in accuracy, high-
lighting the trade-off between memory efficiency and performance. Notably, LogQuant demon-
strates better accuracy compared to KiVi under the same conditions.

Table 3: Accuracy of Different Precision on Llama3.1-8B. Refer to the Table C6 for the scores of
each specific task. The ∆ shows the difference to baseline.

Category KiVi (2-bit) KiVi (4-bit) LogQuant (2-bit) LogQuant (4-bit) baseline

Single-Document QA 38.89 (∆ -8.11) 47.75 (∆ +0.75) 41.91 (∆ -5.09) 47.73 (∆ +0.73) 47.71
Multi-Document QA 34.02 (∆ -4.98) 39.74 (∆ +0.74) 36.08 (∆ -2.92) 39.93 (∆ +0.93) 39.96
Summarization 16.10 (∆ -1.90) 17.94 (∆ -0.06) 16.62 (∆ -1.38) 17.92 (∆ -0.08) 18.08
Few-shot Learning 52.51 (∆ -8.49) 61.34 (∆ +0.34) 56.43 (∆ -4.57) 61.21 (∆ +0.21) 61.22
Synthetic Tasks 45.02 (∆ -21.98) 67.74 (∆ +0.74) 52.51 (∆ -14.49) 67.68 (∆ +0.68) 67.78
Code Completion 43.06 (∆ -15.94) 59.53 (∆ +0.53) 52.10 (∆ -6.90) 59.57 (∆ +0.57) 59.78

3.2.2 ACCURACY COMPARISON AMONG DIFFERENT CONFIGURATIONS

As discussed in Section 3.2.1, 4-bit quantization incurs only a slight accuracy loss across tasks.
Therefore, we focus on 2-bit quantization in the following discussion to highlight LogQuant’s per-
formance. To further investigate the accuracy loss resulting from quantization, we compared the

7

Published as a conference paper at ICLR 2025

0 2 4
Compression Ratio

20

40

60
Ac

cu
ra

cy
(%

)

Meta-Llama-3.1-8B-Instruct

0 2 4
Compression Ratio

40

45

50

55

Ac
cu

ra
cy

(%
)

Qwen1.5-7B-Chat

0 2 4
Compression Ratio

60

65

70

Ac
cu

ra
cy

(%
)

Qwen1.5-14B-Chat

0 2 4
Compression Ratio

70

75

80

Ac
cu

ra
cy

(%
)

Qwen1.5-32B-Chat

0 2 4
Compression Ratio

20

40

60

80

Ac
cu

ra
cy

(%
)

Phi-3-mini-128k-instruct

0 2 4
Compression Ratio

40

60

Ac
cu

ra
cy

(%
)

Meta-Llama-3-8B-Instruct

0 2 4
Compression Ratio

40

45

50

55

Ac
cu

ra
cy

(%
)

Qwen1.5-7B-Chat-AWQ

0 2 4
Compression Ratio

60

65

70

Ac
cu

ra
cy

(%
)

Qwen1.5-14B-Chat-AWQ

0 2 4
Compression Ratio

20

40

Ac
cu

ra
cy

(%
)

Qwen2-7B-Instruct

0 2 4
Compression Ratio

25

50

75

Ac
cu

ra
cy

(%
)

Phi-3-medium-128k-instruct

Accuracy by Compression Ratio on GSM8K(Top right is better)

LogQuant (ours) PartialLogQuant (ours) KiVi baseline

Figure 7: Accuracy(EM) with different compression ratio in GSM8K tasks for different models.

following methods: 1) 16-bit baseline, 2) KiVi and 3) LogQuant across different configurations, we
define the compression ratio as:

Original tensor size
Tensor size in compressed format

(4)

where, for a sequence length L and reserved original precision token length R in a BF16 model with
2-bit quantization, the compression ratio can be expressed as:

16L

2(L−R) + 16R
. (5)

We tested the three compression ratios using GSM8K across three model families, and the results
summarized in Figure 7. Our findings demonstrate that the LogQuant method consistently outper-
forms KiVi across all three models at various compression ratios. The results also indicate that
smaller models and small KV states models, such as Phi3-mini (3.8B) and Qwen2-7B (retaining
only 1

8 of KV heads than Query, while other GQA models typically retain at least 1
4 .), experience

a more significant accuracy loss with 2-bit quantized KV caches. However, our method provides a
notable improvement in accuracy for these smaller models.

3.2.3 ACCURACY COMPARISON AMONG DIFFERENT TASKS

To further investigate the accuracy loss across various tasks, we evaluate the seven task groups listed
in Table B5 and report the average score for each method in Table 4.

In the following, the task groups are abbreviated as follows: Math remains unchanged; Code refers to
Code Completion; Few-shot stands for Few-shot Learning; Multi-QA represents Multi-Document
QA; Single-QA denotes Single-Document QA; Summ. is short for Summarization; and Synth.
stands for Synthetic Tasks.

We set the reserved length R to 128, meaning that LogQuant uses only 3⌊R3 ⌋ = 126 original preci-
sion tokens, which is slightly fewer than the 128 tokens reserved by KiVi. As shown in Table 4, for
simpler tasks such as Summarization, quantization has little to no impact on performance compared
to the 16-bit baseline. However, for more complex tasks such as Code Completion, Synthetic Tasks,
and Math, quantization significantly affects accuracy, with LogQuant demonstrating better retention
of accuracy than KiVi.

3.2.4 EFFICIENCY COMPARISON

We benchmarked memory and throughput efficiency on a single NVIDIA H100 48G MIG using
the HuggingFace pipeline, following a setup similar to (Turganbay, 2024) with an average prompt
length of 512 and a maximum output length of 2000. Batch size was incrementally increased until

8

Published as a conference paper at ICLR 2025

Table 4: Task Group Average Score for Different Models with 2-bit KV Cache Quantization.
(The best result of 2-bit quantization is in bold. Refer to Table D7 for the scores of each specific

task in LongBench.)

Model Method Math Code Few-shot Multi-QA Single-QA Summ. Synth.

llama-3.1-8B-Instruct
16-bit Baseline 71.42 59.78 61.21 39.95 47.71 18.07 67.78
KiVi 18.04 43.06 52.50 34.01 38.89 16.10 45.02
LogQuant (ours) 40.41 52.09 56.42 36.08 41.90 16.62 52.51

Qwen1.5-7B-Chat-AWQ
16-bit Baseline 56.18 52.46 53.88 33.05 39.26 17.11 26.50
KiVi 39.27 34.79 51.32 31.08 35.80 17.16 10.00
LogQuant (ours) 49.28 40.68 52.54 32.04 37.22 17.38 13.50

Qwen1.5-14B-Chat-AWQ
16-bit Baseline 70.28 57.47 59.02 39.72 42.48 17.21 61.33
KiVi 59.82 37.48 57.50 37.91 40.39 17.17 46.85
LogQuant (ours) 63.31 49.37 58.25 38.01 41.37 17.24 52.17

Qwen2-7B-Instruct
16-bit Baseline 52.99 58.23 61.90 33.35 44.66 16.33 43.00
KiVi 3.71 35.91 35.26 12.35 20.52 9.31 11.42
LogQuant (ours) 34.34 48.71 51.23 28.28 34.84 13.13 22.83

Phi-3-mini-128k-instruct
16-bit Baseline 80.29 55.97 52.58 33.55 42.47 17.56 48.00
KiVi 12.59 33.97 36.17 18.19 19.58 9.10 4.83
LogQuant (ours) 51.86 40.84 39.36 21.70 23.63 9.89 5.39

0 50 100 150
Batch Size

200

400

600

800

Sp
ee

d
(To

ke
ns

/s
)

20 30 40
Memory (GB)

200

400

600

800

Sp
ee

d
(To

ke
ns

/s
)

20 30 40
Memory (GB)

0

25

50

75

100

125

150

Ba
tc

h
Si

ze

LogQuant(2-bit) Baseline(BF16)

Figure 8: memory usage and throughput comparison between 2bit LogQuant and 16bit baseline
under huggingface generation pipeline with llama3.1-8B and H100.

memory usage reached 48GB, recording peak memory and throughput for LogQuant (2-bit, 126
reserved tokens) and the BF16 baseline on Llama-3.1-8B.

As shown in Figure 8, LogQuant achieves 25% higher throughput and supports a 60% larger batch
size under the same memory constraints. However, due to HuggingFace’s retention of original KV
states and the overhead from dequantization, memory compression and speed gains are partially
limited. Future work will explore operator fusion to enable direct computation on the quantized
cache and further enhance efficiency.

4 CONCLUSION AND FUTURE WORK

We introduced LogQuant, a novel base-2 logarithmic quantization technique for optimizing KV
Cache management in large language models (LLMs). By maintaining sparsity and accommo-
dating more full-precision tokens, LogQuant consistently outperforms existing methods like KiVi
across diverse model families and compression ratios, particularly benefiting smaller models prone
to quantization-induced accuracy loss.

Our HuggingFace-based implementation achieves notable gains in throughput and memory effi-
ciency. Evaluations further show that LogQuant better preserves accuracy, especially on complex
tasks, highlighting its potential for resource-constrained LLM inference.

Future work will explore further quantization refinements and optimizations such as operator fusion
to maximize performance and efficiency in LLM applications.

9

Published as a conference paper at ICLR 2025

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4895–4901, 2023.

Anthropic. Claude. https://claude.ai/new, 2024. (Accessed on 09/26/2024).

Hicham Badri and Appu Shaji. Half-quadratic quantization of large machine learning models,
November 2023. URL https://mobiusml.github.io/hqq_blog/.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilingual,
multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), August 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

DeepSeek. Deepseek. https://chat.deepseek.com/, 2024. (Accessed on 09/26/2024).

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm
kv cache. arXiv preprint arXiv:2403.04643, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Hugging Face. Optimum quanto, 2024. URL https://github.com/huggingface/
optimum-quanto. Accessed: 2024-09-06.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhen-
hua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference: Accelerating pre-filling
for long-context llms via dynamic sparse attention. In Workshop on Efficient Systems for Founda-
tion Models II@ ICML2024, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

10

https://claude.ai/new
https://mobiusml.github.io/hqq_blog/
https://chat.deepseek.com/
https://github.com/huggingface/optimum-quanto
https://github.com/huggingface/optimum-quanto

Published as a conference paper at ICLR 2025

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Acti-
vationaware weight quantization for llm compression and acceleration. arxiv. arXiv preprint
arXiv:2306.00978, 2023.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. CoRR, 2024a.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. arXiv preprint
arXiv:2405.14366, 2024b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. In Forty-first
International Conference on Machine Learning, 2024c.

Meta. Introducing llama 3.1: Our most capable models to date. https://ai.meta.com/
blog/meta-llama-3-1/, 2024. (Accessed on 09/26/2024).

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

OpenAI. Models - openai api. https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo, 2024a. (Accessed on 09/26/2024).

OpenAI. Openai o1 hub — openai. https://openai.com/o1/, 2024b. (Accessed on
09/26/2024).

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Raushan Turganbay. Unlocking longer generation with key-value cache quantization, 2024. URL
https://huggingface.co/blog/kv-cache-quantization. Accessed: 2024-09-
24.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. arXiv preprint arXiv:2402.04617,
2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. CoRR, 2024.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Chenhao Xue, Bingzhe Wu, Zhikai Li,
Qingyi Gu, Yong Jae Lee, Yan Yan, et al. Llm inference unveiled: Survey and roofline model
insights. arXiv preprint arXiv:2402.16363, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

11

https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://openai.com/o1/
https://huggingface.co/blog/kv-cache-quantization

Published as a conference paper at ICLR 2025

A BACKGROUND & RELATED WORK: KV CACHE COMPRESSION

The attention mechanism relies on three key components: the Query (Q), Key (K), and Value (V)
vectors. For each token, LLM computes a d-dimensional Q vector and compares it against all stored
N × d K vectors, where N is the length of the sequence processed. The result of this comparison is
used to weigh the corresponding V vectors, producing the final output. Mathematically, the attention
operation is defined as:

Attention(Q,K, V) = Softmax
(
QK⊤
√
d

)
V (6)

LLM inference is generally divided into two phases: a prefill phase for processing input tokens and
a decoding phase for generating new tokens. In decoding, each token generation reloads the entire
KV Cache from previous tokens, causing time and memory inefficiencies.

KV cache compression methods fall into two categories: ’training-free’ methods (using eviction and
quantization without model retraining) and ’training-required’ methods (designing more efficient
attention structures). Our approach focuses on enhancing training-free methods for broader appli-
cability. Eviction selectively discards less important tokens, while quantization lowers the precision
of key and value states to save memory. However, both methods risk significant information loss at
high compression rates—especially 2-bit quantization, which can greatly reduce accuracy.

A.1 KV CACHE EVICTION

Eviction methods aim to reduce KV cache memory usage in Large Language Models (LLMs) by
discarding less important tokens. The early work H2O (Zhang et al., 2024) selects ”heavy hitter”
tokens based on cumulative attention scores, though this risks evicting tokens that may become
important later. Keyformer (Adnan et al., 2024) improves on H2O by combining ”Key Attention”
with a ”window attention” mechanism, retaining both historically significant and recent tokens for
better accuracy. MiniCache (Liu et al., 2024b) reduces memory by reusing Key and Value states
across layers. This method assumes that some key and value representations are redundant across
model layers and can be shared. InfLLM (Xiao et al., 2024) addresses very long contexts by dividing
them into blocks and retaining ’representative tokens’ for block eviction decisions.

A.2 KV CACHE QUANTIZATION

Quantization reduces storage and boosts computational speed by using fewer bits to represent values.
Earlier works, like AWQ (Lin et al., 2023) and Qserve (Lin et al., 2024), applied 4-bit quantization
to the KV cache with minimal accuracy loss. Recent methods aim to compress the KV cache further
while preserving accuracy. QAQ (Dong et al., 2024) dynamically adjusts the precision of the in-
GPU quantized cache by offloading all original-precision KV data to CPU memory. GEAR (Kang
et al., 2024) improves accuracy by storing the quantization error of the KV cache as a sparse matrix
with low-rank decomposition. KiVi (Liu et al., 2024c) introduces a 2-bit quantization by retaining a
recent window of full-precision tokens, balancing memory efficiency and accuracy.

A.3 TRAINING-REQUIRED APPROACHES

An early memory-reducing attention design is Multi-Query Attention (MQA, (Shazeer, 2019)),
where all query heads share a single pair of key and value heads. While this reduces memory, it
significantly impacts accuracy. Grouped-Query Attention (GQA, (Ainslie et al., 2023)) addresses
this by grouping query heads, with each group sharing the same key and value heads, preserving
the generalization ability of multi-head attention while reducing KV cache size. Deepseek V2 (Liu
et al., 2024a) introduces Multi-Head Latent Attention (MLA), which compresses key and value
states using LoRA-based projections. To prevent disruption of position embeddings from LoRA
compression, specific channels are reserved for position information only, excluding them from
LoRA compression.

12

Published as a conference paper at ICLR 2025

B OVERVIEW OF TEST DATASETS

Table B5: Overview of all test datasets.
‘Avg len’ (average length) is computed using the number of words for the English (code) datasets
and the number of characters for the Chinese datasets. ‘Accuracy (CLS)’ refers to classification

accuracy, while ‘Accuracy (EM)’ refers to exact match accuracy

Task Group Dataset Avg len Metric Language #data

Math GSM8K 240 Accuracy (EM) English 1319

Single-Document QA

NarrativeQA 18,409 F1 English 200
Qasper 3,619 F1 English 200
MultiFieldQA-en 4,559 F1 English 150
MultiFieldQA-zh 6,701 F1 Chinese 200

Multi-Document QA

HotpotQA 9,151 F1 English 200
2WikiMultihopQA 4,887 F1 English 200
MuSiQue 11,214 F1 English 200
DuReader 15,768 Rouge-L Chinese 200

Summarization

GovReport 8,734 Rouge-L English 200
QMSum 10,614 Rouge-L English 200
MultiNews 2,113 Rouge-L English 200
VCSUM 15,380 Rouge-L Chinese 200

Few-shot Learning

TREC 5,177 Accuracy (CLS) English 200
TriviaQA 8,209 F1 English 200
SAMSum 6,258 Rouge-L English 200
LSHT 22,337 Accuracy (CLS) Chinese 200

Synthetic Task
PassageCount 11,141 Accuracy (EM) English 200
PassageRetrieval-en 9,289 Accuracy (EM) English 200
PassageRetrieval-zh 6,745 Accuracy (EM) Chinese 200

Code Completion LCC 1,235 Edit Sim Python/C#/Java 500
RepoBench-P 4,206 Edit Sim Python/Java 500

C META DATA OF PRECISION COMPARISON

Table C6: Comparison on Llama3.1-8B-Instruct of different quantization precisions

Dataset KiVi (2-bit) KiVi (4-bit) LogQuant (2-bit) LogQuant (4-bit) Baseline
2wikimqa 39.52 44.79 40.69 45.18 45.06
dureader 22.20 27.75 22.59 27.99 28.48
gov report 18.60 19.86 18.78 20.09 20.41
hotpotqa 48.83 55.78 52.43 55.85 55.90
lcc 47.09 63.44 57.52 62.85 62.99
lsht 31.42 45.00 33.75 45.00 45.00
multi news 15.07 15.65 15.11 15.64 15.89
multifieldqa en 42.51 55.10 45.98 54.63 54.91
multifieldqa zh 50.12 62.77 55.51 63.27 62.72
musique 25.52 30.65 28.62 30.70 30.39
narrativeqa 26.44 27.91 27.93 28.28 28.19
passage count 5.67 6.31 5.63 6.15 6.31
passage retrieval en 83.17 99.50 92.25 99.50 99.50
passage retrieval zh 46.23 97.42 59.65 97.38 97.54
qasper 36.50 45.20 38.21 44.74 45.03
qmsum 17.41 19.07 18.19 18.92 19.15
repobench-p 39.03 55.61 46.67 56.28 56.57
samsum 23.88 36.12 33.33 35.45 35.72
trec 65.00 72.50 67.00 72.50 72.50
triviaqa 89.72 91.73 91.63 91.89 91.64
vcsum 13.33 17.17 14.41 17.04 16.85

13

Published as a conference paper at ICLR 2025

D META DATA OF LONGBENCH RESULTS

Table D7: LongBench score of each dataset

precision 16-bit 2-bit

Task Group Baseline KiVi LogQuant
(ours)

llama-3-8B-Instruct
2WikiMultihopQA 37.24 31.72 35.08
DuReader 16.73 12.45 15.5
GovReport 17.8 12.8 15.63
HotpotQA 46.1 43.87 44.96
LCC 56.85 31.73 41.75
LSHT 25.25 21.5 21.75
MultiFieldQA-en 44.44 38.68 41.04
MultiFieldQA-zh 56.3 43.96 48.44
MultiNews 16.59 15.76 16.06
MuSiQue 21.44 19.56 20.59
NarrativeQA 22.07 19.82 21.56
PassageCount 6.5 5.5 4.0
PassageRetrieval-en 66.0 53.0 58.5
PassageRetrieval-zh 91.0 33.45 72.0
Qasper 43.69 33.9 39.46
QMSum 17.49 17.01 17.37
RepoBench-P 51.32 31.99 40.1
SAMSum 33.22 22.44 32.66
TREC 74.0 72.5 73.0
TriviaQA 90.48 87.65 89.36
VCSUM 0.16 0.17 0.25

llama-3.1-8B-Instruct
2WikiMultihopQA 45.06 39.52 40.69
DuReader 28.48 22.2 22.59
GovReport 20.41 18.6 18.78
HotpotQA 55.9 48.83 52.43
LCC 62.99 47.09 57.52
LSHT 45.0 31.42 33.75
MultiFieldQA-en 54.91 42.51 45.98
MultiFieldQA-zh 62.72 50.12 55.51
MultiNews 15.89 15.07 15.11
MuSiQue 30.39 25.52 28.62
NarrativeQA 28.19 26.44 27.93
PassageCount 6.31 5.67 5.63
PassageRetrieval-en 99.5 83.17 92.25
PassageRetrieval-zh 97.54 46.23 59.65
Qasper 45.03 36.5 38.21
QMSum 19.15 17.41 18.19
RepoBench-P 56.57 39.03 46.67
SAMSum 35.72 23.88 33.33
TREC 72.5 65.0 67.0
TriviaQA 91.64 89.72 91.63
VCSUM 16.85 13.33 14.41

Phi-3-mini-128k-instruct
2WikiMultihopQA 35.78 19.12 24.61
DuReader 22.75 10.38 9.26
GovReport 18.7 8.83 9.47
HotpotQA 50.44 31.33 37.48
LCC 57.44 39.85 47.53

Continued on next page

14

Published as a conference paper at ICLR 2025

Table D7 – continued from previous page

Task Group Baseline KiVi LogQuant
(ours)

LSHT 27.25 14.25 13.75
MultiFieldQA-en 54.9 29.04 34.91
MultiFieldQA-zh 52.09 8.16 12.32
MultiNews 15.52 12.72 13.33
MuSiQue 25.23 11.92 15.46
NarrativeQA 23.28 15.34 17.37
PassageCount 3.0 2.25 4.5
PassageRetrieval-en 82.5 11.0 9.68
PassageRetrieval-zh 58.5 1.25 2.0
Qasper 39.6 25.78 29.91
QMSum 17.97 5.88 7.04
RepoBench-P 54.49 28.09 34.16
SAMSum 30.62 9.23 13.03
TREC 66.0 59.5 62.5
TriviaQA 86.43 61.72 68.15
VCSUM 18.04 8.97 9.74

Qwen1.5-14B-Chat-AWQ
2WikiMultihopQA 44.81 44.35 44.39
DuReader 26.02 23.34 23.28
GovReport 16.31 16.23 16.25
HotpotQA 55.67 53.69 53.9
LCC 56.69 36.94 50.95
LSHT 37.0 32.5 34.5
MultiFieldQA-en 48.36 44.75 45.68
MultiFieldQA-zh 60.35 58.54 59.43
MultiNews 14.95 15.01 14.94
MuSiQue 32.38 30.25 30.45
NarrativeQA 22.26 21.73 22.83
PassageCount 1.0 2.55 2.0
PassageRetrieval-en 94.5 71.0 80.0
PassageRetrieval-zh 88.5 67.0 74.5
Qasper 38.93 36.56 37.54
QMSum 18.16 18.03 18.13
RepoBench-P 58.25 38.03 47.79
SAMSum 32.95 32.69 33.34
TREC 77.5 76.5 77.5
TriviaQA 88.63 88.32 87.66
VCSUM 19.41 19.42 19.65

Qwen1.5-7B-Chat
2WikiMultihopQA 32.8 31.83 32.14
DuReader 25.96 22.64 24.06
GovReport 16.66 15.57 15.84
HotpotQA 48.11 47.37 48.91
LCC 58.17 45.87 53.77
LSHT 28.0 24.0 24.5
MultiFieldQA-en 47.14 42.26 43.72
MultiFieldQA-zh 53.4 50.18 51.68
MultiNews 15.02 15.0 14.92
MuSiQue 26.74 25.88 27.09
NarrativeQA 20.06 19.02 20.06
PassageCount 1.0 0.5 0.0
PassageRetrieval-en 40.5 20.0 24.0
PassageRetrieval-zh 59.0 18.25 29.0
Qasper 39.84 37.19 37.28
QMSum 18.25 17.59 18.18

Continued on next page

15

Published as a conference paper at ICLR 2025

Table D7 – continued from previous page

Task Group Baseline KiVi LogQuant
(ours)

RepoBench-P 45.46 26.33 30.76
SAMSum 33.01 29.7 33.31
TREC 70.5 69.5 67.5
TriviaQA 86.76 86.51 87.37
VCSUM 17.98 19.15 19.34

Qwen1.5-7B-Chat-AWQ
2WikiMultihopQA 32.43 30.82 33.46
DuReader 25.84 23.1 24.36
GovReport 16.98 16.31 16.65
HotpotQA 47.77 47.17 46.0
LCC 57.98 44.56 52.33
LSHT 29.0 25.5 27.0
MultiFieldQA-en 46.72 42.87 45.85
MultiFieldQA-zh 50.97 45.51 46.73
MultiNews 14.97 15.04 15.16
MuSiQue 26.18 23.23 24.36
NarrativeQA 20.93 19.58 20.14
PassageCount 0.5 0.0 0.0
PassageRetrieval-en 30.5 16.0 18.5
PassageRetrieval-zh 48.5 14.0 22.0
Qasper 38.45 35.27 36.16
QMSum 17.85 17.34 17.77
RepoBench-P 46.95 25.02 29.03
SAMSum 31.98 28.3 32.06
TREC 67.0 65.0 63.5
TriviaQA 87.56 86.48 87.61
VCSUM 18.66 19.95 19.96

Qwen2-7B-Instruct
2WikiMultihopQA 44.15 11.33 40.12
DuReader 19.22 13.08 15.01
GovReport 18.09 10.82 16.07
HotpotQA 44.3 17.39 39.92
LCC 57.72 36.63 51.46
LSHT 44.0 23.0 26.25
MultiFieldQA-en 46.89 21.97 36.42
MultiFieldQA-zh 61.48 33.67 47.57
MultiNews 15.58 8.53 13.6
MuSiQue 25.71 7.58 18.07
NarrativeQA 24.43 5.29 18.43
PassageCount 5.0 5.5 5.5
PassageRetrieval-en 69.0 19.25 33.5
PassageRetrieval-zh 55.0 9.5 29.5
Qasper 45.82 21.16 36.94
QMSum 17.92 9.08 12.25
RepoBench-P 58.74 35.18 45.95
SAMSum 35.94 18.23 28.03
TREC 78.0 58.25 68.0
TriviaQA 89.66 41.56 82.63
VCSUM 13.74 8.82 10.58

16

	Introduction
	Methodology
	Preliminary Study of KV Cache and Attention Scores
	The Log-distributed Attention Pattern
	Comparison of Quantization and Eviction Strategies
	Position-Agnostic Attention Calculation
	LogQuant: Algorithm and Implementation

	Experiments
	Settings
	Accuracy and Efficiency Analysis
	Accuracy Comparison on Different Precision
	Accuracy Comparison among different Configurations
	Accuracy Comparison among Different Tasks
	Efficiency Comparison

	Conclusion and Future Work
	Background & Related Work: KV Cache Compression
	KV Cache Eviction
	KV Cache Quantization
	training-required approaches

	Overview of Test Datasets
	Meta Data of Precision Comparison
	Meta Data of LongBench Results

