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Abstract

Deploying deep convolutional neural networks on Internet-of-Things (IoT) devices
is challenging due to the limited computational resources, such as limited SRAM
memory and Flash storage. Previous works re-design a small network for IoT
devices, and then compress the network size by mixed-precision quantization.
This two-stage procedure cannot optimize the architecture and the corresponding
quantization jointly, leading to sub-optimal tiny deep models. In this work, we
propose a one-stage solution that optimizes both jointly and automatically. The key
idea of our approach is to cast the joint architecture design and quantization as an
Entropy Maximization process. Particularly, our algorithm automatically designs
a tiny deep model such that: 1) Its representation capacity measured by entropy
is maximized under the given computational budget; 2) Each layer is assigned
with a proper quantization precision; 3) The overall design loop can be done on
CPU, and no GPU is required. More impressively, our method can directly search
high-expressiveness architecture for IoT devices within less than half a CPU hour.
Extensive experiments on three widely adopted benchmarks, ImageNet, VWW
and WIDER FACE, demonstrate that our method can achieve the state-of-the-art
performance in the tiny deep model regime. Code and pre-trained models are
available at https://github.com/alibaba/lightweight-neural-architecture-search.

1 Introduction

With the attention of many intelligent IoT applications that have grown recently, the demand for low-
cost and low-energy IoT devices is significantly increasing, such as tiny NPUs and microcontroller
units (MCUs). These devices have tight-resources like hundreds KB on-chip memory (SRAM),
MB-level storage (Flash) and low speed computing ability. Thus, how to design and deploy efficient
tiny deep models for IoT devices is becoming a main topic in Tiny Machine Learning (TinyML) [1].

As most IoT devices have very limited on-chip memory, one of the most critical challenges in TinyML
is to control the peak memory during inference. Some works re-design the network architecture to
maintain the peak memory occupation [27, 39, 10, 17, 33, 16] by network transformed techniques, in
which an accessible and efficient technique is to slice input images into multiple patches so that the
inference can be split into multiple independent processes to meet the peak memory constraint for
once calculation. In addition, Neural Architecture Search (NAS) is a popular tool to re-design tiny
deep models automatically [10, 17, 33, 16] with an elaborate search space. After re-designing the
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Figure 1: Illustration of our proposed strategy for deep network design on IoT devices, which consists
of quantization entropy score, Gaussian initialization calibration, and resource maximization.

neural architecture, the promotable stage is to reduce the memory occupation via mixed-precision
quantization [34, 36, 3, 11, 35, 10, 26, 38, 4]. Nevertheless, the incoherence of such a two-stage
design procedure leads to the inadequate utilization of resources, therefore producing sub-optimal
models within tight resource requirements for IoT devices.

To compensate for the sub-optimality of the two-stage design, this work studys how to optimize
the network architecture jointly with mixed-precision quantization in a more efficient manner. Re-
cently, training-free based approaches [22, 6, 32, 18, 31] have emerged for neural architecture search,
accelerating the progress of the model design. Owing to constructing an alternative proxy to rank
candidate networks instead of a training-based accuracy indicator, they achieve commendable effec-
tiveness for the full-precision model design. Hence, considering the progress of the proxy mechanism,
training-free technology could provide hands-down feasibility for integrated architecture searching,
but there is still a lack of key techniques for cooperating mixed-precision quantization. Thus, we
explore advancing the training-free technology to optimize both architecture and quantization in a
one-stage lightweight way.

Inspired from [31], a deep neural network can be regarded as an information system, and the
information of the system can be proportional to the entropy of the last feature map, which reflects
the expressiveness of the network. Further, we reformulate the informationalized network with
mixed-precision quantization and measure its entropy as the proxy for the performance of the
quantization network. Concretely, we first comprehend the quantization effect on the entropy of the
information system and propose a Quantization Entropy Score (QE-Score) to calculate the entropy.
Then, according to the study of how Gaussian initialization on variables affects the value of QE-Score,
we design a grid calibration process to determine the Gaussian initial values. Finally, a Quantization
Bits Refinement (QBR) strategy embedded in the evolutionary algorithm is introduced to maintain
higher-precision weights and lower-precision activations in the front few-layer, while the opposite is
in the latter few layers. The entire process is illustrated in Figure 1.

The key contributions of our work are summarized as follows:

• To the best of our knowledge, we first present the ranking strategy of mixed-precision quantization
networks in the entropy view. And Quantization Entropy Score is proposed with a calibrated
initialization to measure the expressiveness of the network.

• Quantization Bits Refinement is proposed to adjust mixed quantization bits, which can ensure
that each layer is assigned with proper quantization precision, and maximize the utilization of
memory and storage resources on the IoT devices.

• Benefitting from the QE-Score, our approach can achieve architecture searching within less than
half a 64-core CPU hour. Extensive experiments demonstrate that our searched model can achieve
state-of-the-art performance on IoT devices for both classification and detection tasks.

2 Related Work

Tiny Deep Models. Recent attempts [27, 39, 10, 17, 33, 16] have been made to design efficient
neural networks by reducing the peak memory of the front layers intuitively. Some works [27, 39, 16]
aim to reduce the resolution of the front layers by slicing the image to several patches. For instance,
RaScaNet [39] learns the representation of the whole image using a recurrent neural network through
a raster-scanning image reading pipeline. Others works [10, 17, 33, 16] focus on investigating Neural
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Architecture Search (NAS) to design architecture under the peak memory budget of IoT devices. For
example, MCUNet series [17, 16] address that automatically optimizes the search space to adapt the
tiny resource constraints. Then, NAS search is performed for handling the tiny and diverse memory
constraints on various microcontrollers. These works re-design the network architecture to maintain
the peak memory occupation, however the mixed-precision quantization strategy is not considered to
further reduce resource utilization.

Mixed-precision Quantization. Mixed-precision quantization search [34, 36, 3, 11, 35, 10, 26,
38, 4] can reduce the peak memory, flash storage and computation cost of neural networks. Some
methods [34, 36, 26, 4] focus on mixed-precision quantization on specific models (i.e., ResNet [13]
and MobileNetV2 [28]) without jointly combining with the architecture design. For example,
DNAS [36] formulates quantizing different layers with different bit-widths as a neural architecture
search problem, and proposes a novel differentiable neural architecture search framework to efficiently
explore it with gradient-based optimization. Other works [3, 11, 35, 10, 38] attempt to jointly optimize
the network architecture on cloud and mobile models and quantization by training each candidate
network or a big supernet on various candidate architectures. For instance, APQ [35] conducts a joint
search between neural architecture design, pruning policy, and quantization policy, and proposes a
predictor-transfer method to tackle the high cost of quantization-aware accuracy training. However,
the architecture design in these methods pays less attention to the constraints of the IoT devices.
Therefore, how to jointly design the tiny deep models and do mixed-precision quantization is still
worth exploring.

Training-free NAS methods. Some attempts [22, 6, 32, 18, 31] proposed training-free strategies
for architecture searching, which construct an alternative proxy to rank the initialized networks
without training. For example, SynFlow [32] preserves the total flow of synaptic strengths through the
network at initialization, subject to a sparsity constraint as the proxy. Specially, Zen-NAS [18] uses
the gradient norm of the input image as ranking score, and MAE-DET [31] estimates the differential
entropy of the last feature map to represent the expressiveness of a network, based on the maximum
entropy theory [24]. However, these methods construct the proxy on full-precision models, and can’t
directly indicate the correlation between mixed-precision quantization and accuracy. To address
the above issues, our work aims to optimize the network architecture jointly with mixed-precision
quantization in one-stage, considering the lightweight neural architecture search approach.

3 Problem Statement

3.1 Constraints of IoT Devices

Although significant research has been done to investigate architecture searching for IoT devices,
designing models under limited resources remains a challenging issue. Limited on-chip SRAM
memory and Flash storage are the major constraints [12, 17, 16] for deploying deep learning models
on IoT devices, especially for MCUs. For example, a state-of-the-art ARM Cortex-M7 MCU merely
has 512kB SRAM and 2MB Flash, which is impossible to run the off-the-shelf ResNet-50 [13] or
MobileNetV2 [28]. As a typical tiny model, full-precision MobileNetV2 needs 5.6M peak memory
and 13.5M storage, while the int8-precision version needs 1.4M peak memory and 3.4M storage [17],
which far exceeds the limitation of mainstream IoT devices. The distribution of memory and model
size of MobileNetV2 is illustrated as shown in Figure 2. On the other hand, the limited resource
budget might be satisfied by lower precision quantization, but the performance of the models will
drop more.

3.2 Low-precision Quantization

To analyze the performance drop, we conduct an overall low-precision quantization [9] on Mo-
bileNetV2 except for the first and last layers, which follow the common practice of using 8-bit for
high accuracy [25, 42, 2, 9]. As shown in Table 1 and Figure 3, we observe that lower bit precision
lower accuracy. Only "A3W2" model fits both 512KB memory limit and 2MB storage limit with
23.17% ACC decline, which uses 3-bit for all activations and 2-bit for all weights. However, in
“A3W2" Model, the activations in latter stages and the weights in front stages can utilize larger bits
quantization, which change less memory and storage according to the imbalanced resource utilization
in Figure 3. Thus, the resource utilization of fixed-precision quantization is not high in some stages,
which means we need mixed-precision quantization to improve accuracy. Because mixed-precision
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Figure 2: Imbalanced memory and model size distribution on MobileNetV2 [28]. Top five blocks
determine the memory bottleneck of the entire network due to high resolution, and last five blocks
occupy 80% of model size due to higher output channels. "A3W2" model could satisfy both 512KB
memory limit and 2MB storage limit, which uses 3-bit for activations and 2-bit for weights.

quantization uses lower bit on tight-resource position and higher bit on rich-resource position to
ensure precision stability. Therefore, we should apply neural architecture search on mixed-precision
quantization for selected IoT devices.

Table 1: TOP-1 ACC of fixed-precision MobileNetV2 models on
ImageNet with 120 training epochs. Bold values meet the 512KB
SRAM limit, and underline values meet the 2MB Flash limit.

Activation Weight Bit
Bit 2 3 4 5 6 8

3 47.43 59.38 62.78 63.59 64.06 64.28
4 55.54 64.74 67.78 68.50 68.59 68.94
5 56.66 66.31 69.23 69.75 69.99 70.25
6 57.73 66.62 69.11 70.00 70.07 70.48
8 57.89 66.69 69.25 70.02 70.17 70.60
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Figure 3: Peak memory and model size of
fixed-precision MobileNetV2 models.

4 Quantization Entropy

In this section, we propose a Quantization Entropy Score for measuring the expressiveness of the
mixed-precision quantization model.

4.1 Maximum Entropy for Full-precision Models

According to the Maximum Entropy Principle [15] and its successful deep learning applications [29,
5, 40, 31], a deep neural network can be regarded as an information system, and the differential
entropy of the last output feature map represents the expressiveness of the system. Given by the
following theorem:
Theorem 1. For any continuous distribution P(x) of mean µ and variance σ2, its differential entropy
is maximized when P(x) is a Gaussian distribution N (µ, σ2).

The differential entropy of a distribution is upper bounded by a Gaussian distribution with the same
mean and variance. Suppose x is sampled from Gaussian distribution N (µ, σ2), the differential
entropy [24] H of x is then:

H(x) =

∫ +∞

−∞
− log(p(x))p(x) dx ∝ log(σ2), (1)

where p(x) represents the probability density function of x. Moreover, the entropy H represents
the expressiveness of a deep system, which correlated with the performance of a deep neural
network [31]. Specifically, given a convolutional network with L layers of weights W1, ..., WL,
which are initialized from a standard Gaussian distribution, the forward inference is given by:

xl = ϕ(Wl ∗ xl−1) for l = 1, . . . , L , (2)
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where xl denotes the lth layer feature map and ϕ(·) represents the activation function. For simplicity,
the bias of the convolutional layer is set to zero and the activation function is omitted. As we
initialize the input x0 from Gaussian distribution, the upper bound entropy H(F) of the network F
is proportional to log(σ2(xL)), where σ2(xL) represents the variance of the xL and is computed by
the forward inference. To this end, we can measure the expressiveness of full-precision networks
without training and inference. The detailed description can be found in [31].

Further, according to the product law of expectation [23] and Bienaymé’s identity in probability
theory [20], we can obtain the expectation and variance of element i of x1 layer feature map in our
system by:

E(x1
i ) = 0, σ2(x1

i ) =

K1
h∑

h=1

K1
w∑

w=1

C0∑
c=1

[
σ2(x0

chw)× σ2(W 1
chw)

]
, (3)

where {K1
h,K

1
w} represents the kernel size of the first layer in the CNN, and C0 denotes its input

channels size. Further extend to the l-layer convolution, we can obtain corresponding layer’s
expectation and variance:

E(xl
i) = 0, σ2(xl

i) =

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

[
σ2(xl−1

chw)× σ2(W l
chw)

]
. (4)

The detailed derivation process is present in Appendix A. Next, we will explore how to introduce
mixed-precision quantization into the calculation process.

4.2 Quantization Entropy for Mixed-Precision Models

Mixed-precision quantization to the network F requires inserting low-precision conversion behind
Gaussian initialized input and weights. Learning from the practices of entropy coding [30, 24] with
fixed quantization step size of 1, given the variable R to quantize symmetrically, the conversion of
N -bit quantization representation [26, 9] can be defined as:

Q = round(clamp(R,−2N−1, 2N−1 − 1)), (5)

where clamp returns R with values below −2N−1 set to −2N−1 and values above 2N−1 − 1 set
to 2N−1 − 1. According to the work of [31], the input of each layer is zero-mean distribution
when deriving the entropy, so that the upper bound of Q is set as 2N−1. Then, the variance of the
quantization value Q can be given by:

σ̂2(N) =
∑[

P(Q)× (Q− µQ)
2
]
, P(Q) =

∫ Rr

Rl

P(R), (6)

where Q ∈ [−2N−1, 2N−1] and σ̂2 denotes the truncated variance of Q, P(Q) is the probability of Q
relied on the distribution of R. Therefore, P(Q) equals to: (1)

∫ −2N−1+0.5

−∞ P(R), when Q = −2N−1;
(2)

∫ Q+0.5

Q−0.5
P(R), when −2N−1 < Q < 2N−1; (3)

∫∞
2N−1−0.5

P(R), when Q = 2N−1.

As shown in Figure 4, we can figure out that the quantization of Gaussian variable will decrease the
variance of the variable. Given a Gaussian distribution with σ and N bit precision, the decrease is
fixed, so that we can pre-compute the decrease, which will speed up the computation of Eq. 6. The
pre-computed quantization standard deviation σ̂(N) is demonstrated in Table 2.

Then, apply the quantization to Eq. 4, the σ2(xj) of jth layer become larger during the depth increase.
As we set the quantization step as 1 in Eq. 5, the distribution in Figure 4 will be much smoother,
and the probability will close to 0. So that the different bits of quantization can not be distinguished
in the next layer. If we use a dynamic quantization step in each layer to avoid this phenomenon,
the computation will be more complex. Therefore, we adopt a scaling parameter σ2

S(x
l−1
chw) to

normalize the xj to σA instead of adjusting the quantization step. Following the weights obey
N (0, σW ) [18, 31], then use N l−1

x and N l
W bit to quantize the l-layer’s input and weight respectively,

Eq. 4 can be revised as

σ2(xl
i) =

Kl
h∑

h=1

Kl
w∑

w=1

Cl−1∑
c=1

[
σ̂2(N l−1

x )× σ̂2(N l
W )

]
× σ2

S(x
l−1
chw), σ2

S(x
l−1
chw) = σ2(xl−1

chw)/σ
2
A. (7)
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Table 2: Look up table of σ̂(N) according to
σ and N bit. Low-precision leads to small
variance.

N Bit Precision
σ 2 3 4 5 6 7 8

1 1.00 1.04 1.04 1.04 1.04 1.04 1.04
2 1.47 1.94 2.02 2.02 2.02 2.02 2.02
4 1.73 2.89 3.85 4.01 4.01 4.01 4.01
6 1.82 3.26 5.04 5.96 6.00 6.00 6.00

Subsequently, the variance of xL can be obtained by propagating the variances from previous layers:

σ2(xL
i ) = σ2(x0

chw)×
L∏

l=1

Kl
hK

l
wC

l−1σ̂2(N l−1
x )σ̂2(N l

W )/σ2
A, (8)

where x0 is initialized by σ2
A. Refer to the Eq. 1, the upper bound entropy H(F) is proportional to:

H(F) ∝
L∑

l=1

log
[
Kl

hK
l
wC

l−1σ̂2(N l−1
x )σ̂2(N l

W )/σ2
A

]
+ log(σ2

A), (9)
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where σ̂2(N l
x) and σ̂2(N l

W ) are calculated by Eq. 6
with initial standard deviation σA and σW . We
name the value of Eq. 9 as Quantization Entropy
Score (QE-Score), and detailed derivation is intro-
duced in Appendix A. As the QE-Score only de-
pends on the structural parameters of the network,
quantization function, and initial standard deviation
σA and σW , we can compute QE-Score on CPUs
to rank candidate networks during search, which
greatly reduces the dependence on hardware. In the
next section, we will show how to determine the
initial standard deviation σA and σW .

4.3 Gaussian Initialization Calibration
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Figure 6: Gaussian initialization calibration between the accuracy and QE-Score on fixed-precision
MobileNetV2 models.

We apply the commonly used MobileNetV2 architecture with fixed-precision quantization for cali-
bration, and these models have been summarized in Table 1. According to the relationship between
accuracy and computation in Figure 5 and the pre-computed quantization standard deviation σ̂(N) in
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Table 2, we can figure out that: 1) Increasing the initial standard deviation σ will help us distinguish
the disparity of entropy between different bits; 2) Quantization on activations and weights has differ-
ent effects on accuracy. Therefore, we set different values of σA and σW to show differences between
activations and weights. In summary, we use a grid calibration process to seek for the appropriate
initial σA and σW , and demonstrate the calibration process in Figure 6.

According to Figure 6, we observe that when gradually increasing the values of σA and σW , QE-
Scores are gradually positive correlated with accuracy until σA = σW = 4. Then, we adjust
σA = 5 and σW = 4 to rank the diversity of activations and weights on accuracy. Benefit from the
Gaussian initialization calibration, QE-Score can help us rank various architectures without training
and evaluating during search, and design a high-expressiveness architecture for IoT devices.

4.4 Resource Maximization for IoT Devices

We apply Evolutionary Algorithm (EA) along with low-precision quantization to obtain the optimal
architecture by the proposed QE-Score for IoT devices. Based on the observation in Figure 2,
the front few layers dominate the peak memory of the entire model due to high resolution, and
the distribution of model weights generally shows an upward trend with the increase of feature
map channels. Considering the tight SRAM memory and Flash storage constraints of IoT devices,
maintaining higher-precision weights and lower-precision activations in the front few layers is an
eligible strategy, while it is the opposite in the latter few layers. Therefore, we propose a quantization
bits refinement strategy (Figure 7) embedded in the EA to realize it, to assess the bit distribution
and make appropriate adjustments to maximize resources utilization. The detailed algorithm is
introduced in Appendix B.
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Figure 7: Quantization Bits Refinement (QBR) strategy for a candidate architecture to redistribute
the mixed-precisions. For activations, we scale the mixed-precision to make the peak memory meet
the budget. Accordingly, we also increase or decrease the mixed-precision of the weights from the
smallest blocks or the largest block separately to guarantee the model size approaches the budget.
Orange curve arrows in the four corners mean the adjustment scale of the precision value from 2 bit
to 8 bit or 8 bit to 2 bit.

5 Experiments

5.1 Implementation Details

Searching Settings. The evolutionary algorithm and super-block definition follow the work of
[18, 31]. The evolutionary population N is set as 512 with total 500000 iterations. To compare with
common mix-quantization search [34, 36, 11, 35] and IoT device applications [17, 16, 27, 39], we
build our network with MobileNetV2-based blocks, using the inverted bottleneck block with expan-
sion ratio in [1.5, 6]. Specifically, low-precision values are random selected from {2, 3, 4, 5, 6, 8} in
our search, and three layers in each block share the same precision value.

Datasets and Training Settings. We use two standard benchmarks in this work: ImageNet [8] and
Visual Wake Words (VWW) [7]. For ImageNet-1K dataset, our models are trained for 240 epochs
without special indication. All models are optimized by SGD with a batch size of 512 and Nesterov
momentum factor of 0.9. Initial learning rate is set to 0.4 with cosine learning rate scheduling [21],
and the weight decay is set to 4e-6. Besides, to validate the expansibility of our method, we further
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evaluate it on the WIDER FACE [37] object detection dataset. When training with low-precision
values, we follow the implementation in [9] to do the quantization. For VWW and WIDER FACE, we
follow the training settings in [16]. More implementation details are introduced in Appendix C.

5.2 Mixed-Precision Comparison

To compare with other mixed-precision search methods [34, 36, 11, 35], we conduct our searching
on the MobileNetV2-level under the computation budget (BitsOps), and the BitsOps budget is 19.2G
to compare with MobileNetV2-8bit, and 7.0G for MobileNetV2-4bit.
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Figure 8: Correlations between TOP-1 accuracy and QE-Score with 100 random sampled networks.
Green circle points represent TOP-10 score models in all random samples.

Random Correlation Study. We randomly selected 100 models without QE-Score under the same
searching space to verify the correlation between our QE-Score and accuracy on ImageNet, before
comparing with SOTA methods. Results are shown in Figure 8, and we can observe that: 1) The
proposed QE-Score is closer to the linear growth relationship with TOP-1 accuracy than BitOps; 2)
The searched mixed-7.0G model outperforms the best random model with TOP-1 accuracy of nearly
2%. According to these observations, our QE-Score is valid to rank various architectures instead of
training and evaluating.

Comparison with SOTA Models. Table 3 presents the results of fixed- and mixed- precision
searching. Obviously, our models outperform state-of-the-art mixed-precision methods. In particular,
our mixed-19.2G model has 2.9% accuracy boost than MobileNetV2-8bit baseline, and our mixed-
7.0G model has better accuracy than MobileNetV2-4bit baseline (from 68.9% to 70.8%). Note that,
as we apply formula calculation rather than inference, our QE-Score can use CPU instead of GPU.
This will significantly reduce the dependence on hardware. More impressively, the marginal cost of
CO2 emission of our method is two orders of magnitudes smaller than other work, benefiting from
computational efficiency.

Table 3: Comparison with state-of-the-art efficient models with mixed-precision quantization. MBV2-
4bit use 4-bit for the overall layers except for the first and last layer. †: 64 cores of Intel(R) Xeon(R)
Platinum 8269CY CPU @ 2.50GHz.

Model Quant.
Search
Devices

Design Cost
(hours)

Model Size
(MB)

BitOps
(G)

ImageNet
TOP-1

CO2e
(marginal)

MBV2 [28] 8-bit - - 3.4 19.2 71.9% -
MBV2 [28] 4-bit - - 2.3 7.0 68.9% -

MBV2+HAQ [34] mixed GPUs 96N - - 71.9% 27.23N
DNAS [36] mixed GPUs 300N - 57.3 74.0% 11.34N
SPOS [11] mixed GPUs 288+24N - 51.9 74.6% 82+6.81N
APQ [35] mixed GPUs 2400+0.5N - 16.5 74.1% 672+0.14N
APQ [35] mixed GPUs 2400+0.5N - 23.6 75.1% 672+0.14N

Ours-19.2G mixed CPUs† 0.5N 3.2 18.8 74.8% 0.19N
Ours-7.0G mixed CPUs† 0.5N 2.2 6.9 70.8% 0.19N
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5.3 Tiny Image Classification

Large-scale Classification on ImageNet. We searched tiny models under three hardware specifi-
cations, and comparative results with recent state-of-the-art tinyML solutions are shown in Table 4.
We can figure out that our model outperforms others on all three SRAM/Flash budgets. Under the
tight constraints of 256kB SRAM and 1MB Flash, our model significantly improves the TOP-1
accuracy by 6.2% and 4.5% over 8-bit and 4-bit quantized MCUNet, respectively. Under 512kB
SRAM and 1MB Flash, our model achieves a new record of 72.8% TOP-1 accuracy. We think these
remarkable achievements benefit from improved SRAM/Flash utilization, which means more accurate
mixed-precision quantization can specialize higher-capacity structures on resource-constrained IoT
devices. Note that MCUNetV2 employed patch-based inference scheduling to reduce memory usage,
which is an orthogonal technique to mixed-precision quantization.

Table 4: Comparison of ImageNet classification accuracy on IoT devices

Model Quant.
256kB SRAM, 1MB Flash 320kB SRAM, 1MB Flash 512kB SRAM, 2MB Flash

Mem Size Acc. Mem Size Acc. Mem Size Acc.

MBV1 [14, 26] mixed <256kB <1MB 60.2% - - - <512kB <2MB 68.0%
MBV2 [28] 8-bit - - - 308kB 0.72MB 49.0% - - -

Proxyless [3] 8-bit - - - 292kB 0.72MB 56.2% - - -
MCUNet-int8 [17] 8-bit 238kB 0.70MB 60.3% 293kB 0.70MB 61.8% 452kB 1.65MB 68.5%
MCUNet-int4 [17] 4-bit 233kB 0.67MB 62.0% 282kB 0.67MB 63.5% 498kB 1.56MB 70.7%
MCUNetV2 [16] 8-bit 196kB 0.79MB 64.9% - - - 465kB 1.67MB 71.8%

Ours mixed 253kB 0.73MB 66.5% 308kB 0.71MB 68.2% 507kB 1.67MB 72.8%

Low-energy Application on Visual Wake Words. The Visual Wake Words dataset (VWW) can
represent a realistic IoT use-case of identifying the presence of persons. Experimental results on
VWW dataset are shown in Figure 9. We can observe that our model is superior to MCUNet
in both accuracy and memory utilization. The accuracy is boosted to 93% with slightly fewer
memory requirements. To be comparable with MCUNetV2, we used the same patch-based inference
scheduling to further reduce the memory footprint. Without accuracy loss, the runtime peak memory
can be decreased by about 3.5×.
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52kB 3.6× smaller

256kB 
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Proxyless
MBV23.5× smaller

Figure 9: Comparison of different MCU
models on Visual Wake Word (VWW) ac-
curacy within 256KB peak memory.

Table 5: Strategy studies for ImageNet classification on
IoT devices.

Model
SRAM Budget, Flash Budget

256kB, 1MB 320kB, 1MB 512kB, 2MB

Ours-int8 62.7% 63.9% 70.4%
Ours-int4 64.4% 65.5% 71.0%

Ours-mixed
w/o QBR 65.6% 66.6% 71.7%

Ours-mixed 66.5% 68.2% 72.8%

Resource Maximization. Table 5 compares our final model with fixed-bit counterparts and shows
the effectiveness of QBR. Although 4-bit quantization is better than 8-bit quantization, there is
still a gap between fixed- and mixed- precision quantization. Note that even without QBR, our
mixed-bit network is superior to fixed-bit MCUNet and MCUNetV2 in Table 4. Fig. 10 visualizes
peak memory, bits distribution, and model size of our searched model under 320kB SRAM and 1MB
Flash. Comparison of models with or without the QBR is displayed in Figure 11. Obviously, our
method maintains higher-precision weights and lower-precision activations in the front few layers,
while opposite in the latter few layers. This demonstrates that QBR can strengthen resource utilization
by explicitly embedding prior design knowledge.
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5.4 Tiny Object Detection on WIDER FACE

Table 6: Comparison of face detection on WIDER FACE. The hard subset is the most authoritative
benchmark since it contains the faces in easy and medium subsets [19].

Model Peak RAM MACs
mAP

Easy Medium Hard

EagleEye [41] 1.17MB 0.08G 0.74 0.70 0.44
RNNPool [27] 1.17MB 0.10G 0.77 0.75 0.53

MCUNetV2 [16] 762kB 0.11G 0.85 0.81 0.55

Ours-Face 650kB 0.04G 0.82 0.81 0.77

The proposed QE-Score method can be adopted to various visual tasks, and we demonstrate its gener-
alization ability on object detection task. Following the pipeline of [19], We conducted experiments
on WIDER FACE [37] and results are shown in Table 6. We follow the quantization strategy in [27]
that memory usage is analyzed for detector backbone and reported in FP32 to build our detection
model “Ours-Face”. According to Table 6, we observe that our model can achieve a competitive
mAP performance at all three subsets with 1.8× low peak memory and 2× less computation than
EagleEye [41] and RNNPool [27], which verifies the generalization ability of our method.

6 Conclusion

In this work, we propose an entropy-driven mixed-precision quantization strategy to address chal-
lenges of deep network design on IoT devices. In particular, we first present the ranking strategy
of mixed-precision quantization networks in the entropy view by formulating the neural network
as an information system, and propose a QE-Score with calibrated initialization to measure the
expressiveness of the system. Then we propose the Quantization Bits Refinement within evolution al-
gorithm to adjust mixed-precision quantization. Finally, the obtained network achieve state-of-the-art
performance on IoT devices for both classification and detection tasks within less than half a 64-core
CPU hour searching.
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