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Abstract

Autoregressively trained transformers have brought a profound revolution to the
world, especially with their in-context learning (ICL) ability to address downstream
tasks. Recently, several studies suggest that transformers learn a mesa-optimizer
during autoregressive (AR) pretraining to implement ICL. Namely, the forward
pass of the trained transformer is equivalent to optimizing an inner objective
function in-context. However, whether the practical non-convex training dynamics
will converge to the ideal mesa-optimizer is still unclear. Towards filling this
gap, we investigate the non-convex dynamics of a one-layer linear causal self-
attention model autoregressively trained by gradient flow, where the sequences are
generated by an AR process xt+1 = Wxt. First, under a certain condition of data
distribution, we prove that an autoregressively trained transformer learnsW by
implementing one step of gradient descent to minimize an ordinary least squares
(OLS) problem in-context. It then applies the learned Ŵ for next-token prediction,
thereby verifying the mesa-optimization hypothesis. Next, under the same data
conditions, we explore the capability limitations of the obtained mesa-optimizer.
We show that a stronger assumption related to the moments of data is the sufficient
and necessary condition that the learned mesa-optimizer recovers the distribution.
Besides, we conduct exploratory analyses beyond the first data condition and prove
that generally, the trained transformer will not perform vanilla gradient descent for
the OLS problem. Finally, our simulation results verify the theoretical results, and
the code is available at https://github.com/ML-GSAI/MesaOpt-AR-Transformer.

1 Introduction

Foundation models based on transformers [1] have revolutionized the AI community in lots of
fields, such as language modeling [2; 3; 4; 5; 6], computer vision [7; 8; 9; 10] and multi-modal
learning [11; 12; 13; 14; 15]. The crux behind these large models is a very simple yet profound
strategy named autoregressive (AR) pretraining, which encourages transformers to predict the next
token when a context is given. In terms of the trained transformers, one of their most intriguing
properties is the in-context learning (ICL) ability [2], which allows them to adapt their computation
and perform downstream tasks based on the information (e.g. examples) provided in the context
without any updates to their parameters. However, the reason underlying the emergence of ICL ability
is still poorly understood.
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Recently, we are aware that some preliminary studies [16; 17] have attempted to understand the ICL
ability from the AR training and connected its mechanisms to a popular hypothesis named mesa-
optimization [18], which suggests that transformers learn some algorithms during the AR pretraining.
In other words, the inference process of the trained transformers is equivalent to optimizing some
inner objective functions on the in-context data.

Concretely, the seminal work [16] constructs a theoretical example where a single linear causally-
masked self-attention layer with manually set parameters can predict the next token using one-
step gradient-descent learning for an ordinary least squares (OLS) problem over the historical
context. Moreover, they conduct numerous empirical studies to establish a close connection between
autoregressively trained transformers and gradient-based mesa-optimization algorithms. Built upon
the setting of [16], recent work [17] precisely characterizes the pretraining loss landscape of the one-
layer linear transformer trained on a simple first-order AR process with a fixed full-one initial token.
As a result, they find that the optimally-trained transformer recovers the theoretical construction
in [16]. However, their results rely on imposing the diagonal structure on the parameter matrices of
the transformer and do not discuss whether the practical non-convex dynamics can converge to the
ideal global minima. Besides, it is still unclear about the impact of data distribution on the trained
transformer, which has been proven to be important in practice [19; 20; 21; 22] and theory [23].

In this paper, we take a further step toward understanding the mesa-optimization in autoregressively
trained transformers. Specially, without an explicit diagonal structure assumption, we analyze the
non-convex dynamics of a one-layer linear transformer trained by gradient flow on a controllable
first-order AR process, and try to answer the following questions rigorously:

1. When do mesa-optimization algorithms emerge in autoregressively trained transformers?
2. What is the capability limitation of the mesa-optimizer if it does emerge?

Our first main contribution is to characterize a sufficient condition (Assumption 4.1) on the data
distribution for a mesa-optimizer to emerge in the autoregressively trained transformer, in Section 4.1.
We note that any initial token x1 whose coordinates x1i are i.i.d. random variables with zero mean
and finite moments satisfy this condition, including normal distribution N (0d, σ

2Id). Under this
assumption, the non-convex dynamics will exactly converge to the theoretical construction in [16]
without any explicit structural assumption in [17], resulting in the trained transformer implementing
one step of gradient descent for the minimization of an OLS problem in-context.

Our second main contribution is to characterize the capability limitation of the obtained mesa-
optimizer under Assumption 4.1 in Section 4.2. We characterize a stronger assumption (Assump-
tion 4.2) related to the moment of data distribution as the necessary and sufficient condition that the
mesa-optimizer recovers the true distribution (a.k.a. predict the next token correctly). Unfortunately,
we find that the mesa-optimizer can not recover the data distribution when the initial token is sampled
from the standard normal distribution, which suggests that ICL by AR pretraining [16; 17] is different
from ICL by few-shot learning pretraining [24; 25; 26; 27; 28; 29; 30; 23] (see details in Section 2), a
setup attracting attention from many theorists recently. We think ICL in the setting of AR pretraining
needs more attention from the theoretical community.

In Section 4.3, we further study the convergence of the training dynamics when Assumption 4.1 does
not hold anymore by adopting the setting in [17]. In this case, as a complement of [17], we prove that
under a similar but weaker structural assumption, training dynamics will converge to the theoretical
construction in [16] and the trained transformer implements exact gradient-based mesa-optimization.
However, we prove that without any structural assumption, the trained transformer will not perform
vanilla gradient descent for the OLS problem in general. Finally, we conduct simulations to validate
our theoretical findings in Section 6.

2 Additional related work

2.1 Mesa-optimization in ICL for few-shot linear regression

In addition to AR pretraining, much more empirical [31; 25; 32; 33] and theoretical studies [24;
26; 27; 28; 29; 34; 30] have given evidence to the mesa-optimization hypothesis when transformers
are trained to solve few-shot linear regression problem with the labeled training instances in the
context. On the experimental side, for example, the seminal empirical works by [31; 35] considers
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ICL for linear regression, where they find the ICL performance of trained transformers is close to
the OLS. On the theoretical side, considering a one-layer linear transformer, [26; 24] prove that the
global minima of the population training loss is equivalent to one step of preconditioned gradient
descent. Notably, [24] further proves that the training dynamics do converge to the global minima,
and the obtained mesa-optimizer solves the linear problem. For multi-layer attention models, recent
works suggest that they can perform efficient high-order optimization algorithms such as Newton’s
method [36; 37; 34]. Unfortunately, the pretraining goal of these studies is different from the AR
training. Therefore, it is still unclear whether these findings can be transferred to transformers
autoregressively trained on sequential data.

2.2 Other explanations for ICL

In addition to the mesa-optimization hypothesis, there are other explanations for the emergence of
ICL. [38; 39; 40; 41] explain ICL as inference over an implicitly learned topic model. [42] connects
ICL to multi-task learning and establishes generalization bounds using the algorithmic stability
technique. [43] and [44] study the implicit bias of the next(last)-token classification loss when each
token is sampled from a finite vocabulary. Specially, [44] proves that self-attention with gradient
descent learns an automaton that generates the next token by hard retrieval and soft composition.
[45] explains ICL as kernel regression. These results are not directly comparable to ours because we
study the ICL of a one-layer linear transformer with AR pretraining on the first-order AR process.

3 Problem setup

Elementary notations. We define [n] = {1, 2, . . . , n}. We use lowercase, lowercase boldface, and
uppercase boldface letters to denote scalars, vectors, and matrices, respectively. For a vector a, we
denote its i-th element as ai. For a matrixA, we useAk:,A:k and Aij to denote its k-th row, k-th
column and (i, j)-th element, respectively. For a vector a (matrixA), we use a∗ (A∗) to denote its
conjugate transpose. Similarly, we use a andA to denote their element-wise conjugate. We denote
the n-dimensional identity matrix by In. We denote the one vector of size n by 1n. In addition, we
denote the zero vector of size n and the zero matrix of size m× n by 0n and 0m×n, respectively. We
use ⊗ and � to denote the Kronecker product and the Hadamard product, respectively. Besides, we
denote Vec(·) the vectorization operator in column-wise order.

3.1 Data distribution

We consider a first-order AR process as the underlying data distribution, similar to recent works on
AR pretraining [16; 17]. Concretely, to generate a sequence (x1, . . . ,xT ) ∈ Cd×T , we first randomly
sample a unitary matrix W ∈ Cd×d uniformly from a candidate set PW = {diag(λ1, . . . , λd) |
|λi| = 1,∀i ∈ [d]} and the initial data point x1 from a controllable distribution Dx1

to be specified
later, then the subsequent elements are generated according to the rule xt+1 = Wxt for t ∈ [T − 1].
For convenience, we denote the vector (λ1, . . . , λd)

> by λ. We note that the structural assumption
onW is standard in the literature on learning problems involving matrices [46; 17]. In addition, it
is a natural extension of the recent studies on ICL for linear problems [24; 26; 28; 29; 30], where
they focus on y = w>x = 1>d diag(w)x. Furthermore, adopting this new data model is a necessary
approach to investigate AR pretraining because the regression dataset in the previous ICL theory is
not suitable since each token xi does not have a relation with the context. In this paper, we mainly
investigate the impact of the initial distribution Dx1

on the convergence result of the AR pretraining.

3.2 Model details

Linear causal self-attention layer. Before introducing the specified transformer module we will
analyze in this paper, we first recall the definition of the standard causally-masked self-attention
layer [1], whose parameters θ includes a query matrixWQ ∈ Rdk×de , a key matrixWK ∈ Rdk×de ,
a value matrixW V ∈ Rdv×de , a projection matrixW P ∈ Rde×dv and a normalization factor ρt > 0.
At time step t, let Et = (e1, . . . , et) ∈ Rde×t be the tokens embedded from the prompt sequence
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Pt = (x1, . . . ,xt) ∈ Cd×t, the causal self-attention layer will output

ft(Et;θ) = et +W PW VEt · softmax

(
(WKEt)

∗WQet
ρt

)
∈ Cde ,

where the softmax operator is applied to each column of the input matrix. Similar to recent theoretical
works on ICL with few-shot pretraining [24; 25; 16; 17; 26; 27; 28; 29], we consider the linear
attention module in this work, which modifies the standard causal self-attention by dropping the
softmax operator. Reparameterizing WKQ = WK∗WQ and W PV = W PW V , we have θ =
(WKQ,W PV ), and the output can be rewritten as:

ft(Et;θ) = et +W PVEt ·
E∗tW

KQet
ρt

.

Though it is called linear attention, we note that the output ft(Et;θ) is non-linear w.r.t. the input
tokens Et due to the existence of the EtE∗t . In terms of the normalization factor ρt, like existing
works [24; 26], we take it to be t− 1 because each element in EtE∗t is a Hermitian inner product of
two vectors of size t.

Embeddings. We adopt the natural embedding strategy used in recent studies on AR learning [16;
17]. Given a sequence Pt = (x1, . . . ,xt), the i-th token is defined as ei = (0>d ,x

>
i ,x

>
i−1)> ∈ C3d,

thus the corresponding embedding matrix Et can be formally written as:

Et = (e1, . . . , et) =

0d 0d · · · 0d
x1 x2 · · · xt
x0 x1 · · · xt−1

 ∈ C3d×t,

where x0 = 0d as a complement. This embedding strategy is a natural extension of the existing
theoretical works about ICL for linear regression [30; 24; 25; 26; 28; 29]. The main difference is that
the latter only focus on predicting the last query token while we need to predict each historical token.
We note that practical transformers do learn similar token construction in the first softmax attention
layer (e.g., see Fig. 4B in [16]).

Next-token prediction. Receiving the prompt Pt = (x1, . . . ,xt), the network’s prediction for the
next element xt+1 will be the first d coordinates of the output ft(Et;θ), aligning with the setup
adopted in [16; 17]. Namely, we have

ŷt(Et;θ) = [ft(Et;θ)]1:d ∈ Cd.
Henceforth, we will omit the dependence on Et and θ, and use ŷt if it is not ambiguous. Since only
the first d rows are extracted from the output by the attention layer, the prediction ŷt just depends on
some parts ofW PV andWKQ. Concretely, we denote that

W PV =

W PV
11 W PV

12 W PV
13

W PV
21 W PV

22 W PV
23

W PV
31 W PV

32 W PV
33

 ,WKQ =

WKQ
11 WKQ

12 WKQ
13

WKQ
21 WKQ

22 WKQ
23

WKQ
31 WKQ

32 WKQ
33

 ,

whereW PV
ij ,WKQ

ij ∈ Rd×d for all i, j ∈ [3]. Then the ŷt can be written as

ŷt =
(
W PV

12 W PV
13

) Ex
t E

x∗
t

ρt

(
WKQ

22 WKQ
23

WKQ
32 WKQ

33

)
ext . (1)

Here Ex
t = (ex1 , . . . , e

x
t ) ∈ C2d×t denotes the last 2d rows of the Et, where exi = (x>i ,x

>
i−1)>.

Therefore, we only need to analyze the selected parameters in Eq. 1 during the training dynamics.
The derivation of Eq. 1 can be found in Appendix A.1.

3.3 Training procedure

Loss function. To train the transformer model over the next-token prediction task, we focus on
minimizing the following population loss:

L(θ) =

T−1∑
t=2

Lt(θ) =

T−1∑
t=2

Ex1,W

[
1

2
‖ŷt − xt+1‖22

]
, (2)
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where the expectation is taken with respect to the start point x1 and the transition matrix W .
Henceforth, we will suppress the subscripts of the expectation for simplicity. The population loss is
a standard objective in the optimization studies [24; 47], and this objective has been used in recent
works on AR modeling [16; 17]. The summation starts from t = 2 because we do not have any
information to predict x2 given only x1.

Initialization strategy. We adopt the following diagonal initialization strategy, and similar settings
have been used in recent works on ICL for linear problem [24; 30; 17].

Assumption 3.1 (Diagonal initialization). At the initial time τ = 0, we assume that

WKQ(0) =

0d×d 0d×d 0d×d
0d×d 0d×d 0d×d
0d×d a0Id 0d×d

 ,W PV (0) =

0d×d b0Id 0d×d
0d×d 0d×d 0d×d
0d×d 0d×d 0d×d

 ,

where the red submatrices are related to the ŷt and changed during the training process.

The most related paper [17] considers a stronger diagonal structure than ours, and it only investigates
the loss landscape. Our results deepened the understanding of AR transformers by considering
practical training dynamics. We think this assumption might be inevitable for a tractable analysis
and leave theory for standard (Gaussian) initialization to future work. In Section 6, we also conduct
experiments under standard initialization, which further supports the rationality of Assumption 3.1.

Optimization algorithm. We utilize the gradient flow to minimize the learning objective in Eq. 2,
which is equivalent to the gradient descent with infinitesimal step size and governed by the ordinary
differential equation (ODE) d

dτ θ = −∇L(θ).

4 Main results

In this section, we present the main theoretical results of this paper. First, in Section 4.1, we prove that
when Dx1

satisfies some certain condition (Assumption 4.1), the trained transformer implements one
step of gradient descent for the minimization of an OLS problem, which validates the rationality of the
mesa-optimization hypothesis [16]. Next, in Section 4.2, we further explore the capability limitation
of the obtained mesa-optimizer under Assumption 4.1, where we characterize a stronger assumption
(Assumption 4.2) as the necessary and sufficient condition that the mesa-optimizer recovers the true
distribution. Finally, we go beyond Assumption 4.1, where the exploratory analysis proves that the
trained transformer will generally not perform vanilla gradient descent for the OLS problem.

4.1 Trained transformer is a mesa-optimizer

In this subsection, we show that under a certain assumption of Dx1
, the trained one-layer linear

transformer will converge to the mesa-optimizer [16; 17]. Namely, it will perform one step of gradient
descent for the minimization of an OLS problem about the received prompt. The sufficient condition
of the distribution Dx1 can be summarized as follows.

Assumption 4.1 (Sufficient condition for the emergence of mesa-optimizer). We assume that the
distribution Dx1

of the initial token x1 ∈ Rd satisfies Ex1∼Dx1
[x1i1x

r2
1i2
· · ·xrn1in ] = 0 for any

subset {i1, . . . , in | n ≤ 4} of [d], and r2, . . . rn ∈ N. In addition, we assume that κ1 = E[x41j ],
κ2 = E[x61j ] and κ3 =

∑
r 6=j E[x21jx

4
1r] are finite constant for any j ∈ [d].

Finding Assumption 4.1 is non-trivial since we need to derive the training dynamics first. The key
intuition of this assumption is to keep the gradient of the non-diagonal elements ofWKQ

32 andW PV
12

as zero, thus they can keep diagonal structure during the training. We note that any random vectors
x1 whose coordinates x1i are i.i.d. random variables with zero mean and finite moments of order
2, 4, and 6 satisfy this assumption. For example, it includes the normal distribution N (0d, σ

2Id),
which is a common setting in the learning theory field [47; 48; 49; 50; 51]. Under this assumption,
the final fixed point found by the gradient flow can be characterized as the following theorem.

Theorem 4.1 (Convergence of the gradient flow, proof in Section 5). Consider the gradient flow
of the one-layer linear transformer (see Eq. 1) over the population AR pretraining loss (see Eq. 2).
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Suppose the initialization satisfies Assumption 3.1, and the initial token’s distribution Dx1 satisfies
Assumption 4.1, then the gradient flow converges toW̃KQ

22 W̃KQ
23

W̃KQ
32 W̃KQ

33

 =

(
0d×d 0d×d
ãId 0d×d

)
,
(
W̃ PV

12 W̃ PV
13

)
=
(
b̃Id 0d×d

)
.

Though different initialization (a0, b0) lead to different (ã, b̃), the solutions’ product ãb̃ satisfies

ãb̃ =
κ1

κ2 + κ3

T−2
∑T−1
t=2

1
t−1

.

As far as we know, Theorem 4.1 is the first theoretical result for the training dynamics and the mesa-
optimization hypothesis of autoregressive transformers. The technical challenge compared to existing
ICL theory for regression [24] mainly has two parts. First, our data model breaks the independence
between data at different times, which causes difficulty in decomposing and estimating the gradient
terms. Second, we modify the embedding strategy (more dimensions), scale the attention model
(much more parameters), and change the loss function (more terms) to perform the full AR pertaining.
All these parts are not well studied in the literature and make the gradients more complicated.

Theorem 4.1 is also a non-trivial extension of recent work [17], which characterizes the global minima
of the AR modeling loss when imposing the diagonal structure on all parameter matrices during the
training and fixing x1 as 1d. In comparison, Theorem 4.1 does not depend on the special structure,
and further investigates when the mesa-optimizer emerges in practical non-convex optimization.

We highlight that the limiting solution found by the gradient flow shares the same structure with
the careful construction in [16], though the pretraining loss is non-convex. Therefore, our result
theoretically validates the rationality of the mesa-optimization hypothesis [16] in the AR pretraining
setting, which can be formally presented as the following corollary.

Corollary 4.1 (Trained transformer as a mesa-optimizer, proof in Appendix A.3). We suppose that the
same precondition of Theorem 4.1 holds. When predicting the (t+1)-th token, the trained transformer
obtains Ŵ by implementing one step of gradient descent for the OLS problem LOLS,t(W ) =
1
2

∑t−1
i=1 ‖xi+1 −Wxi‖2, starting from the initializationW = 0d×d with a step size ãb̃

t−1 .

4.2 Capability limitation of the mesa-optimizer

Built upon the findings in Theorem 4.1, a simple calculation (details in Appendix A.3) shows that the
prediction of the obtained mesa-optimizer given a new test prompt of length Tte is

ŷTte = W

(
ãb̃

∑Tte−1
i=1 xix

∗
i

Tte − 1

)
xTte . (3)

It is natural to ask the question: where is the capability limitation of the obtained mesa-optimizer, and
what data distribution can the trained transformer learn? Therefore, in this subsection, we study under
what assumption of the initial token’s distribution Dx1

, the one step of gradient descent performed
by the trained transformer can exactly recover the underlying data distribution. First, leveraging the
result from Eq. 3, we present a negative result, which proves that not all Dx1

satisfies Assumption 4.1
can be recovered by the trained linear transformer.

Proposition 4.1 (AR process with normal distributed initial token can not be learned, proof in
Appendix A.4). Let Dx1

be the multivariate normal distributionN (0d, σ
2Id) with any σ2 > 0, then

the "simple" AR process can not be recovered by the trained transformer even in the ideal case with
long training context. Formally, when the training sequence length Ttr is large enough, for any test
context length Tte and dimension j ∈ [d], the prediction from the trained transformer satisfies

Ex1,W [
(ŷTte

)j
(WxTte)j

]→ 1

5
.

Therefore, the prediction ŷTte
will not converges to the true next tokenWxTte

.
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Proposition 4.1 suggests that ICL by AR pretraining [16; 17] is different from ICL by few-shot
pretraining [24; 25; 26; 27; 28; 29; 30; 23], which attracts much more attention from the theoretical
community. In the latter setting, recent works [24; 26] proves that one step of gradient descent
implemented by the trained transformer can in-context learn the linear regression problem with input
sampled from N (0d, σ

2Id). However, in the AR learning setting, the trained linear transformer fails.

This negative result shows that one-step GD learned by the AR transformer can not recover the
distribution, but this can be solved by more complex models. Even for more complex data (W is
not diagonal), [16] has empirically verified that multi-layer linear attention can perform multi-step
gradient descent to learn the data distribution. Therefore, to address the issue, future works are
suggested to study more complex architecture such as softmax attention [30], multi-head attention [52;
53; 54], deeper attention layers [55; 16], transformer block [56; 57; 58], and so on. Future theory
considering more complex AR transformers can adopt the same data model and token embeddings in
this paper, and try to use a similar proof technique to derive the training dynamics.

Proposition 4.1 implies that if we want the trained transformer to recover the data distribution by
performing one step of gradient descent, a stronger condition ofDx1 is needed. Under Assumption 4.1,
the following sufficient and necessary condition related to the moment of Dx1

is derived from Eq. 3
by letting ŷTte

converges toWxTte
when context length Ttr and Tte are large enough.

Assumption 4.2 (Condition for success of mesa-optimizer). Based on Assumption 4.1, we further

suppose that κ1

κ2

∑Tte−1
i=1 xix

∗
i

Tte−1 xTte
→ xTte

for any x1 andW , when Tte is large enough.

Assumption 4.2 is strong and shows the poor capability of the trained one-layer linear transformer
because common distribution (e.g. Gaussian distribution, Gamma distribution, Poisson distribution,
etc) always fails to satisfy this condition. Besides, it is a sufficient and necessary condition for the
mesa-optimizer to succeed when the distribution Dx1

has satisfied Assumption 4.1, thus can not be
improved in this case. We construct the following example that satisfies Assumption 4.2.
Example 4.1 (sparse vector). If the random vector x1 ∈ Rd is uniformly sampled from the candidate
set of size 2d {±(c, 0, . . . , 0)>,±(0, c, . . . , 0)>,±(0, . . . , 0, c)>} for any fixed c ∈ R, then the
distribution Dx1 satisfies Assumption 4.2. The derivation can be found in Appendix A.5.

For completeness, we formally summarize the following distribution learning guarantee for the
trained transformer under Assumption 3.1 and 4.1.
Theorem 4.2 (Trained transformer succeed to learn the distribution satisfies Assumption 4.2, proof
in Appendix A.6). Suppose that Assumption 3.1 and 4.1 holds, then Assumption 4.2 is the sufficient
and necessary condition for the trained transformer to learn the AR process. Formally, when the
training sequence length Ttr and test context length Tte are large enough, the prediction from the
trained transformer satisfies

ŷTte
→WxTte

, Ttr, Tte → +∞.

4.3 Go beyond the Assumption 4.1

The behavior of the gradient flow under Assumption 4.1 has been clearly understood in Theorem 4.1.
The follow-up natural question is what solution will be found by the gradient flow when Assump-
tion 4.1 does not hold. In this subsection, we conduct exploratory analyses by adopting the setting
in [17], where the initial token x1 is fixed as 1d.

First, sharing the similar but weaker assumption of [17], we imposeWKQ
32 andW PV

12 to stay diagonal
during training by masking the non-diagonal gradients, then the trained transformer will perform one
step of gradient descent, as suggested by [17]. Formally, it can be written as follows.
Theorem 4.3 (Trained transformer as mesa-optimizer with non-diagonal gradient masking, proof in
Appendix A.7). Suppose the initialization satisfies Assumption 3.1, the initial token is fixed as 1d,
and we clip non-diagonal gradients ofWKQ

32 andW PV
12 during the training, then the gradient flow

of the one-layer linear transformer over the population AR loss converges to the same structure as
the result in Theorem 4.1, with

ãb̃ =
1

1 + d−1
T−2

∑T−1
t=2

1
t−1

.

Therefore, the obtained transformer performs one step of gradient descent in this case.
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Theorem 4.3 can be seen as a complement and an extension of Proposition 2 in [17] from the
perspective of optimization. We note that [17] assumes all the parameter matrices to be diagonal and
only analyzes the global minima without considering the practical non-convex optimization process.

Next, we adopt some exploratory analyses for the gradient flow without additional non-diagonal
gradient masking. The convergence result of the gradient flow can be asserted as the following
proposition. The key intuition of its proof is that when the parameters matrices share the same
structure as the result in Theorem 4.1, the non-zero gradients of the non-diagonal elements ofWKQ

32

andW PV
12 will occur. In addition, we note the result does not depend on Assumption 3.1.

Proposition 4.2 (Trained transformer does not perform on step of gradient descent, proof in Ap-
pendix A.8). The limiting point found by the gradient does not share the same structure as that in
Theorem 4.1, thus the trained transformer will not implement one step of vanilla gradient descent for
minimizing the OLS problem 1

2

∑t−1
i=1 ‖xi+1 −Wxi‖2.

To fully solve the problem and find the limiting point of the gradient flow in this case (or more
generally, any case beyond Assumption 3.1 and 4.1), one can not enjoy the diagonal structure of
WKQ

32 andW PV
12 anymore. WhenWKQ

32 andW PV
12 are general dense matrices, computation of the

gradient will be much more difficult than that in Proposition 4.2. Therefore, we leave the general
rigorous result of convergence without Assumption 3.1 and 4.1 for future work.

We are aware that recent theoretical studies on ICL for linear regression have faced a similar
problem. [24; 26; 23] find that when the input’s distribution does not satisfy Assumption 4.1 (e.g.,
N (0d,Σ)), the trained transformer will implement one step of preconditioned gradient descent on
for some inner objective function. We conjecture similar results will hold in the case of in-context
AR learning. We will empirically verify this conjecture when x1 is a full one vector, in Section 6.

5 Proof skeleton

In this section, we outline the proof ideas of Theorem 4.1, which is one of the core findings of this
paper, and also a theoretical base of the more complex proofs of Theorem 4.3 and Proposition 4.2.
The full proof of this Theorem is placed in Appendix A.2.

The first key step is to observe that each coordinate of prediction ŷt (Eq. 1) can be written as the
output of a quadratic function, which will greatly simplify the follow-up gradient operation.
Lemma 5.1 (Simplification of ŷt,j , proof in Appendix A.2.1). Each element of the network’s
prediction ŷt,j (j ∈ [d]) can be expressed as the following.

ŷt,j = B>j · ex>t ⊗ E
x
t E

x∗
t

ρt
·Vec(A) = Vec>(A) · ext ⊗

Ex
t E

x>
t

ρt
·Bj ,

where theA andBj are defined as

A =
(
a1 . . . a2d

)
=

(
WKQ

22 WKQ
23

WKQ
32 WKQ

33

)
, Bj =

(
bj1
bj2

)
=

(
W PV>

12,j:

W PV>
13,j:

)
,

with ai ∈ R2d and bj1, bj2 ∈ Rd.

Next, We calculate the gradient for the parameter matrices of the linear transformer and present the
dynamical system result, which is the most complex part in the proof of Theorem 4.1.
Lemma 5.2 (dynamical system of gradient flow under Assumption 4.1, proof in Appendix A.2.2).
Suppose that Assumption 4.1 holds, then the dynamical process of the parameters in the diagonal of
WKQ

32 andW PV
12 satisfies

d

dτ
a = −ab2

(T − 2)κ2 +

T−1∑
t=2

1

t− 1
κ3

+ b(T − 2)κ1,

d

dτ
b = −a2b

(T − 2)κ2 +

T−1∑
t=2

1

t− 1
κ3

+ a(T − 2)κ1,

while the gradients for all other parameters were kept at zero during the training process.
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Similar ODEs have occurred in existing studies, such as the deep linear networks [59] and recent
ICL for linear regression [24]. Notably, these dynamics are the same as those of gradient flow on a
non-convex objective function with clear global minima, which is summarized as the following.

Lemma 5.3 (Surrogate objective function, proof in Appendix A.2.3). Suppose that Assumption 4.1
holds and denote (T − 2)κ2 +

∑T−1
t=2

1
t−1κ3 and (T − 2)κ1 by c1 and c2, respectively. Then, the

dynamics in Lemma 5.2 are the same as those of gradient flow on the following objective function:

˜̀(a, b) =
1

2c1
(c2 − c1ab)2,

whose global minimums satisfy ab = c2/c1.

Furthermore, We show that although the objective ˜̀(a, b) is non-convex, the Polyak-Łojasiewicz (PL)
inequality [60; 61] holds, which implies that gradient flow converges to the global minimum.

Lemma 5.4 (Global convergence of gradient flow, proof in Appendix A.2.4). Suppose that Assump-
tion 4.1 holds, then ˜̀(a, b) is a non-convex function and satisfies the PL inequality as follows.∣∣∣∣ ∂∂a ˜̀(a, b)

∣∣∣∣2 +

∣∣∣∣ ∂∂b ˜̀(a, b)
∣∣∣∣2 ≥ 2c1(a2 + b2)

(˜̀(a, b)−min
a,b

˜̀(a, b)).
Therefore, the gradient flow in Lemma 5.2 converges to the global minimum of ˜̀(a, b).

Finally, Theorem 4.1 can be proved by directly applying the above lemmas.

6 Simulation results

In this section, we conduct simulations to verify and generalize our theoretical results. In terms
of the train set, we generate 10k sequences with Ttr = 100 and d = 5. In addition, we generate
another test set with 10k sequences of the same shape. We train for 200 epochs with vanilla gradient
descent, with different diagonal initialization of (a0, b0) by (0.1, 0.1), (0.5, 1.5), (2, 2). The detailed
configurations (e.g., step size) and results of different experiments can be found in Appendix B.

Initial token sampled from N (0d, σ
2Id). We conduct simulations with σ = 0.5, 1, 2 respectively.

With any initialization of (a0, b0), simulations show that ab converges to κ1/κ2 = 1/5σ2, and ŷTte−1
converges to xTte/5 in expectation, which verifies Theorem 4.1 and Proposition 4.1, respectively. In
the main paper, we present the convergence results with σ = 0.5 in Fig. 1a and 1b. We also verify
our theory in the small-context scenarios (Ttr = 5), which is placed in Fig. 4 in Appendix B.3.

Initial token sampled from Example 4.1. We conduct simulations with scale c = 0.5, 1, 2 respec-
tively. With any initialization of (a0, b0), simulations show that ab converges to κ1/κ2 = 1/c2 (see
details in Appendix A.5), and ŷTte−1 converges to the truth xTte , which verifies Theorem 4.1 and
Theorem 4.2, respectively. In the main paper, we present the results with c = 0.5 in Fig. 1c and 1d.

Initial token fixed as 1d. We conduct experiment with x1 = 1d.The results Fig. 7 in Appendix B.5
show that WKQ

32 and W PV
12 converge to dense matrices with strong diagonals, and other matrices

converge to 0d×d, which means that the trained transformer performs somewhat preconditioned
gradient descent. The detailed derivation is placed in Appendix B.5.

Go beyond the diagonal initialization. Finally, in order to extend our theory, we repeat experiments
under Gaussian initialization with different variance (σw = 0.001, 0.01, 0.1). The results of Gaussian
start points and sparse start points (Example 4.1) can be found in Fig. 5 of Appendix B.3 and Fig. 6
of Appendix B.4, respectively. As a result, though the convergence results of parameters are not the
same as those under diagonal initialization, they keep the same diagonal structure, which can be
understood as GD with adaptive learning rate in different dimensions. In addition, the test results
(ratio or MSE loss) under the standard Gaussian initialization are the same as those under diagonal
initialization, which further verifies the capability limitation of the trained transformers. To sum up,
these experimental results demonstrate that our theoretical results have a certain representativeness,
which further supports the rationality of the diagonal initialization.
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(a) Gaussian with σ = 0.5, dynamics of ab. (b) Gaussian with σ = 0.5, ratio of ŷTte−1/xTte .

(c) Example 4.1 with c = 0.5, dynamics of ab. (d) Example 4.1 with c = 0.5, ‖ŷTte−1 − xTte‖22.

Figure 1: Simulations results on Gaussian and Example 4.1 show that the convergence of ab satisfies Theorem 4.1.
In addition, the trained transformer can recover the sequence with the initial token from Example 4.1, but fails to
recover the Gaussian initial token, which verifies Theorem 4.2 and Proposition 4.1, respectively.

7 Conclusion and Discussion

In this paper, we towards understanding the the mechanisms underlying the ICL by analyzing the
mesa-optimization hypothesis. To achieve this goal, we investigate the non-convex dynamics of a
one-layer linear transformer autoregressively trained by gradient flow on a controllable AR process.
First, we find a sufficient condition (Assumption 4.1) for the emergence of mesa-optimizer. Second,
we explore the capability of the mesa-optimizer, where we find a sufficient and necessary condition
(Assumption 4.2) that the trained transformer recovers the true distribution. Third, we analyze the
case where Assumption 4.1 does not hold, and find that the trained transformer will not perform
vanilla gradient descent in general. Finally, our simulation results verify the theoretical results.

Limitations and social impact. First, our theory only focuses on the one-layer linear transformer,
thus whether the results hold when more complex models are adopted is still unclear. We believe
that our analysis can give insight to those cases. Second, the general case where Assumption 3.1
and 4.1 does not hold is not fully addressed in this paper due to technical difficulties. Future work can
consider that setting based on our theoretical and empirical findings. Finally, this is mainly theoretical
work and we do not see a direct social impact of our theory.
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Appendix A Proofs

A.1 Proof of eq. (1)

Proof. We first calculate the output by causal linear attention layer as the following:
ft(Et;θ)

= et +
1

ρt
W PVEtE

∗
tW

KQet

= et +
1

ρt
W PV

 t∑
i=1

eie
∗
i

WKQet

= et +
1

ρt

t∑
i=1

(
W PV ei ·

(
WKQ>ei

)∗)
et

= et +
1

ρt

t∑
i=1


W PV

11 W PV
12 W PV

13

W PV
21 W PV

22 W PV
23

W PV
31 W PV

32 W PV
33

 ei ·

WKQ

11 WKQ
12 WKQ

13

WKQ
21 WKQ

22 WKQ
23

WKQ
31 WKQ

32 WKQ
33


>

ei


∗
et

=

 0d
xt
xt−1

+
1

ρt

t∑
i=1


W PV

12 xi +W PV
13 xi−1

×
×

 ·
 ×
WKQ>

22 xi +WKQ>
32 xi−1

WKQ>
23 xi +WKQ>

33 xi−1


∗

 0d
xt
xt−1

 ,

where×s are the elements that will not contribute to the final ŷt. A further simple computation shows
that

ŷt = 0d +
1

ρt

t∑
i=1

(W PV
12 xi +W PV

13 xi−1)(WKQ>
22 xi +WKQ>

32 xi−1)∗xt

+
1

ρt

t∑
i=1

(W PV
12 xi +W PV

13 xi−1)(WKQ>
23 xi +WKQ>

33 xi−1)∗xt−1

=
1

ρt

t∑
i=1

(W PV
12 xi +W PV

13 xi−1
)(WKQ>

22 xi +WKQ>
32 xi−1

WKQ>
23 xi +WKQ>

33 xi−1

)∗( xt
xt−1

)

=
1

ρt

t∑
i=1

(W PV
12 W PV

13

)( xi
xi−1

)
·

(WKQ
22 WKQ

23

WKQ
32 WKQ

33

)>(
xi
xi−1

)∗
( xt

xt−1

)

=
1

ρt

t∑
i=1

(W PV
12 W PV

13

)
exi ·

(WKQ
22 WKQ

23

WKQ
32 WKQ

33

)>
exi

∗
ext

=
1

ρt

(
W PV

12 W PV
13

) t∑
i=1

exi e
x∗
i

(WKQ
22 WKQ

23

WKQ
32 WKQ

33

)
ext

=
(
W PV

12 W PV
13

) Ex
t E

x∗
t

ρt

(
WKQ

22 WKQ
23

WKQ
32 WKQ

33

)
ext ∈ Cd,

which completes the proof.

A.2 Proof of Theorem 4.1

A.2.1 Proof of Lemma 5.1

For the reader’s convenience, we restate the lemma as the following.
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Lemma A.1. Each element of the network’s prediction ŷt,j (j ∈ [d]) can be expressed as the
following.

ŷt,j = B>j · ex>t ⊗ E
x
t E

x∗
t

ρt
·Vec(A) = Vec>(A) · ext ⊗

Ex
t E

x>
t

ρt
·Bj ,

where theA andBj are defined as

A =
(
a1 . . . a2d

)
=

(
WKQ

22 WKQ
23

WKQ
32 WKQ

33

)
, Bj =

(
bj1
bj2

)
=

(
W PV>

12,j:

W PV>
13,j:

)
,

with ai ∈ R2d and bj1, bj2 ∈ Rd.

Proof. Based on the result in Eq. 1, we can write

ŷt,j =
(
W PV

12 W PV
13

)
j:

Ex
t E

x∗
t

ρt

(
WKQ

22 WKQ
23

WKQ
32 WKQ

33

)
ext

= B>j
Ex
t E

x∗
t

ρt

(
a1 . . . a2d

)
ext

=

2d∑
i=1

ext,iB
>
j

Ex
t E

x∗
t

ρt
ai

=

2d∑
i=1

ext,itr
(
B>j

Ex
t E

x∗
t

ρt
ai

)

=

2d∑
i=1

ext,itr
(
aiB

>
j

Ex
t E

x∗
t

ρt

)

=

2d∑
i=1

tr
(
aiB

>
j · ext,i

Ex
t E

x∗
t

ρt

)

= tr



a1B

>
j

...
a2dB

>
j

 · (ext,1Ex
t Ex∗

t

ρt
· · · ext,2d

Ex
t Ex∗

t

ρt

)
= tr

(
Vec(A)B>j · ex>t ⊗ E

x
t E

x∗
t

ρt

)
= tr

(
B>j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

)
= B>j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

= tr

(
Vec>(A) · ext ⊗

Ex
t E

x>
t

ρt
·Bj

)
= Vec>(A) · ext ⊗

Ex
t E

x>
t

ρt
·Bj ,

which finishes the proof.

A.2.2 Proof of Lemma 5.2

For the reader’s convenience, we restate the lemma as the following.
Lemma A.2. Suppose that Assumption 4.1 holds, then the dynamical process of the parameters in
the diagonal ofWKQ

32 andW PV
12 satisfies

d

dτ
a = −ab2

(T − 2)κ2 +

T−1∑
t=2

1

t− 1
κ3

+ b(T − 2)κ1,

d

dτ
b = −a2b

(T − 2)κ2 +

T−1∑
t=2

1

t− 1
κ3

+ a(T − 2)κ1,
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while the gradients for all other parameters were kept at zero during the training process.

Proof. The population loss L(θ) in Eq. 2 can be rewritten as

L(θ) =

T−1∑
t=2

Lt(θ) =

T−1∑
t=2

E

1

2

d∑
j=1

∣∣ŷt,j − xt+1,j

∣∣2 =

T−1∑
t=2

d∑
j=1

E
[

1

2

∣∣ŷt,j − xt+1,j

∣∣2]

=

T−1∑
t=2

d∑
j=1

E

[
1

2

(
ŷ∗t,j ŷt,j − 2Re

(
x∗t+1,j ŷt,j

)
+ x∗t+1,jxt+1,j

)]

=

T−1∑
t=2

d∑
j=1

E
[

1

2
ŷ∗t,j ŷt,j − Re

(
x∗t+1,j ŷt,j

)
+

1

2
x∗t+1,jxt+1,j

]
.

Then, we can calculate the derivatives of Lt(θ) with respect toBj and Vec(A) as

∇BjLt(θ) =

d∑
j=1

E
[

1

2
∇Bj ŷ

∗
t,j ŷt,j −∇Bj Re

(
x∗t+1,j ŷt,j

)]

= E
[

1

2
∇Bj ŷ

∗
t,j ŷt,j −∇Bj Re

(
x∗t+1,j ŷt,j

)]
=

1

2
E
[
∇Bj

ŷ∗t,j ŷt,j

]
− E

[
∇Bj

Re
(
x∗t+1,j ŷt,j

)]
,

and

∇Vec(A)Lt(θ) =

d∑
j=1

E
[

1

2
∇Vec(A)ŷ

∗
t,j ŷt,j −∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]

=
1

2

d∑
j=1

E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
−

d∑
j=1

E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
.

Step one: calculate E
[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
. Based on Lemma 5.1, we have

ŷt,j = B>j · ex>t ⊗ E
x
t E

x∗
t

ρt
·Vec(A).

Then, the E
[
∇Bj

Re
(
x∗t+1,j ŷt,j

)]
can be derived as the following.

E
[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
= E

[
∇Bj Re

(
x∗t+1,jB

>
j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

)]

= E

[
∇BjB

>
j · Re

(
x∗t+1,j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

)]

= E

[
Re
(
x∗t+1,j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

)]

= Re

(
E
[
x∗t+1,j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

])

= Re

(
E
[
λ−tj x1j ·Vec(

Ex
t E

x∗
t

ρt
Aext )

])
(use generating process)

= Re

(
E
[
λ−tj x1j · (

Ex
t E

x∗
t

ρt
Aext )

])
,
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where the penultimate equality uses the property of Kronecker and Vec operator Vec(AXB) =
(B> ⊗A)Vec(X), we refer Section 10.2 in [62] for details.

For Ex
t Ex∗

t

ρt
, we can simplify it as

Ex
t E

x∗
t

ρt
=

1

ρt

t∑
i=1

exi e
x∗
i

=
1

ρt

t∑
i=1

(
xix

∗
i xix

∗
i−1

xi−1x
∗
i xi−1x

∗
i−1

)

=
1

ρt

( ∑t
i=1 xix

∗
i W

∑t−1
i=1 xix

∗
i∑t−1

i=1 xix
∗
iW

∗ ∑t−1
i=1 xix

∗
i

)
.

Based on the diagonal property ofW , we can simplify the xix∗i as the following.

xix
∗
i = (W i−1x1)(W i−1x1)∗ = Mi � Σ̂,

where we define Σ̂ = x1x
∗
1 andMi = λi−1λi−1∗. Therefore, we have

Ex
t E

x∗
t

ρt
=

1

ρt

( ∑t
i=1Mi � Σ̂ W

∑t−1
i=1Mi � Σ̂∑t−1

i=1Mi � Σ̂W ∗ ∑t−1
i=1Mi � Σ̂

)
. (4)

Then, leveraging the sparse property ofA, we can derive Ex
t Ex∗

t

ρt
Aext as follows.

Ex
t E

x∗
t

ρt
Aext =

Ex
t E

x∗
t

ρt

(
0d
axt

)
=

a

ρt

(
W (

∑t−1
i=1Mi � Σ̂)xt

(
∑t−1
i=1Mi � Σ̂)xt

)
.

Therefore, for any l ∈ [d], we have(
Ex
t E

x∗
t

ρt
Aext

)
l

=
a

ρt
λl

t−1∑
i=1

(Mi � Σ̂)l:xt

=
a

ρt
λl

t−1∑
i=1

(
λi−1l λ1−i1 x1lx11 · · · λi−1l λ1−id x1lx1d

)λt−11 x11
· · ·

λt−1d x1d


=

a

ρt
λl

t−1∑
i=1

d∑
r=1

λi−1l λt−ir x1lx
2
1r

=
a

ρt

t−1∑
i=1

d∑
r=1

λilλ
t−i
r x1lx

2
1r.

Similarly, for any l ∈ [2d]− [d], we have(
Ex
t E

x∗
t

ρt
Aext

)
l

=
a

ρt

t−1∑
i=1

d∑
r=1

λi−1l λt−ir x1lx
2
1r.

To sum up, for any l ∈ [2d], we have(
Ex
t E

x∗
t

ρt
Aext

)
l

=

{
a
ρt

∑t−1
i=1

∑d
r=1 λ

i
lλ
t−i
r x1lx

2
1r, l ∈ [d],

a
ρt

∑t−1
i=1

∑d
r=1 λ

i−1
l−dλ

t−i
r x1,l−dx

2
1r, l ∈ [2d]− [d].
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Next, we calculate the E
[
λ−tj x1j ·

(
Ex

t Ex∗
t

ρt
Aext

)]
. For any l ∈ [d], we have

E

[
λ−tj x1j ·

(
Ex
t E

x∗
t

ρt
Aext

)
l

]
= E

λ−tj x1j ·
a

ρt

t−1∑
i=1

d∑
r=1

λilλ
t−i
r x1lx

2
1r


=

a

ρt

t−1∑
i=1

d∑
r=1

E[λ−tj λilλ
t−i
r ]E[x1jx1lx

2
1r].

We discuss them in the following categories,

1. l 6= j. In this case, E[x1jx1lx
2
1r] = 0 by Assumption 4.1, thus

E

[
λ−tj x1j ·

(
Ex
t E

x∗
t

ρt
Aext

)
l

]
=

a

ρt

t−1∑
i=1

d∑
r=1

E[λ−tj λilλ
t−i
r ]0 = 0.

2. l = j, r = j. Because λis are i.i.d. and E[λi]
k = δ(k = 0), we have

E

[
λ−tj x1j ·

(
Ex
t E

x∗
t

ρt
Aext

)
l

]
=

a

ρt

d∑
r=1

E[λ−tj λijλ
t−i
j ]E[x1jx1jx

2
1j ]

=
a

ρt
(t− 1)E[x41j ].

Similarly, for any l ∈ [2d]− [d], we have

E

[
λ−tj x1j ·

(
Ex
t E

x∗
t

ρt
Aext

)
l

]
= 0.

Therefore, for any l ∈ [2d], we have

E

[
λ−tj x1j ·

(
Ex
t E

x∗
t

ρt
Aext

)]
=

{
a
ρt

(t− 1)E[x41j ], l = j,
0, l 6= j,

and the l-th element of E
[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
is

E
[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
l

= Re

(
E
[
λ−tj x1j · (

Ex
t E

x∗
t

ρt
Aext )

])
l

=

{
a
ρt

(t− 1)E[x41j ], l = j,
0, l 6= j.

Step two: calculate E
[
∇Bj

ŷ∗t,j ŷt,j

]
. Based on Lemma 5.1, we have

ŷt,j = Vec>(A) · ext ⊗
Ex
t E

x>
t

ρt
·Bj ,

then we can simplify the E
[
∇Bj

ŷ∗t,j ŷt,j

]
as follows.

E
[
∇Bj ŷ

∗
t,j ŷt,j

]
= E

∇Bj

(
Vec>(A) · ext ⊗

Ex
t E

x>
t

ρt
·Bj

)∗
Vec>(A) · ext ⊗

Ex
t E

x>
t

ρt
·Bj
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= E

[
∇BjB

>
j · ex∗t ⊗

Ex
t E

x>
t

ρt
Vec(A) ·Vec>(A)ext ⊗

Ex
t E

x>
t

ρt
·Bj

]

= E

[
ex∗t ⊗

Ex
t E

x>
t

ρt
Vec(A) ·Vec>(A)ext ⊗

Ex
t E

x>
t

ρt
·Bj

]

+ E
[
ex>t ⊗ E

x
t E

x∗
t

ρt
Vec(A) ·Vec>(A)ext ⊗

Ex
t E

x∗
t

ρt
·Bj

]
= E

[
2Re

(
ex>t ⊗ E

x
t E

x∗
t

ρt
Vec(A) ·Vec>(A)ext ⊗

Ex
t E

x∗
t

ρt
·Bj

)]

= 2Re

(
E
[
ex>t ⊗ E

x
t E

x∗
t

ρt
Vec(A) ·Vec>(A)ext ⊗

Ex
t E

x∗
t

ρt
·Bj

])
.

We further derive that

E

ex>t ⊗ E
x
t E

x∗
t

ρt
Vec(A) ·Vec>(A)ext ⊗

Ex
t E

x∗
t

ρt
·Bj︸ ︷︷ ︸

∈C


= E

[
Vec>(A)ext ⊗

Ex
t E

x∗
t

ρt
·Bj · ex>t ⊗ E

x
t E

x∗
t

ρt
Vec(A)

]
= E

[
B>j · ex∗t ⊗

Ex
t E

x>
t

ρt
Vec(A) · ex>t ⊗ E

x
t E

x∗
t

ρt
Vec(A)

]

= E

[
B>j ·Vec(

Ex
t E

x>
t

ρt
Aext ) ·Vec(

Ex
t E

x∗
t

ρt
Aext )

]

= E

[
B>j ·

Ex
t E

x>
t

ρt
Aext ·

Ex
t E

x∗
t

ρt
Aext

]

= E

 2d∑
k=1

Bjk

(
Ex
t E

x>
t

ρt
Aext

)
k

· E
x
t E

x∗
t

ρt
Aext


= E

b(Ex
t E

x>
t

ρt
Aext

)
j

· E
x
t E

x∗
t

ρt
Aext

. (sparsity ofB)

For any and l ∈ [2d], recall that(
Ex
t E

x∗
t

ρt
Aext

)
l

=

{
a
ρt

∑t−1
i=1

∑d
r=1 λ

i
lλ
t−i
r x1lx

2
1r, l ∈ [d],

a
ρt

∑t−1
i=1

∑d
r=1 λ

i−1
l−dλ

t−i
r x1,l−dx

2
1r, l ∈ [2d]− [d],

and for any j ∈ [d] , we have(
Ex
t E

x>
t

ρt
Aext

)
j

=

(
Ex
t E

x∗
t

ρt
Aext

)
j

=
a

ρt

t−1∑
i=1

d∑
r=1

λ−ij λi−tr x1jx
2
1r.

For any l ∈ [d], with careful computing, we have

E

b(Ex
t E

x>
t

ρt
Aext

)
j

·
(
Ex
t E

x∗
t

ρt
Aext

)
l


=
a2b

ρ2t

t−1∑
i1=1

t−1∑
i2=1

d∑
r1=1

d∑
r2=1

E[λ−i1j λi2l λ
i1−t
r1 λt−i2r2 ]E[x1jxilx

2
1r1x

2
1r2 ].
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We discuss it in the following categories,

1. l 6= j. In this case, E[x1jxilx
2
1r1x

2
1r2 ] = 0 by Assumption 4.1, thus it becomes 0.

2. l = j, r1 = r2 = j. It becomes

a2b

ρ2t

t−1∑
i1=1

t−1∑
i2=1

E[λ−i1j λi2j λ
i1−t
j λt−i2j ]E[x61j ] =

a2b

ρ2t

t−1∑
i1=1

t−1∑
i2=1

E[x61j ] =
a2b

ρ2t
(t− 1)2E[x61j ].

3. l = j, r1 = r2 = r 6= j. It becomes

a2b

ρ2t

t−1∑
i1=1

t−1∑
i2=1

∑
r 6=j

E[λi2−i1j λi1−i2r ]E[x21jx
4
1r] =

a2b

ρ2t

∑
i1=i2

∑
r 6=j

E[x21jx
4
1r]

=
a2b

ρ2t
(t− 1)

∑
r 6=j

E[x21jx
4
1r].

4. l = j, r1 6= r2. In this case, E[λ−i1j λi2l λ
i1−t
r1 λt−i2r2 ] = E[λi2−i1j λi1−tr1 λt−i2r2 ] = 0, thus it

becomes 0.

Similarly, for any l ∈ [2d]− [d], we have

E

b(Ex
t E

x>
t

ρt
Aext

)
j

·
(
Ex
t E

x∗
t

ρt
Aext

)
l

 = 0.

To sum up, we have

E

b(Ex
t E

x>
t

ρt
Aext

)
j

·
(
Ex
t E

x∗
t

ρt
Aext

)
l


=

{
a2b
ρ2t

[
(t− 1)2E[x61j ] + (t− 1)

∑
r 6=j E[x21jx

4
1r]
]
, l = j,

0, otherwise,

which implies that the l-th element of 1
2E
[
∇Bj

ŷ∗t,j ŷt,j

]
is

1

2
E
[
∇Bj

ŷ∗t,j ŷt,j

]
l

=

{
a2b
ρ2t

[
(t− 1)2E[x61j ] + (t− 1)

∑
r 6=j E[x21jx

4
1r]
]
, l = j,

0, otherwise.

Step three: calculate∇BjLt(θ) and∇BjL(θ). Based on steps one and two, the l-th element of
∇Bj

Lt(θ) can be derived as follows.

∇BjLt(θ)l =
1

2
E
[
∇Bj ŷ

∗
t,j ŷt,j

]
l
− E

[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
l

=

{
a2b
ρ2t

[
(t− 1)2E[x61j ] + (t− 1)

∑
r 6=j E[x21jx

4
1r]
]
− a

ρt
(t− 1)E[x41j ], l = j,

0, otherwise,
.

Furthermore, the l-th element of∇Bj
L(θ) is

∇Bj
L(θ)l =

T−1∑
t=2

∇Bj
Lt(θ)l

=


∑T−1
t=2

(
a2b
ρ2t

[
(t− 1)2E[x61j ] + (t− 1)

∑
r 6=j E[x21jx

4
1r]
]
− a

ρt
(t− 1)E[x41j ]

)
, l = j,

0, otherwise,
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=


∑T−1
t=2

(
a2b
[
E[x61j ] + 1

t−1
∑
r 6=j E[x21jx

4
1r]
]
− aE[x41j ]

)
, l = j,

0, otherwise,

=

{
a2b
[
(T − 2)E[x61j ] +

∑T−1
t=2

1
t−1

∑
r 6=j E[x21jx

4
1r]
]
− a(T − 2)E[x41j ], l = j,

0, otherwise,

=

{
a2b
[
(T − 2)κ2 +

∑T−1
t=2

1
t−1κ3

]
− a(T − 2)κ1, l = j,

0, otherwise,

where the last equality is from Assumption 4.1.

Step four: calculate E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
and

∑d
j=1 E

[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
.

Based on Lemma 5.1, we have

ŷt,j = Vec>(A) · ext ⊗
Ex
t E

x>
t

ρt
·Bj .

Then, the E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
can be derived as the following.

E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
= E

∇Vec(A)Re

(
x∗t+1,jVec>(A) · ext ⊗

Ex
t E

x>
t

ρt
·Bj

)
= E

∇Vec(A)Vec>(A) · Re

(
x∗t+1,j · ext ⊗

Ex
t E

x>
t

ρt
·Bj

)
= E

Re

(
x∗t+1,j · ext ⊗

Ex
t E

x>
t

ρt
·Bj

)
= Re

E

[
x∗t+1,j · ext ⊗

Ex
t E

x>
t

ρt
·Bj

]
= Re

E

[
λ−tj x1j ·Vec(

Ex
t E

x>
t

ρt
Bje

x>
t )

] .

In terms of Ex
t Ex>

t

ρt
Bje

x>
t , based on the sparsity ofB and Eq. 4, we can derive that

Ex
t E

x>
t

ρt
Bje

x>
t = (

Ex
t E

x>
t

ρt
):jbe

x>
t = (

Ex
t E

x∗
t

ρt
)>j:be

x>
t

= b
(∑t

i=1Mi � Σ̂ W
∑t−1
i=1Mi � Σ̂

)>
j:
ex>t .

Then, for any s, r ∈ [2d], we have

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

=


b
ρt

∑t
i=1 λ

i−1
j λ1−is λt−1r x1jx1sx1r, s ∈ [d], r ∈ [d],

b
ρt

∑t−1
i=1 λ

i
jλ

1−i
s−dλ

t−1
r x1jx1,s−dx1r, s ∈ [2d]− [d], r ∈ [d],

b
ρt

∑t
i=1 λ

i−1
j λ1−is λt−2r−dx1jx1sx1,r−d, s ∈ [d], r ∈ [2d]− [d],

b
ρt

∑t−1
i=1 λ

i
jλ

1−i
s−dλ

t−2
r−dx1jx1,s−dx1,r−d, s ∈ [2d]− [d], r ∈ [2d]− [d].
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Next, we calculate E
[
λ−tj x1j · E

x
t Ex>

t

ρt
Bje

x>
t

]
. For any s ∈ [2d]− [d], r ∈ [d], we have

E

λ−tj x1j

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

 = E

 b
ρt

t−1∑
i=1

λi−tj λ1−is−dλ
t−1
r x21jx1,s−dx1r


=

b

ρt

t−1∑
i=1

E[λi−tj λ1−is−dλ
t−1
r ]E[x21jx1,s−dx1r].

We discuss it in the following categories,

1. s− d 6= r. In this case, E[x21jx1,s−dx1r] = 0 by Assumption 4.1, thus it becomes 0.

2. s− d = r = j. It becomes

b

ρt

t−1∑
i=1

E[λi−tj λ1−is−dλ
t−1
r ]E[x21jx1,s−dx1r] =

b

ρt

t−1∑
i=1

E[λi−tj λ1−ij λt−1j ]E[x41j ]

=
b

ρt

t−1∑
i=1

E[x41j ] =
b

ρt
(t− 1)E[x41j ].

3. s− d = r 6= j. In this case, E[λi−tj λ1−is−dλ
t−1
r ] = E[λi−tj λt−is−d] = 0, thus it becomes 0.

Similarly, for any other s, r, we can calculate that

E

λ−tj
(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

 = 0.

To sum up, we have

E

λ−tj
(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

 =

{
b
ρt

(t− 1)E[x41j ], s = d+ j, r = j,
0, otherwise,

thus the (s, r)-th element of E
[
∇ARe

(
x∗t+1,j ŷt,j

)]
is

E
[
∇ARe

(
x∗t+1,j ŷt,j

)]
sr

=

{
b
ρt

(t− 1)E[x41j ], s = d+ j, r = j,
0, otherwise,

=

{
b
ρt

(t− 1)κ1, s = d+ j, r = j,
0, otherwise.

Finally, we can calculate
∑d
j=1 E

[
∇ARe

(
x∗t+1,j ŷt,j

)]
as

d∑
j=1

E
[
∇ARe

(
x∗t+1,j ŷt,j

)]
sr

=

{
b
ρt

(t− 1)κ1, s− d = r,
0, otherwise.

Step five: calculate E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
and

∑d
j=1 E

[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
. Based on Lemma 5.1,

we have

ŷt,j = B>j · ex>t ⊗ E
x
t E

x∗
t

ρt
·Vec(A),
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then we can simplify the E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
as follows

E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
= E

[
∇Vec(A)

(
B>j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

)∗
B>j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

]

= E
[
∇Vec(A)Vec(A)> · ext ⊗

Ex
t E

x∗
t

ρt
Bj ·B>j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

]
= E

[
ext ⊗

Ex
t E

x∗
t

ρt
Bj ·B>j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

]
+ E

[
ext ⊗

Ex
t E

x>
t

ρt
Bj ·B>j · ex∗t ⊗

Ex
t E

x>
t

ρt
·Vec(A)

]

= E

2Re

(
ext ⊗

Ex
t E

x>
t

ρt
Bj ·B>j · ex∗t ⊗

Ex
t E

x>
t

ρt
·Vec(A)

)
= 2Re

E

[
ext ⊗

Ex
t E

x>
t

ρt
Bj ·B>j · ex∗t ⊗

Ex
t E

x>
t

ρt
·Vec(A)

] .

We further derive that

E

ext ⊗ Ex
t E

x>
t

ρt
Bj ·B>j · ex∗t ⊗

Ex
t E

x>
t

ρt
·Vec(A)︸ ︷︷ ︸

∈C


= E

[
B>j · ex∗t ⊗

Ex
t E

x>
t

ρt
·Vec(A) · ext ⊗

Ex
t E

x>
t

ρt
Bj

]

= E

[
Vec(A)> · ext ⊗

Ex
t E

x∗
t

ρt
Bj · ext ⊗

Ex
t E

x>
t

ρt
Bj

]

= E

[
Vec(A)> ·Vec(

Ex
t E

x∗
t

ρt
Bje

x∗
t ) ·Vec(

Ex
t E

x>
t

ρt
Bje

x>
t )

]

= E

 2d∑
k,l=1

Akl

(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
kl

·Vec(
Ex
t E

x>
t

ρt
Bje

x>
t )


= E

 2d∑
k=d+1

a

(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

·Vec(
Ex
t E

x>
t

ρt
Bje

x>
t )

. (sparsity ofA)

Recall that for any s, r ∈ [2d], we have

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

=


b
ρt

∑t
i=1 λ

i−1
j λ1−is λt−1r x1jx1sx1r, s ∈ [d], r ∈ [d],

b
ρt

∑t−1
i=1 λ

i
jλ

1−i
s−dλ

t−1
r x1jx1,s−dx1r, s ∈ [2d]− [d], r ∈ [d],

b
ρt

∑t
i=1 λ

i−1
j λ1−is λt−2r−dx1jx1sx1,r−d, s ∈ [d], r ∈ [2d]− [d],

b
ρt

∑t−1
i=1 λ

i
jλ

1−i
s−dλ

t−2
r−dx1jx1,s−dx1,r−d, s ∈ [2d]− [d], r ∈ [2d]− [d].

Furthermore, for any k ∈ [2d]− [d], we can calculate that(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

=

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
k,k−d
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=
b

ρt

t−1∑
i=1

λ−ij λi−1k−dλ
1−t
k−dx1jx

2
1,k−d =

b

ρt

t−1∑
i=1

λ−ij λi−tk−dx1jx
2
1,k−d,

With careful computing, for any s ∈ [2d]− [d], r ∈ [d], we have

E

 2d∑
k=d+1

a

(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

·

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr


=
ab2

ρ2t

2d∑
k=d+1

t−1∑
i1=1

t−1∑
i2=1

E[λi2−i1j λi1−tk−dλ
1−i2
s−d λ

t−1
r ]E[x21jx

2
1,k−dx1,s−dx1r].

We discuss it in the following categories,

1. s− d 6= r. In this case, E[x21jx
2
1,k−dx1,s−dx1r] = 0 by Assumption 4.1, thus it becomes 0.

2. s− d = r = k − d = j. It becomes

ab2

ρ2t

t−1∑
i1=1

t−1∑
i2=1

E[λ0j ]E[x61j ] =
ab2

ρ2t
(t− 1)2E[x61j ].

3. s− d = r = k − d 6= j. It becomes

ab2

ρ2t

t−1∑
i1=1

t−1∑
i2=1

E[λi2−i1j λi1−i2r ]E[x21jx
4
1,r] =

ab2

ρ2t

t−1∑
i1=1

E[λi1−i1j λi1−i1r ]E[x21jx
4
1,r]

=
ab2

ρ2t
(t− 1)E[x21jx

4
1,r].

4. s− d = r 6= k − d. In these case, E[λi2−i1j λi1−tk−dλ
1−i2
s−d λ

t−1
r ] = E[λi2−i1j λi1−tk−dλ

t−i2
r ] = 0,

thus it becomes 0.

Similarly, for any other s, r, we can calculate that

E

 2d∑
k=d+1

a

(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

·

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

 = 0.

To sum up, we have

E

 2d∑
k=d+1

a

(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

·

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr



=


ab2

ρ2t
(t− 1)2E[x61j ], s = d+ r, r = j,

ab2

ρ2t
(t− 1)E[x21jx

4
1r], s = d+ r, r 6= j,

0, otherwise,

which implies that the (s, r)-th element of 1
2E
[
∇Aŷ

∗
t,j ŷt,j

]
is

1

2
E
[
∇Aŷ

∗
t,j ŷt,j

]
sr

=


ab2

ρ2t
(t− 1)2E[x61j ], s = d+ r, r = j,

ab2

ρ2t
(t− 1)E[x21jx

4
1r], s = d+ r, r 6= j,

0, otherwise,

=


ab2

ρ2t
(t− 1)2κ2, s = d+ r, r = j,

ab2

ρ2t
(t− 1)E[x21jx

4
1r], s = d+ r, r 6= j,

0, otherwise,

.
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Based on these results, we can derive

1

2

d∑
j=1

E
[
∇Aŷ

∗
t,j ŷt,j

]
sr

=

{
ab2

ρ2t

[
(t− 1)2κ2 + (t− 1)κ3

]
, s− d = r,

0, otherwise.

Step six: calculate ∇Vec(A)Lt(θ) and ∇Vec(A)L(θ). Based on steps four and five, the (s, r)-th
element of∇ALt(θ) can be derived as follows.

∇ALt(θ)sr =
1

2

d∑
j=1

E
[
∇Aŷ

∗
t,j ŷt,j

]
−

d∑
j=1

E
[
∇ARe

(
x∗t+1,j ŷt,j

)]

=

{
ab2

ρ2t

[
(t− 1)2κ2 + (t− 1)κ3

]
− b

ρt
(t− 1)κ1, s− d = r,

0, otherwise.

Furthermore, the (s, r)-th element of∇AL(θ) is

∇AL(θ)sr =
T−1∑
t=2

∇ALt(θ)sr

=

{ ∑T−1
t=2

(
ab2

ρ2t

[
(t− 1)2κ2 + (t− 1)κ3

]
− b

ρt
(t− 1)κ1

)
, s− d = r,

0, otherwise,

=


∑T−1
t=2

(
ab2
[
κ2 + 1

t−1κ3

]
− bκ1

)
, s− d = r,

0, otherwise,

=

{
ab2
[
(T − 2)κ2 +

∑T−1
t=2

1
t−1κ3

]
− b(T − 2)κ1, s− d = r,

0, otherwise.

Step seven: summarize the result by induction. From the gradient of ∇AL(θ) and ∇Bj
L(θ),

we observe that non-zero gradients only emerge in the diagonal ofWKQ
32 andW PV

12 , and they are
same. Therefore, the parameter matrices keep the same structure as the initial time. Thus we can
summarize the dynamic system as the following.

d

dτ
a = −ab2

(T − 2)κ2 +

T−1∑
t=2

1

t− 1
κ3

+ b(T − 2)κ1,

d

dτ
b = −a2b

(T − 2)κ2 +

T−1∑
t=2

1

t− 1
κ3

+ a(T − 2)κ1.

which completes the proof.

A.2.3 Proof of Lemma 5.3

For the reader’s convenience, we restate the lemma as the following.

Lemma A.3. Suppose that Assumption 4.1 holds and denote (T−2)κ2+
∑T−1
t=2

1
t−1κ3 and (T−2)κ1

by c1 and c2, respectively. Then, the dynamics in Lemma 5.2 are the same as those of gradient flow
on the following objective function:

˜̀(a, b) =
1

2c1
(c2 − c1ab)2,

whose global minimums satisfy ab = c2/c1.
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Proof. Basic calculus shows that

∂

∂a
˜̀(a, b) =

1

2c1
2(c2 − c1ab)(−c1b) = −b(c2 − c1ab) = − d

dτ
a,

∂

∂b
˜̀(a, b) =

1

2c1
2(c2 − c1ab)(−c1a) = −a(c2 − c1ab) = − d

dτ
b.

Therefore, the dynamics in Lemma 5.2 are the same as those of gradient flow on ˜̀(a, b), whose global
minimums satisfy ab = c2/c1.

A.2.4 Proof of Lemma 5.4

For the reader’s convenience, we restate the lemma as the following.

Lemma A.4. Suppose that Assumption 4.1 holds, then ˜̀(a, b) is a non-convex function and satisfies
the PL inequality as follows.∣∣∣∣ ∂∂a ˜̀(a, b)

∣∣∣∣2 +

∣∣∣∣ ∂∂b ˜̀(a, b)
∣∣∣∣2 ≥ 2c1(a2 + b2)

(˜̀(a, b)−min
a,b

˜̀(a, b)).
Therefore, the gradient flow in Lemma 5.2 converges to the global minimum of ˜̀(a, b).

Proof. First, we prove that ˜̀(a, b) is non-convex. The Hessian matrix of ˜̀(a, b) can be derived as
follows.

∇2 ˜̀(a, b) =

(
c1b

2 2c1ab− c2
2c1ab− c2 c1a

2

)
.

Its determinant c1a2b2 − (2c1ab− c2)2 = (c2 − c1ab)(3c1ab− c2) < 0 when ab < c2
3c1

or ab > c2
c1

.

Thus, ˜̀(a, b) is non-convex.

Besides, the PL inequality holds because∣∣∣∣ ∂∂a ˜̀(a, b)
∣∣∣∣2 +

∣∣∣∣ ∂∂b ˜̀(a, b)
∣∣∣∣2 = b2(c2 − c1ab)2 + a2(c2 − c1ab)2

= (a2 + b2)(c2 − c1ab)2

= 2c1(a2 + b2) · 1

2c1
(c2 − c1ab)2

= 2c1(a2 + b2)

(˜̀(a, b)−min
a,b

˜̀(a, b))
≥ 2c1(a2 + b2)

(˜̀(a, b)−min
a,b

˜̀(a, b)).

A.3 Proof of Corollary 4.1

For the reader’s convenience, we restate the corollary as the following.
Corollary A.1. We suppose that the same precondition of Theorem 4.1 holds. When predicting the
t-th token, the trained transformer implements one step of gradient descent for the minimization of
the OLS problem LOLS(W ) = 1

2

∑t−1
i=1 ‖xt+1−Wxt‖2, starting from the initializationW = 0d×d

with a step size ãb̃
t−1 .

Proof. The proof is stem from the theoretical construction in [16]. First, we simplify the prediction
ŷt as follows.

ŷt =
(
W PV

12 W PV
13

) Ex
t E

x∗
t

ρt

(
WKQ

22 WKQ
23

WKQ
32 WKQ

33

)
ext
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=
(
b̃Id 0d×d

) Ex
t E

x∗
t

ρt

(
0d×d 0d×d
ãId 0d×d

)
ext

=
1

ρt

(
b̃Id 0d×d

) t∑
i=1

exi e
x∗
i

(
0d×d 0d×d
ãId 0d×d

)
ext

=
1

ρt

t∑
i=1

b̃xi
(
ãx∗i−1 0d×d

)
ext

=
1

ρt

t∑
i=1

b̃xiãx
∗
i−1xt =

 ãb̃

t− 1

t∑
i=1

xix
∗
i−1

xt
=

 ãb̃

t− 1

t−1∑
i=1

xi+1x
∗
i

xt.
Then, we connect it to the one step of gradient descent for the OLS problem LOLS(W ) =
1
2

∑t−1
i=1 ‖xi+1 −Wxi‖2.

W − ãb̃

t− 1
∇W

1

2

t−1∑
i=1

‖xi+1 −Wxi‖2

= W − ãb̃

t− 1

t−1∑
i=1

(xi+1 −Wxi)(−x∗i )

= 0− ãb̃

t− 1

t−1∑
i=1

(xi+1 − 0xi)(−x∗i )

=
ãb̃

t− 1

t−1∑
i=1

xi+1x
∗
i .

Thus, the proof is completed.

A.4 Proof of Proposition 4.1

For the reader’s convenience, we restate the proposition as the following.
Proposition A.1. Let Dx1 be the multivariate normal distribution N (0d, σ

2Id) with any σ2 > 0,
then the "simple" AR process can not be recovered by the trained transformer even in the ideal case
with long training context. Formally, when the training sequence length Ttr is large enough, for any
test context length Tte and dimension j ∈ [d], the prediction from the trained transformer satisfies

Ex1,W [
(ŷTte)j

(WxTte
)j

]→ 1

5
.

Therefore, the prediction ŷTte
will not converges to the true next tokenWxTte

.

Proof. First, built upon the results in Theorem 4.1, when Ttr is large enough, we have

ãb̃ =
κ1

κ2 + κ3

Ttr−2
∑Ttr−1
t=2

1
t−1

→ κ1
κ2

=
E[x41j ]

E[x61j ]
=

3σ4

15σ6
=

1

5σ2
.

Second, by directly calculating, we have

(WxTte
)j = (WTtex1)j = λTte

j x1j ,

and

(ŷTte
)j =

ãb̃

Tte − 1

Tte−1∑
i=1

d∑
k=1

λijλ
Tte−i
k x1jx

2
1k.
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Therefore, we have

Ex1,W [
(ŷTte

)j
(WxTte)j

] = Ex1,W [
ãb̃

Tte − 1

Tte−1∑
i=1

d∑
k=1

λi−Tte
j λTte−i

k x21k]

= Ex1 [
ãb̃

Tte − 1

Tte−1∑
i=1

x21j ] = ãb̃σ2.

Since ãb̃ < 1
5σ2 and converges to 1

5σ2 when Ttr is large enough, the proof is completed.

A.5 Derivation of Example 4.1

Proof. We first prove that the example satisfies Assumption 4.1. Because only one element of x1

sampled from Example 4.1 will be non-zero, we have Ex1∼Dx1
[x1i1x

r2
1i2
· · ·xrn1in ] = Ex1∼Dx1

[0] = 0

for any subset {i1, . . . , in | n ≤ 4} of [d], and r2, . . . rn ∈ N. In addition, for any j ∈ [d], we can
derive that

κ1 = E[x41j ] =
1

d
· c4 +

d− 1

d
· 0 =

c4

d
·,

κ2 = E[x61j ] =
1

d
· c6 +

d− 1

d
· 0 =

c6

d
·,

κ3 =
∑
r 6=j

E[x21jx
4
1r] = 0.

Second, we prove that it satisfies Assumption 4.2 as follows. Without loss of general, we assume that
the first coordinate of x1 is c.

κ1
κ2

∑Tte−1
i=1 xix

∗
i

Tte − 1
xTte

=
1

c2
diag(c2, 0, . . . , 0)(λTte−1

1 c, 0, . . . , 0)>

= (λTte−1
1 c, 0, . . . , 0)> = xTte .

The proof is finished.

A.6 Proof of Theorem 4.2

For the reader’s convenience, we restate the theorem as the following.
Theorem A.1. Suppose that Assumption 4.1 holds, then Assumption 4.2 is the sufficient and necessary
condition for the trained transformer to learn the AR process. Formally, when the training sequence
length Ttr and test context length Tte are large enough, the prediction from the trained transformer
satisfies

ŷTte
→WxTte

, Ttr, Tte → +∞.

Proof. First, built upon the results in Theorem 4.1, when Ttr is large enough, we have

ãb̃ =
κ1

κ2 + κ3

Ttr−2
∑Ttr−1
t=2

1
t−1

→ κ1
κ2
.

Second, when Tte is large enough, by Assumption 4.2

κ1
κ2

∑Tte−1
i=1 xix

∗
i

Tte − 1
xTte → xTte .

Therefore, we have

ŷTte
= W

(
ãb̃

∑Tte−1
i=1 xix

∗
i

Tte − 1

)
xTte

→Ttr
W

(
κ1
κ2

∑Tte−1
i=1 xix

∗
i

Tte − 1

)
xTte

→Tte
WxTte

which finishes the proof.
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A.7 Proof of Theorem 4.3

For the reader’s convenience, we restate the theorem as the following.

Theorem A.2. Suppose the initialization satisfies Assumption 3.1, the initial token is fixed as 1d, and
we clip non-diagonal gradients ofWKQ

32 andW PV
12 during the training, then the gradient flow of

the one-layer linear transformer over the population AR loss converges to the same structure as the
result in Theorem 4.1, with

ãb̃ =
1

1 + d−1
T−2

∑T−1
t=2

1
t−1

.

Therefore, the obtained transformer performs one step of gradient descent in this case.

The proof is similar to the proof of Theorem 4.1 in Appendix A.2. But the calculating for the gradients
is more difficult than that of Theorem 4.1. Similarly, we first present and prove the following lemmas.

Lemma A.5 (dynamical system of gradient flow). Under the same assumption as in Theorem 4.3,
the dynamical process of the parameters in the diagonal ofWKQ

32 andW PV
12 satisfies

d

dτ
a = −ab2

(T − 2) +

T−1∑
t=2

d− 1

t− 1

+ b(T − 2),

d

dτ
b = −a2b

(T − 2) +

T−1∑
t=2

d− 1

t− 1

+ a(T − 2),

while the gradients for all other parameters were kept at zero during the training process.

Proof. Recall that in Appendix A.2.2, we have already known that the population loss L(θ) in Eq. 2
can be rewritten as

L(θ) =

T−1∑
t=2

Lt(θ) =

T−1∑
t=2

d∑
j=1

E
[

1

2
ŷ∗t,j ŷt,j − Re

(
x∗t+1,j ŷt,j

)
+

1

2
x∗t+1,jxt+1,j

]
.

Besides, the derivatives of Lt(θ) with respect to Vec(A) andBj are

∇Bj
Lt(θ) =

1

2
E
[
∇Bj

ŷ∗t,j ŷt,j

]
− E

[
∇Bj

Re
(
x∗t+1,j ŷt,j

)]
,

and

∇Vec(A)Lt(θ) =
1

2

d∑
j=1

E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
−

d∑
j=1

E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
.

Step one: calculate E
[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
. Similarly to the step one in Appendix A.2.2, the

E
[
∇Bj

Re
(
x∗t+1,j ŷt,j

)]
can be derived as the following.

E
[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
= Re

(
E
[
x∗t+1,j · ex>t ⊗ E

x
t E

x∗
t

ρt
·Vec(A)

])

= Re

(
E
[
λ−tj ·Vec(

Ex
t E

x∗
t

ρt
Aext )

])
(use generating process)

= Re

(
E
[
λ−tj · (

Ex
t E

x∗
t

ρt
Aext )

])
.
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We note that for any l ∈ [2d], based on the sparsity ofA, we have(
Ex
t E

x∗
t

ρt
Aext

)
l

=

{
a
ρt

∑t−1
i=1

∑d
r=1 λ

i
lλ
t−i
r , l ∈ [d],

a
ρt

∑t−1
i=1

∑d
r=1 λ

i−1
l−dλ

t−i
r , l ∈ [2d]− [d],

which implies that

E

[
λ−tj ·

(
Ex
t E

x∗
t

ρt
Aext

)]
=

{
a
ρt

(t− 1), l = j,
0, l 6= j,

and the l-th element of E
[
∇Bj

Re
(
x∗t+1,j ŷt,j

)]
is

E
[
∇Bj

Re
(
x∗t+1,j ŷt,j

)]
l

=

{
a
ρt

(t− 1), l = j,
0, l 6= j.

Step two: calculate E
[
∇Bj

ŷ∗t,j ŷt,j

]
. Similarly to the step two in Appendix A.2.2, we can simplify

the E
[
∇Bj ŷ

∗
t,j ŷt,j

]
as follows.

E
[
∇Bj ŷ

∗
t,j ŷt,j

]
= 2Re

(
E
[
ex>t ⊗ E

x
t E

x∗
t

ρt
Vec(A) ·Vec>(A)ext ⊗

Ex
t E

x∗
t

ρt
·Bj

])

= 2Re

E

b(Ex
t E

x>
t

ρt
Aext

)
j

· E
x
t E

x∗
t

ρt
Aext


 . (sparsity ofB)

For any j ∈ [d] and l ∈ [2d], we can calculate that(
Ex
t E

x>
t

ρt
Aext

)
j

=
a

ρt

t−1∑
i=1

d∑
r=1

λ−ij λi−tr ,

and recall that (
Ex
t E

x∗
t

ρt
Aext

)
l

=

{
a
ρt

∑t−1
i=1

∑d
r=1 λ

i
lλ
t−i
r , l ∈ [d],

a
ρt

∑t−1
i=1

∑d
r=1 λ

i−1
l−dλ

t−i
r , l ∈ [2d]− [d].

With careful computing, we have

E

b(Ex
t E

x>
t

ρt
Aext

)
j

·
(
Ex
t E

x∗
t

ρt
Aext

)
l

 =


a2b
ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
, l = j,

a2b
ρ2t

(t− 1), l ∈ [d]− j,
0, otherwise,

which implies that the l-th element of 1
2E
[
∇Bj ŷ

∗
t,j ŷt,j

]
is

1

2
E
[
∇Bj

ŷ∗t,j ŷt,j

]
l

=


a2b
ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
, l = j,

a2b
ρ2t

(t− 1), l ∈ [d]− j,
0, otherwise.

Step three: calculate∇Bj
Lt(θ) and∇Bj

L(θ). Based on steps one and two, the l-th element of
∇BjLt(θ) can be derived as follows.

∇BjLt(θ)l =
1

2
E
[
∇Bj ŷ

∗
t,j ŷt,j

]
l
− E

[
∇Bj Re

(
x∗t+1,j ŷt,j

)]
l
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=


a2b
ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
− a

ρt
(t− 1), l = j,

a2b
ρ2t

(t− 1), l ∈ [d]− j,
0, otherwise.

Furthermore, the l-th element of∇BjL(θ) is

∇Bj
L(θ)l =

T−1∑
t=2

∇Bj
Lt(θ)l

=


∑T−1
t=2

(
a2b
ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
− a

ρt
(t− 1)

)
, l = j,∑T−1

t=2
a2b
ρ2t

(t− 1), l ∈ [d]− j,
0, otherwise.

(5)

If we clip the non-diagonal gradient ofW PV
12 , we have

∇Bj
L(θ)l =

{ ∑T−1
t=2

(
a2b
ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
− a

ρt
(t− 1)

)
, l = j,

0, otherwise,

=

{
a2b
[
(T − 2) +

∑T−1
t=2

d−1
t−1

]
− a(T − 2), l = j,

0, otherwise.

Step four: calculate E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
and

∑d
j=1 E

[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
. Sim-

ilarly to the step four in Appendix A.2.2, the E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
can be derived as the

following.

E
[
∇Vec(A)Re

(
x∗t+1,j ŷt,j

)]
= Re

E

[
x∗t+1,j · ext ⊗

Ex
t E

x>
t

ρt
·Bj

]
= Re

E

[
λ−tj ·Vec(

Ex
t E

x>
t

ρt
Bje

x>
t )

] .

For any s, r ∈ [2d], we have

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

=


b
ρt

(
∑t
i=1 λ

i−1
j λ1−is )λt−1r , s ∈ [d], r ∈ [d],

b
ρt

(
∑t−1
i=1 λ

i
jλ

1−i
s−d)λ

t−1
r , s ∈ [2d]− [d], r ∈ [d],

b
ρt

(
∑t
i=1 λ

i−1
j λ1−is )λt−2r−d, s ∈ [d], r ∈ [2d]− [d],

b
ρt

(
∑t−1
i=1 λ

i
jλ

1−i
s−d)λ

t−2
r−d, s ∈ [2d]− [d], r ∈ [2d]− [d],

which implies that

E

λ−tj
(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

 =


b
ρt

(t− 1), s = d+ j, r = j,
b
ρt
, s 6= d+ j, r = j,

0, otherwise.

and the (s, r)-th element of E
[
∇ARe

(
x∗t+1,j ŷt,j

)]
is

E
[
∇ARe

(
x∗t+1,j ŷt,j

)]
sr

=


b
ρt

(t− 1), s = d+ j, r = j,
b
ρt
, s 6= d+ j, r = j,

0, otherwise.
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Finally, we can calculate
∑d
j=1 E

[
∇ARe

(
x∗t+1,j ŷt,j

)]
as

d∑
j=1

E
[
∇ARe

(
x∗t+1,j ŷt,j

)]
sr

=


b
ρt

(t− 1), s− d = r,Asr ∈WKQ
32 ,

b
ρt
, s− d 6= r,Asr ∈WKQ

32 ,
0, otherwise.

Step five: calculate E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
and

∑d
j=1 E

[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
. Similarly to the step five

in Appendix A.2.2, the E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
is simplified as follows.

E
[
∇Vec(A)ŷ

∗
t,j ŷt,j

]
= 2Re

E

[
ext ⊗

Ex
t E

x>
t

ρt
Bj ·B>j · ex∗t ⊗

Ex
t E

x>
t

ρt
·Vec(A)

]
= 2Re

E

 2d∑
k=d+1

a

(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

·Vec(
Ex
t E

x>
t

ρt
Bje

x>
t )


 .

For any k ∈ [2d]− [d], we can calculate that(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

=
b

ρt
(

t−1∑
i=1

λ−ij λi−1k−d)λ
1−t
k−d =

b

ρt

t−1∑
i=1

λ−ij λi−tk−d,

and recall that for any s, r ∈ [2d], we have

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr

=


b
ρt

(
∑t
i=1 λ

i−1
j λ1−is )λt−1r , s ∈ [d], r ∈ [d],

b
ρt

(
∑t−1
i=1 λ

i
jλ

1−i
s−d)λ

t−1
r , s ∈ [2d]− [d], r ∈ [d],

b
ρt

(
∑t
i=1 λ

i−1
j λ1−is )λt−2r−d, s ∈ [d], r ∈ [2d]− [d],

b
ρt

(
∑t−1
i=1 λ

i
jλ

1−i
s−d)λ

t−2
r−d, s ∈ [2d]− [d], r ∈ [2d]− [d].

With careful computing, we have

E

 2d∑
k=d+1

a

(
Ex
t E

x∗
t

ρt
Bje

x∗
t

)
k,k−d

·

(
Ex
t E

x>
t

ρt
Bje

x>
t

)
sr



=



ab2

ρ2t
(t− 1)2, s = d+ j, r = j,

ab2

ρ2t
(t− 1), s 6= d+ j, r = j,

ab2

ρ2t
(t− 1), s = d+ r, r 6= j,

ab2

ρ2t
(t− 1), s = d+ j, r 6= j,

ab2

ρ2t
, remains inWKQ

32 ,

0, otherwise,

which implies that the l-th element of 1
2E
[
∇Aŷ

∗
t,j ŷt,j

]
is

1

2
E
[
∇Aŷ

∗
t,j ŷt,j

]
=



ab2

ρ2t
(t− 1)2, s = d+ j, r = j,

ab2

ρ2t
(t− 1), s 6= d+ j, r = j,

ab2

ρ2t
(t− 1), s = d+ r, r 6= j,

ab2

ρ2t
(t− 1), s = d+ j, r 6= j,

ab2

ρ2t
, remains inWKQ

32 ,

0, otherwise.
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Based on these results, we can derive

1

2

d∑
j=1

E
[
∇Aŷ

∗
t,j ŷt,j

]
=


ab2

ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
, s− d = r,Asr ∈WKQ

32 ,
ab2

ρ2t

[
2(t− 1) + d− 2

]
, s− d 6= r,Asr ∈WKQ

32 ,

0, otherwise.

Step six: calculate ∇Vec(A)Lt(θ) and ∇Vec(A)L(θ). Based on steps four and five, the (s, r)-th
element of∇ALt(θ) can be derived as follows.

∇ALt(θ)sr =
1

2

d∑
j=1

E
[
∇Aŷ

∗
t,j ŷt,j

]
−

d∑
j=1

E
[
∇ARe

(
x∗t+1,j ŷt,j

)]

=


ab2

ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
− b

ρt
(t− 1), s− d = r,Asr ∈WKQ

32 ,
ab2

ρ2t

[
2(t− 1) + d− 2

]
− b

ρt
, s− d 6= r,Asr ∈WKQ

32 ,

0, otherwise.

Furthermore, the (s, r)-th element of∇AL(θ) is

∇AL(θ)sr =

T−1∑
t=2

∇ALt(θ)sr

=


∑T−1
t=2

(
ab2

ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
− b

ρt
(t− 1)

)
, s− d = r,Asr ∈WKQ

32 ,∑T−1
t=2

[
ab2

ρ2t

[
2(t− 1) + d− 2

]
− b

ρt

]
, s− d 6= r,Asr ∈WKQ

32 ,

0, otherwise.

(6)

If we clip the non-diagonal gradient ofWKQ
32 , we have

∇AL(θ)sr =

T−1∑
t=2

∇ALt(θ)sr

=

{ ∑T−1
t=2

(
ab2

ρ2t

[
(t− 1)2 + (d− 1)(t− 1)

]
− b

ρt
(t− 1)

)
, s− d = r,Asr ∈WKQ

32 ,

0, otherwise,

=

{
ab2
[
(T − 2) +

∑T−1
t=2

d−1
t−1

]
− b(T − 2), s− d = r,Asr ∈WKQ

32 ,

0, otherwise.

Step seven: summarize the result by induction. From the gradient of ∇AL(θ) and ∇BjL(θ),
we observe that non-zero gradients only emerge in the diagonal ofWKQ

32 andW PV
12 , and they are

same. Therefore, the parameter matrices keep the same structure as the initial time. Thus we can
summarize the dynamic system as the following.

d

dτ
a = −ab2

(T − 2) +

T−1∑
t=2

d− 1

t− 1

+ b(T − 2),

d

dτ
b = −a2b

(T − 2) +

T−1∑
t=2

d− 1

t− 1

+ a(T − 2),

which completes the proof.

Lemma A.6. Suppose that the precondtions of Theorem 4.3 hold, and denote (T − 2) +
∑T−1
t=2

d−1
t−1

and T − 2 by c1 and c2, respectively. Then, the dynamics are the same as those of gradient flow on
the following objective function: ˜̀(a, b) =

1

2c1
(c2 − c1ab)2,

whose global minimums satisfy ab = c2/c1.
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Table 1: Step size in different simulations.

x1 σ/c step size

Gaussian
0.5 0.001
1 0.0001
2 0.000002

Example 4.1
0.5 0.03
1 0.001
2 0.0001

1d - 0.0005

Proof. The proof is the same as that of Lemma 5.3 in Appendix A.2.3.

Using the results from the above lemmas and Lemma 5.4, we can conclude Theorem 4.3.

A.8 Proof of Proposition 4.2

For the reader’s convenience, we restate the proposition as the following.

Proposition A.2. The limiting point found by the gradient does not share the same structure as that
in Theorem 4.1, thus the trained transformer will not implement one step of gradient descent for
minimizing 1

2

∑t−1
i=1 ‖xi+1 −Wxi‖2.

Proof. From Eq. 6 and Eq. 5, we know that when the parameters matrices share the same structure as
the result in Theorem 4.1, the non-zero gradients of the non-diagonal elements ofWKQ

32 andW PV
12

will occur, which implies the result.

Appendix B Experimental details and additional results

B.1 GPU and random seed

The random seed in the experiments is fixed as 1. All experiments are done on a single GeForce RTX
3090 GPU in one hour.

B.2 Step size in simulations

The step size of the gradient descent in different simulations is summarized in Table 1.

B.3 Additional results for Gaussian initial token

In practice, we estimate the ratio of two vectors by calculating the mean of the element-wise divide
between two vectors. The results for σ = 1, 2 and T = 100 with diagonal initialization are
presented in Figure 2. The results for σ = 1 and T = 5 (small-context scenarios) with diagonal
initialization are presented in Figure 4. The results for σ = 1 and T = 100 with Gaussian initialization
(σw = 0.001, 0.01, 0.1) are presented in Figure 5.

B.4 Additional results for Sparse initial token (Example 4.1)

The results for c = 1, 2 and T = 100 with diagonal initialization are presented in Figure 3. The
results for c = 1, 2 and T = 100 with Gaussian initialization (σw = 0.001, 0.01, 0.1) are presented
in Figure 6.

36



(a) Gaussian with σ = 1, dynamics of ab. (b) Gaussian with σ = 1, ratio of ŷTte−1/xTte .

(c) Gaussian with σ = 2, dynamics of ab. (d) Gaussian with σ = 2, ratio of ŷTte−1/xTte .

Figure 2: Simulations results in Gaussian initial token with σ = 1, 2. The results show that the convergence of
ab satisfies Theorem 4.1. In addition, the trained transformer can not recover the Gaussian initial token, which
verifies Proposition 4.1.

B.5 Additional results for full-one initial token

WKQ andW PV with different diagonal initializations are presented in Figure 7. From the results,
we know that the gradient descent converges toW̃KQ

22 W̃KQ
23

W̃KQ
32 W̃KQ

33

 =

(
0d×d 0d×d
W1 0d×d

)
,
(
W̃ PV

12 W̃ PV
13

)
=
(
W2 0d×d

)
,

whereW1 andW2 are some dense matrices. Similarly to the proof of Corollary 4.1 in Appendix 4.1,
we have

ŷt =
(
W PV

12 W PV
13

) Ex
t E

x∗
t

ρt

(
WKQ

22 WKQ
23

WKQ
32 WKQ

33

)
ext

=
(
W2 0d×d

) Ex
t E

x∗
t

ρt

(
0d×d 0d×d
W1 0d×d

)
ext

=
1

ρt

(
W2 0d×d

) t∑
i=1

exi e
x∗
i

(
0d×d 0d×d
W1 0d×d

)
ext

=
1

ρt

t∑
i=1

W2xi
(
x∗i−1W1 0d×d

)
ext

=
1

ρt

t∑
i=1

W2xix
∗
i−1W1xt.

which can be seen as a somewhat preconditioned gradient descent on the OLS problem.
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(a) Example 4.1 with c = 1, dynamics of ab. (b) Example 4.1 with c = 1, ‖ŷTte−1 − xTte‖22.

(c) Example 4.1 with c = 2, dynamics of ab. (d) Example 4.1 with c = 2, ‖ŷTte−1 − xTte‖22.

Figure 3: Simulations results on Example 4.1. Results show that the convergence of ab satisfies Theorem 4.1.
In addition, the trained transformer can recover the sequence with the initial token from Example 4.1, which
verifies Theorem 4.2.
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(a) WKQ, a = b = 0.1. (b) W PV , a = b = 0.1.

(c) WKQ, a = 0.5, b = 1.5. (d) W PV , a = 0.5, b = 1.5.

(e) WKQ, a = b = 2. (f) W PV , a = b = 2.

(g) dynamics of ab, σ = 1

Figure 4: Results of small-context scenarios (d = T = 5) with Gaussian start point (σ = 1) and diagonal
initialization, and the theoretical limit is 1/(5σ2 + d−1

T−2
σ2 ∑T−1

t=2
1

t−1
) by Theorem 4.1. The read blocks in

Assumption 3.1 are presented, which are related to the final prediction. The product ab does converge to the
results in Theorem 4.1.
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(a) WKQ, σw = 0.001. (b) W PV , σw = 0.001.

(c) WKQ, σw = 0.01. (d) W PV , σw = 0.01.

(e) WKQ, σw = 0.1. (f) W PV , σw = 0.1.

(g) Ratio of ŷTte−1/xTte .

Figure 5: Results of Gaussian start point (σ = 1) and standard Gaussian initialization with different variance
σw. The read blocks in Assumption 3.1 are presented, which are related to the final prediction. The parameter
matrices retain the same strong diagonal structure and test performance as those of the diagonal initialization.
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(a) WKQ, σw = 0.001. (b) W PV , σw = 0.001.

(c) WKQ, σw = 0.01. (d) W PV , σw = 0.01.

(e) WKQ, σw = 0.1. (f) W PV , σw = 0.1.

(g) MSE ‖ŷTte−1 − xTte‖22.

Figure 6: Results of Example 4.1 (c = 1) and standard Gaussian initialization with different variance σw. The
read blocks in Assumption 3.1 are presented, which are related to the final prediction. The parameter matrices
retain the same strong diagonal structure and test performance as those of the diagonal initialization.
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(a) WKQ, a = 0.1, b = 0.1. (b) W PV , a = 0.1, b = 0.1.

(c) WKQ, a = 0.5, b = 1.5. (d) W PV , a = 0.5, b = 1.5.

(e) WKQ, a = 2, b = 2. (f) W PV , a = 2, b = 2.

Figure 7: WKQ and W PV of full-one start points with different diagonal initialization. The read blocks in
Assumption 3.1 are presented, which are related to the final prediction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims in the abstract and introduction accurately match our theoretical
results and reflect the paper’s contribution and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 7 for details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are presented clearly in the main paper (Assumption 3.1, 4.1
and 4.2). Complete proof can be found in Section 5 and Appendix A. The correctness of our
proofs can be verified by simulations in Section 6 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete configurations in Section 6 and Appendix B. We also
upload the code at https://github.com/ML-GSAI/MesaOpt-AR-Transformer for reproduction
as well.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We upload the complete code and sufficient instructions in the supplemental
material. It is available at https://github.com/ML-GSAI/MesaOpt-AR-Transformer.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see details in Section 6, Appendix B and attached code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not present an error bar due to insufficient computing resources.
However, we have run all experiments with three different initializations to verify the
correctness of our theory, see details in Section 6 and Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see details in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform research conducted in the paper satisfies the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please see details in Section 7.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The simulations are simple and we do not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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