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ABSTRACT

LLM-based agents have made significant advancements in interactive environ-
ments, such as mobile operations and web browsing, with multi-agent systems
further boosting performance. However, current agent learning techniques heavily
rely on in-domain data and struggle to generalize across tasks and environments.
Moreover, existing multi-agent learning methods are limited by fixed role assign-
ments, which restrict their flexibility and generalization. Furthermore, the multi-
step nature of interactive tasks, combined with sparse end-to-end reward signals,
hinder effective learning to a great extent. To address these issues, we propose
CollabUIAgents, a two-stage multi-agent learning framework for interactive envi-
ronments. In the first stage, the base model is adapted to the environment using
curriculum learning on multi-level instruction data. In the second stage, a novel
process reward decomposition strategy is introduced during reinforcement learn-
ing, allowing rewards to be distributed at both the agent and conversation round
levels. This granular feedback fosters collaborative awareness among agents with-
out predefined roles and improves learning efficacy. Experimental results show
that our method significantly enhances the performance of multi-agent systems
based on open-source models, achieving notable improvements both within and
across domains, while also exhibiting strong cross-environment generalization ca-
pabilities. Moreover, our best-performing systems achieve results on par with or
exceed those of the strong closed-source models, while maintaining the flexibility
to be integrated with prompt-based multi-agent systems for future research.

1 INTRODUCTION

Autonomous agents have made substantial progress in interactive environments, such as mobile
operations and web browsing, by leveraging large language models (LLMs). These agents hold
immense potential not only to automate repetitive tasks but also to enhance decision-making and
streamline complex workflows. As a result, they can free up human resources for higher-level
problem-solving and innovation. The increasing interest in developing such agents is evident in
the growing body of work on, for instance, mobile environment simulators (Rawles et al., 2024;
2023} Zhang et al., 2024c}; |Deng et al.| 2024a; Wang et al.| 2024c), web browsing benchmarks (Shi
et al., 2017; Liu et al.| 2018a; |Yao et al.l [2022a; [Zhou et al., [2024b; |Deng et al., 2023} 2024b), and
LLM-based agents targeting on mobile and web tasks, including single-agent (Yan et al.| 2023} |Lai
et al.| 2024} Bishop et al.| [2024; Wang et al., [2024b}; [Hong et al.| 2024} |(Cheng et al) 2024) and
multi-agent systems (Wang et al., 2024a; Zhou et al.,2023; Liu et al., [2024} [Zhang et al., [2024d).

However, current efforts in LLM-based agent learning still face several challenges in these kind of
interactive environments. (1) Single-agent learning methods (Chen et al.l [2023a}; |Gur et al., 2024;
Furuta et al.}2024) heavily relies on in-domain data (e.g., HTML-formatted inputs), which restricts
its ability to generalize across diverse tasks and environments, such as transitioning between web en-
vironments using HTML and mobile environments using Android automator. Despite being trained
on vast amounts of data from diverse domains, single agent based on open-source LLMs (Zeng et al.,
2023} Zhang et al.,[2024b)) demonstrate only moderate generalization capabilities and continue to lag
behind closed-source models. (2) Although multi-agent learning methods (Qiao et al., 2024} |Liang
et al., 2024) have better performance, they are often constrained by rigid role assignments, which
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limits their adaptability to unseen environments. For instance, an agent designed to retrieve docu-
ments for question answering may struggle to handle file operations in a mobile environment. (3)
In addition, multi-step nature of interactive tasks results in sparse reward signals during end-to-end
learning, which complicates effective learning in real-world interactive environments.

In this work, we introduce a two-stage multi-agent learning framework, named CollabUIAgents,
designed to address challenges in real-world interactive environments. The framework is structured
without predefined roles in the multi-agent system or domain-specific data collection requirements.
Specially, stage 1 focuses on enabling the base model to adapt to the environment through curricu-
lum learning on multi-level instruction data, aimed at learning general environmental knowledge.
To facilitate this process, we propose a fully automated data synthesis strategy that significantly
reduces labor costs and accelerates data acquisition. The synthesized instruction data comprises
three parts: (1) basic environmental knowledge, (2) simple instruction knowledge, and (3) process
preference knowledge, with a progressively increasing level of difficulty. The base model is first
fine-tuned using Supervised Fine-Tuning (SFT) (Ouyang et al.,|2024)) on the first two data segments,
followed by Direct Preference Optimization (DPO) (Rafailov et al.||2024) using the process prefer-
ence data. Stage 2 introduces a novel process reward decomposition strategy within the framework
of multi-agent reinforcement learning (MARL), allocating rewards at both the agent and con-
versation round levels. Similar to the preference data synthesis in stage 1, the preference data in
this stage are labeled with fine-grained reward signals by a multi-agent data synthesis pipeline. In-
stead of assigning a single reward label at each step, the pipeline assesses the contributions of each
agent during each conversation round and allocates rewards accordingly, which is known as process
reward (Uesato et al., [2022). This approach enables a VDPPO-style (Ma & Luo, |2022) training
process, fostering collaborative awareness among the agents.

Our framework provides much more granular feedback on each agent’s contribution throughout the
task, enhancing learning effectiveness over previous works. And this framework is also capable of
cross-environment user interface (UI) interaction, supporting both mobile and web environments,
either through directly applying multi-agent systems adapted from mobile environments to websites
or through continue MARL on the new environment.

Experimental results demonstrate that the proposed multi-agent system achieves superior perfor-
mance compared to existing methods, including surpassing the strong closed-source model Gemini
1.5 Pro (Gemini Team Googlel [2024) and achieving performance comparable to GPT-4 (OpenAl,
2024) with Qwen2-7B (Yang et al.,[2024) as the base model, on both in-domain and out-of-domain
mobile environments. Surprisingly, CollabUIAgents demonstrates effective cross-environment gen-
eralization from mobile to web environments, under both scenarios of direct application and continue
training. And the system of the latter setting also achieves comparable performance to GPT-4.

In summary, our contributions are as follows:

* We propose a two-stage multi-agent learning framework consists of general environmen-
tal knowledge learning and multi-agent reinforcement learning, named CollabUIAgents,
which requires no human intervention in data synthesis and optimization process.

* Our method incorporate a novel process reward decomposition strategy in multi-agent re-
inforcement learning, providing much finer-grained reward signals on both agent and con-
versation levels, overcoming signal scarcity in end-to-end learning for interactive environ-
ments.

» Extensive experiments show that our proposed CollabUIAgents surpasses the performance
of Gemini 1.5 Pro and shows competitiveness comparable to GPT-4 on both in-domain,
out-of-domain mobile environments, and even cross-environment tasks.

2 METHODOLOGY

This section details the proposed CollabUIAgents framework, which addresses the challenges in
multi-agent learning for real-world interactive environments. The methodology consists of four key
components: (1) the task formulation, where we formally define the problem of applying multi-agent
systems on real-world interactive environments; (2) the architecture of the CollabUIAgents frame-
work, outlining the overall multi-agent system and agent conversations design; (3) the two-stage
learning process, where agents first acquire general environmental knowledge and then optimize
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their behaviors using Multi-Agent Reinforcement Learning (MARL) enhanced by Process Reward
Decomposition; and (4) the cross-environment adaptation, where we describe how a multi-agent
system trained in one environment can adapt and generalize to different environments.

2.1 FORMULATION AND NOTATION

We treat real-world interaction tasks as a sequential decision-making process with either single agent
or multi-agent systems in dynamic environments. The task involves agents making decisions based
on the current environment state and their accumulated interaction history.

Task Formulation Let S be the set of all possible states of a given interactive environment,
where each s € S represents a specific configuration of the Ul and hidden states at a given time step,
including an initial state sy and a terminal state. The set of all possible actions that a given agent
system G can take is denoted as A, where a € A includes actions such as clicking buttons, typing,
or scrolling through content. The environment evolves according to a transition function 7:

St41 = T(st,at),st,stﬂ S S, a; € .A, (1)

where s; is the state at time step ¢, and a; is the action taken by the agent system at that step.
The task ends when reaching a terminal state or exceeding the maximum step 7Ty,.x. From the
state s;, the observation o, is derived as formatted description in language. Each agent m; in the
system selects actions based on current observation o, the history of past interactions H;_; =
(50, a0, ---, St—1, ar—1), and the message for agent 7; at conversation round j, denoted as C;”’, since

multi-round conversations may happen at each decision step. Cf’j is omitted for single agents:

ai’] = T (0t7Ht—17CZ,j) 7ai,j € AaZ =1,.., |g‘7 @

where |G| is the number agents in the system. And a; is determined by an aggregation function fage
(which is identity for single agents (|G| = 1)):

a0 = fage ({ai7|i= 1, 1G5 = 1, m}). )

where m is the number of conversion rounds. The goal of the task is to maximize the reward at the
terminal state over a sequence of interactions.

Real-World Interactive Environment The observation and action space in real-world interactive
environment are rich. Specifically, for the mobile operation environments, which offer an interface
that allows agents to receive observations and perform actions on mobile devices, the observation
space may include high-resolution screenshots and a Ul tree from Android automater. The action
space mirrors human interactions, featuring gestures (such as tapping, long-pressing, and swiping),
typing, and navigation buttons (e.g., home and back). Complete actions are listed in Table[5] For web
browsing environments, the observation space may include task description, simplified HTML, and
current location. The HTML offers the model both structural and content details of the page, while
the current location information allows it to understand its position on the webpage. Consistent
with previous work, we use a unified web browsing action space in both of the aforementioned
environments. The actions include hover, select, click, etc. More actions can be found in Table[6]

Reward Function and Objective  The reward Ryt € {0, 1} is defined in the environment based
on task requirements. The overall objective is to maximize the expected reward. Rewards are sparse,
as only the terminal state gives out reward signals, posing a challenge to end-to-end approaches.

2.2 COLLABUIAGENTS FRAMEWORK

The CollabUIAgents framework is designed to address the issues of sparse rewards and fixed roles
in multi-agent learning. It operates without predefined roles, providing fine-grained rewards, and
supports generalization across different environments. The framework is composed of two main
stages: General Environmental Knowledge Learning and Multi-Agent Reinforcement Learning.

2.2.1 MULTI-AGENT SYSTEM ARCHITECTURE

The architecture of the multi-agent system (G) in CollabUIAgents is in consistency with previous
works (Zhuge et al., 2024a; [Liu et al., [2024), which consists of |G| = n agents, each represented
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by a policy ; that communicate with each other through a message network £;. As shown in
Figure |z|, the network is a directed acyclic graph (DAG), where messages are passed from ;, to m;,
if there is an edge pointing from 7;, to 7;,. Specifically, the message is from the output of 7;, . It is
worth noting that the architecture remains the compatibility for prompt-based agent methods, whose
performance is left for future investigation. We instead use naive prompting for fair comparisons.

The agents operate in a topological order, and starting from the source to the sink node, allowing
each agent to aggregate all responses from its predecessors to form C*7 in equation We define the
round of conversation as m. In each conversation round, all agents operate once along the topologi-
cal order, and each agent could receive its own decision from the last round besides decisions from
predecessors, i.e., we keep a local memory with size equal to 1. The proper size of local memory
enhances the diversity of decision making and avoids introducing too long contexts. According to
equation 2] at the time step ¢ to interact with the environment, the system produce an action matrix:

A= (a)i=1,..,n;j=1,...m, 4)

where ai’j is the intermediate decision from the -th agent at j-th conversation round for interaction
step ¢, as shown in Figure[2] Then, majority voting is used to decide the final action at the time step,

@ = fags(Ar) = argmax, » > 1o, 5)

i=1 j=1

where 1.ondition 1S the indicator func-
tion. The agents are all required to out- [ Task: Record an audio clip using Audio Recorder app and save it. ]
put an action and collaborate towards
a common objective to enlarge the ex-
pected end-to-end reward R, which al-
lows them to function with the same
base model for better efficiency, and
operate heterogeneously due to differ-
ent conversation messages.

UI Understanding

interface for setting the Question: What is the
recording format. .. purpose of the current UI?

Element Recognition

Response: Element 9 is
clickable and allows the Question: What action is
user to change the ... associated with element 9?

Basic Environmental Knowledge

Response: This is an

Simple Instruction Knowledge

2.2.2 STAGE 1:
GENERAL ENVIRONMENTAL
KNOWLEDGE LEARNING

Ul Element 9 : ...
Action space: click, input...
Prompt: Generate diverse

instructions based on action
space and the UI element.

Instruction: I want to
select the M4a format.
Response: The
recording format has
been set correctly...

The first stage of the CollabUIA-
gents framework focuses on adapting
agents to new environments through
curriculum-based single-agent train-
ing (Bengio et al.| [2009). The training
data is synthesized automatically with a
multi-agent data synthesis pipeline and
consists of progressively complex in-
struction sets in three levels, designed
to help agents build a strong founda-
tion of environmental knowledge. The
UI agent generate responses to synthe-
sized queries faithfully, the adversarial
agent generates negative samples, and
the critic agent grades process rewards.

Process Preference Knowledge

Response: I need to
click "Apply" ... Action:
{"action_type": "click",
"index": 3}"

Action history: Step 1...
Ul description: Element 1...

Adversarial Agent

[Task: "RecordAudio”

J

Response: I should select
“Wav ” format to ...

Action: {"action_type":
"click", "index": 2}"

Critic Agent

Figure 1: Our multi-agent autonomous data synthesis
pipeline. Given a task, the pipeline can autonomously col-
lect data covering basic environmental knowledge, simple
instruction knowledge, and process preference knowledge
in real-world interactive environments.

Curriculum Structure The training

data is divided into three categories, as collected in Figure m

(1) Basic Environmental Knowledge: This data segment includes identifying Ul elements and
understanding their properties. We categorize basic knowledge into two types: UI Understanding
(coarse-grained): This refers to a broad understanding of the layout and information contained in
the UI, such as identifying the purpose of the interface. UI Element Recognition (fine-grained):
Since Ul typically contains a large number of densely packed interface, the agent needs to be able to
distinguish between different types of elements, such as buttons, input fields, and drop-down menus,
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and understand the associated actions. We develop a series of queries accordingly in Appendix[B-1]
and randomly select Ul elements and the layout to assemble queries for the Ul Agent.

(2) Simple Instruction Knowledge: The agents are tasked with performing basic interactions, such
as clicking or typing, in response to simple instructions. Specifically, given the complete action
space, we prompt the UIAgent to generate possible instructions related to a random UI element, and
their corresponding responses. For example, in Figure [I] the UIAgent was prompted to generate
an instruction for element 9 (“selecting the M4a format”) and then generates the corresponding
response to interact with it. By learning this type of knowledge, the agent lays the foundation for
completing a complex sequential decision-making process.

(3) Process Preference Knowledge:

Real-world interactive tasks is quite dif- Task Environment s, ﬁ Step ¢
ficult, and even the most advanced large
language model, GPT-4, shows a low Obs o, | Action a;

task completion rate (30%) in the mobile

environment  AndroidWorld  (Rawles J .
et al| |2024). Training a model solely SO
on scarce successful trajectories still 7 Reward Matrix R, 3. Process Reward  Action Matrix 4,
inevitably results in errors. Therefore, as Decomposition
illustrated below Figure [T we introduce
the adversarial agent against the Ul agent,
and the critic agent to score all actions,
obtaining process preference data with
step-level rewards. By learning from pro-
cess preference data, the agent can better
distinguish between correct and incorrect
actions during the process, ultimately
improving task completion rates. The
distribution of the collected data can be

:

Round

-~ e

’I/—; \\ !

1%  — L

\ 1 \ 1 1. Initializa-|

AN e/ N N ,/ tion;
~o__U.7" Multi-Agent RL oLt |

found in Appendix@ General Environmental Knowledge Learning
The base model is first trained using Su- ' _______ 2 Cumcmlcoming & 2
pervised Fine-Tuning (SFT) on the basic | ------- ,:> ’g @
environmental knowledge and the simple Tt Prosses proforence Maming
instruction knowledge, progressively. The Data Synthesis Basc Model Base Agent

learning objective is:

Lspr = —E (s q)~p [logmg(als)], (6) Figure 2: The multi-agent reinforcement learning stage
where D represents the dataset of state- based on process reward decomposition. Edge updates
action pairs. Following SFT, the base happen before rolling out. The Critic Agent at each
model are further optimized using Di- Step assess the scores of the whole action matrix to get
rect Preference Optimization (DPO) on the reward matrix and updating the agents accordingly.
the process preference knowledge:

Loro = ~E(sa, o )np [loga (ﬁlog”e(“"s) - /ﬂog”"(“*'s)ﬂ : )
Tret(a—|5) Tret (ay|5)
where P is the preference-labeled dataset, a1, a_ denote positive and adversarial actions, o is the
sigmoid function, /3 is the hyper-parameter, and 7y, m¢ are the base model and reference model
(could be omitted for online optimization). For clarity, the DPO process could be either online, that
keep updating the base model as the UI agent, or offline, that collect all the data at once.

2.2.3 STAGE 2: MULTI-AGENT REINFORCEMENT LEARNING

In the second stage of the CollabUIAgents framework, we address the challenge of sparse rewards in
interactive dynamic environments by introducing a novel Process Reward Decomposition strategy
for multi-agent reinforcement learning (MARL). This approach provides fine-grained reward signals
at both the agent and conversation round levels, enabling agents to learn more effectively from their
interactions and improve awareness towards multi-agent collaboration.

Process Reward Decomposition By expanding the critic agent that provides process rewards at
each step to the multi-agent system, we further allocate rewards in a finer granularity, at both the
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agent level and the conversation round level. The whole process is visualized in Figure 2] At each
time step ¢, we collect the actions a! from all agents 7; in the system G, forming the action matrix
A, as described in Section[2.2.1] The critic agent assesses these actions based on the task and current
environment state individually, generating a reward matrix that provides reward feedback for each
agent’s action at each conversation round:

Rt:(Ti,j))i:1’...,n7j:17...7m7’ (8)

where r}:’j denotes the intermediate reward from agent 7; at j-th conversation round for interaction
step t, reflecting the quality or contribution of agent 7;’s action for task solving. The total reward
for the task is then decomposed as:
n m o o
Riotal = \/ \/ \/ TZJ’ R, r;’J € {Oa 1} )

t=1i=1j=1

For the circumstance that R = 1, r;? = 1 is guaranteed for at least one ¢, 4, j. The rationale is that,
for the critic agent, it might be more simple to identify whether a single decision is wrong, than to
judge the reward of long decision chains between multiple agents. Thus, we hypothesize that by
tearing down the granularity, the quality of the reward signal would not fall behind the end-to-end
reward provided by the environment. Instead, this decomposition provides a more detailed reward
signal, enabling agents to adjust their behavior based on individual contributions and collaborative
success, even when the end-to-end reward is sparse. Qualitative study is shown in Appendix [A.T]

MARL with Edge Updates To optimize the agents’ policies in this multi-agent setting, the over-
all objective is related to Value Decomposition Proximal Policy Optimization (VDPPO) (Ma & Luo,
2022), which is designed for cooperative multi-agent environments. Instead of setting up critics, we
adopt DPO training with preference data synthesis similar to Section for efficiency. Different
from VDPPO settings, agents in the system could communicate and the message network should
also be updated in the optimization. To alleviate the overhead of learning the optimal combination
of edges, we introduce an edge update trick, that randomly update edges to form a DAG for mes-
sage passing between agents. Through this process, we encourage agents to learn the awareness of
multi-agent collaboration and adapt to diverse message networks rather than being rigid in locally
optimal DAG pattern. As shown in Figure 2] the edge update is functioned before rolling out actions
from the policy models. The overall learning objective for each agent 7; is formulated as:

Lyare(0;) = _E(Stya’iﬁrva:’*)wp(g’g(}w[{‘g‘) {bg o (ﬁ (10.% mo, (ay " |s¢) — logm, (ay ™ \St)))] ;

(10)
where 0; are the parameters of agent 7;, K|g| is a fully connected graph of |G| nodes, £ represents
a DAG subgraph sampled from K\g|, and P(G, £;) is the preference dataset sampled with agents
in the message network £. This objective encourages the policy my, to assign higher probabilities
to preferred actions ai’*’ compared to less rewarded actions a; . The agents’ policies could be
updated online or offline as well, and, throughout the MARL process with edge updates, the edge
connections in the communication graph £ among agents can also be configured during inference
time, allowing the system to adjust communication pathways for better collaboration.

2.3 CROSS-ENVIRONMENT ADAPTATION

One of the key strengths of the CollabUIAgents framework is its ability to generalize across different
interactive environments, such as across mobile operations and web browsing environments. The
framework supports two ways of adaptation.

Direct Transfer In scenarios where the new environment shares similarities with the training en-
vironment, agents can be directly deployed without additional training. For example, agents trained
in mobile UI environments can directly apply their knowledge to web environments, leveraging the
knowledge common interaction patterns and Ul elements. The multi-agent setup may also decrease
error rates through collaborations for expectation.

Continual MARL  When the new environment presents significant differences or the higher suc-
cess rates are demanded, agents can undergo further training using the MARL framework with Pro-
cess Reward Decomposition in the new environment. This continual reinforcement learning allows
agents to refine their policies and adapt to new action spaces, or observation structures.
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Table 1: Success Rates (SR) in AndoridWorld and MobileMiniWoB++ (MMiniWoB++).

System | Base model #Params #Agents Input SRandriodWorld  SRyMiniwoB++
Agents based on Closed-Source LLMs
M3A GPT-4 N/A 1 Text 30.6 59.7
M3A Gemini 1.5 Pro  N/A 1 Text 19.4 57.4
M3A GPT-4 N/A 1 Text & Image 25.4 67.7
M3A Gemini 1.5Pro  N/A 1 Text & Image 22.8 40.3
SeeAct GPT-4 N/A 1 Text & Image 15.5 66.1
Agents based on Open-Source LLMs
Qwen2 Qwen2 7B 1 Text 6.2 12.9
SingleAgent Qwen2 7B 1 Text 18.9 48.4
GroupAgents Qwen2 7B 4 Text 21.4 53.2
CollabUTAgentSmopite Qwen2 7B 4 Text 29.3 61.2

3 EXPERIMENT

3.1 EXPERIMENTAL SETTINGS

Environments We conduct experiments in both mobile and web environments. For the mo-
bile environments, we use AndroidWorld (Rawles et al.l [2024) and MobileMiniWoB++ (Rawles
et al.| [2024): (1) AndroidWorld has 116 programmatic tasks across 20 real-world apps, such as
Chrome, Markor, and Pro Expense. (2) MobileMiniWoB++ is derived from MiniWoB++ (Shi
et al.| [2017), which is a web-based benchmark. MobileMiniWoB++ shares the same observation
space as AndroidWorld and supports 92 tasks from MiniWoB++. We use the success rate (SR) as
an evaluation metric. For the web environments, we leverage Mind2Web (Deng et al., 2023)) and
AutoWebBench (Lai et al., 2024): (1) Mind2Web features over 2,000 open-ended tasks sourced
from 137 websites in 31 different domains. (2) AutoWebBench is a bilingual benchmark featuring
approximately 10,000 traces, from mainstream Chinese and English websites, providing a diverse
dataset for web browsing. We use the step-success rate (SSR) as the evaluation metric.

Evaluated Methods We compare our framework against the following existing methods: (1)
MB3A (Rawles et al., [2023) is a multimodal autonomous agent, which combines ReAct-style (Yao
et al., |2022b) and Reflexion-style (Shinn et al., [2024b)) prompting to interpret user instructions and
screen content, then reason and update its decision-making based on the outcome of its actions. (2)
SeeAct (Zheng et al., [2024) is a navigation agent originally designed for GPT-4V to perform actions
through textual choices. To adapt it to the Android environment, the action space was expanded to
support mobile-specific actions. (3) SeeClick (Cheng et al. [2024) is a visual GUI agent that auto-
mates tasks by solely relying on screenshots. It employs GUI grounding to enable the agent to accu-
rately locate interface elements based on user instructions. We leverage Qwen2 7B as our base model
and evaluate the following systems derived from the model: (1) SingleAgent is the base model that
has undergone the stage 1 in our framework. (2) GroupAgents is a direct combination of multiple
single agents, which are interconnected by random edges forming a message network as described
in Secion They select actions through majority voting for a round. (3) CollabUIAgents,opile
is our method applied on AndroidWorld with n = 4, m = 3. (4) CollabUIAgents;, ,wep builds
upon CollabUIAgentsyopile With continue MARL on the training set to adapt to Mind2Web. Due to
computational resource limits, we adopted offline training for reinforcement learning in all methods.

3.2 MAIN RESULTS

Effectiveness in Mobile Environments In this section, we explore the effectiveness of our pro-
posed method for both in-domain tasks and cross-task generalization. Experimental results in mobile
environments are shown in Table[I} The best performance is achieved by GPT-4 without additional
training, consistent with findings from other studies indicating that closed-source LLMs like GPT-4
and Gemini 1.5 Pro are high-performing generalists. In contrast, the open-source LLM Qwen?2 ini-
tially shows low performance in its vanilla form (“Qwen2” in Table[I). However, after fine-tuning
with data from the AndroidWorld environment, its performance improves significantly, highlight-
ing the effectiveness of the fine-tuning process. Moreover, notable performance gains are observed
when multiple agents are utilized (“SingleAgent” vs. “GroupAgents”). Our proposed multi-agent
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Table 2: Step Success Rates (SSR) in the Mind2Web environment. * indicates fine-tuning the model
on the corresponding training set.

System \ #Params #Agents Input Cross-Task Cross-Website Cross-Domain \ Avg.
Agents based on Closed-Source LLMs
GPT-3.5-Turbo N/A 1 Text 17.4 16.2 18.6 17.4
GPT-4 N/A 1 Text 36.2 30.1 26.4 30.9
Agents based on Open-Source LLMs
Qwen-VL* 9.6B 1 Text & Image 12.6 10.1 8.0 10.2
SeeClick* 9.6B 1 Text & Image 23.7 18.8 20.2 20.9
Qwen2 7B 1 Text 8.6 6.3 7.5 7.4
SingleAgent 7B 1 Text 13.4 10.6 11.8 11.9
GroupAgents 7B 4 Text 15.7 11.2 12.9 13.2
CollabUIAgentsmobile 7B 4 Text 19.2 13.8 15.5 16.2
CollabUIAgentsm—web 7B 4 Text 34.5 32.7 25.1 30.7

Table 3: Step Success Rates (SSR) of different models in the AutoWebBench environment. All
systems are evaluated with in-context learning prompts presented in Appendix E}

System ‘#Params #Agents English Chinese ‘Avg.
\ Cross-Task Cross-Domain Cross-Task Cross-Domain\

Agents based on Closed-Source LLMs

GPT-3.5-Turbo N/A 1 12.1 6.4 13.5 10.8 10.7
GPT-4 N/A 1 38.6 39.7 36.7 36.3 37.8
Claude2 N/A 1 13.2 8.1 13.0 7.9 10.5
Agents based on Open-Source LLMs
LLaMA2 7B 1 33 2.5 - - 2.9
LLaMA2 70B 1 8.3 8.9 - - 10.6
Qwen2 7B 1 8.6 94 8.1 7.8 8.5
SingleAgent 7B 1 12.0 13.3 12.7 134 12.8
GroupAgents B 4 13.7 14.5 15.0 13.9 14.0
CollabUIAgentSmobite 7B 4 18.6 17.7 19.1 15.6 17.7
CollabUIAgentsm—sweb 7B 4 34.3 36.9 353 325 34.7

framework further enhances performance, achieving the best results among systems based on open-
source LLMs (“CollabUIAgentsmopile””). Remarkably, it outperforms Gemini 1.5 Pro in both test en-
vironments and achieves performance comparable to or better than GPT-4. These outcomes demon-
strate the effectiveness of our framework in dynamic environments. Additionally, even though our
CollabUIAgentsmobile has no prior exposure to evaluation tasks from the MobileMiniWoB++ envi-
ronment, it still achieves substantial performance improvements on these tasks, demonstrating its
strong generalization capability to out-of-domain tasks.

Generalizing from Mobile to Web Environments In this section, we examine the cross-
environment generalization capabilities of our proposed method. Results for web environments are
presented in Tables [2{ and |3} corresponding to the Mind2Web and AutoWebBench environments,
respectively. First, similar to the Android environments, vanilla Qwen2 (“Qwen2” in Tables[2]and 3]
demonstrates low performance in web environments. In contrast, both fine-tuning (“SingleAgent”)
and multi-agent (“GroupAgents”) approaches contribute to performance improvements, though the
gains are relatively smaller compared to those observed in the Android environments. Second, ap-
plying the agent system obtained from the AndroidWorld environment using our proposed method to
the web environments (“CollabUIAgentsobile”’) yields performance improvements; however, these
absolute gains remain modest. This suggests that while our method exhibits some cross-environment
generalization ability, there is still considerable room for enhancement. Third, we continue to fine-
tune MA-Android using MARL on data collected from Mind2Web, leveraging our multi-agent data
synthesis pipeline. As shown in Table [2] (“CollabUIAgentsy,_.web "), this results in substantial per-
formance gains, achieving results comparable to GPT-4. It is noteworthy that we do not require
human-annotated data for the Mind2Web environment, which is a significant advantage in transfer-
ring the agent system to new environments. Finally, results in Table [3] (“CollabUIAgentsy,_web”)
indicate that the agent system obtained from the Mind2Web environment using our method general-
izes well to the AutoWebBench environment, achieving results comparable to GPT-4. This demon-
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Table 4: Ablation study. Success Rates (SR) in the AndroidWorld and MobileMiniWoB++ (MMini-
WoB++) environments are reported.

System ‘ #Params #Agents SRandroiawora  SRMMiniwoB++
Stage 1
Qwen2 7B 1 6.2 129
+ Basic knowledge SFT 7B 1 12.1 22.5
+ Instruction SFT 7B 1 15.1 35.8
+ Process DPO 7B 1 18.9 48.4
Stage 2
GroupAgents w/ Vanilla Qwen2 7B 4 8.6 16.1
GroupAgents w/ Stage-1 Qwen2 7B 4 214 53.2
CollabUIAgentSmopite 7B 4 29.3 61.2
w/ MARL — MA-SFT 7B 4 23.2 54.8
w/o reward decomposition 7B 4 25.0 56.4
w/o edge update 7B 4 27.6 58.1
CollabUIAgentSm—sweb 7B 4 26.7 58.1

strates the strong generalization capability of our method across tasks, consistent with observations
in the Android environments.

3.3 ABLATION STUDY

The results of the ablation study are presented in Table @ We conduct automated data synthesis,
model training and evaluation in the AndroidWorld environment. Additionally, we directly apply
the resulting system to the MobileMiniWoB++ environment for evaluation.

Stage 1: Environment Adaptation In this stage, we develop an automated data synthesis method
to gather basic environmental knowledge, simple instruction knowledge, and process preference
knowledge from the dynamic mobile environment, AndroidWorld. Based on the upper section of
Table[] we derive the following conclusions: (1) Incorporating basic environmental knowledge data
substantially improves the base model’s comprehension of dynamic mobile environments, achieving
a absolute performance gain of 5.9% in AndroidWorld and 9.6% in MobileMiniWoB++ (“+ Basic
knowledge SFT”). It is noteworthy that the collected UI page information excludes app-specific de-
tails of MobileMiniWoB++, yet training with general knowledge from AndroidWorld enables the
model to generalize effectively to new apps and tasks. (2) Simple instruction knowledge data is
crafted to guide the agent in interacting with the environment using actions from the specified ac-
tion space. Our experiments demonstrate that incorporating instruction data further enhances the
base model’s ability to complete simple tasks within Ul environments (“+ Instruction SFT”). (3)
A key advantage of our proposed method is its ability to learn from incorrect actions using pro-
cess preference knowledge data. Experimental results confirm that this addition significantly boosts
performance (‘“+ Process DPO”). The improvement is more pronounced in the MobileMiniWoB++
environment, which we attribute to the simplicity of its tasks. Fewer steps are required to complete
these tasks, leading to greater performance gains.

Stage 2: Multi-agent Learning This stage focuses on training multiple agents to collaborate and
achieve superior results. The experimental findings, presented in the lower section of Table 4] high-
light the following key insights: (1) Combining multiple agents based on a vanilla base model using
random edges leads to modest improvements (“GroupAgents w/ Vanilla Qwen2” in Table [). In
contrast, substituting these agents with enhanced versions from stage 1 (“GroupAgents w/ Stage-1
Qwen2”) results in significant performance gains, underscoring the importance of first enhancing in-
dividual agents before integrating them. (2) Further training of the GroupAgents with trajectory data
using either SFT (“CollabUIAgentsopile W/ MARL — MA-SFT”) or DPO (“CollabUIAgentsmobile
w/o reward decomposition”) improves performance, with DPO showing superior results. The pri-
mary distinction between these methods is that SFT can only learn from correct actions, while
DPO can learn from both correct and incorrect actions. Consequently, DPO is able to leverage a
greater quantity and diversity of data, leading to marginal improvement. (3) Our proposed method
(“CollabUIAgentsopile””) introduces process reward decomposition, providing more granular feed-
back that facilitates exploration of the large action space at each step. This accelerates the adap-
tation of the agent group to the environment, yielding the best overall results. (4) A comparison
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between systems with and without edge optimization (“CollabUIAgentsopile”” Vs. “W/o edge up-
date”) demonstrates that edge optimization contributes to further performance improvements. (5)
After cross-environment reinforcement learning on the web, “CollabUIAgentsy,—wep” €xhibits im-
pressive autonomous adaptability in the new environment, with only minor performance fluctuations
in the original mobile environment, thereby validating the stability of our method.

4 RELATED WORK

Agents on Interactive Environments Before the advent of today’s foundation models, the devel-
opment of agents capable of interacting with user interfaces relied on traditional RL and behavioral
cloning. These methods were primarily used to simulate interactions such as mouse clicks and
typing via the keyboard (Liu et al.| [2018b} [L1 et al.l [2020; [Humphreys et al., 2022)). However, re-
cent advancements have shifted towards leveraging pre-trained foundation models. By applying
in-context learning and fine-tuning techniques, these models are now employed across various plat-
forms, including mobile interfaces (Yan et al.| 2023} Wang et al., |2023; |Hong et al.| 2024} Rawles
et al.,|2023)), web environments (Zhou et al.,|2024a}; |Lai et al., 2024; |Koh et al., 2024; |Cheng et al.}
2024;|Deng et al.,|2023), and desktop operating systems (Xu et al.|[2024; Wu et al.| 2024; Xie et al.,
2024; [Zhang et al.l |2024a). Recently, there are emerging methods (Shinn et al., 2024aj He et al.,
2024 Pan et al., [2024) designing process rewards for single-agent learning for better performance.

Prompt-based Multi-agent Learning In recent years, collaboration among multiple LLM agents
has proven effective for various tasks (Ning et al.| [2023} [Hao et al., 2023} [Jiang et al.| [2023)). Re-
cent studies have developed different interaction architectures and assigned agents in static patterns
(Hong et al., [2023; Wu et al.| [2023; Qian et al.| |[2024). However, employing a static architecture
without team optimization may restrict the performance and generalization of LLM-powered agent.
Chen et al.| (2023b) selects a fixed number of agents from a set of manual prompt candidates via an
additional LLM during each round of discussion. [Zhuge et al.| (2024b) unify language agent sys-
tems by describing them as optimizable computational graphs and develop optimization methods for
nodes and edges, enabling automatic improvements of agent prompts and inter-agent orchestration.
Liu et al.[(2023)) employ a feed-forward network to formulate the process of LLM-agent collabora-
tion for arbitrary tasks and introduce an unsupervised algorithm to optimize the team of agents by
the individual contributions of agent.

Interactive Environments for Agents To effectively evaluate autonomous agents, it is essen-
tial to create environments that not only replicate real-world conditions but also deliver immediate
reward signals when tasks are successfully completed (Abramson et al., |2022; Ruan et al., [2023;
Rawles et al., [2023; |[Deng et al., [2023). MiniWoB++ (Shi et al.l [2017) is a lightweight framework
that features small, synthetic HTML pages with parameterized tasks, allowing for virtually unlim-
ited task variability. For more specialized environments, WebShop (Yao et al., [2022a)) simulates an
e-commerce platform, offering scenarios akin to online shopping. WebArena (Zhou et al. [2024a)
and its visual counterpart, VisualWebArena (Koh et al., [2024)), simulate websites spanning up to
four distinct domains, while WorkArena (Drouin et al.,[2024) focuses on enterprise software with a
set of 29 tasks designed for workplace settings. For desktop operating systems, OSWorld (Xie et al.}
2024])) provides both a user interface and programmatically generated rewards across nine different
apps. GAIA (Mialon et al., [2024), on the other hand, is to assess an agent’s proficiency in daily
assistance. AndroidWorld (Rawles et al.l [2024) improves upon OSWorld’s method by dynamically
generating starting states and introducing limitless variability in task objectives.

5 CONCLUSION

In this paper, we introduce CollabUIAgents, a two-stage multi-agent learning framework to address
reward scarcity problems and aims at generalization across tasks and even environments. In the
first stage, we propose a fully automated data synthesis that allows agents to go through curricu-
lum learning on three-level general environmental knowledge, without human intervention. In the
second stage, we propose a process reward decomposition strategy in MARL to assign rewards at
both the agent and conversation round levels. Experimental results demonstrate that our framework
effectively improves the environment adaptability of open-source language models, and achieves
GPT-4-comparable multi-agent systems across mobile and web environments.
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A  ENVIRONMENT

Al

EXAMPLE OF DYNAMIC UI INTERACTION

Figure |3| is an example of task execution steps in the AndroidWorld environment, where “ac-

tion_type” represents the action taken, and “index” represents the index of the Ul element.

have marked the positions of the relevant elements on the Ul interface.

A.2 ACTION SPACE IN ENVIRONMENTS

Tables [5] and [6] show the action spaces of agents in mobile and web environments, respectively.

Table 5: Action space in mobile environment.

Action |

Description

CLICK
DOUBLE_TAP
SCROLL
SWIPE
INPUT_TEXT
NAVIGATE_HOME
NAVIGATE_BACK
KEYBOARD_ENTER
OPEN_APP
STATUS
WAIT
LONG_PRESS
ANSWER
UNKNOWN

Tap once on the element

Quickly tap the element twice
Slide the screen to view more content
Quick swipe across the screen

Type text into the element
Return to the home screen

Go back to the previous screen

Press the enter key
Launch an app
Check task status
Pause briefly

Tap and hold on the element

Give a response
Undefined action

Table 6: Action space in web environment.

Action | Description
CLICK Click at an element
HOVER Hover on an element
SELECT Select option in an element
TYPE_STRING Type to an element
SCROLL_PAGE Scroll up or down of the page
GO Go forward or backward of the page
JUMP_TO Jump to URL
SWITCH.TAB Switch to i-th tab
USER_INPUT Notify user to interact
FINISH Stop with answer

B DATA COLLECTION DETAILS

B.1

The questions used for UI basic environmental knowledge generation are shown in Table

QUESTIONS LIST

B.2 DETAILS OF THE COLLECTED DATA

The distribution of the collected data is shown in Table (8|

B.3 PROMPTS FOR DIFFERENT AGENTS

Prompts for different agents are shown in Figures @] to
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Running task: FilesMoveFile

Running task FilesMoveFile with goal "*Move the file holiday_photos.jpg from Podcasts within the sdk_gphone_x86_64
storage area to the DCIM within the same sdk_gphone_x86_64 storage area in the Android filesystem."*

i 914 ° ean 1554 4 [ aean
Downloads aQ i Files sdk_gphone64_arm64 aQ i = Podcasts Q ot
Ul element 1 © heen .
O wages J mudo 1 videos () ocur 5 D vour [ wmogee & Ao [ Vdeos [} Docu
. S— . S -
9 videas
= o
g g
R -,
UL Ul element 8
Ul element 24
. . [
action_type='open_app', action_type='click’, action_type="click’, action_type='click’, action_type="scroll’,
app_name="Files' index=1 index=8 index=24 direction="down’
—————
o = . “* Ul elefent4 o
= Podcasts aQ i X 1selected < @
5 spomann || 5 smasms R
=} J
i -
@ mmwer. | 5 e & Index=4
Ul element 16 & Index=0
g
& Index=4
: Navigate
Y
?) back
g J

Agent Action Reward

4

action e='long_press', action e='click’, . . .
P 9P P action_type='click’, index=4
index=16 index=4
s34 [} a Y wean N [ wean
Move to. sdk_gphone64_arm64 [ = DCIM o i
Ul element 3 [Sp—
=
owe Ul element 12
e e T
Ul element 8
action_type='click’, action_type='click’, action_type='click’, action_type='status’,
index=3 index=12 index=8 goal_status="complete'

Figure 3: An example of task execution steps.
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Table 7: Questions for Ul basic environmental knowledge generation.

Type \ Question

What is the purpose of the current UI?
UI Understanding What does the current UI aim to achieve?
Summarize the current interface in one paragraph.
What is the function of UI element X?
Element Recognition What information does Ul element X provide?
What happens when click the Ul element X?
What action is associated with Ul element X?

Table 8: Collected data distribution.

Data Type | Number
Basic Environmental Data 88,513
Simple Instruction Data 18,041
Process Preference Data 3,440

The current user goal/request is: {goal}

Here is a history of what you have done so far: {history}

Here is a list of descriptions for some Ul elements on the current screen:
{ui_elements_description}

General Guidance: {general_guidance}

Now output an action from the above list in the correct JSON format following the reason

why you do that. Your answer should look like:

'Reason: ...Action: {{"action_type":...}}’

Your answer:

Figure 4: The action prompt template for the UI agent.
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You are an agent who can operate an Android phone on behalf of a user.
Here is a list of descriptions for some Ul elements on the current screen:
{ui_elements_description}

Please answer the following questions for all the Ul elements above.

Questions = ('

‘What is the purpose of the current UI?'
‘Summarize the current interface in one paragraph.'
‘What does the current Ul aim to achieve?

)

Please format your response as follows:

L{"Question™: "What is the purpose of the current UI?", "Answer™":"........ "1
{{"Question": "Summarize the current interface in one paragraph.", "Answer":"........ "
"{{"Question": "What does the current UI aim to achieve?", "Answer":"........ "y

Your response:

Figure 5: The Ul understanding prompt template for the UI agent.

You are an agent who can operate an Android phone on behalf of a user.
Here is a list of descriptions for some Ul elements on the current screen:
{ui_elements_description}

Please answer the following questions for all the Ul elements above.

Questions = (

'‘What is the function of Ul element X ?'

‘What information does Ul element X provide ?'
‘What happens when click the Ul element ?'
'What action is associated with UI element X ?°

)

Please format your response as follows:

L{"Question": "What is the function of Ul element X?", "Answer":"........ "1
{{"Question": "What information does Ul element X provide?", "Answer":"........ "1
{{"Question": "What happens when click the Ul element X?", "Answer":"........ "
{{"Question": "What action is associated with Ul element X?", "Answer":"........ "1

Your response:

Figure 6: The element recognition prompt template for the Ul agent.
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You are an agent who can operate an Android phone on behalf of a user.
Here is a list of descriptions for some Ul elements on the current screen:
{ui_elements_description}

The action space of the agent: {action_space}

General guidance: {general_guidance}

Please propose diverse simple instructions (one-step tasks) as many as possible based on the
agent\'s action space and the current Ul elements above in the following format: (contains at
least one but no more than two \'complete\' actions and no more than one \'answer\' action)’

'"{{"Instruction": "......", "Response": "Reason: ... Action: {{"action_type":...}}"}}’

For example:

{{"Instruction™: "I need to start recording audio”, "Response": "Reason: The recording
settings are all configured, | need to click \'Apply\' to apply the current settings and start
recording. Action: {{"action_type™: "click", "index": 3}}"}}

{{"Instruction": "I want to select the M4a format for recording.", "Response": "Reason: The

non

recording format has been set correctly. Action: {{"action_type": "status", "goal_status":

Hcomp]eteﬂ}}ﬂ}}ﬁ

"Your response:

Figure 7: The instruction generation prompt template for the UI agent.
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The current user goal/request is: {goal}

Here is a history of what you have done so far: {history}

Here is a list of descriptions for some Ul elements on the current screen:
{ui_elements_description}

General guidance: {general_guidance}

Now you need to role-play a very clumsy agent that can only output incorrect answer (if you
have no choice, you can make up a wrong action and reason) from the above list in the

correct JSON format, following the reason why you do that.

Your answer should look like:

'Reason: ...Action: {{"action_type":...}}’

Your answer:

Figure 8: The prompt template for the adversarial agent.

C PROMPT FOR AGENT WEB BROWSING

Prompts for agent web browsing is shown in Figures [T}
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You are a super-intelligent agent who can expertly operate an Android phone on behalf of a
user.

Now, you need to act as a critic, evaluating the actions taken by other Android agents.
These agents receive user tasks and current Android interface information and then take the
next step.

Your evaluation should be between [0,1]. A score close to 0 means the agent‘s action is
useless or incorrect in achieving the user's task, a score close to 0.5 means you are uncertain
whether the agent's decision is useful for achieving the user's task, and a score close to 1

means the agent's action is useful or correct in achieving the user's task.

The current user goal/request is: {goal}

Here is a history of what have done so far: {history}

Here is a list of descriptions for some Ul elements on the current screen:
{ui_elements_description}

General guidance: {general_guidance}

Here are the next actions different agents would like to take: {agents_actions}
Please output each agent's score in the correct JSON format, following the reason why you
think the agents' actions and reasons are correct or not, and ensuring that their actions are

necessary and not redundant for achieving the user's goals when you give your scores.

Figure 9: The prompt template for the critic agent.
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Your answer should look like:

'Reason: The goal is {{user goal}}...Score: {{"agent_id": score...}}'

Here are some demonstrations of evaluations:\n'

1. Reason: The goal is ... Agent 0 and Agent 2 attempt to scroll down to find additional
options. This is a logical step given that no explicit save button is visible and the app might
have additional options accessible through scrolling. Agent 1 decides to click the “Settings”
button in hopes that it might lead to a menu with a save option. However, this seems less
directly connected to saving the recording as the Settings menu is generally for configuration
rather than saving recordings. Score: {{“agent 0”: 0.9, “agent 1: 0.1, “agent 2”: 0.9}}.

2. Reason: The goal is ... All agents (Agent 0, 1, and 2) have chosen to input the desired name
"xxx.m4a" into the text field, However, user did not specify a name. This is the incorrect next
step, ...Score: {{"agent_0": 0.2, "agent_1": 0.2, "agent_2": 0.2} }.

3. Reason: The goal is ... Historical information shows that the agent has taken the same
action multiple times. | am unsure if taking the same action again is reasonable. Score:
{{"agent_0": 0.5, "agent_1": 0.5, "agent_2": 0.5}}.

Now output each agent's score.

Your answer must in the format:

'Reason: The goal is {{user goal}}...Score: {{"agent_id": score, "agent_id": score, "agent_id":
score}}’

Your Evaluation:

Figure 10: The few-shot prompt template for the critic agent.
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<html > {html_content} </html| >

You are a helpful assistant that can assist with web navigation tasks. You are given a

simplified html webpage and a task description. Your goal is to complete the task. You can

use the provided functions below to interact with the current webpage.

#Provided functions: {action_space}

#Previous commands: {previous_commands}

#Window tabs: {exist_window_tabs_with_pointer_to_current_tab}

#Current viewport (pages): {current_position} / {max_size}

#Task: {task_description}

You should output one command to interact to the currrent webpage. You should add a brief

comment to your command to explain your reasoning and thinking process.

Figure 11: The input prompt template for agent web browsing.
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