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ABSTRACT

Despite outstanding performance in a variety of Natural Language Processing
(NLP) tasks, recent studies have revealed that NLP models are vulnerable to ad-
versarial attacks that slightly perturb the input to cause the models to misbehave.
Among these attacks, adversarial word-level perturbations are well-studied and
effective attack strategies. Since these attacks work in black-box settings, they
do not require access to the model architecture or model parameters and thus can
be detrimental to existing NLP applications. To perform an attack, the adver-
sary queries the victim model many times to determine the most important words
in an input text and to replace these words with their corresponding synonyms.
In this work, we propose a lightweight and attack-agnostic defense whose main
goal is to perplex the process of generating an adversarial example in these query-
based black-box attacks; that is to fool the textual fooler. This defense, named
AdvFooler, works by randomizing the latent representation of the input at infer-
ence time. Different from existing defenses, AdvFooler does not necessitate ad-
ditional computational overhead during training nor does it rely on assumptions
about the potential adversarial perturbation set while having a negligible impact
on the model’s accuracy. Our theoretical and empirical analyses highlight the sig-
nificance of robustness resulting from confusing the adversary via randomizing
the latent space, as well as the impact of randomization on clean accuracy. Fi-
nally, we empirically demonstrate near state-of-the-art robustness of AdvFooler
against representative adversarial word-level attacks on two benchmark datasets.

1 INTRODUCTION

In the last decade, deep neural networks have achieved impressive performance in the Natural Lan-
guage Processing (NLP) domain. Several deep NLP models have reached state-of-the-art results in
several NLP tasks (Devlin et al., 2019) using models such as Recurrent Neural Networks, Trans-
formers, and Pretrained Language Models (PrLMs). However, several works (Iyyer et al., 2018)
also reveal that deep NLP models can be fooled by the creation of adversarial examples (Jin et al.,
2020). Adversarial examples are synthetically perturbed inputs that are optimized to increase the
errors between the predictions of the model and the true labels while being imperceptible to human
evaluators (Jin et al., 2020; Iyyer et al., 2018). These developments have sparked concerns about the
security and robustness of deep neural networks deployed in NLP applications.

To generate adversarial examples, adversarial attack methods manipulate different aspects of the
input sentence, from introducing character errors such as typos or visually similar characters (Gao
et al., 2018a; Eger et al., 2019) and replacing words without significantly changing the original se-
mantic in the perturbed inputs (Jin et al., 2020; Li et al., 2020) to recreating sentences with similar
meanings using paraphrasing (Iyyer et al., 2018; Qi et al., 2021). Among these methods, adversarial-
word substitutions (Alzantot et al., 2018) are some of the most widely studied and effective adver-
sarial approaches. These methods query the victim model multiple times to find the corresponding
adversarial perturbations of important words of an input text.

In response to the adversarial threat and to enhance the robustness of NLP models, numerous de-
fenses against textual adversarial attacks have been developed (Zhu et al., 2020; Si et al., 2021;
Wang et al., 2020; Ye et al., 2020; Shi et al., 2020b; Xu et al., 2020). The most popular approaches
are adversarial training (Zhu et al., 2020; Dong et al., 2021; Madry et al., 2017), which augments
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Table 1: Characteristics of all defenses. × or ✓ indicates the method lacks or has the specific charac-
teristic, respectively. AdvFooler satisfies all the characteristics by adding lightweight randomization
to the latent space.

Method
no

training
required

randomized
trivial

inference
overhead

no
additional
network

pluggable

ASCC × × ✓ ✓ ×
InfoBERT × × ✓ ✓ ×
FreeLB × × ✓ ✓ ×
TMD × × × × ×
SAFER × ✓ × ✓ ×
RanMASK × ✓ × ✓ ×
AdvFooler ✓ ✓ ✓ ✓ ✓

the training data with adversarial examples using an additional optimization step, and randomized
smoothing (Ye et al., 2020; Zeng et al., 2021), which replaces the model with its stochastic ensemble
based on random perturbations of the input; both of these approaches require training modifications
and additional non-trivial training computation (e.g., for adversarial training). Due to the discrete
nature of texts, to create adversarial inputs, these defenses also substitute input words with adver-
sarial words sampled from predefined perturbation sets constructed based on the potential attacks
instead of gradient-based optimization. This substitution process also aims to preserve the original
input semantics. Nonetheless, assuming knowledge of the potential attacks is often unrealistic and
impractical.

In this paper, we propose a lightweight, attack-agnostic defensive method that can increase the
robustness of NLP models against textual adversarial attacks. Our defense, called AdvFooler, ran-
domizes the latent representation of the input at test time to fool the adversary throughout their
attack, which typically involves iteratively sampling of discrete perturbations to generate an adver-
sarial sample. Being a test-time defense with negligible computational overhead, AdvFooler also
does not incur any training-time computation. Furthermore, as AdvFooler operates within the latent
space of the model, it remains agnostic of the perturbation sets associated with potential attacks.
While there are some randomization defenses in NLP (Ye et al., 2020; Zeng et al., 2021), they rely
on randomized smoothing with necessary modifications to the model’s training to reduce the vari-
ance in the model’s outputs caused by randomizing the input or embedding space. The advantages
of AdvFooler over the other defenses are shown in Table 1. Our contributions can be summarized
as follows:

• We propose a lightweight, attack-agnostic, and pluggable defensive method that hinders the at-
tacker’s ability to optimize for adversarial perturbations leading to adversarial examples. Conse-
quently, the attack success rate is significantly decreased, making the model more robust against
adversarial attacks.

• We provide important theoretical and empirical analyses showing the impact of randomizing latent
representations on perplexing the attack process of the adversary.

• We extensively evaluate AdvFooler through experiments on various benchmark datasets and rep-
resentative attacks. The results demonstrate that AdvFooler is a competitive defense, compared
to the existing representative textual adversarial defenses, while being under more constraints,
including few modeling assumptions, being pluggable, and incurring negligible additional com-
putational overhead.

2 BACKGROUND

2.1 ADVERSARIAL ATTACKS IN NLP

Adversarial attacks in NLP can be divided into two categories, depending on what information the
attacker has on the victim model. These categories are white-box attacks (Ebrahimi et al., 2018;
Cheng et al., 2020) - those that require access to the model’s architecture and its parameters - and
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black-box attacks (Li et al., 2020; Jin et al., 2020; Li et al., 2018) - those that rely only querying
the model for its output. Since the model user rarely shares the underlying model’s architecture
of their NLP service, let alone their model’s parameters, white-box attacks have extremely limited
practicality, compared to black-box attacks. In the paper, we will focus on the black-box, query-
based attack setting, as it is a more realistic scenario in practice and is commonly studied in similar
works (Zeng et al., 2021; Nguyen Minh & Luu, 2022; Zhang et al., 2022). Note that, there are also
black-box, transfer-based attacks, which, however, still require knowledge of the model architecture
for the attack to be effective (Yuan et al., 2021; Li et al., 2021a).

Black-box Query-based Attack. Given the text classification task, a model f : Rd → R|C|

maps an input x ∈ Rd to a logit vector of dimension |C|, where C is the set of label. The goal of
textual adversarial attacks is to search for adversarial examples on which the model makes incorrect
predictions. Specifically, given an input sentence x, a corresponding adversarial example x′ can be
crafted to satisfy the following objective:

argmax
c

f(xadv) ̸= argmax
c

f(x)

s.t. d(xadv − x) ≤ σ

where d(xadv − x) is the perceptual distance between x and xadv , and σ is the maximum accept-
able distance. The distance function d can measure the number of perturbed words between the
original and adversarial input (Gao et al., 2018b). Another popular distance is the semantic dissim-
ilarity between a pair of texts (Iyyer et al., 2018; Li et al., 2020) measured as the cosine distance
between the corresponding embedding vectors of the inputs extracted from Universal Sentence En-
coder (USE) (Cer et al., 2018).

2.2 ADVERSARIAL WORD SUBSTITUTION

Among textual adversarial attacks, adversarial word substitution is one of the most widely studied
approaches. These attacks create an adversarial example of an input text x by first identifying the
most important words in x and then replacing those words with synonyms from their corresponding
synonym sets to cause the victim model to misbehave while aiming to preserve the original semantic
meaning. The synonym sets can be created using word embedding models (Mrkšić et al., 2016; Pen-
nington et al., 2014) or using the predictions of a PrLMs given the input sentence (Li et al., 2020).
One important feature of these attacks is that both of the aforementioned steps require querying the
victim model many times to determine which words are important or which synonyms maximize the
model’s prediction errors. In the first step, the adversary queries the model to calculate the impor-
tance score of each word in x and select the most potential locations (with the highest importance
scores) for later perturbations. To find the substituting synonyms that maximize the model’s predic-
tion error, the attacks can either perform a greedy search (Li et al., 2020; Jin et al., 2020; Li et al.,
2018) or combinatorial optimization algorithm (Zang et al., 2020; Alzantot et al., 2018). Similarly,
this step involves a sequence of queries on the victim model. By introducing randomization to the
latent representations of queries, our defensive mechanism disrupts the adversary’s ability to esti-
mate important words, making their synonym-substituting process significantly harder during the
attack.

2.3 ADVERSARIAL DEFENSE METHODS

To defend against textual adversarial attacks, several defenses (Wang et al., 2022) have been devel-
oped. The goal of an adversarial defense is to improve the robustness of the victim model; that is
to achieve good performance on both clean and adversarial examples. Existing adversarial defenses
can be divided into two categories: certified (Ye et al., 2020; Zeng et al., 2021; Jia et al., 2019) and
empirical (Zhu et al., 2020; Wang et al., 2020; Dong et al., 2021; Li & Qiu, 2020; Zhou et al., 2021;
Miyato et al., 2016).

First introduced in Goodfellow et al. (2014), adversarial training is the most often studied empirical
defense method. It provides additional regularization to the model and improves the model’s robust-
ness when training it with adversarial samples. Several subsequent works study adversarial training
for NLP tasks with adversarial examples created on the input space (Ren et al., 2019; Li et al., 2020;
Jin et al., 2020). Some adversarial training works improve the model’s robustness by introducing ad-
versarial perturbations in the embedding space (Zhu et al., 2020), or by incorporating inductive bias
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to prevent the model from learning spurious correlations (Wang et al., 2020; Madry et al., 2017), as
well as methods that increase diversity of ensembled models, leading to globally better robustness
(Pang et al., 2019). These methods effectively improve the model’s robustness without significant
compromise to its clean accuracy.

In contrast to the empirical methods, certified defenses can provably guarantee model robustness
even under sophisticated attackers. One popular certified-defense approach is randomized smooth-
ing (Ye et al., 2020; Zeng et al., 2021), which constructs a set of stochastic ensembles from the
input and leverages their statistical properties to provably guarantee robustness. Differential Privacy
(DP) defenses such as Lecuyer et al. (2019) are similar to SAFER and RanMASK, achieving cer-
tified robustness through the use of DP framework. Note that RanMASK and DP-defenses incur
high training overhead. In contrast, Interval Bound Propagation (IBP) methods (Shi et al., 2020a;
Jia et al., 2019; Huang et al., 2019) utilizes axis-aligned bounds to confine adversarial examples.
Despite their effectiveness and ability to certify robustness, both approaches rely on access to the
synonym sets of potential attacks. Randomized-smoothing methods also modify the training phase
to reduce the variance of the outputs of the ensemble. Due to the ensemble, they incur significant
computational overhead in the inference phase. In contrast, our defense is lightweight and attack-
agnostic, and can better control the variance of the outputs by randomizing the latent representations,
instead of via randomization in the input space. A summary of the characteristics of AdvFooler and
the existing defenses is shown in Table 1.

3 METHODOLOGY

3.1 RANDOMIZED LATENT-SPACE DEFENSE AGAINST ADVERSARIAL WORD SUBSTITUTION

Since the adversary relies on querying the victim model multiple times to find adversarial examples,
receiving fluctuating feedback from the model will make it significantly harder for the adversary to
find the optimal adversarial perturbations. To fool such an adversary, we introduce stochasticity to
the model by randomizing the latent representation of an input x. Formally, for hl as the l−th layer
of the model, we sample an independent noise vector ϵ, which is added to hl(x) as input to the next
layer of the model. Without loss of generality, ϵ is sampled from a Gaussian distribution N (0,Σ)
with Σ as a diagonal covariance matrix, or N (0, νI), ν ∈ R. The detailed algorithm is presented in
Algorithm 1.

Let fAdvFooler be the proposed randomized model corresponding to the original f . When the vari-
ance of injected noise is low, we can assume that small noise slightly changes the output logits
but does not shift the prediction of the model. In other words, the mean of the randomized model
fAdvFooler with input x is exactly the prediction of f for x. Consequently, adversarial samples of f
are adversarial samples of fAdvFooler.

3.2 EFFECT OF RANDOMIZING LATENT REPRESENTATIONS ON ADVERSARIAL ATTACKS

In textual adversarial attacks, the adversary first determines important words in a sentence x =
{w0, . . . , wi} using the importance score, which is computed for each word wi as

Iwi
= fy(x)− fy(x/wi

) (1)
where fy is the logit returned by the model f w.r.t ground-truth label y. The adversary then selects
words with the highest scores to perturb. Intuitively, this process emulates estimating the gradient
of the importance score in the discrete space.

When introducing randomness to the latent space, the important scores are changed. Such changes
mislead the attack to select a different set of words to perturb. Perturbing these “less important”
words (those that have lower original importance scores before randomization) makes the synonym
replacement phase significantly more challenging for the attack, thus reducing the attack’s success
probability.
Theorem 1. If a random vector v ∼ N (0, νI) where ν is small is added to the hidden layer h of the
model f which can be decomposed into f = g◦h, the new important score Inew

wi
is a random variable

that follows Gaussian distribution N (Iwi
, ν(∥∇h(x)gy(h(x))∥2 + ∥∇h(x/wi

)gy(h(x/wi
))∥2)).

Theorem 1 (proof is in the supplementary material) states that randomly perturbing the hidden pre-
sentation leads to a randomized important score. When ν is high, the randomized importance scores
have high variance, which can cause the attack to select the wrong important words.
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3.3 EFFECT OF RANDOMIZING LATENT REPRESENTATIONS ON CLEAN ACCURACY

Algorithm 1 AdvFooler’s Randomized Latent
Defense

Input: a model f , an input sentence x, noise
magnitude ν.

Output: output logit l.
1: z0 = Emb(x)
2: for layer l in {1...L} of model f do
3: ϵ ∼ N (0, νI)
4: zi+1 = hl(zi + ϵ)
5: end for
6: return zL

If randomization induces substantial fluctuation
in the model’s output, there is a possibility that
the model might predict a wrong label, result-
ing in a decrease in clean accuracy. Random-
ized defenses such as SAFER (Ye et al., 2020)
and RanMASK (Zeng et al., 2021) introduce
randomness to the model in the input space
(i.e., randomizing the input tokens). While they
are also effective against textual adversarial at-
tacks, the input space of NLP models is dis-
crete. Perturbing discrete inputs can lead to sig-
nificant changes in the model’s outputs (a fact
that we will empirically prove in the next sec-
tion), which results in a different model’s prediction. To mitigate this problem, existing randomized
input defenses rely on randomized smoothing: train the model with perturbed input and apply en-
semble at inference to reduce the variance in the model’s output. Nevertheless, these approaches
are computationally expensive and require access to the training phase. Conversely, by randomizing
the latent representations, AdvFooler induces a significantly smaller variance in the model’s output.
Furthermore, AdvFooler gives the defender flexibility to select the suitable induced variance without
requiring access to the training process. Specifically, given a pretrained classification model and a
small clean test set, the defender can select the noise scale ν at which the variance causes the clean
accuracy drops by a chosen percentage (e.g., in our experiments, it is 1%).

3.4 EMPIRICAL ANALYSIS

In this section, we empirically study the effect on the model’s performance and attack process of
various randomized defenses, including AdvFooler.

Empirical effect on model’s performance. We compute the differences in cross-entropy losses be-
tween those of the randomized model and those of the base model for each sample in the AGNEWS
test dataset, which expresses how the predictions vary, under different randomization approaches.
Figure 1 shows the loss changes in SAFER, RanMASK, and AdvFooler. As we can observe, in
SAFER and RanMASK, perturbing the input tokens induces a higher variance in the loss compared
to AdvFooler. Consequently, both of these methods lead to significant drops in the model’s perfor-
mance without adversarial training and ensemble.
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0
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Figure 1: Loss changes when randomizing
input (RanMASK/SAFER) and latent space
(AdvFooler).
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Figure 2: Illustration of each word’s important
score when calculated with and without Adv-
Fooler.

Empirical effect on fooling the attacks. To demonstrate that AdvFooler can fool the adversary
into selecting non-important words, we calculate the important score of each word for multiple sam-
ples from the AGNEWS dataset. The important words before and after applying AdvFooler are
presented in Figure 2. As we can observe, AdvFooler causes the attack to select different impor-
tant words, many of which are originally unimportant. Specifically, in the first sentence, the token
“Airlines” is the most important. After adding random noise to the latent representation, AdvFooler
changes the important score for each token enough to mislead the adversary into thinking a different
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Table 2: The robustness performance ofAdvFooler and other defenses on AGNEWS. The best and
second-best performances are bolded and underlined, respectively.

Models Clean% (Drop%) TextBugger TextFooler BERT-Attack
AuA% (ASR%) #Query AuA% (ASR%) #Query AuA% (ASR%) #Query

BERT-base (baseline) 94.20 35.20 (62.63) 351.92 36.80 (60.93) 317.27 46.50 (50.64) 337.84
+ASCC 90.07 (−4.13) 39.30 (55.94) 284.58 41.20 (53.81) 262.07 45.90 (48.54) 263.59
+FreeLB 95.07 (+0.87) 47.30 (49.89) 394.19 49.90 (47.14) 356.69 52.00 (44.92) 370.82
+InfoBERT 95.01 (+0.81) 45.20 (52.07) 373.83 47.50 (49.63) 336.77 56.00 (40.62) 366.40
+TMD 94.36 (+0.16) 47.80 (49.04) 833.43 51.60 (44.81) 744.87 52.60 (43.74) 766.72
+RanMASK 90.14 (−4.06) 52.50 (41.60) 582.21 54.60 (38.93) 511.98 61.10 (31.73) 595.57
+SAFER 94.42 (+0.22) 43.30 (53.74) 370.77 46.70 (50.05) 333.17 51.40 (45.03) 357.47
+AdvFooler (ours) 93.67 (−0.53) 50.10 (45.90) 819.44 50.10 (45.90) 701.05 53.40 (42.89) 752.61
RoBERTa-base (baseline) 95.05 38.40 (58.93) 371.20 41.00 (56.15) 335.88 47.30 (49.41) 372.99
+ASCC 92.61 (−2.44) 49.50 (46.37) 372.91 51.00 (44.75) 330.69 55.70 (39.65) 374.58
+FreeLB 95.03 (−0.02) 50.50 (46.22) 448.97 52.00 (44.62) 402.14 58.20 (38.02) 442.97
+InfoBERT 94.97 (−0.08) 47.00 (50.11) 394.56 48.90 (48.09) 357.44 55.00 (41.61) 397.35
+TMD 93.70 (−1.35) 52.80 (43.59) 878.22 55.20 (41.09) 766.74 57.90 (38.14) 805.19
+RanMASK 90.41 (−4.64) 52.30 (41.50) 575.94 54.20 (39.37) 516.98 60.00 (32.43) 594.93
+SAFER 94.67 (−0.38) 47.70 (49.15) 377.67 50.30 (46.43) 337.81 53.20 (43.22) 357.56
+AdvFooler (ours) 94.21 (−0.84) 51.70 (44.88) 804.99 53.30 (42.81) 717.31 57.80 (38.38) 767.47

token (“Yesterday” token) is the most important token. A similar phenomenon can be seen in the
second sentence, where the important scores change significantly, and unimportant tokens become
important ones after randomization. Note that, these experiments use the random noise scale ν that
induces at most 1% clean performance drop.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Metrics. We evaluate the performance of AdvFooler using four evaluation metrics:
Clean accuracy (Clean%), Accuracy under attack (AuA%), Attack success rate (ASR%), Aver-
age number of queries (#Query). Clean% measures the impact of a defense method on the clean
performance of the model. Both AuA% and ASR% measure the robustness of the model under at-
tack. #Query measures how many times, on average, the adversary has to query the model to find
adversarial examples; the higher #Query is, the more difficult the attack is.

Datasets. We evaluate AdvFooler on two benchmark datasets: AG-News Corpus
(AGNEWS) (Zhang et al., 2015) and Internet Movie Database (IMDB) (Maas et al., 2011). AG-
NEWS is a classification dataset of news articles created from the AG’s corpus1. It contains 120,000
training samples and 7,600 test samples where a sample belongs to one of four classes: World,
Sports, Business, and Sci/Tech. IMDB is a binary sentiment classification dataset of reviews ex-
tracted from the IMDB website. This dataset contains 50,000 samples and is split equally into the
training and test sets.

Model Architecture. To assess the generality of AdvFooler on model architectures, we evalu-
ate it on two state-of-the-art, pre-trained language models: BERTbase (Devlin et al., 2019) and
RoBERTabase (Liu et al., 2019). BERT is a Transformer-based language model that outperforms
other models in various benchmarks at the time of its release and is widely used for text classifica-
tion tasks. RoBERTa is a variant of BERT with an improved training process and performance.

Adversarial Attacks and Parameters. We choose the following widely used and state-of-the-art
adversarial attacks to evaluate our defense: TextFooler (Jin et al., 2020), TextBugger (Li et al.,
2018), and BERT-Attack (Li et al., 2020). TextFooler utilizes the word embeddings from (Mrkšić
et al., 2016) to generate the set of synonyms for each word, uses both part-of-speech and semantic
similarity, and selects words for replacements using important scores. BERT-Attack is similar to
TextFooler but uses a pretrained BERT to generate the set of synonyms for a word, given the context
of the sentence. TextBugger locates the tokens for perturbations by calculating the important scores
for each sentence in the input and then calculating the important score of each token in the sentence.
In addition to a synonym set for word substitution, TextBugger also introduces word augmentation -
perturbing the characters in words. For a fair evaluation, the adversarial attacks used in the evaluation

1http://groups.di.unipi.it/˜gulli/AG_corpus_of_news_articles.html
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Table 3: The robustness performance ofAdvFooler and other defenses on IMDB. The best and
second-best performances are bolded and underlined, respectively.

Models Clean% (Drop%) TextBugger TextFooler BERT-Attack
AuA% (ASR%) #Query AuA% (ASR%) #Query AuA% (ASR%) #Query

BERT-base (baseline) 92.14 9.20 (90.08) 500.47 11.90 (87.16) 439.15 8.90 (90.40) 366.52
+ASCC 88.48 (−3.66) 13.00 (85.68) 597.07 16.90 (81.20) 529.55 7.70 (91.52) 416.50
+FreeLB 92.33 (+0.19) 25.80 (71.74) 776.31 28.90 (68.35) 670.20 21.80 (76.12) 549.85
+InfoBERT 91.71 (−0.43) 22.50 (75.52) 719.98 25.30 (72.47) 645.03 20.90 (77.26) 510.46
+TMD 92.14 (−0.00) 40.40 (56.47) 3251.52 45.10 (51.35) 2735.58 36.20 (60.95) 2464.83
+RanMASK 92.61 (+0.47) 31.00 (66.38) 2740.39 35.80 (61.13) 2392.46 33.10 (64.33) 2463.24
+SAFER 92.12 (−0.02) 46.10 (50.00) 1455.25 50.50 (45.64) 1262.35 43.10 (52.74) 1133.61
+AdvFooler (ours) 91.90 (−0.24) 42.40 (53.41) 3261.41 49.10 (47.32) 2759.37 40.70 (55.76) 2645.36
RoBERTa-base (baseline) 93.23 6.90 (92.63) 517.58 11.40 (87.79) 456.35 8.20 (91.29) 439.79
+ASCC 92.62 (−0.61) 14.70 (84.31) 770.35 20.20 (77.92) 606.14 15.20 (83.57) 548.34
+FreeLB 94.20 (+0.97) 25.40 (72.95) 887.31 29.80 (68.30) 726.84 23.10 (75.19) 647.98
+InfoBERT 94.18 (+0.95) 20.90 (78.14) 684.64 27.60 (70.61) 583.97 15.50 (83.53) 518.17
+TMD 93.22 (−0.01) 66.10 (29.30) 4799.56 66.40 (28.83) 3477.32 56.00 (40.36) 3330.08
+RanMASK 94.33 (+1.10) 49.40 (47.45) 3611.03 54.10 (43.29) 2951.45 44.20 (53.67) 2706.83
+SAFER 93.75 (+0.52) 62.30 (34.21) 2059.37 63.60 (32.27) 1874.79 54.10 (41.77) 1415.56
+AdvFooler (ours) 92.69 (−0.54) 62.20 (33.55) 4205.77 63.70 (32.02) 3255.35 49.40 (47.00) 3141.88

will be based on Li et al. (2021b), which is commonly used by other papers for benchmarking
adversarial defenses (Nguyen Minh & Luu, 2022; Zhang et al., 2022)

Baseline Defenses. We compare AdvFooler against various types of defense methods. For empir-
ical defenses, we select Adversarial Sparse Convex Combination (ASCC) (Dong et al., 2021),
InfoBERT (Wang et al., 2020), FreeLB (Zhu et al., 2020), and Textual Manifold Defense (TMD)
(Nguyen Minh & Luu, 2022). ASCC, InfoBERT, and FreeLB improve the model’s robustness either
by employing adversarial training or introducing additional regularization to the model’s training
process. ASCC models the word substitution attack space as a convex hull and leverages a regular-
ization term to generate adversarial examples. Different from ASCC, FreeLB introduces adversarial
perturbations to word embeddings and minimizes the corresponding adversarial loss around input
samples. InfoBERT adds two regularization terms to eliminate noisy information between the input
and hidden features and to increase the correlations between the local and global features. Textual
Manifold Defense introduces a defense mechanism that trains a mapping function to project the em-
beddings of input sentences to a set of predefined manifolds to reduce the effects of the adversarial
examples. For certified defenses, RanMASK (Zeng et al., 2021) and SAFER (Ye et al., 2020) are
selected. Given an input, both RanMASK and SAFER construct a set of randomly perturbed inputs,
using synonym substitution for SAFER and token masking for RanMASK, respectively. Then, they
leverage the statistical properties of the predicted output to achieve better model robustness.

Implementation Details. We follow the implementation guidelines for evaluating adversarial at-
tacks and defenses in Li et al. (2021b): (1) the maximum percentage of modified words ρmax for
AGNEWS and IMDB are 0.3 and 0.1, respectively, (2) the maximum number of candidate replace-
ment words Kmax is set to 50, (3) the maximum percentage of modified words ρmax for AGNEWS
and IMDB must be 0.3 and 0.1, respectively, and (4) the maximum number of queries to the victim
model is Qmax = Kmax∗L, where L is the length of, or the number of tokens in, the input sentence.
Clean% is calculated on the entire test set from each dataset, while the robustness metrics AuA%,
ASR%, and #Query are computed on 1,000 randomly chosen samples from the test set. All attacks
in the experiments are based on the implementation of TextAttack (Morris et al., 2020).

4.2 DEFENSE PERFORMANCE AGAINST TEXTUAL ADVERSARIAL ATTACKS

We report the defense performance on AGNEWS in Table 2. As we can observe in this table, on the
base model BERT, AdvFooler outperforms all adversarial training techniques (ASCC, FreeLB, and
InfoBERT) and the randomized smoothing method, SAFER. AdvFooler is consistently in the top-3
robust defenses; the robustness of AdvFooler and TMD are within 1-2% of each other, while they
are generally both lower than the robustness of another randomized-smoothing defense, RanMASK.
However, the clean accuracy in RanMASK drops significantly, approximately 4%, while the clean
accuracy in AdvFooler is guaranteed to be within 1% of the base model. Note that, all of the eval-
uated textual defenses require access to the training data. On the base model RoBERTa, AdvFooler
similarly achieves a top-3 performance.
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For IMDB’s results in Table 3, we can observe similar robustness results. TMD’s performance is
observed to be consistently better with RoBERTa-base. AdvFooler is effective against the attacks
and achieves comparable results to the best defenses (SAFER and TMD).

In summary, AdvFooler achieves competitive robustness to the state-of-the-art defenses; however,
AdvFooler has significantly lower training and inference overhead compared to TMD, RandMASK,
and SAFER (see supplementary material for the computational overhead experiment) and does not
access to the training data.

Difficulty of Adversarial Attacks against AdvFooler. For all the considered adversarial attacks,
the number of queries to locate important words (the first step) of an input text is the same with
or without the defenses. Thus, the higher number of queries in an experiment is a result of a more
difficult synonym-replacement phase. This also explains considerably smaller average numbers of
queries for the baseline (i.e., without any defense) in Tables 2 and 3, compared to the protected
models.

We can observe, in Tables 2 and 3, that the average numbers of queries for the adversarial attacks to
be successful against AdvFooler are significantly higher than those in all the defenses except TMD
in a few cases. The results demonstrate the effectiveness of fooling the attacks in AdvFooler. As
explained in Section 3, randomizing the important scores just enough makes the adversary select a
different set of important words, which leads to a more challenging synonym-replacement process
with a significantly higher number of queries.

AdvFooler with other attacks. In the supplementary materials, we provide additional experiments
evaluating AdvFooler against other types of attacks, including black-box hard-label (Appendix C.6)
and white-box attacks (Appendix C.7), even though they do not align with the threat model studied
in this work and several related works (Nguyen Minh & Luu, 2022; Zhang et al., 2022; Zeng et al.,
2021; Li et al., 2023) to AdvFooler. The results show that AdvFooler is still effective in defending
against these attacks, further highlighting the versatility of AdvFooler.

4.3 ROBUSTNESS FROM RANDOMIZING DIFFERENT LATENT SPACES
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Figure 3: The robustness of AdvFooler when ran-
domizing different layers of the model on AG-
NEWS.

In this section, we study the model’s robust-
ness when randomizing different layers of the
model. We also decided to study the effects of
adding noise to only one layer of the model. For
comparison, Specifically, we randomize only
the first, middle, and last layers and all layers
of the model. The model’s robustness against
TextFooler is reported in Figure 3. As we can
observe from this figure, randomizing the early
layer of the model is more effective than ran-
domizing the later layers of the model. More
importantly, adding noise to all the layers leads
to a significantly higher accuracy under attack
and a higher average number of queries.

4.4 TRADE-OFF BETWEEN CLEAN ACCURACY AND ROBUSTNESS

As discussed in Section 3, our approach allows the defender to flexibly trade-off between the clean
accuracy (or variance in the output logits) and the model’s robustness, a feature that is challenging
to perform in other defenses. In AdvFooler, this is accomplished via tuning the noise scale ν. A
large ν value leads to both a large variance of the model’s output, which can lead to a lower clean
accuracy, and a high chance of fooling the adversarial attacks.

We report the model’s clean accuracy and robustness when varying the value of ν in Figure 4. As
we can observe, increasing ν generally increases the model’s robustness against all the evaluated
attacks while the clean accuracy only slightly changes. However, when ν reaches a certain value,
the clean accuracy begins to decrease, at which point the robustness of the model also decreases.
The plot also shows that the noise scale when both accuracy under attack and clean accuracy start to
decrease would also be the noise scale that makes the model more robust to all types of attack. This
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Figure 4: Clean Accuracy and Accuracy under Attack (AuA) when using different noise scales ν.

suggests that, in practice, the defender selects as large ν value as possible for a certain small drop of
clean accuracy. For example, in our experiments, we select the ν value at which the clean accuracy
drops by at most 1% using the test set.

4.5 ADVFOOLER WITH ADVERSARIALLY TRAINED MODELS

Table 4: Clean Accuracy and Accuracy under At-
tack of TextBugger (TB), TextFooler (TF), and
BERT-Attack (BA) for FreeLB- and InfoBERT-
trained models, with and without using Adv-
Fooler .

Dataset Models Clean (%) AuA(%)
TB TF BA

AGNEWS
FreeLB 95.07 47.3 49.9 52.0
FreeLB+AdvFooler 94.61 62.5 63.2 63.2
InfoBERT 95.01 45.2 47.5 56.0
InfoBERT+AdvFooler 94.34 64.3 64.8 67.1

IMDB
FreeLB 92.33 25.8 28.9 21.8
FreeLB+AdvFooler 92.22 49.6 50.3 40.7
InfoBERT 91.71 22.5 25.3 20.9
InfoBERT+AdvFooler 91.46 46.6 51.7 42.1

As discussed previously, AdvFooler can be
used to improve the robustness of any exist-
ing pretrained model; i.e., AdvFooler is a plug-
gable defense. In fact, AdvFooler can also be
combined with other types of defenses to pro-
vide another layer of protection and further im-
prove the model’s robustness. In this section,
we study the effectiveness of AdvFooler in con-
junction with adversarial training methods, in-
cluding FreeLB and InfoBERT.

Table 4 shows the defense performance before
and after applying AdvFooler on adversarially
trained models using FreeLB and InfoBERT.
We can observe that AdvFooler significantly

improves the robustness of the adversarially trained models, with up to 20% improved accuracy
under attack in some experiments. While AdvFooler can also be combined with other defensive
mechanisms, we leave these to future works.

5 CONCLUSION

In this work, we proposed a lightweight, attack-agnostic defense, AdvFooler, that can improve the
robustness of NLP models against textual adversarial attacks. Different from existing defenses,
AdvFooler does not incur any training overhead nor relies on assumptions of the potential attacks.
The main idea of AdvFooler is to mislead word-level perturbation-based adversary into selecting
unimportant words by randomizing the latent space of the model, resulting in a significantly more
challenging synonym-replacement process. We then provide both theoretical and empirical analyses
to explain how AdvFooler fools the adversary, as well as its effect on the model’s accuracy. Our
extensive experiments validate that AdvFooler improves the robustness of NLP models against mul-
tiple state-of-the-art textual adversarial attacks on two datasets. Finally, being a pluggable defense,
AdvFooler can also be combined with existing defenses, such as adversarial training, to further
protect the NLP models against these threats.
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A PROOF OF SECTION

Theorem 1. If a random vector v ∼ N (0, νI) where ν is small is added to the hidden layer h of the
model f which can be decomposed into f = g◦h, the new important score Inew

wi
is a random variable

that follows Gaussian distribution N (Iwi
, ν(∥∇h(x)gy(h(x))∥2 + ∥∇h(x/wi

)gy(h(x/wi
))∥2)).

Proof. When v is small, we have the first-order approximation of the model with noise

fAdvFooler(x) = g(h(x) + v)

≈ f(x) +∇h(x)g(h(x))v.

In this case, since each application samples a different noise vector, the new important score becomes

Inew
wi

≈ fy(x) +∇h(x)gy(h(x))v1 − fy(x/wi
)−∇h(x/wi

)gy(h(x/wi
))v2

= Iwi
+ v3

where

v1, v2 ∼ N (0, νI), v3 ∼ N (0, ν(∥∇h(x)gy(h(x))∥2 + ∥∇h(x/wi
)gy(h(x/wi

))∥2)).

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 DATASET

For IMDB, we use the original dataset 2 from Maas et al. (2011). For AGNEWS, we use the datasets
from HuggingFace Datasets (Lhoest et al., 2021). Similar to (Nguyen Minh & Luu, 2022), we also
set the model’s max sequence lengths for IMDB and AGNEWS to be 256 and 128, respectively
based on their average sample length.

B.2 TRAINING HYPERPARAMETERS

For the NLP models, we employ the pretrained models from HuggingFace Transformer (Wolf et al.,
2020) and finetune them for another ten epochs. We use grid search from 1e-5 to 1e-3 to find the
optimal learning rate for each model on the respective dataset. The optimally fine-tuned models are
used for the robustness evaluation.

C ADDITIONAL EXPERIMENT

C.1 INFERENCE TIME ANALYSIS

In this experiment, we study the computational overhead that each defense introduces at inference
time. We use the IMDB test set and record the inference runtime of the BERT model under different
defenses. The results are shown in Table 5. From the result, we can see that AdvFooler introduces
very little computational overhead compared to most other defenses. Randomized-smoothing meth-
ods, such as RanMask and SAFER, incur significant overhead to the inference phase. TMD also
adds non-trivial inference overhead (33.3%); as acknowledged by the authors, the main bottleneck
of TMD is its high computational overhead of the on-manifold projection (Nguyen Minh & Luu,
2022). Only adversarial training methods, such as ASCC and FreeLB, do not introduce additional
overhead during inference time. Most importantly, AdvFooler is the only method that has consis-
tently high robustness and a negligible inference overhead (2.6%).

2https://ai.stanford.edu/˜amaas/data/sentiment/
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Table 5: Inference time comparison with other defenses. Tested with BERT on the test set from the
IMDB dataset.

Defense Runtime (s) % Increase
Baseline 75
ASCC 90 (+20.0%)
FreeLB 75 (+0.0%)
InfoBERT 75 (+0.0%)
TMD 100 (+33.3%)
RanMask 1752 (+2236.0%)
SAFER 1772 (+2262.6%)
AdvFooler 77 (+2.6%)

C.2 ADVFOOLER ON VARYING MODEL LAYERS

In this experiment, we study the performance of AdvFooler when randomization is applied at various
latent layers of the model. The accuracy and robustness results are shown in Tables 6 and 7. As we
can observe from the tables, adding noise to the output of the attention layer yield better robustness
in general. Furthermore, injecting noise into the [CLS] token is more effective than to all the hidden
layers.

Table 6: Performance results when randomization is applied to different token positions and different
locations of the transformer model, on the IMDB dataset. Here, randomization is applied to every
self-attention layer.

PrLMs Models Clean% TextBugger BERT-Attack TextFooler
AuA% (ASR%) #Query AuA% (ASR%) #Query AuA% (ASR%) #Query

BERT-base

Input embeddings. 90.78 23.40 (74.26) 2089.57 19.50 (78.55) 1543.31 27.80 (69.45) 1782.04
Attention output, all tokens 90.82 31.50 (65.12) 2612.29 23.00 (74.59) 1893.96 30.20 (66.33) 1967.33
Attention output, [CLS] token 91.9 42.40 (53.41) 3261.41 40.70 (55.76) 2645.36 49.10 (47.32) 2759.37
Attention input, all tokens 91.05 24.80 (72.69) 2259.91 18.70 (79.38) 1707.90 28.70 (68.08) 1886.60
Attention input, [CLS] token 91.76 22.40 (75.89) 2153.99 21.70 (76.28) 1759.99 25.60 (71.90) 1781.55

RoBERTa-base

Input embeddings. 92.02 26.80 (70.52) 2345.55 15.90 (82.29) 1478.49 29.80 (66.52) 2010.82
Attention output, all tokens 91.41 30.20 (67.17) 2408.47 21.50 (76.61) 1756.51 36.40 (60.56) 2066.70
Attention output, [CLS] token 92.69 60.30 (35.58) 4349.38 50.20 (45.55) 3274.13 64.70 (30.20) 3360.81
Attention input, all tokens 92.97 23.60 (74.46) 2086.32 15.10 (83.99) 1426.83 28.70 (69.14) 1747.67
Attention input, [CLS] token 92.64 27.80 (69.72) 2504.18 18.80 (79.76) 1553.59 33.30 (64.54) 1927.80

Table 7: Performance results when randomization is applied to different token positions and different
locations of the transformer model, on AGNEWS dataset. Here, randomization is applied to every
self-attention layer.

PrLMs Models Clean% TextBugger TextFooler BERT-Attack
AuA% (ASR%) #Query AuA% (ASR%) #Query AuA% (ASR%) #Query

BERT-base

Input embeddings. 94.57 44.80 (52.03) 711.12 45.50 (51.49) 638.84 51.10 (45.23) 681.39
Attention output, all tokens 94.59 45.60 (50.97) 738.90 48.60 (48.35) 652.88 54.90 (41.35) 727.93
Attention output, [CLS] token 93.67 50.10 (45.90) 819.44 50.10 (45.90) 701.05 53.40 (42.89) 752.61
Attention input, all tokens 94.47 44.80 (52.29) 745.68 49.00 (47.71) 675.86 53.10 (43.09) 731.95
Attention input, [CLS] token 93.43 34.70 (62.41) 670.61 38.90 (57.90) 610.20 39.40 (57.54) 640.75

RoBERTa-base

Input embeddings. 94.72 48.90 (47.70) 752.97 48.50 (48.07) 645.89 54.50 (41.90) 707.38
Attention output, all tokens 94.21 51.70 (44.88) 804.99 53.30 (42.81) 717.31 57.80 (38.38) 767.47
Attention output, [CLS] token 94.63 49.50 (47.17) 823.36 50.20 (46.31) 718.93 59.60 (36.32) 813.69
Attention input, all tokens 93.01 40.80 (55.75) 726.04 39.30 (57.00) 618.76 46.10 (50.43) 672.77
Attention input, [CLS] token 94.31 40.70 (56.42) 721.77 41.90 (55.14) 624.96 45.60 (50.81) 681.12

C.3 RANDOMIZATION TECHNIQUES COMPARISON

To show how a lower loss variance makes a randomization method more effective against adver-
sarial attacks, we ran both RanMASK and SAFER, two randomization methods that have a higher
variance, through the same experiments on the base model without ensembling. As we can observe
from the results in Table 8, both RanMASK and SAFER performed significantly lower than their
corresponding baselines in the main experiment. This shows that these methods cannot be used in
a similar way to AdvFooler(i.e., without ensembling during inference), since their high variance
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Table 8: Performance results for RanMASK and SAFER on the baseline BERT model without
ensemble.

Dataset Models Attack methods
TextFooler TextBugger BERTAttack

AGNEWS RanMASK. 0% 0% 0%
SAFER 38.6% 37.5% 43.8%

IMDB RanMASK. 19.5% 15.6% 19.3%
SAFER 28.2% 21.4% 18.5%

makes them more susceptible to attacks, and can only be used in tandem with ensembling and ad-
versarial training with data augmentation.

C.4 ADVFOOLER AGAINST EXPECTATION OVER TRANSFORMATION (EOT)

Table 9: Accuracy Under Attack of AdvFooler against TextBugger and TextFooler on two datasets
using EoT.

Dataset Model EOT results for advfooler
TextBugger TextFooler

AGNEWS
AdvFooler 50.1% 50.1%
EOT (same query budget) 72.2% 70.2%
EOT (x10 query budget) 40.5% 41.0%

IMDB
AdvFooler 42.4% 40.70%
EOT (same query budget) 59.5% 59.7%
EOT (x10 query budget) 38.6% 41.2%

To combat against randomization defense, Athalye et al. (2018) proposed Expectation over Trans-
formation (EoT), a general framework to construct adversarial examples that remain adversarial
over a chosen transformation distribution. EoT works by generating an adversarial example from a
transformation distribution instead of a single example, which could negate the effects of AdvFooler.
However, to capture the distribution of the transformation being made by AdvFooler’s noise, the ad-
versary needs to query the model multiple times for each query, thus increasing the query budget. To
evaluate AdvFooleragainst EoT-based attacks, we ran our method against the modified TextBugger
and TextFooler with the EoT framework. As we can observe in Table 9, the two EoT-based attacks
achieve higher Accuracy Under Attack against AdvFooler compared to the original setting. Al-
though EoT can help negate the effects of AdvFooler’s randomness on adversarial input, the number
of queries needed to find an adversarial example exceeds the budget before it can generate an ad-
versarial example. To re-confirm this explanation, we increased the query budget by a factor of 10.
As expected, EoT was able to reduce the Accuracy Under Attack of AdvFooler. Nevertheless, this
experiment shows the limited practicality and effectiveness of EoT against AdvFooler.

C.5 ADVFOOLER’S EFFECT ON MODEL’S OUTPUT ERROR

Table 10: Expected Calibration Errors of the
model’s prediction, with and without AdvFooler.

AdvFooler Base
AGNEWS 2.3±0.2% 3.9±0.0%
IMDB 6.9±0.2% 6.3±0.0%

An immediate question is whether the score re-
turned by AdvFooler is still reliable; otherwise
we can just output an arbitrary fixed value for
every input, which totally negates any score-
based attacks. To calibrate the output of Ad-
vFooler, we calculate the Expected Calibration
Error (ECE) of the BERT-base model with and
without the use of AdvFooler. We run the ex-
periment five times and report the average ECE
score and its standard deviation for comparison. From the results in Table 10, we can see that, the
ECE differences between with and without using AdvFooler is low in both datasets, with the margin
of error when using AdvFooler only at 0.2%. This shows that even though AdvFooler can affect
the output logits of the model, the changes will only deviate slightly from the original prediction.
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C.6 ADVFOOLER’S PERFORMANCE ON HARD-LABEL ATTACKS.

Table 11: Hard-label results against base models with
and without AdvFooler under different noise scale.

Results [AuA%(ASR%)]
BERT-base 58.3% (38.11%)
AdvFooler (0.7 scale) 78.8% (15.35%)
AdvFooler (0.9 scale) 83.3% (9.45%)
AdvFooler (1.1 scale) 85.7% (5.72%)

In some cases, the adversary can choose to
ignore the output logits and only rely on
the hard-label output of the model, as seen
in Maheshwary et al. (2021).The so-called
hard-label attacks first initialize a sample
that flips the prediction, move it toward the
original input until it passes through the
decision boundary, then select the sample
at the previous step as adversarial exam-
ple. However, since AdvFooler is a ran-
domized model, it might sometimes return

labels that are different from the model without noise for the attack queries (e.g., instead of yield-
ing class 0, for a hard-label query, the model outputs class 3 because of the random noise addition,
especially when the perturbed query is close to the decision boundary of the model). Therefore, it
can fool the attack to go a little bit further, and the sample found by the attack turns out to be non-
adversarial. In this section, we study the performance of AdvFooler against this hard-label attack.
In this experiment, we ran these attacks against the base model and AdvFooler. It is possible that the
attack may accidentally flag a chosen perturbation as an adversarial example although this perturbed
sample may be predicted incorrectly because of the added noise in our defense; in other words, the
selected perturbed sample is not a true adversarial example because, under a different random noise
addition, the model prediction may still be correct. To avoid such a situation in our experiment
and fairly evaluate the performance of AdvFooler against hard-label attacks, for each “supposedly
adversarial example” generated by the attack, we feed it to the model 5 times and record the model’s
predictions; the model’s prediction used for performance evaluation is the prediction occurred most
of the times from these 5 applications. As we can observe from Table 11, hard-label attack struggles
to find consistent Adversarial Examples the bigger the noise being inserted into the model.

C.7 ADVFOOLER PERFORMANCES AGAINST THE TRANSFERRED, WHITE-BOX ATTACK

Table 12: Accuracy under Attack and Attack Success Rate of each method against HotFlip.

AGNEWS IMDB
BERT-Base 46.3% (50.85%) 14.8% (83.83%)
FreeLB 58.9% (37.61%) 36.8% (60.68%)
InfoBERT 57.5% (39.02%) 30.0% (67.5%)
AdvFooler 60.2% (34.78%) 50.7% (44.41%)

In the main paper, we focus on defending in the black-box setting, as it is a more realistic scenario
in practice. Nevertheless, we provide an empirical study of the effectiveness of AdvFooler against
a type of attack where the adversary has access to either the base model or the randomized model
to generate the adversarial example of an input. We call this type of attack transferred, white-box
attacks. Note that, this attack is not truly a white-box attack, where the fact that the adversary has
access to the base model, but there still exists a mismatch between the attacker’s possessed model
and the defender’s possessed model due to the added randomization. Even with the randomized
model, the base white-box approach used in this study is not specifically designed to make good use
of the noise distribution of the randomized model, thus, it is not truly a white-box attack case.

Most white-box attacks focus on increasing the loss of the model through gradient computa-
tion, choosing the perturbation in the sentence that increases loss the most. We employ HotFlip
(Ebrahimi et al., 2018) as the studied white-box attack. The experimental setup is similar to that in
the main experiments, with the number of words of a sentence that the attacker can perturb increased
to 10% and 30% (instead of only two words in the original paper) for IMDB and AGNEWS, respec-
tively. We also give HotFlip access to the model’s original parameters, which they can use to create
adversarial examples and bypass defense mechanics provided by the defense methods (in the case
of RanMASK, TMD, and AdvFooler). To make sure the adversarial examples created using the pro-
cess can trick the model using the defense, we also ran the adversarial examples through the defense
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method 5 times and take the class that being classified to the most. As we can observe in Table 13,
AdvFooler is effective against HotFlip in both datasets, increasing the AuA of the baseline model by
over 30%. We hypothesize that introducing randomness into the model can turn it into a smoothed
classifier, consequently diminishing the adversarial impact. Furthermore, we also consider the case
where the adversary ignores the noise from the defense and only attacks the original model. We
compute the AuA/ASR of AdvFoolerin this case and compare it to RanMASK and TMD. Table 13
shows that AdvFooler still achieves high robustness compared to TMD.

Table 13: Accuracy under Attack and Attack Success Rate of AdvFooler against HotFlip when
ignoring noise.

AGNEWS IMDB
AdvFooler 48.3% (48.50%) 77.3% (16.61%)
RanMASK 85.3% (3.9%) 84.1% (9.8%)
TMD 44.2% (52.72%) 63.3% (29.9%)

C.8 COMPARISON TO OTHER DEFENSES WITH SIMILAR ACCURACY

We conduct experiments on tuning the masking rate of RanMASK in AGNEWS such that the clean
accuracy is similar to that of AdvFooler. We decrease the random masking rate from 90% of the
words in a text example to 30%, which would increase RanMASK’s accuracy, as shown in their
paper Zeng et al. (2021). We also retrain a RanMASK with a random masking rate of 30%, to
prevent differences in masking rate between training and inference.

Table 14 shows that when decreasing the masking rate in RanMASK does increase the clean accu-
racy of the model, from 90% to 93% in accuracy. On the other hand, the accuracy under attack has
decreased tremendously, reducing to half of the original AuA. This shows that, while RanMASK
was able to be robust against adversarial attacks, this method also requires larger trade-offs in accu-
racy compared to other methods. The result also shows that RanMASK requires fine-tuning of the
masking rate to achieve good performances under attack, as the effective masking rate was chosen
from their certified robustness experiments.

Table 14: The performance of RanMASK on AGNEWS with different mask rates.

Models Mask
Rate

Clean Accuracy
(%)

TextBugger TextFooler BERTAttack

AuA(%) (ASR(%)↓) Avg. Query↓ AuA(%) (ASR(%)↓) Avg. Query↓ AuA(%) (ASR(%)↓) Avg. Query↓

BERT 0.9 90.14% 52.50% (41.60%) 582.21 54.60% (38.93%) 511.98 61.10% (31.73%) 595.57
BERT 0.3 93.50% 22.50% (75.88%) 360.12 24.10% (74.09%) 325.63 42.90% (54.12%) 412.99

RoBERTa 0.9 90.41% 52.30% (41.50%) 575.94 54.20% (39.37%) 516.98 60.00% (32.43%) 594.93
RoBERTa 0.3 93.30% 34.00% (63.56%) 396.72 35.7% (61.74%) 359.52 45.60% (50.97%) 429.72

D LIMITATIONS

Although AdvFooler is a lightweight, pluggable, and effective defense, there are some limitations
that can be improved. Our analysis and empirical evaluation focus on query-based, word-level at-
tacks. We do not include black-box attacks that utilize the transferability from a surrogate to a target
model, even though our threat model does not make any assumptions about the network architecture
or the training dataset. We also do not consider an adaptive attacker, who makes multiple queries
to estimate the importance of each word (i.e., Iwi

). The expected value of Iwi
calculated by this

adaptive attacker against AdvFooler (i.e., w.r.t model fAdvFooler) will be similar to that of the orig-
inal importance score of wi without the defense (i.e, w.r.t model f ). Evaluating AdvFooler against
this adaptive attack in conjunction with existing word-level perturbation-based attacks could be an
interesting study. Similarly, besides adversarially-trained approaches, it would also be interesting
to study the robustness of the combination of AdvFooler and other types of defenses. Finally, for
different model architectures, randomizing different latent layers could yield different effects on the
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robustness. This would be interesting to boost the effectiveness of AdvFooler for specific models.
We leave these to future works.

E ETHICS STATEMENT

The rapid integration of NLP models in various domains and applications has brought significant
transformations to our daily lives. Unfortunately, most NLP models face significant vulnerability
to textual adversarial attacks, undermining confidence in their deployment and usage. Among the
existing textual adversarial attacks, word-level perturbation-based attacks pose a severe threat to
the model users since these attacks are the most effective and do not require access to the model
architectures or their trained parameters.

To address the risks of these attacks, our work proposes a lightweight, attack-agnostic defense for
existing NLP models. Our detailed theoretical and empirical analyses show the defense’s compara-
ble performance to the existing state-of-the-art defenses across a wide range of NLP models, textual
adversarial attacks, and benchmark datasets. However, our defense does not necessitate any addi-
tional computational overhead at both training and inference time and can be used with any existing
pretrained models. In summary, the proposed defense can improve the adversarial robustness of ex-
isting NLP models against word-level perturbation-based attacks, thereby bolstering user confidence
in their utilization for real-world applications.
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